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Abstract. We discuss the unitary equivalence of generators GA,R associated

with abstract damped wave equations of the type ü+Ru̇+A∗Au = 0 in some
Hilbert spaceH1 and certain non-self-adjoint Dirac-type operatorsQA,R (away

from the nullspace of the latter) in H1 ⊕ H2. The operator QA,R represents

a non-self-adjoint perturbation of a supersymmetric self-adjoint Dirac-type
operator. Special emphasis is devoted to the case where 0 belongs to the

continuous spectrum of A∗A.

In addition to the unitary equivalence results concerning GA,R and QA,R,
we provide a detailed study of the domain of the generator GA,R, consider

spectral properties of the underlying quadratic operator pencil M(z) = |A|2−
izR− z2IH1

, z ∈ C, derive a family of conserved quantities for abstract wave

equations in the absence of damping, and prove equipartition of energy for
supersymmetric self-adjoint Dirac-type operators.

The special example where R represents an appropriate function of |A| is
treated in depth and the semigroup growth bound for this example is explicitly

computed and shown to coincide with the corresponding spectral bound for

the underlying generator and also with that of the corresponding Dirac-type
operator.

The cases of undamped (R = 0) and damped (R 6= 0) abstract wave equa-

tions as well as the cases A∗A ≥ εIH1 for some ε > 0 and 0 ∈ σ(A∗A) (but 0
not an eigenvalue of A∗A) are separately studied in detail.

1. Introduction

We are interested in an abstract version of the damped wave equation of the
form

ü(t) +Ru̇(t) +A∗Au(t) = 0, u(0) = f0, u̇(0) = f1, t ≥ 0, (1.1)

where A is a densely defined closed operator in a separable Hilbert space H, fj ∈
H, j = 0, 1, are chosen appropriately, R is a certain perturbation of A∗A to be
specified in more detail in Section 3, and we used the abbreviations u̇ = (d/dt)u,
ü = (d2/dt2)u. (In the main body of this paper we will employ a two-Hilbert space
approach where A maps its domain, a dense subspace of the Hilbert space H1 into
a Hilbert space H2.)
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Traditionally, one rewrites (1.1) in the familiar first-order form

d

dt

(
u
u̇

)
=

(
0 IH

−A∗A −R

)(
u
u̇

)
,

(
u(0)
u̇(0)

)
=

(
f0
f1

)
, t ≥ 0. (1.2)

Our principal result centers around a unitary equivalence between an appropriate
operator realization of the formal generator GA,R of (1.2),

GA,R =

(
0 IH

−A∗A −R

)
, (1.3)

in an associated energy space HA ⊕ H to be determined in Section 2, and the
operator

QA,R(IH ⊕ [IH − Pker(A∗)]) =

(
−i R A∗[IH − Pker(A∗)]
A 0

)
, (1.4)

with QA,R a perturbed supersymmetric Dirac-type operator in H⊕H,

QA,R =

(
−i R A∗

A 0

)
, dom(QA,R) = dom(A)⊕ dom(A∗) ⊆ H⊕H. (1.5)

More precisely, we will first establish the unitary equivalence between the self-
adjoint operators iGA,0 in HA⊕H and QA,0 in H1⊕H2 and then treat the damping
terms

(
0 0
0 −R

)
and

(−i R 0
0 0

)
perturbatively, keeping the same unitary equivalence

between iGA,R and QA,R for R 6= 0.
Particular attention is devoted to domain properties of the generator GA,R.

Moreover, we carefully distinguish the cases of undamped (R = 0) and damped
(R 6= 0) abstract wave equations, and the cases where A∗A ≥ εIH for some ε > 0
and the far more subtle situation where 0 ∈ σ(A∗A) (but 0 is not an eigenvalue of
A∗A).

More precisely, the case where A∗A ≥ εIH for some ε > 0 and no damping,
that is, the situation R = 0, is treated in Section 2. The unitary equivalence of
the generator GA,0 and the supersymmetric self-adjoint Dirac-type operator QA,0
(away from its nullspace) is the centerpiece of this section. Section 2 concludes with
a discussion of the special case where A is replaced by the self-adjoint operator |A|.
Section 3 then considers the more general case where 0 ∈ σ(A∗A) (but 0 is not
an eigenvalue of A). After establishing the appropriate extension of the unitary
equivalence of the generator GA,0 and the supersymmetric self-adjoint Dirac-type
operator QA,0 (away from its nullspace) in this case, we provide a detailed study
of the domain of the generator GA,0. Abstract damped linear wave equations,
assuming A∗A ≥ εIH for some ε > 0, are studied in Section 4. In this section
we also compute the resolvent of Q|A|,R in terms of the quadratic operator pencil

M(z) = |A|2 − izR − z2IH1 , dom(M(z)) = dom
(
|A|2

)
, z ∈ C, and relate the

spectrum of Q|A|,R with that of the pencil M(·). This section once more derives
the unitary equivalence results between Q|A|,R and GA,R and similarly, between
QA,R (away from its nullspace) and GA,R. We also briefly revisit classical solutions
for the abstract first-order and second-order Cauchy problems. Section 4 concludes
with a detailed discussion of the example where the damping term R = 2F (|A|) ≥ 0
is an appropriate function of |A|. Employing the spectral theorem for the self-
adjoint operator |A|, the semigroup growth bound for eGA,2F (|A|)t, t ≥ 0, is explicitly
computed and shown to coincide with the corresponding spectral bound for the
underlying generator GA,2F (|A|) and hence also with that of −iQ|A|,2F (|A|). The
most general case of abstract damped wave equations where 0 ∈ σ(A∗A) (but 0 is
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not an eigenvalue of A) is considered in Section 5. Again we compute the resolvent
of Q|A|,R in terms of the quadratic operator pencil M(z) = |A|2 − izR − z2IH1 ,

dom(M(z)) = dom
(
|A|2

)
, z ∈ C, and relate the spectrum of Q|A|,R with that of

the pencil M(·). In addition, we once more derive the unitary equivalence results
between Q|A|,R and GA,R and similarly, between QA,R (away from its nullspace)
and GA,R. Section 5 concludes with a derivation of a family conserved quantities
for the abstract wave equation in the absence of damping. In Section 6 we prove
equipartition of energy for the supersymmetric self-adjoint Dirac-type operator Q =
QA,0. Appendix A summarizes well-known results on supersymmetric Dirac-type
operators used throughout the bulk of this manuscript and Appendix B studies
adjoints and closures of products of linear operators.

Concluding this introduction, we briefly summarize some of the notation used in
this paper. Let H be a separable complex Hilbert space, (·, ·)H the scalar product
in H (linear in the second factor), and IH the identity operator in H. Next, let T
be a linear operator mapping (a subspace of) a Hilbert space into another, with
dom(T ), ran(T ), and ker(T ) denoting the domain, range, and kernel (i.e., null
space) of T , respectively. The closure of a closable operator S in H is denoted
by S. The spectrum, essential spectrum, point spectrum, discrete spectrum, and
resolvent set of a closed linear operator in H will be denoted by σ(·), σess(·), σp(·),
σd(·), and ρ(·), respectively. The Banach space of bounded linear operators in H
is denoted by B(H); the analogous notation B(H1,H2) will be used for bounded
operators between two Hilbert spaces H1 and H2. The norm in H1⊕H2 is defined

as usual by ‖f‖H1⊕H2
=
[
‖f1‖2H1

+ ‖f2‖2H2

]1/2
for f = (f1 f2)> ∈ H1 ⊕H2. The

symbols s-lim (resp., w-lim) denote the strong (resp., weak) limits either in the
context of Hilbert space vectors or in the context of bounded operators between
two Hilbert spaces. Finally, PM denotes the orthogonal projection onto a closed,
linear subspace M of H.

2. Abstract Linear Wave Equations in the Absence of Damping.
The Case A∗A ≥ εIH for some ε > 0

In this section we consider self-adjoint realizations of iGA,0 modeling abstract
linear wave equations in the absence of damping and study their unitary equivalence
to self-adjoint supersymmetric Dirac-type operators.

To set the stage we first introduce the following assumptions used throughout
this section.

Hypothesis 2.1. Let Hj, j = 1, 2, be complex separable Hilbert spaces. Assume
that A : dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator such that

A∗A ≥ εIH1
(2.1)

for some ε > 0.

To illustrate the implications of Hypothesis 2.1, we briefly digress a bit. Let
T : dom(T ) ⊆ H1 → H2 be a densely defined, closed, linear operator. We recall
the definition of the self-adjoint operator |T | = (T ∗T )1/2 in H1 and note that

dom(|T |) = dom(T ), ker(|T |) = ker(T ∗T ) = ker(T ), ran(|T |) = ran(T ∗),
(2.2)

‖|T |f‖H1
= ‖Tf‖H2

, f ∈ dom(T ). (2.3)
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The latter fact immediately follows from the polar decomposition of T (cf. (A.5)–
(A.11)).

Thus, Hypothesis 2.1 is equivalent to

|A| ≥ ε1/2IH1
, (2.4)

and hence equivalent to

|A|−1 ∈ B(H1), or equivalently, to 0 ∈ ρ(|A|). (2.5)

In particular, it implies that

ker(A) = {0}. (2.6)

Since A is closed and |A| ≥ ε1/2IH1 , the norm ‖ · ‖A on the subspace dom(A)
of H1 defined by

‖f‖A = ‖Af‖H2 , f ∈ dom(A), (2.7)

and the graph norm 9 · 9A on dom(A) defined by

9f9A = ‖Af‖H2 + ‖f‖H1

(
or alternatively, by

[
‖Af‖2H2

+ ‖f‖2H1

]1/2)
,

f ∈ dom(A),
(2.8)

are equivalent norms on dom(A). In particular, one verifies that

ε

1 + ε

[
‖Af‖H2 + ‖f‖H1

]
≤ ‖f‖A ≤

[
‖Af‖H2 + ‖f‖H1

]
, f ∈ dom(A). (2.9)

Associated with the norm ‖ · ‖A we also introduce the corresponding scalar product
( · , · )A on dom(A) by

(f, g)A = (Af,Ag)H2
, f, g ∈ dom(A). (2.10)

Consequently, equipping the linear space dom(A) with the scalar product ( · , · )A,
one arrives at a Hilbert space denoted by HA,

HA =
(

dom(A); ( · , · )A
)
⊆ H1. (2.11)

We emphasize that while Hypothesis 2.1 implies |A|−1 ∈ B(H1), it does not
imply that A is boundedly invertible on all of H1 (mapping into H2), as one can
see from the following typical example.

Example 2.2. Consider the operator B in the Hilbert space L2([0, 1]; dx) defined
by

Bf = −if ′, f ∈ dom(B) =
{
g ∈ L2([0, 1]; dx)

∣∣ g ∈ AC([0, 1]);

g(0) = g(1) = 0; g′ ∈ L2([0, 1]; dx)
}
.

(2.12)

Then B is symmetric, its adjoint is given by

B∗f = −if ′,
f ∈ dom(B∗) =

{
g ∈ L2([0, 1]; dx)

∣∣ g ∈ AC([0, 1]); g′ ∈ L2([0, 1]; dx)
}
,

(2.13)

and the deficiency indices n±(B) of B are given by

n±(B) = 1. (2.14)

Consequently,

σ(B) = C, (2.15)
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in particular, B is not boundedly invertible on L2([0, 1]; dx). On the other hand,

B∗Bf = −f ′′, dom(B∗B) =
{
g ∈ L2([0, 1]; dx)

∣∣ g, g′ ∈ AC([0, 1]);

g(0) = g(1) = 0; g′′ ∈ L2([0, 1]; dx)
}
,

(2.16)

(implying also g′ ∈ L2([0, 1]; dx)) and hence

|B| ≥ πIL2([0,1];dx), |B|−1 ∈ B
(
L2([0, 1]; dx)

)
. (2.17)

In fact, one has |B|−1 ∈ Bp
(
L2([0, 1]; dx)

)
for all p > 1. (Here Bp

(
L2([0, 1]; dx)

)
,

p > 0, denote the `p(N)-based trace ideals of L2([0, 1]; dx).)

In this context we note that by (2.2) and (2.3), one has of course

HA =
(

dom(A); ( · , · )A
)

= H|A| =
(

dom(|A|); ( · , · )|A|
)
⊆ H1, (2.18)

which is of some significance since under Hypothesis 2.1 we always have

0 < ε−1/2IH1
≤ |A|−1 ∈ B(H1), (2.19)

while in general (cf. Example 2.2), A is not boundedly invertible on all of H1

(mapping into H2).
The following result is well-known, but for convenience, we provide its short

proof.

Lemma 2.3. Assume Hypothesis 2.1. Then ran(A) is a closed linear subspace of
H2.

Proof. Let {gn}n∈N ⊂ ran(A) be a Cauchy sequence, that is, gn = Afn, n ∈ N, for
some sequence {fn}n∈N ⊂ dom(A), and hence suppose that limn→∞ ‖gn−g‖H2 = 0
for some g ∈ H2. Since by (2.9),

‖gn − gm‖H2
= ‖Afn −Afm‖H2

= ‖fn − fm‖A

≥ ε

1 + ε

[
‖A(fn − fm)‖H2 + ‖fn − fm‖H1

]
, m, n ∈ N, (2.20)

{fn}n∈N and {Afn}n∈N are Cauchy sequences in H1 and H2, respectively. In par-
ticular, there exists f ∈ H1 such that limn→∞ ‖fn − f‖H1

= 0. Since A is closed,
one infers f ∈ dom(A) and g = s-limn→∞Afn = Af , and hence ran(A) is closed in
H2. �

Given Lemma 2.3, we can now introduce the Hilbert space

KA = ran(A) = ran(A) = ker(A∗)⊥ ⊆ H2, (2.21)

and the associated projection operator PKA
in H2,

PKA
= [IH2 − Pker(A∗)]. (2.22)

Next we state the following elementary result.

Lemma 2.4. Assume Hypothesis 2.1 and introduce the operator

Ã :

{
HA → KA,
f 7→ Af.

(2.23)

Then

Ã ∈ B(HA,KA) is unitary, (2.24)
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and hence, (
Ã
)−1

:

{
KA → HA,
g 7→ A−1g,

(
Ã
)−1 ∈ B(KA,HA) is unitary. (2.25)

Proof. First we note that ker
(
Ã
)

= ker(A) = {0}. Next, one infers that∥∥Ãf∥∥KA
= ‖Af‖H2 = ‖f‖A = ‖f‖HA

, f ∈ dom(A), (2.26)

and hence Ã is isometric. Since ran
(
Ã
)

= ran(A) = KA, Ã is unitary. �

Lemma 2.5. Assume Hypothesis 2.1 and introduce the 2× 2 block matrix operator

UÃ =

(
0 IH1

−i Ã 0

)
: HA ⊕H1 → H1 ⊕KA. (2.27)

Then

UÃ ∈ B(HA ⊕H1,H1 ⊕KA) is unitary, (2.28)

and hence,

U−1
Ã

=

(
0 i

(
Ã
)−1

IH1
0

)
∈ B(H1 ⊕KA,HA ⊕H1) is unitary. (2.29)

Proof. Assuming f ∈ HA and g ∈ H1, one infers that∥∥UÃ(f g)>
∥∥2
H1⊕KA

=
∥∥UÃ(f g)>

∥∥2
H1⊕H2

=
∥∥(g − i Af)>

∥∥2
H1⊕H2

= ‖g‖2H1
+ ‖Af‖2H2

=
∥∥(f g)>‖2HA⊕H1

. (2.30)

Thus, ker
(
UÃ
)

= {0}⊕ ker
(
Ã
)

= {0}, and hence Ã is isometric. Since ran
(
UÃ
)

=

H1 ⊕ KA, UÃ is unitary. In addition, UÃU
−1
Ã

= IH1⊕KA
and U−1

Ã
UÃ = IHA⊕H1

follow from (2.27), (2.29), and Lemma 2.4. �

Next, we explicitly introduce the continuous embedding operator ιA effecting
HA ↪→ H1 by

ιA :

{
HA → H1,

f 7→ f,
(2.31)

such that

dom(ιA) = HA, ran(ιA) = dom(A) ⊆ H1. (2.32)

Then (2.4) implies

ιA ∈ B(HA,H1), ‖ιA‖B(HA,H1) ≤ ε
−1/2. (2.33)

In addition, we consider

JA = ι−1A :

{
H1 ⊇ dom(A)→ HA,
f 7→ f.

