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Abstract— Analysis of exhaled trace gases is a novel method-
ology for gaining continuous and non-invasive information on
the clinical state of an individual. This paper serves to explore
some potential applications of breath gas analysis in anesthesia,
describing a monitoring scheme for target site concentrations
and cardiac output via physiological modeling and real-time
breath profiles of the anesthetic agent. The rationale given here
is mainly simulation-based, however, the underlying concepts
are directly applicable to a routine clinical setting.

I. INTRODUCTION

Breath analysis is a relatively young field of research cen-
tering on the detection and quantification of volatile organic
compounds (VOCs) appearing in human breath [1]. Such
trace gases are either released endogenously or penetrate the
body as a result of exogenous exposure, eventually entering
the blood stream and being metabolized or excreted via
exhalation, skin emission, urine, etc.. Exhaled breath analysis
employed for medical testing/diagnosis and monitoring has
the advantage of being non-invasive. Breath samples can
be extracted as often as desired and can be measured in
real-time as well as with breath-by-breath resolution, e.g.,
by using proton-transfer-reaction mass spectrometry (PTR–
MS) [2]. Breath analysis hence is an optimal choice for
gaining continuous information on the physiological state
of an individual, even under challenging conditions, e.g.,
during operations or at an intensive care unit. Within this
context, the present paper serves to explore some potential
applications of breath gas analysis in anesthesia. Due to the
current lack of appropriate in vivo data the rationale given
here is mainly simulation-based, however, the underlying
concepts are directly applicable to a routine clinical setting.

A core task in anesthesia is to control anesthetic depth
by administering adequate amounts of the anesthetic agent
to the target (effect) sites in the central nervous system
(CNS). While a well-defined relationship between target site
concentrations (TSCs) and the associated anesthetic/amnestic
response can be expected, assessments of the latter usually
rest on derivational variables that can relatively easily be
accessed by direct measurement. In inhalation anesthesia, a
quantity of considerable interest is the minimum alveolar
concentration (MAC), defined as the end-tidal concentration
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of the agent at which 50% of the patients fail to respond to
surgical incision. However, the MAC value is essentially a
steady state concept. Indeed, during transient states following
a modification of the inspired gas concentration (e.g., induc-
tion) the end-tidal agent concentration is a poor indicator
for the TSC. A more reliable estimation of anesthetic CNS
levels would hence be highly desirable [3]. Similarly, for
intravenous drugs the respective serum level often serves as
a surrogate for the underlying TSC. As has been suggested by
several authors, the former might also be estimated via breath
measurements, thus obviating the time-intensive analysis of
blood samples. For perspective, a good agreement between
breath propofol content (determined, e.g., by PTR–MS at
m/z = 179) and serum levels has been reported [4].

A second hallmark of anesthesia is the need for continuous
monitoring of vital respiratory and hemodynamic parameters.
While ventilation is usually adjusted automatically by means
of a breathing circuit (for ensuring stable normocapnic condi-
tions), perfusion (i.e., cardiac output Q̇c) is a rather intricate
quantity to determine, particularly due to the inaccessibility
of current stroke volumes. Reliable measurements of Q̇c are
imperative for combating many circulatory complications,
however, most of the conventional methods for pursuing
this goal are either highly invasive (dye or thermal dilution)
or cumbersome (ultrasonic techniques, impedance cardio-
graphy). Alternatively, it is well-known that Q̇c can also
be reconstructed from the breath dynamics of exhaled inert
gases (Fick principle), which is the approach that we shall
adopt here. The inert gas employed will be the anesthetic
agent itself, i.e., no additional instrumentation is involved.

Specifically, our goal is to describe a novel on-line
monitoring scheme for Q̇c and the desired TSCs using
physiological modeling and breath profiles of the anesthetic
drug. Our account is strongly influenced by the earlier
demonstration in [5], however, it differs from the latter by
providing some model validation with clinical data and by
using an estimation procedure fully exploiting the underlying
model structure. The presentation in the sequel focuses on
the prototypic volatile anesthetic sevoflurane, which is a con-
venient choice in terms of clinical relevance, measurability
and availability of experimental data [6]. Particularly, this
agent can be detected in PTR–MS at m/z = 181 [7], thus
allowing for direct real-time measurements of the associated
alveolar (end-tidal) concentrations. Sevoflurane is especially
suitable for tracking hemodynamic/respiratory events due to
the compound’s low blood:gas partition coefficient λb:air =
0.6 [8], implying a high sensitivity of the associated breath
output with respect to blood and ventilatory flow.