(2.34)

We briefly summarize some properties of JA.

Lemma 2.6. Assume Hypothesis 2.1. Then JA is densely defined, closed, and
bijective. Moreover, JA is bounded if and only if A is bounded, in particular, JA ∈
B(H1,HA) if and only if A ∈ B(H1,H2).
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Proof. Since JA is injective and J−1A = ιA ∈ B(HA,H1) is closed, so is JA (cf. [85,
p. 89]).

Boundedness of JA is then equivalent to the existence of C ∈ (0,∞) such that

‖JAf‖HA
= ‖f‖HA

= ‖Af‖H2 ≤ C‖f‖H1 , f ∈ dom(A), (2.35)

which is equivalent to A being bounded. �

With the introduction of ιA and JA = ι−1A one obtains

Ã = A ιA, A = Ã ι−1A = Ã JA (2.36)

and

dom(A∗AιA) = dom
(
A∗Ã

)
= JA dom(A∗A). (2.37)

Moreover, the following result holds.

Lemma 2.7. Assume Hypothesis 2.1. Then(
A∗Ã

)∗
=
(
A∗A ιA

)∗
= JA, J∗A = A∗Ã = A∗A ιA. (2.38)

Proof. For brevity we denote T = A∗Ã = A∗A ιA. Then T ∗ is given by

dom(T ∗) = {f ∈ H1 | there exists g ∈ HA : (f, Th)H1
= (g, h)HA

for all h ∈ dom(T )}, (2.39)

T ∗f = g,

where

dom(T ) = {h ∈ HA |A ιAh ∈ dom(A∗)}. (2.40)

Given h ∈ dom(T ) and g ∈ HA as in dom(T ∗) in (2.39), one concludes

(g, h)HA
= (AιAg,AιAh)H2 = (ιAg,A

∗AιAh)H1 = (f, Th)H1 = (f,A∗AιAh)H1 ,
(2.41)

that is,

f = ιAg = ιAT
∗f, f ∈ dom(A), (2.42)

since ran(A∗A) = H. Thus,

dom(T ∗) = dom(A) and T ∗ = ι−1A = JA. (2.43)

Consequently,

J∗A = T = T (2.44)

since T = A∗A ιA is closed as A∗A is closed in H, (A∗A)−1 ∈ B(H1), and ιA ∈
B(HA,H1) (cf. [59, p. 164]). �

Assuming Hypothesis 2.1, we next introduce the operator GA,0 in HA ⊕H1 by

GA,0 =

(
0 JA
−J∗A 0

)
=

(
0 JA

−A∗Ã 0

)
,

dom(GA,0) = dom
(
A∗Ã

)
⊕ dom(A) ⊆ HA ⊕H1,

(2.45)

where,

dom
(
A∗Ã

)
=
{
f ∈ HA

∣∣ Ãf ∈ dom(A∗)
}
. (2.46)

In particular, one infers

GA,0 =

(
0 JA

−A∗A ιA 0

)
=

(
0 IHA

−A∗A 0

)(
ιA 0
0 JA

)
. (2.47)
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We recall that the Hilbert space HA ⊕ H1 in connection with GA,0 is sometimes
called the energy space.

In addition, still assuming Hypothesis 2.1, we introduce the supersymmetric
Dirac-type operator QA,0 in H1 ⊕H2 by

QA,0 =

(
0 A∗

A 0

)
, dom(QA,0) = dom(A)⊕ dom(A∗) ⊆ H1 ⊕H2. (2.48)

As discussed in Appendix A, QA,0 is self-adjoint in H1⊕H2. Moreover, (A.28) and
ker(A) = {0} yield

QA,0[IH1⊕H2 − Pker(QA,0)] =

(
0 A∗

A 0

)(
IH − Pker(A) 0

0 IH − Pker(A∗)

)
=

(
0 A∗[IH − Pker(A∗)]
A 0

)
=

(
0 A∗PKA

A 0

)
. (2.49)

Clearly,

QA,0[IH1⊕H2
− Pker(QA,0)] = [IH1⊕H2

− Pker(QA,0)]QA,0

= [IH1⊕H2
− Pker(QA,0)]QA,0[IH1⊕H2

− Pker(QA,0)]

(2.50)

is self-adjoint in H1 ⊕ H2, with H1 ⊕ KA a reducing (i.e., invariant) subspace for
QA,0[IH1⊕H2 − Pker(QA,0)]. In this context we also note that

[IH − Pker(A∗)]A = PKA
A = A. (2.51)

At this point we are in position to formulate our first principal result and es-
tablish the following remarkable connection between the generator GA,0 and the
abstract supersymmetric Dirac-type operator QA,0.

Theorem 2.8. Assume Hypothesis 2.1. Then

QA,0[IH1⊕H2
− Pker(QA,0)] = UÃ iGA,0U

−1
Ã
. (2.52)

In particular, the operator iGA,0 is self-adjoint in the energy space HA ⊕ H1 and
hence GA,0 generates a unitary group eGA,0t, t ∈ R, in HA ⊕H1. Moreover, GA,0
is unitarily equivalent to −GA,0.

Proof. Self-adjointness of iGA,0 is an immediate consequence of J∗A = A∗Ã in
Lemma 2.7 and the first equality in (2.45), that is,

GA,0 =

(
0 JA

−A∗Ã 0

)
=

(
0 JA
−J∗A 0

)
(2.53)

in HA ⊕H1 and the fact that JA is closed by Lemma 2.6.

Employing the fact that dom(GA,0) = dom
(
A∗Ã) ⊕ dom(A) ⊆ HA ⊕ H1, one

first obtains

UÃ dom(GA,0) =

(
0 IH1

−i Ã 0

){(
f
g

)
∈ HA ⊕H1

∣∣∣∣ f ∈ dom
(
A∗Ã

)
, g ∈ dom(A)

}
=
{

(g − i Ãf
)> ∈ H1 ⊕KA

∣∣ f ∈ dom
(
Ã
)
, Ãf ∈ dom(A∗), g ∈ dom(A)

}
= dom(A)⊕ {h ∈ KA |h ∈ dom(A∗)}
= dom(A)⊕ dom(A∗[IH2 − Pker(A∗)])

= dom(A)⊕ dom(A∗PKA
)
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= dom(QA,0[IH1⊕H2
− Pker(QA,0)]). (2.54)

Next, one computes for (f g)> ∈ H1 ⊕ KA such that U−1
Ã

(f g)> ∈ dom(GA,0) =

dom
(
A∗Ã)⊕ dom(A),

U−1
Ã

(
f
g

)
=

(
−i
(
Ã
)−1

g
f

)
∈ dom(GA,0) = dom

(
A∗Ã)⊕ dom(A)

if and only if f ∈ dom(A),
(
Ã
)−1

g ∈ dom
(
A∗Ã

)
, g ∈ KA = ran

(
Ã
)

if and only if f ∈ dom(A), g ∈ KA, g ∈ dom(A∗)

if and only if f ∈ dom(A), g ∈ dom(A∗PKA
) = dom(A∗[IH2

− Pker(A∗)]),
(2.55)

where we used the fact that KA = PKA
H2 = [IH2

− Pker(A∗)]H2 reduces A∗. Thus,

UÃiGA,0U
−1
Ã

= i

(
0 IH1

−i Ã 0

)(
0 JA

−A∗Ã 0

)(
0 i

(
Ã
)−1

IH1 0

)
= i

(
0 IH1

−i Ã 0

)(
JA 0
0 −i A∗PKA

)
=

(
0 A∗PKA

Ã JA 0

)
=

(
0 A∗PKA

Ã ι−1A 0

)
=

(
0 A∗PKA

A 0

)
, (2.56)

using Ã JA = Ã ι−1A = A by (2.36).
An alternative proof of the self-adjointness of iGA,0 then follows from (2.52) and

the self-adjointness of QA,0 (cf. (A.2)) and hence that of QA,0[IH1⊕H2
−Pker(QA,0)].

Finally, the unitary equivalence of QA,0 to −QA,0 in (A.29) together with (A.28),
which implies the unitary equivalence of the operators QA,0[IH1⊕H2

− Pker(QA,0)]
and −QA,0[IH1⊕H2

− Pker(QA,0)], and (2.52) then prove the unitary equivalence of
GA,0 and −GA,0. �

Remark 2.9. (i) Given Hypothesis 2.1, the self-adjointness of GA,0 on dom(GA,0) =

dom
(
A∗Ã) ⊕ dom(A) in the energy space HA ⊕ H1 is of course well-known. We

refer, for instance, to the monographs [20, Sect. VI.3], [29, Sect. 2.7], [71, p. 2,
3], [72, Sect. X.13]. These sources typically employ a combination of semigroup
methods and the spectral theorem for self-adjoint operators. Our proof of (2.53)
closely follows the pattern displayed in the Klein–Gordon context in [78, Subsect.
5.5.3]. Our proof based on the unitary equivalence to the self-adjoint Dirac-type
operator QA,0[IH1⊕H2 − Pker(QA,0)] in H1 ⊕ H2 appears to be a new twist in this
context.
(ii) The observation that GA,0 (and more generally, GA,R) in the energy space
HA ⊕ H1 is related to a Dirac-type operator in H1 ⊕ H2 has recently been made
in the context of trace formulas for the damped string equation [23]. However, this
observation is not new and has already been made in [61] (under more restricted
assumptions of compactness of A∗A and self-adjointness and boundedness of R) and
[37], and was subsequently also discussed in [33], [39], [40], [52], and [78, Subsect.
5.5.3]. We have not been able to find the precise unitary equivalence result (2.52) in
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Theorem 2.8 in the literature. The fact that GA,0 and −GA,0 are similar operators
has been noted in [20, p. 382].

Still assuming the basic Hypothesis 2.1, we now briefly summarize the basic
results derived thus far if A and A∗ in the factorization A∗A are both systematically
replaced by |A| using the fact that A∗A = |A|2. This case is of considerable interest
and used in practice as 0 < ε−1/2IH1

≤ |A|−1 ∈ B(H1), whereas A is in general
not boundedly invertible as discussed in Example 2.2. Since this is a special case
of the discussion thus far, we now focus on some of the simplifications that arise in
this context and present the results without proofs as the latter parallel those that
have already been presented in great detail.

We start by noting that in this special case

H|A| = HA, (2.57)

ι|A| = ιA, (2.58)

J|A| = JA, (2.59)

K|A| = ran(|A|) = ker(|A|)⊥ = H1. (2.60)

In addition1,

|̃A| :

{
H|A| → H1,

f 7→ |A|f,
(
|̃A|
)−1

:

{
H1 → H|A|,
g 7→ |A|−1g,

(2.61)

|̃A| ∈ B(H|A|,H1),
(
|̃A|
)−1 ∈ B(H1,H|A|) are both unitary, (2.62)

U|̃A| =

(
0 IH1

−i |̃A| 0

)
∈ B(H|A| ⊕H1,H1 ⊕H1) is unitary, (2.63)

U−1
|̃A|

=

(
0 i

(
|̃A|
)−1

IH1 0

)
∈ B(H1 ⊕H1,H|A| ⊕H1) is unitary, (2.64)

J∗|A| = |A|2ι|A| = A∗AιA = J∗A, (2.65)

|̃A| = |A|ιA,
(
|̃A|
)−1

= JA|A|−1, (2.66)

G|A|,0 =

(
0 J|A|

−|A|2ι|A| 0

)
=

(
0 JA

−|A|2ιA 0

)
=

(
0 JA

−A∗AιA 0

)
= GA,0,

(2.67)

dom(G|A|,0) = dom
(
|A|2ιA

)
⊕ dom(A) = dom(GA,0) ⊆ H|A| ⊕H1, (2.68)

Q|A|,0 =

(
0 |A|
|A| 0

)
, dom(Q|A|,0) = dom(|A|)⊕ dom(|A|) ⊆ H1 ⊕H1. (2.69)

Consequently, one obtains as in Theorem 2.8 that

Q|A|,0 = U|̃A| iGA,0U
−1
|̃A|
, dom(Q|A|,0) = U|̃A| dom(G|A|,0). (2.70)

We emphasize that Q|A|,0 in (2.70) does not involve any additional projection
as opposed to QA,0[IH1⊕H2

− Pker(QA,0)] in (2.52). Still, the two operators are of
course unitarily equivalent. Indeed, equation (2.70) implies

Q|A|,0 =
[
U|̃A|U

−1
Ã

]
QA,0[IH1⊕H2

− Pker(QA,0)]
[
U|̃A|U

−1
Ã

]−1
, (2.71)

1We emphasize that |̃A| as defined in (2.61) differs of course from
∣∣Ã∣∣ =

((
Ã
)∗
Ã
)1/2

(noting the

different order of operations). In fact, since Ã as defined in (2.23) is unitary, one has
∣∣Ã∣∣ = IHA

.
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where

U|̃A|U
−1
Ã

=

(
IH1 0

0 |̃A|
(
Ã
)−1) =

(
IH1 0
0 |A|A−1

)
=

(
IH1 0
0 (VA)∗

)
=

(
IH1

0
0 VA∗

)
∈ B(H1 ⊕KA,H1 ⊕H1) is unitary, (2.72)

using, (2.2), (A.5)–(A.11), and employing the fact that the initial set of VA∗ coin-

cides with ran(A) = KA.
We note that the (2.70) is a special case of a result observed by Huang [54] in

connection with his Proposition 3.1 (the latter also includes a damping term R, see
also Theorem 4.4).

3. Abstract Linear Wave Equations in the Absence of Damping.
The Case inf(σ(A∗A)) = 0

In this section we indicate how to extend the results of the previous section to the
case inf(σ(A∗A)) = 0. This case will to a large extend parallel the case A∗A ≥ εIH1

for some ε > 0, and hence we will mainly focus on the differences between these
two situations.

Our basic hypothesis throughout this section now reads as follows.

Hypothesis 3.1. Let Hj, j = 1, 2, be complex separable Hilbert spaces. Assume
that A : H1 ⊇ dom(A)→ H2 is a densely defined, closed, linear operator satisfying

ker(A) = {0} (3.1)

and

inf(σ(A∗A)) = 0. (3.2)

As in the previous case we can equip dom(A) with the norm ‖ · ‖A, but since
the stronger Hypothesis 2.1 is no longer assumed, the resulting space will in general
not be complete. Hence we denote by HA its completion,

HA = (dom(A); (·, ·)A), (f, g)A = (Af,Ag)H2 , f, g ∈ dom(A) ⊆ H1. (3.3)

In general (cf. Example 5.8),

HA * H1 and H1 * HA. (3.4)

Moreover, Lemma 2.3 will also fail in general and consequently we now define

KA = ran(A) = ker(A∗)⊥ ⊆ H2. (3.5)

Next, Lemma 2.4 also requires some modifications.

Lemma 3.2. Assume Hypothesis 3.1 and introduce the operator

A0 :

{
HA ⊇ dom(A)→ KA,
f 7→ Af.

(3.6)

Then there exists a (unique) unitary extension Ã = A0 ∈ B(HA,KA) of A0.

Proof. As in the proof of Lemma 2.4 one infers that A0 is isometric. Since ran(A0) =

ran(A) ⊆ KA is dense, there is a unique unitary extension Ã of A0 given by the
closure A0 of A0. �
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Consequently, Lemma 2.5 extends without further modifications to the present
setting.

Lemma 3.3. Assume Hypothesis 3.1 and introduce the 2× 2 block matrix operator

UÃ =

(
0 IH1

−i Ã 0

)
: HA ⊕H1 → H1 ⊕KA. (3.7)

Then

UÃ ∈ B(HA ⊕H1,H1 ⊕KA) is unitary, (3.8)

and hence,

U−1
Ã

=

(
0 i

(
Ã
)−1

IH1
0

)
∈ B(H1 ⊕KA,HA ⊕H1) is unitary. (3.9)

We can also introduce the embedding operator ιA effecting the embedding HA ⊇
dom(A) ↪→ H1 by

ιA :

{
HA ⊇ dom(A)→ H1,

f 7→ f,
(3.10)

such that

dom(ιA) = dom(A) ⊆ HA, ran(ιA) = dom(A) ⊆ H1. (3.11)

In particular, we note that ιA is no longer a bounded operator unless Hypothesis
2.1 holds. In addition, we consider

JA = ι−1A :

{
H1 ⊇ dom(A)→ HA,
f 7→ f.

(3.12)

Both ιA and JA are densely defined, closed, and bijective.
With the introduction of ιA and JA = ι−1A one obtains

A0 = AιA, Ã = A ιA, A = Ã ι−1A = Ã JA, (3.13)

and the analog of Lemma 2.7 holds.

Lemma 3.4. Assume Hypothesis 3.1. Then(
A∗Ã

)∗
= JA, J∗A = A∗Ã. (3.14)

Proof. Since Ã is unitary and A is closed, one computes (cf. [85, Exercise 4.18])(
A∗Ã

)∗
=
(
Ã
)∗
A =

(
Ã
)−1

A =
(
A ιA

)−1
A =

(
A ιA

)−1
A = JAA−1A. (3.15)

In addition, since dom(JAA
−1) = ran(A), one can drop the closure in the last

equation which finally yields
(
A∗Ã

)∗
= JAA

−1A = JA.

Hence one also obtains J∗A =
(
A∗Ã

)∗∗
= A∗Ã = A∗Ã since A∗Ã is closed as Ã

is unitary and A∗ is closed. �

Assuming Hypothesis 3.1, we again introduce the operator GA,0 in HA ⊕H1 by

GA,0 =

(
0 JA
−J∗A 0

)
=

(
0 JA

−A∗Ã 0

)
,

dom(GA,0) = dom
(
A∗Ã

)
⊕ dom(A) ⊆ HA ⊕H1,

(3.16)
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and also introduce the supersymmetric Dirac-type operator QA,0 in H1 ⊕H2 by

QA,0 =

(
0 A∗

A 0

)
, dom(QA,0) = dom(A)⊕ dom(A∗) ⊆ H1 ⊕H2. (3.17)

As discussed in Appendix A, QA,0 is self-adjoint in H1 ⊕H2.
The analog of Theorem 2.8 then reads as follows.

Theorem 3.5. Assume Hypothesis 3.1. Then

QA,0[IH1⊕H2
− Pker(QA,0)] = UÃ iGA,0U

−1
Ã
. (3.18)

In particular, the operator iGA,0 is self-adjoint in the energy space HA ⊕ H1 and
hence generates a unitary group eGA,0t, t ∈ R, in HA ⊕ H1. Moreover, GA,0 is
unitarily equivalent to −GA,0.

Next, we further analyze the domain of GA,0, more precisely, the domain of

A∗Ã (cf. (3.16)), applying some results discussed in Appendix B. Since Ã = A0,

and A∗Ã is known to be a closed operator (cf. (3.16)), the natural question arises

whether or not A∗Ã = A∗A0 coincides with the closure A∗A0 of A∗A0. This is a
somewhat intricate question, an answer to which is given in Theorem 3.8 below.

We start with the following elementary result.

Lemma 3.6. Suppose S is self-adjoint in the complex separable Hilbert space H
with ker(S) = {0}. Then

dom(S)∩ ran(S) = dom(S)∩dom
(
S−1

)
is dense in H and a core for S and S−1.

(3.19)

Proof. Since ker(S) = {0}, the operator S−1 exists and is self-adjoint (and also
ker
(
S−1

)
= {0}). For any g ∈ H, gn = ES([−n,−n−1] ∪ [n−1, n])g ∈ dom(S) ∩

dom
(
S−1

)
, n ∈ N, and hence

lim
n→∞

‖gn − g‖H = lim
n→∞

‖[ES([−n,−n−1] ∪ [n−1, n])− IH]g‖H = 0 (3.20)

proves that dom(S) ∩ dom
(
S−1

)
= H. Here ES(·) denotes the strongly right con-

tinuous family of spectral projections associated with S.
Next, let f ∈ dom(S) and introduce fn = ES((−∞,−n−1] ∪ [n−1,∞))f ∈

dom(S) ∩ dom
(
S−1

)
, n ∈ N. Then

lim
n→∞

‖fn − f‖H = lim
n→∞

‖[ES((−∞,−n−1] ∪ [n−1,∞))− IH]f‖H = 0,

lim
n→∞

‖Sfn − Sf‖H = lim
n→∞

‖[ES((−∞,−n−1] ∪ [n−1,∞))− IH]Sf‖H = 0
(3.21)

prove that dom(S)∩dom
(
S−1

)
is a core for S since f ∈ dom(S) was arbitrary. By

symmetry between S and S−1, dom(S) ∩ dom
(
S−1

)
is also a core for S−1. �

The next lemma is of an auxiliary nature and together with Lemma 3.6 the basic
ingredient for the proof of Theorem 3.8 below.

Lemma 3.7. Assume Hypothesis 3.1 and denote by PKA
the orthogonal projection

onto KA in H2.
(i) Suppose that dom(A∗PKA

) ∩ ran(A) = KA, then

A∗A0 = A∗PKA

∣∣
dom(A∗PKA

)∩ran(A)
A0. (3.22)
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(ii) Assume that ker(A∗) = {0}. Then KA = H2, PKA
= IH2

,

dom(A∗) ∩ ran(A) = H2, (3.23)

dom(A∗) ∩ ran(A) is a core for A∗, (3.24)

and
A∗A0 = A∗A0. (3.25)

In particular, if A is self-adjoint in H1 satisfying (3.1) and (3.2), then (3.23)–(3.25)
hold with H2 = KA = H1.

Proof. (i) By general principles, A∗A0 ⊆ A∗A0 implies

A∗A0 ⊆ A∗A0 = A∗A0, (3.26)

as the latter is a closed operator (cf. (3.16)). The reverse inclusion is more subtle,
though.

Since Ã = A0 is unitary, ran(A0) = ran(A), and A∗ is closed, one can apply
Lemma B.1 (iv) to obtain

(A∗A0)∗ = (A∗PKA
A0)∗ = A∗0

(
Â∗PKA

)∗
= A∗0

(
A∗PKA

∣∣
dom(A∗PKA

)∩ran(A)

)∗
.

(3.27)

Using unitarity of A∗0 =
(
A0

)∗
, and applying Lemma B.1 (ii) one finally obtains

A∗A0 = ((A∗PKA
A0)∗)∗ = A∗PKA

∣∣
dom(A∗PKA

)∩ran(A)
A0, (3.28)

employing T = (T ∗)∗, whenever T is densely defined and closable.
(ii) Next, one recalls the fact that for any densely defined closed operator T in H1

mapping into H2 one has (cf. [59, p. 335], [16, Theorem IV.3.2])

ran(T ) = ran(|T ∗|). (3.29)

Equation (3.29) is a consequence of the polar decompositions for T and T ∗, more
precisely, of

T = |T ∗|UT , |T ∗| = TU∗T , |T ∗| = UT |T |U∗T , (3.30)

where UT is a partial isometry with initial set ran(|T |) and final set ran(T ) (and

hence U∗T is a partial isometry with initial set ran(T ) and final set ran(|T |)). Using
the fact that dom(T ) = dom(|T |) and applying (3.29) to T = A, one concludes
from Lemma 3.6 and the fact that by hypothesis ker(A∗) = ker(|A∗|) = {0} and
hence PKA

= IH2 ,

dom(A∗) ∩ ran(A) = dom(|A∗|) ∩ ran(|A∗|) is dense in H2 and a core for |A∗|.
(3.31)

The polar decomposition for T ∗, T ∗ = U∗T |T ∗| then immediately yields that

D0 = dom(A∗) ∩ ran(A) = dom(|A∗|) ∩ ran(|A∗|) is a core for A∗. (3.32)

Indeed, if f ∈ dom(A∗) = dom(|A∗|), there exists fn ∈ D0, n ∈ N, such that

lim
n→∞

‖fn − f‖H = 0 and lim
n→∞

‖|A∗|fn − |A∗|f‖H = 0, (3.33)

and hence also,

lim
n→∞

‖A∗fn −A∗f‖H = ‖U∗A|A∗|fn − U∗A|A∗|f‖H = 0, (3.34)

proving that D0 is a core for A∗. Thus, (3.22) then yields

A∗A0 = A∗
∣∣
dom(A∗)∩ran(A)

A0 = A∗A0, (3.35)
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and hence proves (3.25). �

Since H2 = ran(A)⊕ ker(A∗) = KA ⊕ ker(A∗), one can introduce the operator

B :

{
H1 ⊇ dom(A)→ KA,
f 7→ Af,

(3.36)

and then concludes that

ker(B∗) = ker(|B∗|) = ran(B)⊥ = {0}, (3.37)

and that
A = PKA

B. (3.38)

Thus, an application of Lemma B.1 (ii) yields

A∗ = B∗PKA
. (3.39)

Moreover, one verifies that

KA = KB , B0 = A0, and hence, B̃ = Ã. (3.40)

Given the preparatory Lemmas 3.6 and 3.7 we finally are in a position to for-
mulate the following result, a resolution of the question posed in the paragraph
preceding Lemma 3.6.

Theorem 3.8. Assume Hypothesis 3.1. Then

A∗A0 = A∗A0. (3.41)

Proof. Since ker(|B∗|) = {0} and |B∗| is self-adjoint in KB = KA, (3.31) and (3.32)
apply and yield

dom(B∗) ∩ ran(B) = dom(|B∗|) ∩ ran(|B∗|) is dense in KB = KA
and a core for |B∗| and B∗.

(3.42)

Equation (3.42) together with (3.40) then yields

A∗A0 = B∗PKA
A0 = B∗B0 = B∗B0 = B∗B̃ = B∗PKA

B̃ = A∗B̃ = A∗Ã

= A∗A0.
(3.43)

Here we used Lemma 3.7 (ii) (applied with A replaced by B) in the third equality.
This proves (3.41). �

Remark 3.9. (i) We note that Hen used in Goldstein and Wacker [42] coincides with
H|A| = HA used in the present paper. Moreover, it is noted in [42, Proposition 2.1]
that G|A|,0 (denoted by A in [42]) generates a strongly continuous unitary group. In
addition, some properties of the domain G|A|,0, amounting to the validity of (3.25)
(with A replaced by |A| and hence also A∗ replaced by |A|), are mentioned without
proof. The last part of Lemma 3.7 and of course Theorem 3.8 now explicitly provide
such a proof.
(ii) In connection with the operator GA,0 in (3.16) and the second-order Cauchy

problem (ACP2) considered in the next Section 4, we recall that J∗A = A∗Ã =

A∗AιA = A∗A0 = A∗A0 = A∗AιA as just shown in Theorem 3.8. In the simpler
situation where A∗A ≥ εIH1

for some ε > 0, one notes (cf. Lemma 2.7) that

J∗ = A∗Ã = A∗AιA. The actual choice of A in the factorization of the self-adjoint
operator S ≥ 0 into S = A∗A is of course highly non-unique. In particular, the
self-adjoint factorization S = S1/2S1/2 (i.e., A = A∗ = |A| = S1/2) is always
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possible, but may not be the most natural one as the following standard example
shows. Let S = −∆ on dom(S) = H2(Rn) be the usual self-adjoint Laplacian in
H1 = L2

(
Rn; dnx

)
, n ∈ N (with Hm(Rn), m ∈ N, the standard Sobolev spaces on

Rn). Then

S = (−∆)1/2(−∆)1/2 = ∇∗∇, (3.44)

with the last factorization being more natural for some purposes. Here dom(∇) =

H1(Rn), H2 =
[
L2
(
Rn; dnx

)]n
, and ∇∗ = −div(·) with dom(∇∗) =

[
H1(Rn)

]n
.

(iii) We finally note that given the results (3.36)–(3.40) and (3.42), the result (3.22)
in Lemma 3.7 (i) can be improved as follows and underscores the preliminary nature
of the latter. Since ran(A) = ran(B) and A∗ = B∗PKA

, and hence also

A∗ = A∗PKA
= B∗PKA

, (3.45)

one concludes from (3.42) that

dom(A∗PKA
) ∩ ran(A) = dom(B∗PKA

) ∩ ran(B)

= dom(B∗) ∩ ran(B) = KB = KA.
(3.46)

Thus, Lemma 3.7 (i) applies and (3.22) can be amended to read

A∗A0 = A∗PKA

∣∣
dom(A∗PKA

)∩ran(A)
A0 = A∗

∣∣
dom(A∗)∩ran(A)

A0. (3.47)

Of course, Theorem 3.8 further improves on (3.47) and yields the final and optimal
result (3.41).

4. Abstract Linear Damped Wave Equations. The Case A∗A ≥ εIH
for some ε > 0

In this section we now introduce abstract damped wave equations employing
appropriate perturbation techniques for Dirac-type operators.

We first treat the case A∗A ≥ εIH1
for some ε > 0 and hence introduce the

following assumptions.

Hypothesis 4.1. Let Hj, j = 1, 2, be complex separable Hilbert spaces.
(i) Assume that A : dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator
such that

A∗A ≥ εIH1 (4.1)

for some ε > 0.
(ii) Let R be a densely defined, closable operator in H1 satisfying

dom(R) ⊇ dom(A). (4.2)

We emphasize that closability of R and the assumption (4.2) imply

R(|A| − zIH1
)−1 ∈ B(H1), z ∈ ρ(|A|) (4.3)

(see, e,g., [59, p. 191]).
In the following we intend to introduce the operator iGA,R in HA ⊕ H1 and

study its properties by utilizing its unitary equivalence to the Dirac-type operator
Q|A|,R in H1 ⊕H1.