II. SIMULATION AND ESTIMATION

A. Physiological model

The usual compartmental approach is adopted for captur-
ing the tissue accumulation of sevoflurane during inhala-
tion anesthesia. The systemic part of the model is similar
to previously developed physiologically based descriptions
of sevoflurane pharmacokinetics [3] and incorporates three
well-mixed functional units: brain tissue (target site), a richly
perfused tissue (RPT) compartment (liver, kidneys, muscle),
lumping together tissue groups with comparable blood:tissue
partition coefficient λb:rpt ≈ 0.24 [8], as well as a buffer
tissue (fat), acting as a reservoir for the lipophilic agent
sevoflurane. All three compartments receive a constant share
of Q̇c and are separated into the intracellular space and
the vascular blood, whereby a venous equilibrium holds
at these interfaces. It is postulated that the major route of
sevoflurane uptake and removal is respiration, governed by
the alveolar ventilation V̇A. In particular, metabolic clearance
is assumed to be negligible [6]. The lung is modeled by
one single homogenous alveolar unit characterized by an
average ventilation-perfusion ratio close to one in normal
healthy patients at rest. Since both venous admixture and
physiological dead space are higher during general anesthesia
than in the awake state, a constant shunt fraction qs = 0.1 and
an alveolar dead space fraction vad = 0.1 are incorporated
into the model [9]. Pulmonary gas exchange is assumed
to be perfusion-limited, i.e., an instantaneous equilibrium is
established between the end-capillary concentrations Cc′ and
alveolar levels CA, viz., Cc′ = CAλb:air. The model structure
is presented in Fig. 1. For a detailed nomenclature we refer
to Table I.
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Fig. 1. Sketch of the sevoflurane model structure. The body is divided
into four distinct functional units: alveolar/end-capillary compartment (gas
exchange), brain tissue (effect site), richly perfused tissue and storage tissue
(adipose tissue). Dashed boundaries indicate a diffusion equilibrium.

From the previous assumptions the mass balance equation
for the alveolar compartment reads

ṼA
dCA

dt
= (1− vad)V̇A(CI − CA)+

(1− qs)Q̇c(Cv̄ − CAλb:air), (1)

where CI denotes the inhaled sevoflurane concentration and
ṼA = VA + λb:airVc′ is the effective alveolar volume taking
into account the amount of sevoflurane dissolved in capillary
blood. Similarly, for the brain, richly perfused and storage
tissue compartment we find that

Ṽbr
dCbr

dt
= qbrQ̇c(Ca − λb:brCbr), (2)

and

Ṽrpt
dCrpt

dt
= (1− qbr − qst)Q̇c(Ca − λb:rptCrpt), (3)

and
Ṽst

dCst

dt
= qstQ̇c(Ca − λb:stCst), (4)

respectively. Here, the associated concentrations in mixed
venous and arterial blood are given by the weighted means

Cv̄ := qbrλb:brCbr+

(1− qbr − qst)λb:rptCrpt + qstλb:stCst (5)

and
Ca := (1− qs)CAλb:air + qsCv̄, (6)

respectively. Moreover, the measured (end-tidal) sevoflurane
concentration equals

Cmeasured = (1− vad)CA + vadCI. (7)

The clinical adequacy of the above formulation was tested
by comparing the resulting model predictions to an ensemble
of in vivo concentration profiles published in [3]. By adopt-
ing the reference values in Table I and setting the initial
concentration of each compartment to zero, the simulated
model dynamics are in good agreement with the observed
data, see Fig. 2.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

[min]

[m
m

ol
/l]

 

 

inhaled end−tidal arterial jugular venous

Fig. 2. Simulation of sevoflurane profiles in inspired air (CI), end-tidal
air (Cmeasured, cf. (7)), arterial blood (Ca, cf. (6)), and jugular venous
blood (corresponding to Cbrλb:br) during administration of approx. 3%
sevoflurane over 25 min. Discrete points reflect sample means associated
with pooled data from 11 patients as measured in [3].



Note that during anesthesia induction the end-tidal sevoflu-
rane profile yields a poor representation of the underlying
TSC dynamics. Specifically, while the former readily ap-
proaches the desired MAC of about 2%, jugular venous blood
levels are still in a transitory phase.