We start by introducing Q|A|,R in H1 ⊕H1 assuming Hypothesis 4.1.

Q|A|,R =

(
−i R |A|
|A| 0

)
, dom(Q|A|,R) = dom(|A|)⊕ dom(|A|) ⊆ H1 ⊕H1. (4.4)
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Next, we recall that an operator T in the complex separable Hilbert space H is
called accretive if

Re((f, Tf)H) ≥ 0, f ∈ dom(T ). (4.5)

If in addition, T is closed and ran(T + αIH) is dense in H for some α > 0 , then T
is called m-accretive. Moreover (cf. [45, Proposition C.7.2], [59, p. 279])

T is m-accretive if and only if (4.6)

(−∞, 0) ⊂ ρ(T ) and ‖(T − zIH)−1‖ 6 −[Re(z)]−1 for Re(z) < 0. (4.7)

In particular, an m-accretive operator is equivalent to a closed, densely defined,
maximal accretive operator. Finally, T is m-accretive if and only if T ∗ is.(We note
that one also calls T (m-)dissipative whenever −T is (m-)accretive. However, since
this definition is not universally accepted in the literature, we shall not adopt it
here.)

For the following it is convenient to introduce the quadratic operator pencil M(z)
in H1,

M(z) = |A|2 − izR− z2IH1 , dom(M(z)) = dom
(
|A|2

)
, z ∈ C. (4.8)

Lemma 4.2. Assume Hypothesis 4.1.
(i) Then M(z), z ∈ C, is a densely defined, closed operator in H1.
(ii) If in addition R∗ satisfies

dom(R∗) ⊇ dom(A), (4.9)

then

M(z)∗ = |A|2 + izR∗ − z2IH1
, dom(M(z)∗) = dom

(
|A|2

)
, z ∈ C. (4.10)

Proof. Since by hypothesis R is bounded with respect to |A|, it is relatively bounded
with relative bound equal to zero with respect to |A|p for any p > 1 (cf. [85, Theorem
9.11 (a)]). Thus, for each z ∈ C, M(z) is a closed operator in H1 by a Kato–Rellich-
type result (cf. [59, Theorem IV.1.1], [85, Theorem 5.5]). Since by (4.9) also R∗ is
relatively bounded with relative bound equal to zero with respect to |A|p for any
p > 1, one also obtains (4.10) by a Kato–Rellich-type argument discussed in [85, p.
111]. �

The spectrum and resolvent set of M(·), denoted by σ(M(·)) and ρ(M(·)), re-
spectively, are then defined by

σ(M(·)) = {λ ∈ C | 0 ∈ σ(M(λ))}, (4.11)

ρ(M(·)) = {z ∈ C | 0 ∈ ρ(M(z))} = {z ∈ C |M(z)−1 ∈ B(H1)}
= C\σ(M(·)). (4.12)

Theorem 4.3. Assume Hypothesis 4.1. Then Q|A|,R is injective and closed, and

(Q|A|,R − zIH1⊕H1
)−1 =

(
zM(z)−1 |A|−1 +M(z)−1(izR+ z2IH1)|A|−1
|A|M(z)−1 |A|M(z)−1(iR+ zIH1

)|A|−1
)
,

z ∈ ρ(Q|A|,R) = {ζ ∈ C |M(ζ)−1 ∈ B(H1)} = ρ(M(·)), (4.13)

σ(Q|A|,R) = σ(M(·)). (4.14)

In particular,

Q−1|A|,R =

(
0 |A|−1
|A|−1 i |A|−1R|A|−1

)
∈ B(H1 ⊕H1), (4.15)



18 F. GESZTESY, J. A. GOLDSTEIN, H. HOLDEN, AND G. TESCHL

and hence

0 ∈ ρ(Q|A|,R). (4.16)

Suppose in addition that R is accretive. Then also iQ|A|,R is accretive and −iQ|A|,R
generates a contraction semigroup in H1 ⊕H1, denoted by exp(−iQ|A|,R t), t ≥ 0.

Proof. To prove injectivity of Q|A|,R, assume f, g ∈ dom(|A|) and Q|A|,R(f g)> =
0. Then −i Rf + |A|g = 0 and |A|f = 0 imply f = 0 since ker(A) = ker(|A|) = {0}
by (4.1) and hence also |A|g = 0, implying g = 0 as well. That Q|A|,R is closed in
H1 ⊕ H1 follows from an application of [79, Corollary 2.2.11 (ii)]. (Alternatively,
one can first establish (4.15) directly and then use again the fact that since Q|A|,R
is injective, Q−1|A|,R ∈ B(H1 ⊕ H1) implies closedness of Q−1|A|,R and hence that of

Q|A|,R by [85, p. 81].)
Denoting temporarily the right-hand side of (4.13) by S|A|,R(z), one notes that

S|A|,R(z) ∈ B(H1 ⊕ H1), z ∈ ρ(M(·)), by (4.1) and (4.3). A simple computation
then yields that

(Q|A|,R − zIH1⊕H1)S|A|,R(z) = IH1⊕H1 ,

S|A|,R(z) (Q|A|,R − zIH1⊕H1) = IH1⊕H1

∣∣
dom(|A|)⊕dom(|A|), (4.17)

z ∈ {ζ ∈ C |M(ζ)−1 ∈ B(H1)} = ρ(M(·)),
implying

ρ(M(·)) ⊆ ρ(Q|A|,R). (4.18)

Conversely, let z ∈ ρ(Q|A|,R). Then the resolvent of Q|A|,R is necessarily of the
2× 2 block operator form with respect to H1 ⊕H2,

(Q|A|,R − zIH1⊕H2)−1 =

(
S1,1(z) S1,2(z)
S2,1(z) S2,2(z)

)
, z ∈ ρ(Q|A|,R), (4.19)

where Sj,k(z) ∈ B(Hk,Hj), j, k ∈ {1, 2}, z ∈ ρ(Q|A|,R). Thus,(
IH1

0
0 IH2

)
=

(
−iR− zIH1

|A|
|A| −zIH2

)(
S1,1(z) S1,2(z)
S2,1(z) S2,2(z)

)
=

(
(−iR− zIH1)S1,1(z) + |A|S2,1(z) (−iR− zIH1)S1,2(z) + |A|S2,2(z)

|A|S1,1(z)− zS2,1(z) |A|S1,2(z)− zS2,2(z)

)
,

z ∈ ρ(Q|A|,R), (4.20)

in particular,

S2,1(z) = z−1|A|S1,1(z), z ∈ ρ(Q|A|,R)\{0}, (4.21)

and hence

z−1
(
|A|2 − izR− z2IH1

)
S1,1(z) = IH1

, z ∈ ρ(Q|A|,R)\{0}. (4.22)

Thus, z−1S1,1(z) is a bounded right-inverse of M(z), z ∈ ρ(Q|A|,R)\{0}. An anal-
ogous computation yields

z−1S1,1(z)
(
|A|2 − izR− z2IH1

)∣∣
dom(|A|2) = IH1

∣∣
dom(|A|2), z ∈ ρ(Q|A|,R)\{0},

(4.23)
and hence z−1S1,1(z) is also a bounded left-inverse of M(z). Thus,

ρ(Q|A|,R)\{0} ⊆ ρ(M(·)). (4.24)

Since by hypothesis (4.1), 0 ∈ ρ(Q|A|,R) ∩ ρ(M(·)), one concludes ρ(Q|A|,R) =
ρ(M(·)) and hence (4.13)–(4.16).
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Finally, assuming f, g ∈ dom(|A|) one computes

Re
((

(f g)>, i Q|A|,R (f g)>
)
H1⊕H1

)
= Re

(
(f,Rf)H1

)
≥ 0, (4.25)

since |A| is self-adjoint. This proves that iQ|A|,R is accretive. Equation (4.16) yields
a sufficiently small open disk with center at 0 in the resolvent set of −iQ|A|,R and
this fact combined with the Lumer–Phillips Theorem [63] (cf. [20, Theorem II.3.15])
then proves that −iQ|A|,R generates a contraction semigroup. �

We note that block operator matrices and their inverses, and more specifically,
spectral properties of 2 × 2 block operator matrices have been studied extensively
in the literature. We refer, for instance, to [4], [19], [20, Sect. VI.6], [46], [60], [65],
[66], [67], [75], [79, Ch. 2], [80], [83], and [87].

Still assuming Hypothesis 4.1, we next introduce the operator GA,R in HA⊕H1

by

GA,R =

(
0 JA
−J∗A −R

)
=

(
0 JA

−A∗Ã −R

)
,

dom(GA,R) = dom
(
A∗Ã

)
⊕ dom(A) ⊆ HA ⊕H1.

(4.26)

In particular, one notes that
GA,R = G|A|,R. (4.27)

Theorem 4.4. Assume Hypothesis 4.1. Then

Q|A|,R = U|̃A| iGA,RU
−1
|̃A|
. (4.28)

In particular, the operator GA,R is densely defined and closed in the energy space
HA ⊕H1.

If in addition R is accretive, then also −GA,R is accretive and GA,R generates
a contraction semigroup in HA ⊕H1, denoted by exp(GA,R t), t ≥ 0.

Proof. To prove (4.28), one can closely follow the proof of Theorem 2.8 in the
special case R = 0. In particular, since we will use Q|A|,R (instead of QA,R) this
permits us to replace the pair (A,A∗) by (|A|, |A|) and hence replace the projection
Pker(QA,0) by 0 (cf. (2.69), (2.70)). Alternatively, one can also argue as follows (cf.
(2.63), (2.64), and (2.67)–(2.69)).

U−1
|̃A|

dom(Q|A|,R) =

(
0 i

(
|̃A|
)−1

IH1
0

)
dom(|A|)⊕ dom(|A|)

=

(
i
(
|̃A|
)−1

dom(|A|)
dom(|A|)

)
=

(
i JA|A|−1 dom(|A|)

dom(|A|)

)
=

(
i JA(A∗A)−1/2 dom

(
(A∗A)1/2

)
dom(A)

)
=

(
i JA dom(A∗A)

dom(A)

)
=

(
i dom(A∗AιA)

dom(A)

)
=

(
i dom

(
A∗Ã

)
dom(A)

)
= dom(GA,R), (4.29)

where we used (2.37) in the next to last step. Analogously to (2.56) one then
obtains

U|̃A|iGA,RU
−1
|̃A|

= i

(
0 IH1

−i |̃A| 0

)(
0 JA

−A∗Ã −R

)(
0 i

(
|̃A|
)−1

IH1 0

)
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= i

(
0 IH1

−i |̃A| 0

)(
JA 0

−R −i |A|2ιA
(
|̃A|
)−1)

= i

(
0 IH1

−i |̃A| 0

)(
JA 0
−R −i |A|

)
=

(
−i R |A|
|̃A|JA 0

)
=

(
−i R |A|
|A| 0

)
= Q|A|,R, (4.30)

using (2.66) in the next to last step.
Closedness of GA,R in HA ⊕H1 then follows from (4.30) and that of Q|A|,R (cf.

Theorem 4.3). Similarly, if R is accretive, then the contraction semigroup property
of GA,R follows from the one of −iQ|A|,R in Theorem 4.3, using (4.30) again. �

We note again that the unitary equivalence in (4.28) has been observed by Huang
[54, Proposition 3.1]. While the contraction semigroup result for GA,R in Theorem
4.4 is well-known (see, e.g., [20, Sect. VI.3]), we presented it in some detail to
illustrate the usefulness of the unitary equivalence relation with the Dirac-type
operator Q|A|,R which leads to a rather simple proof.

We also mention the analog of the result (4.28) when using A and A∗ in place
of |A|. Introducing the operator QA,R in H1 ⊕H2 by

QA,R =

(
−i R A∗

A 0

)
, dom(QA,R) = dom(A)⊕ dom(A∗) ⊆ H1 ⊕H2 (4.31)

one obtains the following result.

Theorem 4.5. Assume Hypothesis 4.1. Then

QA,R
(
IH1 ⊕ [IH2 − Pker(A∗)]

)
= UÃ iGA,RU

−1
Ã
. (4.32)

Proof. It suffices to combine Theorem 2.8, (2.49), (A.28), and

UÃ

(
0 0
0 −iR

)
U−1
Ã

=

(
−iR 0

0 0

)
. (4.33)

�

Theorem 4.5 appears to be a new result.
Next, we briefly recall the notion of classical solutions of first-order and second-

order Cauchy problems. First, let G be a densely defined, closed, linear operator
in a Hilbert space H. Then the abstract Cauchy Problem (ACP) associated with
G, by definition, is the initial value problem (cf., e.g., [20, Sect. II.6], [22, Ch. I],
[29, Sect. II.1])

ẋ(t) = Gx(t), t ≥ 0,

x(0) = x0 ∈ H.
(4.34)

Here we denote ẋ(t) =
(
d
dtx
)
(t).

By definition, a classical solution of the ACP (4.34) is then a map x : [0,∞)→ H
which satisfies.

x ∈ C1([0,∞);H),

x(t) ∈ dom(G), t ≥ 0, (4.35)

x satisfies (4.34).
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In particular, if G is the generator of a strongly continuous semigroup T (t) = eGt,
t ≥ 0, in H, then for any x0 ∈ dom(G), the unique classical solution x = x(t) of
(4.34) is given by

x(t) = eGtx0, t ≥ 0, x0 ∈ dom(G). (4.36)

Moreover, the classical solution of (4.34) exists if and only if x0 ∈ dom(G).
Similarly, let R and S be densely defined, closed, linear operators in H. Then

the abstract second-order Cauchy Problem (ACP2) associated with R and S is by
definition the initial value problem (cf., e.g., [12], [17], [18], [20, Sect. VI.3], [22,
Chs. II, III, VIII], [29, Sect. II.7], [88]),

ü(t) +Ru̇(t) + Su(t) = 0, t ≥ 0,

u(0) = u0 ∈ H, u̇(0) = u1 ∈ H.
(4.37)

By definition, a classical solution of the ACP2 (4.37) is then a map u : [0,∞)→ H
which satisfies.

u ∈ C2([0,∞);H),

u(t) ∈ dom(S), t ≥ 0, and Su ∈ C([0,∞);H),

u̇(t) ∈ dom(R), t ≥ 0, and Ru̇ ∈ C([0,∞);H),

u satisfies (4.37).

(4.38)

Corollary 4.6. Assume Hypothesis 4.1 and suppose that R is accretive. In addi-
tion, let (

y0
z0

)
∈ dom(GA,R) = dom(A∗AιA)⊕ dom(A) ⊆ HA ⊕H1. (4.39)

Then

Y (t) =

(
y(t)
z(t)

)
= eGA,Rt

(
y0
z0

)
, t ≥ 0, (4.40)

is the unique classical solution of the ACP,

Ẏ (t) = GA,RY (t), t ≥ 0,

Y (0) =

(
y0
z0

)
,

(4.41)

associated with GA,R, and

u(t) = ιAy(t), t ≥ 0, (4.42)

is the unique classical solution of the ACP2,

ü(t) +Ru̇(t) +A∗Au(t) = 0, t ≥ 0,

u(0) = ιAy0, u̇(0) = z0,
(4.43)

associated with R and A∗A.