B. Anesthetic monitoring: a proof of concept

As has been pointed out in the introduction, the variables
CI and CA can be viewed as known or measurable quantities
within a routine setting, while Q̇c will be interpreted as an
additional time-varying parameter θ that has to be estimated
from the available breath sevoflurane data. Its time evolution
will be modeled as a random walk. By employing zero-order
hold sampling and introducing process as well as measure-
ment noise, (1)–(7) can straightforwardly be transformed into
a discrete time-varying stochastic system of the form

xk = Gk−1(θk−1)xk−1 + fk−1 + wk−1

θk = θk−1 + ϑk−1

yk = Hkxk + dk + vk,

(8)

in the state variable x :=
(
CA Cbr Crpt Cst

)T
, with

the scalar output being given by yk := Cmeasured,k. Here, the
postulated sampling interval is 5 s, roughly corresponding to
the duration of one respiratory cycle during normal breathing
at 12 tides/min. We assume that {wk}, {ϑk}, and {vk} can
be simulated as Gaussian, white, zero-mean noise sequences
with known covariance matrices Qk, Tk, and Rk, respec-
tively. Additionally, we assign the Gaussian prior densities

p(x0) ∼ N (0,O), p(θ0) ∼ N (Q̇est
c , var{Q̇est

c }), (9)

encapsulating our information on the initial sevoflurane con-
centrations as well as on the initial cardiac output. Here, O
denotes the zero matrix of appropriate size.

Using the representation in (8) we may directly aim at the
joint estimation of x and θ from the observable profile of
the breath sevoflurane concentration y by virtue of Bayesian
filtering methods as illustrated below. Due to the lack of
appropriate in vivo data, a sequence of data points xk

is simulated from the undisturbed system by employing
predefined profiles for Q̇c, V̇A, and CI (cf. Fig. 3), setting
x0 = 0 (i.e., we assume that no sevoflurane is present in the
body at the onset of anesthesia). Subsequently, noisy output
data yk are created from (8) by applying additive Gaussian
perturbations with fixed variance Rk = (0.008)2.

Sequential state and parameter reconstruction from the
stacked observations Yk := (yk, . . . , y1) can be achieved
by virtue of a marginalized particle filtering scheme as
introduced in [10]. Briefly, the central object of interest
within this framework is the conditional (posterior) probabil-
ity p(xk,Θk|Yk), which embodies all accessible information
on xk and the parameter sequence Θk := (θk, . . . , θ0) up
to time k. For the purpose of computing this density, it is
instructive to note that, conditional on Θk, (8) represents a
linear Gaussian system, i.e., we may decompose

p(xk,Θk|Yk) = p(xk|Θk, Yk)p(Θk|Yk), (10)

where the first factor p(xk|Θk, Yk) ∼ N (x̂+
k (Θk), P+

k (Θk))
can be determined analytically by means of the standard
Kalman filter formulae. As for the second factor, using
Bayes’ Theorem and taking into account the specific structure
of (8) one finds the recursion

p(Θk|Yk) =
p(yk|θk, Yk−1)

p(yk|Yk−1)
p(θk|Θk−1, Yk−1)×

p(Θk−1|Yk−1). (11)

The goal of particle filtering is to approximate this density
by drawing m � 1 random samples {Θ+

k,1, . . . ,Θ
+
k,m}

from it, producing a point mass representation of the form
p(Θk|Yk) ∼= m−1

∑
j δΘ+

k,j
(Θk). Here, δ denotes the Dirac

delta point measure. Plugging this expression into (10) one
may directly compute estimators of the form

E{φ(xk,Θk)|Yk} =

∫
φ(xk,Θk)p(xk,Θk|Yk)dΘkdxk

∼= 1

m

m∑
j=1

E{φ(xk,Θ
+
k,j)|Θ+

k,j , Yk}.

In the specific situation above, by setting φ(xk,Θk) = xk

we arrive at the MMSE estimate

E{xk|Yk} ∼=
1

m

m∑
j=1

x̂+
k (Θ+

k,j), (12)

and similarly for φ(xk,Θk) = θk. From (11), by adopting
the standard sampling importance resampling scheme [11]
the particle trajectories Θ+

k,j can be updated as follows:
1) Invoke Kalman filtering to obtain the a priori state

estimates x̂−
k (θ+

k−1,j) as well as P−
k (θ+

k−1,j) and prop-
agate θ+

k−1,j through the system dynamics (8) to arrive
at a priori particles θ−k,j .