Proof. One only needs to verify (4.42), (4.43), and uniqueness of u. From (4.40)
one infers

y(·) ∈ C1([0,∞);HA), y(t) ∈ dom(J∗A) = dom(A∗AιA),

z(t) ∈ dom(JA) = dom(A), t ≥ 0, with ẏ = JAz,
(4.44)

and

z(·) ∈ C1([0,∞);H1) with ż = −A∗AιAy −Rz. (4.45)
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Hence by (4.42) one obtains

u(·) = ιAy(·) ∈ C1([0,∞);H1) with u̇ = ιAẏ = ιAJAz = z, (4.46)

since ιA ∈ B(HA,H1). Moreover, this shows that u̇(·) ∈ C1([0,∞);H1), implying

u(·) ∈ C2([0,∞);H1) and ü = ż = −A∗AιAy −Rz = −A∗Au−Ru̇. (4.47)

Consequently, u(·) = ιAy(·) is a classical solution of (4.43).
Finally, uniqueness of u(·) is shown as in [20, Prop. VI.3.2]. First of all one notes

that Ãy(·) = Au(·) ∈ C1([0,∞);H2), implying Ãẏ(·) = Au̇(·) ∈ C([0,∞);H2).
Hence one has

Ru̇(·) =
[
R(|A|+ IH1)−1

]
(|A|+ IH1)u̇(·) ∈ C([0,∞);H1), (4.48)

which in turn implies

A∗Au(·) = −ü(·)−Ru̇(·) ∈ C([0,∞);H1). (4.49)

Now suppose that u(·) satisfies (4.43) with (y0, z0) = (0, 0). Then∫ t

0

ds

(
JAu(s)
u̇(s)

)
=

(
JA
∫ t
0
ds u(s)
u(t)

)
∈ dom(A∗AιA)⊕ dom(A), t ≥ 0, (4.50)

and

GA,R

(
JA
∫ t
0
ds u(s)
u(t)

)
=

(
JAu(t)

−A∗A
∫ t
0
ds u(s)−Ru(t)

)
=

(
JAu(t)

−
∫ t
0
dsA∗Au(s)−

∫ t
0
dsRu̇(s)

)
=

(
JAu(t)
u̇(t)

)
, t ≥ 0. (4.51)

Thus,
(
JAu(·)
u̇(·)

)
is a mild solution (cf., e.g., [20, Ch. II.6]) of Ẏ (·) = GA,RY (·)

satisfying Y (0) = 0. But then, Y (t) = 0, t ≥ 0 (cf. [20, Proposition VI.3.2]), and
hence u(t) = 0, t ≥ 0 (cf. [20, Prop. II.6.4]). �

Again, Corollary 4.6 is well-known (see, e.g., [20, Sect. VI.3]); for completeness,
and due to its importance, we presented its proof in some detail.

Remark 4.7. In the special case R = 0, and assuming Hypothesis 4.1, the self-
adjointness of iGA,0 in HA ⊕ H1 then yields the unitary group eGA,0t, t ∈ R, in
HA ⊕H1. Explicitly, using

J∗AJA = A∗A, JAJ
∗
A = JAA

∗A ιA = ι−1A A∗A ιA, (4.52)

eGA,0t in the energy space HA ⊕H1, is of the form

eGA,0t =

(
JA 0
0 IH1

)(
cos(|A|t) |A|−1| sin(|A|t)

−|A| sin(|A|t) cos(|A|t)

)(
ιA 0
0 IH1

)
=

(
JA cos(|A|t) ιA JA|A|−1| sin(|A|t)
−|A| sin(|A|t) ιA cos(|A|t)

)
, t ∈ R,

(4.53)

using the spectral theorem to define appropriate functions of the self-adjoint non-
negative operator |A| = (A∗A)1/2 in H1. By (4.28), eGA,0t in HA ⊕H1 is unitarily
equivalent to e−iQ|A|,0 in H1 ⊕H1 and explicitly given by

e−iQ|A|,0t =

(
cos(|A|t) −i sin(|A|t)
−i sin(|A|t) cos(|A|t)

)
, t ∈ R. (4.54)
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While we primarily focused on (dissipative) damping operators satisfying Hy-
pothesis 4.1 (ii), we emphasize that a variety of different conditions on R have also
been studied in the literature. We refer, for instance, to [2], [3], [5], [10], [11], [19],
[20, Sect. VI.3], [22, Ch. VIII], [43], [50], [51], [52], [53], [54], [55], [56], [57], [81],
[83], [84], [86].

We continue with an illustrative example in which R is assumed to commute
with |A|.
Example 4.8. Assume Hypothesis 4.1 and consider the special case where R is an
appropriate function of |A|, that is, R = 2F (|A|) ≥ 0. Abbreviating

Γ(|A|) =
[
|A|2 − F (|A|)2

]1/2
(4.55)

one then obtains

eGA,Rt =

(
JA 0
0 IH1

)
e−F (|A|)t

×


[

cos(Γ(|A|)t) Γ(|A|)−1 sin(Γ(|A|)t)
+F (|A|)Γ(|A|)−1 sin(Γ(|A|)t)

]
−|A|2Γ(|A|)−1 sin(Γ(|A|)t)

[
cos(Γ(|A|)t)

−F (|A|)Γ(|A|)−1 sin(Γ(|A|)t)
]


×
(
ιA 0
0 IH1

)
= e−F (|A|)t

×


JA
[

cos(Γ(|A|)t) JAΓ(|A|)−1 sin(Γ(|A|)t)
+F (|A|)Γ(|A|)−1 sin(Γ(|A|)t)

]
ιA

−|A|2Γ(|A|)−1 sin(Γ(|A|)t)ιA
[

cos(Γ(|A|)t)
−F (|A|)Γ(|A|)−1 sin(Γ(|A|)t)

]
 ,

t ≥ 0. (4.56)

We note that cos(Γ(|A|)t) and Γ(|A|)−1 sin(Γ(|A|)t) are in fact functions of Γ(|A|)2
and hence the precise specification of the square root branch in (4.55) does not enter
in (4.56). In addition, using the spectral theorem for Γ(|A|), one obtains that

Γ(|A|)−1 sin(Γ(|A|)t) = f(Γ(|A|)) =

∫
[0,∞)

f
([
λ2 − F (λ)2

]1/2)
dE|A|(λ) ∈ B(H1)

(4.57)
is well-defined without assuming that Γ(|A|) is boundedly invertible in H1 by choos-
ing

f(µ) =

{
sin(µt)/µ, µ > 0,

t, µ = 0.
(4.58)

Next, we intend to exploit the unitary equivalence between GA,R in HA ⊕ H1

and the Dirac-type operator Q|A|,R in H1 ⊕H1 in (4.28) and thus we now turn to

e−itQ|A|,R . Noticing that

e
−i

−2ia 1
1 0

t
= e−ate

−i

−ia 1
1 ia

t

= e−at
(

cos(bt)− ab−1 sin(bt) −ib−1 sin(bt)
−ib−1 sin(bt) cos(bt) + ab−1 sin(bt)

)
, (4.59)
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a ∈ R, b = (1− a2)1/2, t ≥ 0,

one obtains

e−iQ|A|,Rt = e−F (|A|)t

×


cos(Γ(|A|)t) −i|A|Γ(|A|)−1 sin(Γ(|A|)t)

−F (|A|)Γ(|A|)−1 sin(Γ(|A|)t)

−i|A|Γ(|A|)−1 sin(Γ(|A|)t) cos(Γ(|A|)t)
+F (|A|)Γ(|A|)−1 sin(Γ(|A|)t)


=

∫
[0,∞)

e−F (λ)t

×


cos(Γ(λ)t) −iλΓ(λ)−1 sin(Γ(λ)t)

−F (λ)Γ(λ)−1 sin(Γ(λ)t)

−iλΓ(λ)−1 sin(Γ(λ)t) cos(Γ(λ)t)
+F (λ)Γ(λ)−1 sin(Γ(λ)t)

 dE|A|(λ),

t ≥ 0. (4.60)

For the norm of the semigroup of eGA,Rt, t ≥ 0, one thus obtains (cf. [6, Sect.
5.3])∥∥eGA,2F (|A|)t

∥∥
B(HA⊕H1)

=
∥∥e−iQ|A|,Rt∥∥H1⊕H1

= E|A|- ess supλ∈σ(|A|) e
−F (λ)t

×

∥∥∥∥∥∥∥∥∥


cos(Γ(λ)t) −iλΓ(λ)−1 sin(Γ(λ)t)

−F (λ)Γ(λ)−1 sin(Γ(λ)t)

−iλΓ(λ)−1 sin(Γ(λ)t) cos(Γ(λ)t)
+F (λ)Γ(λ)−1 sin(Γ(λ)t)


∥∥∥∥∥∥∥∥∥
C2

. (4.61)

Denoting temporarily the 2 × 2 matrix under the norm in (4.61) by M(λ), λ ∈
σ(|A|), to compute the norm of M(λ) one computes the square root of the larger of
the two eigenvalues of M(λ)∗M(λ), that is,

σ(M(λ)∗M(λ)) =
{
s1(M(λ))2, s2(M(λ))2

}
, 0 ≤ s1(M(λ)) ≤ s2(M(λ)), (4.62)

with sj(M(λ)), j = 1, 2, the singular values of M(λ), and

‖M(λ)‖C2 = s2(M(λ)). (4.63)

An explicit computation yields

sj(M(λ)) =

{[
1 +

F (λ)2 sin2
(
[λ2 − F (λ)2]1/2t

)
[λ2 − F (λ)2]

]1/2
(4.64)

+ (−1)j
F (λ)

∣∣ sin2
(
[λ2 − F (λ)2]1/2t

)∣∣
[λ2 − F (λ)2]1/2

}
, j = 1, 2, λ ∈ σ(|A|).

Combining (4.61), (4.63), and (4.64), one finally obtains∥∥eGA,2F (A)t
∥∥
B(HA⊕H1)

=
∥∥e−iQ|A|,Rt∥∥H1⊕H1

= E|A|- ess supλ∈σ(|A|) e
−F (λ)t

{[
1 +

F (λ)2 sin2
(
[λ2 − F (λ)2]1/2t

)
[λ2 − F (λ)2]

]1/2
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+
F (λ)

∣∣ sin2
(
[λ2 − F (λ)2]1/2t

)∣∣
[λ2 − F (λ)2]1/2

}
(4.65)

≤ C

{
e−ω(GA,2F (A))t, E|A|

({
λ ∈ σ(|A|)

∣∣F (λ)2 = λ2
})

= 0,

te−ω(GA,2F (A))t, E|A|
({
λ ∈ σ(|A|)

∣∣F (λ)2 = λ2
})

> 0,
t ≥ 0, (4.66)

where

ω(GA,2F (A)) = E|A|-ess inf
λ∈σ(|A|)

[
F (λ)−

[
(F (λ)2 − λ2)+

]1/2]
, (4.67)

and C ≥ 0 is an appropriate constant. Here

x+ =

{
x, x ≥ 0,

0, x ≤ 0.
(4.68)

The projection operator-valued measure E|A|(·) in (4.61), (4.65)–(4.67) can be re-
placed by an equivalent scalar control measure ρ|A|(·). For instance, one can choose

dρ|A|(·) = d‖E|A|(·)g1‖2H1
, g1 =

∑
j∈N

2−jψ1,j , (4.69)

with {ψ1,j}j∈N a complete orthonormal system in H1.
In particular, −ω(GA,2F (|A|)) represents the semigroup growth bound (or type)

of eGA,2F (|A|)t, t ≥ 0 (cf., e.g., [20, Definition I.5.6]). Moreover, alluding to the
spectral theorem for Q|A|,2F (|A|), −ω(GA,2F (|A|)) coincides with the spectral bound
(cf., e.g., [20, Definition II.1.12]) of GA,2F (|A|) (and hence that of −iQ|A|,2F (|A|)).

In this commutative context we also refer to [47] where matrix multiplication
operators generating one-parameter semigroups are studied.

Remark 4.9. We note that the special example where R = 2F (A) = |A|α, α ∈ [0, 1],
has been discussed in [8] and [54], and in the case α < 0 in [69]. The case α ∈ R
is studied in [21]. In particular, Huang [54, Corollary 3.6] estimated the semigroup
growth bound for eGA,Rt, t ≥ 0, from above using a combination of Gearhart’s
theorem, the unitary equivalence (4.28), and certain norm estimates. Since he does
not rely on the spectral theorem, his bound differs from the exact result in (4.67)
in the case R = |A|α, α ∈ [0, 1]. On the other hand, his technique also yields an
upper bound in cases where R and |A| do not commute.

5. Abstract Linear Damped Wave Equations. The Case inf(σ(A∗A)) = 0

The principal aim of this section is to relax Hypothesis 4.1 and remove the
hypothesis that A∗A is strictly positive definite.

Our basic hypothesis for this section reads as follows.

Hypothesis 5.1. Let Hj, j = 1, 2, be complex separable Hilbert spaces.
(i) Assume that A : dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator
satisfying

ker(A) = {0} (5.1)

and
inf(σ(A∗A)) = 0. (5.2)

(ii) Let R be a densely defined, closable operator in H1 satisfying

dom(R) ∩ dom(R∗) ⊇ dom(A). (5.3)
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As in the previous section we start by introducing Q|A|,R in H1 ⊕H1 assuming
Hypothesis 5.1.

Q|A|,R =

(
−i R |A|
|A| 0

)
, dom(Q|A|,R) = dom(|A|)⊕ dom(|A|) ⊆ H1 ⊕H1, (5.4)

and the quadratic operator pencil M(·) in H1,

M(z) = |A|2 − izR− z2IH1
, dom(M(z)) = dom

(
|A|2

)
, z ∈ C. (5.5)

We note that even though the pencil M(·) has unbounded coefficients, replacing

M(·) by M(·)
(
|A|2 + IH

)−1
reduces matters to a pencil with bounded coefficients,

in particular, [64, Lemma 20.1] applies to the spectrum of M(·) in this context.

Lemma 5.2. Assume Hypothesis 5.1.
(i) Then M(z), z ∈ C, is a densely defined, closed operator in H1.
(ii) In addition,

M(z)∗ = |A|2 + izR∗ − z2IH1 , dom(M(z)∗) = dom
(
|A|2

)
, z ∈ C. (5.6)

(iii) Let z ∈ ρ(M(·)), then

|A|M(z)−1 = |A|M(z)−1 ∈ B(H1), M(z)−1|A| =
[
|A|(M(z)∗)−1

]∗ ∈ B(H1),

|A|M(z)−1|A| ∈ B(H1). (5.7)

Proof. The first two items can be shown as in Lemma 4.2 and so we focus on
the proof of item (iii). The fact that |A|M(z)−1 and |A|(M(z)∗)−1 are bounded
operators on H1 is immediate by (5.3) and (5.6). Similarly,

M(z)−1|A| = [|A|(M(z)∗)−1]∗ ∈ B(H1). (5.8)

For the third operator in (5.7) one first observes that |A|2M(z)−1 ∈ B(H1) by the
closed graph theorem, implying |A|2|M(z)−1| ∈ B(H1). By [72, Theorem X.18 (a)]
(alternatively, by Heinz’s inequality, [85, Theorem 9.4(b)]) also |A||M(z)|−1/2 ∈
B(H1). Consequently, one also obtains |M(z)|−1/2|A| = (|A||M(z)|−1/2)∗ ∈ B(H1).
Replacing M(z) by M(z)∗ (cf. (5.6)), one also concludes that |A||M(z)∗|−1/2 ∈
B(H1). Next, using the generalized polar decomposition for M(z)−1 (cf. [25]),

M(z)−1 = |M(z)∗|−1/2V|M(z)|−1 |M(z)|−1/2, (5.9)

(with V|M(z)|−1 the partial isometry in H1 in the standard polar decomposition of

M(z)−1, M(z)−1 = V|M(z)|−1 |M(z)|−1), one infers that

|A|M(z)−1|A| = |A||(M(z)−1)∗|1/2V|M(z)|−1 |M(z)−1|1/2|A| ∈ B(H1). (5.10)

�

Next, Theorem 4.3 requires some modifications.

Theorem 5.3. Assume Hypothesis 5.1. Then Q|A|,R is injective and closed, and

(Q|A|,R − zIH1⊕H1)−1 =

(
zM(z)−1 M(z)−1|A|
|A|M(z)−1 z−1|A|M(z)−1|A| − z−1IH1

)
, (5.11)

z ∈ ρ(Q|A|,R)\{0} =
{
ζ ∈ C

∣∣M(ζ)−1 ∈ B(H1)
}

= ρ(M(·)),
σ(Q|A|,R) ∪ {0} = σ(M(·)). (5.12)
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Suppose in addition that R is accretive. Then iλ ∈ ρ(M(·)) for all λ > 0 and also
iQ|A|,R is accretive. Moreover, −iQ|A|,R then generates a contraction semigroup
in H1 ⊕H1, denoted by exp(−iQ|A|,R t), t ≥ 0.

Proof. Injectivity and closedness of Q|A|,R follow as in the proof of Theorem 4.3.

Next, one recalls that 0 ∈ σ(M(·)) since M(0) = |A|2 and 0 ∈ σ(|A|) (cf. (5.2)).
Temporarily denoting the right-hand side of (5.11) by T|A|,R(z) for z ∈ ρ(M(·)),
one concludes that T|A|,R(z) ∈ B(H1 ⊕H1) by Lemma 5.2 (iii). That T|A|,R(z) =

(Q|A|,R−zIH1⊕H1
)−1 can now be checked directly. This proves ρ(M(·)) ⊆ ρ(Q|A|,R).

Conversely, if z ∈ ρ(Q|A|,R)\{0}, the approach used in (4.19)–(4.24) also works in
the present more general context and hence yields ρ(Q|A|,R)\{0} ⊆ ρ(M(·)). This
proves (5.11) and (5.12).

If R is accretive, then so is iQ|A|,R. Next, we rewrite M(i λ), λ > 0 in (5.5) as

M(i λ) = |A|2 + λR+ λ2IH1

= λ
(
|A|2 + IH1

)1/2[(|A|2 + IH1

)−1/2
R
(
|A|2 + IH1

)−1/2
+ λ−1IH1

]
×
(
|A|2 + IH1

)1/2
, λ > 0. (5.13)

Since
(
|A|2 + IH1

)−1/2
R
(
|A|2 + IH1

)−1/2 ∈ B(H1), and accretivity of R implies

accretivity of
(
|A|2 + IH1

)−1/2
R
(
|A|2 + IH1

)−1/2
, one concludes that in fact,(

|A|2 + IH1

)−1/2
R
(
|A|2 + IH1

)−1/2
is m-accretive (5.14)

(cf. [59, p. 279], [70]) and hence[(
|A|2 + IH1

)−1/2
R
(
|A|2 + IH1

)−1/2
+ λ−1IH1

]−1 ∈ B(H1), λ > 0. (5.15)

Equation (5.15) implies

M(i λ)−1 ∈ B(H1), λ > 0. (5.16)

Equation (5.11) then yields (Q|A|,R − i λ)−1 ∈ B(H1 ⊕ H2), λ > 0, and this fact
combined with the Lumer–Phillips Theorem [63] (cf. [20, Theorem II.3.15]) then
again proves that −iQ|A|,R generates a contraction semigroup. �

Remark 5.4. (i) Without additional restrictions on R it is not possible to decide
whether or not 0 ∈ σ(Q|A|,R) (although, one always has 0 ∈ σ(M(·))).
(ii) An alternative argument for (5.16) can be formulated as follows. An application
of Cauchy’s inequality yields

‖M(i λ)f‖H1
‖f‖H1

≥ |(f,M(i λ)f)H1
| ≥ Re((f,M(i λ)f)H1

)

≥ λRe((f,Rf)H1) + λ2‖f‖2H1
≥ λ2‖f‖2H1

, λ ≥ 0, f ∈ dom
(
|A|2

)
. (5.17)

In particular, ‖M(i λ)f‖H1 ≥ λ2‖f‖H1 yields that M(i λ) is injective for all λ > 0.
The analogous argument proves that also M(i λ)∗ is injective for all λ > 0. Thus,

ker(M(i λ)∗) = ran(M(i λ))⊥ = {0}, λ > 0, (5.18)

implies that M(i λ), λ > 0, is a bijection which in turn yields (5.16) since M(iλ)
and hence M(iλ)−1 are closed in H1.
(iii) If in addition, R is bounded with respect to A with relative bound less than
one, that is, there exist constants 0 ≤ a < 1 and b ≥ 0 such that

‖Rf‖H1
≤ a‖|A|f‖H1

+ b‖f‖H1
, f ∈ dom(|A|) (5.19)
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(here we used that ‖Af‖H1
= ‖|A|f‖H1

, f ∈ dom(A) = dom(|A|), using the polar
decomposition for A and |A|), one concludes that there exists c > 0 such that∥∥R(|A|2 + µ2)−1g

∥∥
H1
≤ a

∥∥|A|(|A|2 + µ2)−1g
∥∥
H1

+ b
∥∥(|A|2 + µ2)−1g

∥∥
H1

≤ aµ−1 + bµ−2 ≤ cµ−1, µ > 0, g ∈ H1. (5.20)

In particular, one can choose 0 < c < 1 for 0 < µ sufficiently large. This then yields

M(i λ)−1 = (|A|2 + λR+ λ2IH1
)−1

= (|A|2 + λ2IH1
)−1
[
IH1

+ λR(|A|2 + λ2IH1
)−1
]−1 ∈ B(H1) (5.21)

for 0 < λ sufficiently large,

since then λ
∥∥R(|A|2 + λ2)−1

∥∥
B(H1)

≤ c < 1. (One observes that accretivity of

R was not used in arriving at (5.21).) Together with accretivity of R this again
permits the application of the Lumer–Phillips Theorem to the effect that −iQ|A|,R
is generating a contraction semigroup.

The following remark is not explicitly used in this paper, but its perturbation

theoretic context is relevant when considering Q|A|,R =
(
−i R |A|
|A| 0

)
as an operator

sum of Q|A|,0 =
(

0 |A|
|A| 0

)
and

(−i R 0
0 0

)
and invoking the notion of off-diagonal

dominance as discussed, for instance, in [79, Sect.2.2].

Remark 5.5. Suppose S is m-accretive (resp., self-adjoint) in H and T is accretive
(resp., symmetric) in H with dom(T ) ⊇ dom(S) and assume that there exists
constants 0 ≤ a < 1, b ≥ 0 such that

‖Tf‖H ≤ a‖Sf‖H + b‖f‖H, f ∈ dom(S). (5.22)

Then S + T defined on dom(S + T ) = dom(S) is m-accretive (resp., self-adjoint)
in H, in particular, S + T is closed on dom(S) in H (cf., e.g., [20, Sect. III.2], [29,
Sect. 1.6], [59, Sects. IV.1, V.4]).

The choice T = −S shows that one cannot permit a = 1 in (5.22) as the zero
operator is not closed on dom(S) if the latter is only dense in H. Moreover, if a > 1,
then S + T need not be m-accretive on dom(S) as the following simple example
shows. Consider

S0f = f ′, f ∈ dom(S0) = H1
0 ((0,∞)) =

{
g ∈ L2([0,∞); dx)

∣∣ g ∈ AC([0, R])

for all R > 0; g(0) = 0; g′ ∈ L2([0,∞); dx)
}
. (5.23)

Then S0 is m-accretive and generates the semigroup

(e−S0tf)(x) = f∗(x− t), f ∈ L2([0,∞); dx), t ≥ 0, (5.24)

in L2([0,∞); dx), where f∗ denotes the extension of f to R such that f∗(x) vanishes
for a.e. x < 0. The adjoint semigroup is given by

(e−S
∗
0 tf)(x) = f(x+ t), f ∈ L2([0,∞); dx), t ≥ 0, (5.25)

with generator

S∗0f = −f ′, f ∈ dom(S∗0 ) = H1((0,∞)) =
{
g ∈ L2([0,∞); dx)

∣∣ g ∈ AC([0, R])

for all R > 0; g′ ∈ L2([0,∞); dx)
}
. (5.26)
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In particular, S∗0 ⊇ −S0. Next, consider Ta = aS∗0 , a > 0. Then for 0 < a < 1,
S0 + Ta = (1 − a)S0 is m-accretive in L2([0,∞); dx), but for a > 1, S0 + Ta =
−(a− 1)S0 is closed but not m-accretive in L2([0,∞); dx).

Still assuming Hypothesis 5.1, we next introduce the operator GA,R in HA⊕H1

by

GA,R =

(
0 JA
−J∗A −R

)
=

(
0 JA

−A∗Ã −R

)
,

dom(GA,R) = dom
(
A∗Ã

)
⊕ dom(A) ⊆ HA ⊕H1.

(5.27)

The same proof as for Theorem 4.4 also yields the following result.

Theorem 5.6. Assume Hypothesis 5.1. Then

Q|A|,R = U|̃A| iGA,RU
−1
|̃A|
. (5.28)

In particular, the operator GA,R is densely defined and closed in the energy space
HA ⊕H1.

If in addition R is accretive, then iλ ∈ ρ(M(·)) for some λ > 0, and also −G|A|,R
is accretive and G|A|,R generates a contraction semigroup in HA ⊕H1, denoted by
exp(G|A|,R t), t ≥ 0.

We also mention the analog of the result (5.28) when replacing |A| by A.

Theorem 5.7. Assume Hypothesis 5.1. Then

QA,R
(
IH1
⊕ [IH2

− Pker(A∗)]
)

= UÃ iGA,RU
−1
Ã
. (5.29)

We continue with an illustrative example.

Example 5.8. Considering the prototypical example of a nonnegative operator
A ≥ 0 in a Hilbert space H, with ker(A) = {0}, one can, without loss of generality,
restrict one’s attention to the case of H = L2([0,∞); dρ) (with ρ a Borel measure
on [0,∞) satisfying ρ({0}) = 0) and A being the operator of multiplication with the
independent variable so that

σ(A) = supp(dρ) (5.30)

(with supp(·) denoting the topological, i.e., smallest closed, support ). For example,
one could simply choose Lebesgue measure dρ(λ) = dλ on [0,∞). Introducing the
weighted L2-spaces

H(n) = L2
(
[0,∞);λ2ndρ(λ)

)
, n ∈ N0, (5.31)

one verifies that

H = H(0), HA = H(1), dom
(
An
)

= H(0) ∩H(n), n ∈ N,

dom
(
AÃ
)

= H(1) ∩H(2).
(5.32)

Moreover, one notes that there will be elements in HA\H if and only if inf(σ(A)) =
0, since otherwise the natural imbedding ιA would be continuous by the closed graph
theorem. Similarly there will be elements in H\HA if and only if A is unbounded
(i.e., if and only if sup(σ(A)) =∞).

Next, one checks that the unique classical solution of the ACP

Ẏ (t) = GA,0Y (t), t ≥ 0,

Y (0) =

(
y0
z0

)
∈ dom(GA,0),

(5.33)
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is given by

Y (t) = eGA,0tY (0), t ≥ 0, (5.34)

with

eGA,0t =

(
cos(tλ) λ−1 sin(tλ)
−λ sin(tλ) cos(tλ)

)
, t ≥ 0. (5.35)

Similarly, the classical solution of ACP2

ü(t) +A2u(t) = 0, t ≥ 0,

u(0) = u0 ∈ dom
(
A2
)
, u̇(0) = u1 ∈ dom(A),

(5.36)

is given by

u(t, λ) = cos(tλ)u0(λ) + λ−1 sin(tλ)u1(λ), t ≥ 0, λ ≥ 0. (5.37)

Hence, if one chooses Y (0) ∈ H(0) ⊕ H(1) with support in (0, 1) (such that auto-
matically, Y (0) ∈ H(1)⊕H(2)), then the first component of Y (t) will solve ACP2 if
and only if y0 ∈ H(0). In particular, there are classical solutions of ACP which to
not correspond to classical solutions of ACP2 if inf(σ(A)) = 0.

Concerning conserved quantities in connection with the abstract wave equations
we now mention the following result.

Lemma 5.9. Let Hj, j = 1, 2, be complex separable Hilbert spaces and assume
that A : dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator. Let
B : dom(B) ⊆ H1 → H1 be some closed operator which commutes with |A| in the
sense that B|A| ⊆ |A|B. In addition, let R be a densely defined, closable operator
in H1 satisfying dom(R) ⊇ dom(A). Suppose u is a classical solution of

ü+Ru̇+A∗Au = 0, (5.38)

such that B|A|u(·) ∈ C1([0,∞);H1), Bu̇(·) ∈ C1([0,∞);H1) and Ru̇(·) ∈ dom(B).
Then

d

dt

[
‖Bu̇‖2H1

+ ‖ABu‖2H1

]
= −2 Re(Bu̇,BRu̇)H1

. (5.39)

In particular, the right-hand side of (5.39) vanishes if R = 0, that is, in the ab-
sence of damping, and hence

[
‖Bu̇‖2H1

+‖ABu‖2H1

]
represents a family of conserved

quantities for ü+A∗Au = 0.

Proof. One computes

d

dt

[
‖Bu̇‖2H1

+ ‖ABu‖2H1

]
=

d

dt

[
‖Bu̇‖2H1

+ ‖|A|Bu‖2H1

]
= 2 Re

(
(Bu̇,Bü)H1

+ (|A|Bu, |A|Bu̇)H1

)
= 2 Re

(
(Bu̇,B[−Ru̇− |A|2u])H1

+ (Bu, |A|2Bu̇)H1

)
= 2 Re

(
− (Bu̇,BRu̇)H1

− (Bu̇, [B|A|2 − |A|2B]u)H1

)
= −2 Re

(
(Bu̇,BRu̇)H1

)
. (5.40)

�

One observes that the special case B = IH1 in (5.39) is usually associated with
the energy of the abstract wave equation ü+A∗Au = 0 (resp., ü+Ru̇+A∗Au = 0).
Typical examples for B would be B = |A|α, α ∈ [0, 1].
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Remark 5.10. More generally, let α ∈ R if B∗B ≥ εIH1
for some ε > 0 and α ≥ 0

if inf(σ(B∗B)) = 0. Assuming that u satisfies

ü+Ru̇+
[
(B∗B)2 + C∗C(B∗B)α

]
u = 0, (5.41)

and assuming additional appropriate conditions on u, u̇, R,B,C, one obtains

d

dt

[
‖|B|αu̇‖2H1

+ ‖|B|α+2u‖2H1
+ ‖|C||B|2αu‖2H1

]
= −2 Re(|B|αRu̇, |B|αu̇)H1

. (5.42)

Again, the right-hand side of (5.42) vanishes if R = 0, that is, in the absence of
damping.