2) Use yk to compute the likelihoods p(yk|θ−k,j , Yk−1) ∼
N (Hkx̂

−
k (θ+

k−1,j) + dk, HkP
−
k (θ+

k−1,j)H
T
k +Rk).

3) Resample θ+
k,j according to a multinomial distribution

{(θ−k,1, q1), . . . , (θ−k,m, qm)} with the normalized like-
lihoods qj = p(yk|θ−k,j , Yk−1)/

∑
j p(yk|θ−k,j , Yk−1).

In a final step, the new a posteriori particles θ+
k,j are used

in the measurement update of the corresponding Kalman
filter. Summarizing, marginalized particle filtering for joint
state and parameter estimation in models of the form (8) es-
sentially incorporates running a bank of m separate Kalman
filters in parallel (each one being associated with a single
particle trajectory Θk,j) and combining them like in (12).

The applicability of this filtering scheme within the anes-
thetic monitoring framework introduced above is demon-
strated in Fig. 3. Here, the parameters of the prior den-
sity p(θ0) in (9) were defined as Q̇est

c = 8 l/min and
var{Q̇est

c } = (3)2. Following common practice, the process
noise covariance matrices Qk and Tk were tuned to ensure
a satisfactory performance of the algorithm. In particular we
set Tk = (0.3)2 as a tradeoff between short transition times
(for tracking, e.g., a step change in perfusion) and estimation
accuracy.
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Fig. 3. Simulated (solid black) and recovered (solid red, almost overlap-
ping) profiles of the breath sevoflurane concentration Cmeasured, cardiac
output Q̇c and brain concentration Cbr, using a marginalized particle filter
with cloud size m = 300. Dash-dotted lines represent the profiles of CI

and V̇A used for the simulation of breath sevoflurane data.

The state and parameter estimates calculated from (12)
faithfully reproduce their simulated counterparts. In particu-
lar, incidences such as abrupt drops in cardiac output appear
to be trackable within a delay time that is adequate for
enabling intra-operative interventions.

III. CONCLUSIONS AND FUTURE WORK

While we believe that the present approach can poten-
tially contribute to facilitating real-time assessments of the
anesthetic state on the basis of exhaled breath measure-
ments, several aspects have to be investigated more deeply
before this method can become clinically relevant, e.g., as
a part of automated anesthesia delivery systems. A primary
building block is the availability of a reliable physiological
model for the endogenous concentration profiles of the
inhalational/intravenous agent under study. Consequently,
additional experimental efforts, data gathering and modeling
attempts (accounting for substance-specific confounding fac-
tors, e.g., the redistribution of regional blood flow or possible
metabolization/sequestration patterns in the pulmonary tract
as in the case of propofol) are required in order to extend
the validity of simple models such as the one presented
above over a sufficiently wide range of possible dynamics.
Moreover, further insights into the quantitative links between
anesthetic depth and TSCs need to be gained.

In this sense, the previous analysis should mainly be
seen as a proof of concept, coupling the high-frequency
information obtainable from breath gas analytical techniques
with well-established tools from signal processing in order to
achieve a continuous monitoring of physiological processes.
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TABLE I
BASIC MODEL PARAMETERS AND REFERENCE VALUES, CF. [12].

Parameter Symbol Nominal value [units]

Concentrations
Alveoli CA [mmol/l]
End-capillary Cc′

Inhaled CI

Arterial Ca

Mixed-venous Cv̄

Brain tissue Cbr

RPT (viscera, muscles) Crpt

Storage tissue (fat) Cst

Compartment volumes
Alveoli VA 4.1 [l]
End-capillary Vc′ 0.15 [l]
Brain Ṽbr 1.3 [l]
RPT (viscera, muscles) Ṽrpt 40 [l]
Storage (fat tissue) Ṽst 15 [l]

Flows
Cardiac output Q̇c 4 [l/min]
Alv. ventilation V̇A 4 [l/min]
Fractional flow brain qbr 0.135
Fractional flow storage qst 0.06
Shunt fraction qs 0.1
Alv. dead space fraction vad 0.1

Partition coefficients
Blood:air λb:air 0.6
Blood:brain λb:br 0.46
Blood:rpt λb:rpt 0.24
Blood:storage tissue λb:st 0.014
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