A situation equivalent to the special case α = 1 has recently been studied in
[62] in the concrete context of plate equations. In this connection we recall that
‖|C||B|2αu‖2H1

= ‖C|B|2αu‖2H1
, etc.

Sketch of proof of (5.42).

d

dt

[
‖|B|αu̇‖2H1

+ ‖|B|α+2u‖2H1
+ ‖|C||B|2αu‖2H1

]
= 2 Re

(
(|B|αü, |B|αu̇)H1

+ (|B|α+2u̇, |B|α+2u)H1

+ (|C||B|2αu̇, |C||B|2αu)H1

)
= 2 Re

(
(|B|α[−Ru̇− |B|4u− |C|2|B|2αu], |B|αu̇)H1

+ (|B|α+2u̇, |B|α+2u)H1 + (|C||B|2αu̇, |C||B|2αu)H1

)
= 2 Re

(
− (|B|αu̇, |B|αRu̇)H1 − (|B|α|C|2|B|2αu, |B|αu̇)H1

+ (|C||B|2αu̇, |C||B|2αu)H1

)
= −2 Re(|B|αRu̇, |B|αu̇)H1 . (5.43)

6. Equipartition of Energy for Supersymmetric Dirac-Type
Operators and Abstract Wave Equations

In this section we briefly revisit the notion of asymptotic equipartition for ab-
stract wave equations (in the absence of damping) and show that it implies the
same phenomenon for a class of supersymmetric Dirac-type operators.

We start with our basic hypothesis.

Hypothesis 6.1. Let Hj, j = 1, 2, be complex separable Hilbert spaces and assume
that A : dom(A) ⊆ H1 → H2 is a densely defined, closed, linear operator.

Assuming Hypothesis 6.1, we introduce the supersymmetric Dirac operator (also
known as “supercharge”) by

Q =

(
0 A∗

A 0

)
, dom(Q) = dom(A)⊕ dom(A∗) ⊆ H1 ⊕H2. (6.1)

(For simplicity we now use the simplifying notation Q rather than the symbol QA,0
in previous sections.) As discussed in Appendix A, Q is self-adjoint in H1 ⊕H1.

A number of Dirac operators, including the free one (i.e., one without electro-
magnetic potentials), one with a Lorentz scalar potential, one describing electrons
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in a magnetic field, one describing neutrons in an electric field, and the one model-
ing particles with anomalous electric moment in a magnetic field can all be put in
this form (cf. [78, Section 5.5] for details).

The solution of the corresponding time dependent Dirac equation

i
d

dt
Ψ(t) = QΨ(t), Ψ(t) = (ψ1(t), ψ2(t))> ∈ dom(Q), t ∈ R, (6.2)

is given by

Ψ(t) = e−iQtΨ(0), t ∈ R, (6.3)

with e−iQt, t ∈ R, a unitary group in H1 ⊕H2.
One of the principal aims in this section is to prove the following result.

Theorem 6.2. Assume Hypothesis 6.1. Suppose Ψ(t) = e−iQtΨ(0) with Ψ(t) =
(ψ1(t), ψ2(t))>, t ∈ R, and Ψ(0) ∈ H1⊕H2 arbitrary. Then the following assertions
(i)–(iv) are equivalent.
(i) limt→±∞ ‖ψj(t)‖2Hj

= ‖Ψ(0)‖2H1⊕H2
/2, j = 1, 2.

(ii) w-limt→∞ e−iQt = 0.
(iii) w-limt→∞ e−i|A|t = 0.
(iv) w-limt→∞ cos(|A|t) = 0.
Similarly,

lim
t→±∞

1

t

∫ t

0

ds ‖ψj(s)‖2Hj
=

1

2
‖Ψ(0)‖2H1⊕H2

, j = 1, 2,

if and only if 0 is not an eigenvalue of Q.

(6.4)

Proof. First of all one notes that neither (i)–(iv) nor (6.4) can hold if 0 is an
eigenvalue of Q. Hence we assume without loss of generality that

ker(Q) = ker(A)⊕ ker(A∗) = {0}. (6.5)

Moreover, since
(
e−iQt

)∗
= eiQt, it suffices to study the limit t → ∞ in Theorem

6.2 (i) and (6.4). Next, we recall (A.2)–(A.9), (A.30), (A.31), the polar decom-
position A = VA|A|, A∗ = (VA)∗|A∗| where, due to our assumption ker(A) =
ker(A∗) = {0} and hence VA ∈ B(H1,H2) is unitary. In addition, we use the no-
tation H1 = A∗A, H2 = AA∗ (cf. Appendix A for details). Then, by the spectral
theorem applied to Q,

e−iQt = cos(|Q|t)− i sin(|Q|t)VQ, t ∈ R, (6.6)

and by (A.31), one obtains

e−iQt =

(
cos(|A|t) −i sin(|A|t)(VA)∗

−i sin(|A∗|t)VA cos(|A∗|t)

)
, t ∈ R. (6.7)

Taking scalar products of e−iQt with vectors of the type (f, 0)> and (0, g)> then
shows that

w-lim
t→∞

e−iQt = 0

if and only if

{
w-limt→∞ cos(|A|t) = 0, w-limt→∞ cos(|A∗|t) = 0,

w-limt→∞ sin(|A|t) = 0, w-limt→∞ sin(|A∗|t) = 0.

(6.8)
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However, since
(
e−i|T |t

)∗
= ei|T |t for any densely defined closed operator T , one

actually infers that

w-lim
t→∞

e−iQt = 0 if and only if
{

w-lim
t→∞

cos(|A|t) = 0, w-lim
t→∞

cos(|A∗|t) = 0
}

if and only if
{

w-lim
t→∞

e−i|A|t = 0, w-lim
t→∞

e−i|A
∗|t = 0

}
.

(6.9)

Finally, since H1 = A∗A and H2 = A∗A are unitarily equivalent (recalling (A.16)
and the fact that Pker(A) = Pker(A∗) = 0), this actually yields that

w-lim
t→∞

e−iQt = 0 if and only if w-lim
t→∞

e−i|A|t = 0 if and only if w-lim
t→∞

cos(|A|t) = 0.

(6.10)
Given Ψ(0) = (ψ1, ψ2)> ∈ H1 ⊕H2, one then computes

‖ψ1(t)‖2H1
= ‖ cos(|A|t)ψ1 − i sin(|A|t)(VA)∗ψ2‖2H1

=
1

4

∥∥[ei|A|t + e−i|A|t
]
ψ1 +

[
ei|A|t − e−i|A|t

]
(VA)∗ψ2

∥∥2
H1

=
1

4

∥∥[e2i|A|t + IH1

]
ψ1 +

[
e2i|A|t − IH1

]
(VA)∗ψ2

∥∥2
H1

=
1

4

∥∥[ψ1 − (VA)∗ψ2] + e2i|A|t[ψ1 + (VA)∗ψ2]
∥∥2
H1

=
1

4
‖[ψ1 − (VA)∗ψ2]‖H1 +

1

4

∥∥e2i|A|t[ψ1 + (VA)∗ψ2]
∥∥2
H1

+
1

2
Re
((

[ψ1 − (VA)∗ψ2], e2i|A|t[ψ1 + (VA)∗ψ2]
)
H1

)
=

1

2

(
‖ψ1‖2H1

+ ‖(VA)∗ψ2‖2H1

)
+

1

2
Re
((

[ψ1 − (VA)∗ψ2], e2i|A|t[ψ1 + (VA)∗ψ2]
)
H1

)
=

1

2

(
‖ψ1‖2H1

+ ‖ψ2‖2H2

)
+

1

2
Re
((

[ψ1 − (VA)∗ψ2], e2i|A|t[ψ1 + (VA)∗ψ2]
)
H1

)
=

1

2
‖Ψ(0)‖2H1⊕H2

+
1

2
Re
((

[ψ1 − (VA)∗ψ2], e2i|A|t[ψ1 + (VA)∗ψ2]
)
H1

)
. (6.11)

Thus, w-limt→∞ e−i|A|t = 0 yields limt→∞ ‖ψ1(t)‖2H1
= 1

2‖Ψ(0)‖2H1⊕H2
, and hence

also limt→∞ ‖ψ2(t)‖2H2
= 1

2‖Ψ(0)‖2H1⊕H2
, since e−iQt, t ∈ R, is unitary on H1⊕H2.

Conversely, choose ϕ,ψ ∈ H1 and set ψ1 = (ψ + ϕ)/2 and ψ2 = VA(ϕ − ψ)/2.
Then (6.11) shows that limt→∞ ‖ψ1(t)‖2H1

= 1
2‖Ψ(0)‖2H1⊕H2

implies

lim
t→∞

Re
((
ψ, e2i|A|tϕ

)
H1

)
= 0, ψ, ϕ ∈ H1. (6.12)

In particular,

lim
t→∞

Re
((
ψ, e2i|A|tψ

)
H1

)
= lim
t→∞

(ψ, cos(2|A|t)ψ)H1
= 0, ψ ∈ H1. (6.13)

By polarization for sesquilinear forms, this is equivalent to

lim
t→∞

(ψ, cos(2|A|t)ϕ)H1 = 0, ψ, ϕ ∈ H1, (6.14)

and thus by (6.10) also to

lim
t→∞

(
Ψ, eiQtΨ

)
H1⊕H2

= 0, Ψ ∈ H1 ⊕H2, (6.15)

proving the equivalence of (i)–(iv).
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Applying von Neumann’s mean ergodic theorem in the weak sense (cf., e.g., [13,
Corollary 5.2], [29, Theorem 1.8.20]) to (6.11) yields the Cesàro limit

lim
t→±∞

1

t

∫ t

0

ds ‖ψ1(s)‖2H1
=

1

2
‖Ψ(0)‖2H1⊕H2

+
1

2
Re

(
lim

t→±∞

1

t

∫ t

0

ds
(
[ψ1 − (VA)∗ψ2], e2i|A|s[ψ1 + (VA)∗ψ2]

)
H1

)
=

1

2
‖Ψ(0)‖2H1⊕H2

+
1

2
Re
((

[ψ1 − (VA)∗ψ2], E|A|({0})[ψ1 + (VA)∗ψ2]
)
H1

)
=

1

2
‖Ψ(0)‖2H1⊕H2

(6.16)

if E|A|({0}) = 0. (Here we used the notation ES(·) for the strongly right continuous
spectral family associated with the self-adjoint operator S.) Conversely, choose
again ϕ,ψ ∈ H1 and set ψ1 = (ψ+ϕ)/2 and ψ2 = VA(ϕ−ψ)/2. Then (6.11) shows
that

lim
t→∞

1

t

∫ t

0

ds ‖ψ1(s)‖2H1
=

1

2
‖Ψ(0)‖2H1⊕H2

(6.17)

implies

Re

(
lim
t→∞

1

t

∫ t

0

ds
(
ψ, e2i|A|sϕ

)
H1

)
= 0, ψ, ϕ ∈ H1. (6.18)

In particular,

Re

(
lim
t→∞

1

t

∫ s

0

ds
(
ψ, e2i|A|sψ

)
H1

)
= lim
t→∞

1

t

∫ t

0

ds (ψ, cos(2|A|s)ψ)H1 = 0,

ψ ∈ H1. (6.19)

By polarization for sesquilinear forms, this is equivalent to

lim
t→∞

1

t

∫ t

0

ds (ψ, cos(2|A|s)ϕ)H1 = 0, ψ, ϕ ∈ H1. (6.20)

Since generally, as a corollary of von Neumann’s weak ergodic theorem (cf. [34])

lim
t→∞

1

t

∫ t

0

ds (ψ, cos(|A|s)ϕ)H1 = (ψ,E|A|({0})ϕ)H1 , ψ, ϕ ∈ H1, (6.21)

(6.20) yields E|A|({0}) = 0. The same computation with ψ1(·) replaced by ψ2(·)
then proves that

lim
t→∞

1

t

∫ t

0

ds ‖ψ2(s)‖2H2
=

1

2
‖Ψ(0)‖2H1⊕H2

if and only if E|A∗|({0}) = 0, (6.22)

proving (6.4) (cf. (A.24)). �

We note that

e−i|Q|t = cos(|Q|t)− i sin(|Q|t) =

(
e−i|A|t 0

0 e−i|A
∗|t

)
, t ∈ R, (6.23)

and hence (6.10) also yields that

if ker(Q) = {0}, then w-lim
t→∞

e−iQt = 0 if and only if w-lim
t→∞

e−i|Q|t = 0. (6.24)
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Remark 6.3. The proof of Theorem 6.2 is similar in spirit to the proof for equipar-
tition of energy for abstract wave equations [9] (see also [27], [28], [29, Theorems
7.12 and 7.13], [31], [33], [35], [36], [37], [39], [40], [41], [74], and the references
therein). In fact, since the two problems are unitarly equivalent, one follows from
the other. For the benefit of the reader we decided to provide the proof in the
context of supersymmetric Dirac-type operators.

For completeness we finally recall the corresponding result concerning the asymp-
totic equipartition for abstract wave equations in the absence of damping, which
motivated the derivation of Theorem 6.2.

Consider the initial value problem

ü(t) +A∗Au(t) = 0, t ∈ R,
u(0) = f0 ∈ dom(A∗A), u̇(0) = f1 ∈ dom(A).

(6.25)

Introducing kinetic and potential energies, Ku(t) and Pu(t), associated with a
(strong) solution u(·) of (6.25) at time t ∈ R,

Ku(t) = ‖u̇(t)‖2H1
, Pu(t) = ‖Au‖2H1

= ‖|A|u‖2H1
, t ∈ R, (6.26)

one recalls conservation of the total energy (cf. Lemma 5.9)

Ku(t) + Pu(t) = Ku(0) + Pu(0), t ∈ R. (6.27)

Moreover, the initial value problem (6.25) is said to admit asymptotic equipartition
of energy if

lim
t→±∞

Ku(t) = lim
t→±∞

Pu(t) =
1

2
[Ku(0) + Pu(0)]. (6.28)

Asymptotic equipartition of energy has extensively been discussed in the literature,
we refer, for instance, to [1], [27], [28], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], and [74]. In particular, the following theorem appeared in Goldstein
[29, Theorems 7.12 and 7.13].

Theorem 6.4. Assume Hypothesis 6.1 and let u(·) : R → H1 be a solution of
(6.25). Then the following assertions (i) and (ii) are equivalent.
(i) limt→±∞Ku(t) = limt→±∞ Pu(t) = [Ku(0) + Pu(0)]/2.
(ii) w-limt→∞ e−i|A|t = 0.
Similarly,

lim
t→±∞

1

t

∫ t

0

dsKu(s) = lim
t→±∞

1

t

∫ t

0

dsPu(s) =
1

2
[Ku(0) + Pu(0)]

if and only if 0 is not an eigenvalue of A.

(6.29)

Appendix A. Supersymmetric Dirac-Type Operators in a Nutshell

In this appendix we briefly summarize some results on supersymmetric Dirac-
type operators and commutation methods due to [14], [24], [77], and [78, Ch. 5]
(see also [46]).

The standing assumption in this appendix will be the following.

Hypothesis A.1. Let Hj, j = 1, 2, be separable complex Hilbert spaces and

T : H1 ⊇ dom(T )→ H2 (A.1)

be a densely defined closed linear operator.
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We define the self-adjoint Dirac-type operator in H1 ⊕H2 by

Q =

(
0 T ∗

T 0

)
, dom(Q) = dom(T )⊕ dom(T ∗). (A.2)

Operators of the type Q play a role in supersymmetric quantum mechanics (see,
e.g., the extensive list of references in [7]). Then,

Q2 =

(
T ∗T 0

0 TT ∗

)
(A.3)

and for notational purposes we also introduce

H1 = T ∗T in H1, H2 = TT ∗ in H2. (A.4)

In the following, we also need the polar decomposition of T and T ∗, that is, the
representations

T = VT |T | = |T ∗|VT = VTT
∗VT on dom(T ) = dom(|T |), (A.5)

T ∗ = VT∗ |T ∗| = |T |VT∗ = VT∗TVT∗ on dom(T ∗) = dom(|T ∗|), (A.6)

|T | = VT∗T = T ∗VT = VT∗ |T ∗|VT on dom(|T |), (A.7)

|T ∗| = VTT
∗ = TVT∗ = VT |T |VT∗ on dom(|T ∗|), (A.8)

where

|T | = (T ∗T )1/2, |T ∗| = (TT ∗)1/2, (A.9)

VT∗ = (VT )∗, (A.10)

and

VT∗VT = P
ran(|T |) = P

ran(T∗)
, VTVT∗ = P

ran(|T∗|) = P
ran(T )

. (A.11)

In particular, VT is a partial isometry with initial set ran(|T |) and final set ran(T )

and hence VT∗ is a partial isometry with initial set ran(|T ∗|) and final set ran(T ∗).
In addition,

VT =

{
T (T ∗T )−1/2 = (TT ∗)−1/2T on (ker(T ))⊥,

0 on ker(T ).
(A.12)

Next, we collect some properties relating H1 and H2.

Theorem A.2 ([14]). Assume Hypothesis A.1 and let φ be a bounded Borel mea-
surable function on R.
(i) One has

ker(T ) = ker(H1) = (ran(T ∗))⊥, ker(T ∗) = ker(H2) = (ran(T ))⊥, (A.13)

VTH
n/2
1 = H

n/2
2 VT , n ∈ N, VTφ(H1) = φ(H2)VT . (A.14)

(ii) H1 and H2 are essentially isospectral, that is,

σ(H1)\{0} = σ(H2)\{0}, (A.15)

in fact,

T ∗T [IH1
− Pker(T )] is unitarily equivalent to TT ∗[IH2

− Pker(T∗)]. (A.16)

In addition,

f ∈ dom(H1) and H1f = λ2f, λ 6= 0,

implies Tf ∈ dom(H2) and H2(Tf) = λ2(Tf), (A.17)
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g ∈ dom(H2) and H2 g = µ2g, µ 6= 0,

implies T ∗g ∈ dom(H1) and H1(T ∗g) = µ2(T ∗g), (A.18)

with multiplicities of eigenvalues preserved.
(iii) One has for z ∈ ρ(H1) ∩ ρ(H2),

IH2
+ z(H2 − zIH2

)−1 ⊇ T (H1 − zIH1
)−1T ∗, (A.19)

IH1
+ z(H1 − zIH1

)−1 ⊇ T ∗(H2 − zIH2
)−1T, (A.20)

and

T ∗φ(H2) ⊇ φ(H1)T ∗, Tφ(H1) ⊇ φ(H2)T, (A.21)

VT∗φ(H2) ⊇ φ(H1)VT∗ , VTφ(H1) ⊇ φ(H2)VT . (A.22)

As noted by E. Nelson (unpublished), Theorem A.2 follows from the spectral
theorem and the elementary identities,

Q = VQ|Q| = |Q|VQ, (A.23)

ker(Q) = ker(|Q|) = ker(Q2) = (ran(Q))⊥ = ker(T )⊕ ker(T ∗), (A.24)

IH1⊕H2
+ z(Q2 − zIH1⊕H2

)−1 = Q2(Q2 − zIH1⊕H2
)−1 ⊇ Q(Q2 − zIH1⊕H2

)−1Q,

z ∈ ρ(Q2), (A.25)

Qφ(Q2) ⊇ φ(Q2)Q, (A.26)

where

VQ =

(
0 (VT )∗

VT 0

)
=

(
0 VT∗

VT 0

)
. (A.27)

In particular,

ker(Q) = ker(T )⊕ ker(T ∗), Pker(Q) =

(
Pker(T ) 0

0 Pker(T∗)

)
, (A.28)

and we also recall that

σ3Qσ3 = −Q, σ3 =

(
IH1

0
0 −IH2

)
, (A.29)

that is, Q and −Q are unitarily equivalent. (For more details on Nelson’s trick see
also [76, Sect. 8.4], [78, Subsect. 5.2.3].) We also note that

ψ(|Q|) =

(
ψ(|T |) 0

0 ψ(|T ∗|)

)
(A.30)

for Borel measurable functions ψ on R, and

[Q|Q|−1] =

(
0 (VT )∗

VT 0

)
= VQ if ker(Q) = {0}. (A.31)

Finally, we recall the following relationships between Q and Hj , j = 1, 2.

Theorem A.3 ([7], [77]). Assume Hypothesis A.1.
(i) Introducing the unitary operator U on (ker(Q))⊥ by

U = 2−1/2
(
IH1 (VT )∗

−VT IH2

)
on (ker(Q))⊥, (A.32)

one infers that

UQU−1 =

(
|A| 0
0 −|A∗|

)
on (ker(Q))⊥. (A.33)
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(ii) One has

(Q− ζIH1⊕H2
)−1 =

(
ζ(H1 − ζ2IH1)−1 T ∗(H2 − ζ2IH2)−1

T (H1 − ζ2IH1)−1 ζ(H2 − ζ2IH2)−1

)
,

ζ2 ∈ ρ(H1) ∩ ρ(H2).

(A.34)

(iii) In addition,(
f1
f2

)
∈ dom(Q) and Q

(
f1
f2

)
= η

(
f1
f2

)
, η 6= 0,

implies fj ∈ dom(Hj) and Hjfj = η2fj , j = 1, 2.

(A.35)

Conversely,

f ∈ dom(H1) and H1f = λ2f, λ 6= 0,

implies

(
f

λ−1Tf

)
∈ dom(Q) and Q

(
f

λ−1Tf

)
= λ

(
f

λ−1Tf

)
.

(A.36)

Similarly,

g ∈ dom(H2) and H2 g = µ2g, µ 6= 0,

implies

(
µ−1T ∗g

g

)
∈ dom(Q) and Q

(
µ−1T ∗g

g

)
= µ

(
µ−1T ∗g

g

)
.

(A.37)

Appendix B. Adjoints and Closures of Operator Products

The purpose of this appendix is to describe some situations in which equality
holds between (TS)∗ and S∗T ∗ and similarly, describe relations between (TS) and
T S.

We recall that if C : H ⊇ dom(C) → H′ is a closed operator (with H and H′
complex, separable Hilbert spaces), then a linear subspace D of dom(C) is called a

core for C if C|D = C.

Lemma B.1. Let H,H′,H′′ be complex, separable Hilbert spaces, and introduce the
linear operators

S : H ⊇ dom(S)→ H′, T : H′ ⊇ dom(T )→ H′′. (B.1)

(i) Assume that T and TS are densely defined. Then S is densely defined and

(TS)∗ ⊇ S∗T ∗. (B.2)

(ii) Suppose that S is densely defined and T ∈ B(H′,H′′). Then

(TS)∗ = S∗T ∗. (B.3)

(iii) Assume that T and TS are densely defined. In addition, suppose that S is
injective (i.e., ker(S) = {0}) and S−1 ∈ B(H′,H). Then S is densely defined and

(TS)∗ = S∗T ∗. (B.4)

(iv) Suppose that TS is densely defined, assume that dom(T ) ∩ ran(S) = H′, and
introduce

T̂ = T |dom(T )∩ran(S). (B.5)

Moreover, assume that S is injective and that S−1 is a bounded operator. Then
dom(S) = H, ran(S) = H′, S−1 ∈ B(H′,H), and

(TS)∗ =
(
T̂ S
)∗

= S∗
(
T̂
)∗ ⊇ S∗T ∗. (B.6)
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Suppose, in addition, that T is closable. Then

(TS)∗ = S∗T ∗ if and only if dom(T ) ∩ ran(S) is a core for T . (B.7)

(v) Assume that S and T are densely defined, suppose S is closed, and assume in
addition that ran(S) has finite codimension (i.e., dim

(
ran(S)⊥

)
< ∞). Then TS

is densely defined and

(TS)∗ = S∗T ∗. (B.8)

Proof. We refer to [85, Theorem 4.19 (a)] for a proof of item (i).
Item (ii) is a classical result, see, for instance, [15, Lemma X.II.1.6] and [85,

Theorem 4.19 (b)].
Item (iii) is mentioned in [85, Exercise 4.18] and is a special case of item (iv) to

be proven next.
To prove item (iv) one can argue as follows. Since S is injective, dom(S−1) =

ran(S) is dense in H′, and S−1 is a bounded operator, S−1 is closable and hence

dom
(
S−1

)
= dom(S−1) = H′ (cf. [85, Theorem 5.2]). Thus, S−1 ∈ B(H′,H) by

the closed graph theorem.

The fact that TS = T̂ S, T̂ ⊆ T (implying T ∗ ⊆
(
T̂
)∗

), and generally, S, T̂ , T̂ S all

being densely defined implies that
(
T̂ S
)∗ ⊇ S∗(T̂ )∗ (cf. item (i)), (B.6) will follow

once one proves that
(
T̂ S
)∗ ⊆ S∗

(
T̂
)∗

. For this purpose let f ∈ dom
((
T̂ S
)∗)

and

g ∈ dom
(
T̂ S
)
, then(

f, T̂Sg
)
H′′ =

((
T̂ S
)∗
f, g
)
H =

((
T̂ S
)∗
f, S−1Sg

)
H =

((
T̂ S
)∗
f, S−1Sg

)
H

=
((
S−1

)∗(
T̂ S
)∗
f, Sg

)
H′ . (B.9)

Thus, ∣∣(f, T̂Sg)H′′∣∣ ≤ ∥∥(S−1)∗(T̂ S)∗f∥∥H′ ‖Sg‖H′ . (B.10)

Since dom
(
T̂ S
)

= S−1 dom
(
T̂
)
, one obtains that as g runs through all of dom

(
T̂ S
)
,

Sg runs through all of dom
(
T̂
)
. Hence, (B.10) implies that f ∈ dom

((
T̂
)∗)

and
thus (B.9) yields ((

T̂
)∗
f, Sg

)
H′ =

((
S−1

)∗(
T̂ S
)∗
f, Sg

)
H′ . (B.11)

Since (as a consequence of the hypothesis dom(T ) ∩ ran(S) = H′), ran(S) = H′,
(B.11) implies(

T̂
)∗
f =

(
S−1

)∗(
T̂ S
)∗
f =

(
S−1

)∗(
T̂ S
)∗
f = (S∗)−1

(
T̂ S
)∗
f. (B.12)

Here we used that
(
A
)∗

= A∗ if A is densely defined and closable (cf. [85, Theorem

5.3 (c)]) and that
(
B−1

)∗
= (B∗)−1 if B is injective and densely defined with dense

range (implying injectivity of B∗, cf. [85, Theorem 4.17 (b)]). Equation (B.12)

yields S∗
(
T̂
)∗
f =

(
T̂ S
)∗
f and hence

(
T̂ S
)∗ ⊆ S∗(T̂ )∗.

Next, assume in addition that T is closable (and hence
(
T
)∗

= T ∗). Then if

dom(T ) ∩ ran(S) is a core for T , T̂ = T yields(
T̂
)∗

=
(
T̂
)∗

=
(
T
)∗

= T ∗, (B.13)

and hence (B.6) implies (TS)∗ = S∗T ∗. Conversely, suppose that
(
T̂
)∗

= T ∗. Then

T̂ =
((
T̂
)∗)∗

= (T ∗)∗ = T (B.14)
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proves that dom(T ) ∩ ran(S) is a core for T .
For a proof of item (v) we refer to [44], [48], [49], [73], and [82]. In this con-
text we note that ran(S) is closed in H′ (since S is assumed to be closed and
dim

(
ran(S)⊥

)
< ∞, cf. [26, Corollary IV.1.13]) and hence does not have to be

assumed to be closed, and similarly, it is not necessary to assume that T is closed
as is done in some references. �

We note again that Lemma B.1 (iv) is a refinement of [85, Exercise 4.18], listed
as item (iii) in Lemma B.1; it may be of independent interest.

For additional results guaranteeing (TS)∗ = S∗T ∗ (including the Banach space
setting), we refer, for instance, to [44], [48], [49], [58], [68], and [82] (in particular,
the case of nondensely defined operators is discussed in detail in [68]).

Next, we briefly consider situations which relate ST with S T (much less appears
to have been studied in this context).

Lemma B.2. Let H,H′,H′′ be complex, separable Hilbert spaces, and introduce the
linear operators

S : H ⊇ dom(S)→ H′, T : H′ ⊇ dom(T )→ H′′. (B.15)

(i) Assume that S is bounded, S ∈ B(H,H′), and that T is closed. Then TS is
closed, implying that TS is closable and that

TS ⊆ TS. (B.16)

(ii) Assume that S is injective with S−1 bounded and S−1 ∈ B(H′,H). Furthermore,
suppose T |dom(T )∩ran(S) is closable and

T |dom(T )∩ran(S) ⊆ T |dom(T )∩ran(S). (B.17)

In addition, assume that TS is closable. Then

TS ⊆ TS. (B.18)

Proof. For the purpose of proving item (i) we suppose that {fn}n∈N ⊂ dom(TS)
such that s-limn→∞ fn = f ∈ H and TSfn = h ∈ H′′. By the definition of
dom(TS), this implies that {fn}n∈N ⊂ dom(S), and since S ∈ B(H,H′), one con-
cludes that s-limn∈N Sfn = Sf ∈ H′. Since s-limn→∞ T (Sfn) = s-limn→∞ TSfn =
h, closedness of T implies that Sf ∈ dom(T ) and s-limn→∞ T (Sfn) = T (Sf), that
is, f ∈ dom(TS) and s-limn→∞ TSfn = TSf . Thus, TS is closed.

Since TS ⊆ TS and the latter is closed, TS is closable and

TS ⊆ TS = TS. (B.19)

To prove item (ii) let f ∈ dom(TS) and g = TSf . Then h = Sf ∈ dom(T )∩ran(S),
and by assumption (B.17) we can find {hn}n∈N ∈ dom(T ) ∩ ran(S) such that
s-limn→∞ hn = h in H′ and s-limn→∞ Thn = Th = g in H′′. Since S−1 is bounded,

the sequence fn = S−1hn converges strongly to S−1h =
(
S
)−1

h = f in H, and
by construction, TSfn = Thn, n ∈ N, satisfies s-limn→∞ TSfn = g. Thus, f ∈
dom(TS) and TSf = g = TSf . �

We note that closedness of TS in Lemma B.2 (i) has been noted in [20, Propo-
sition B.2].
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in Hilbert spaces, Tübinger Berichte 1996, 17pp.

[54] S.-Z. Huang, On energy decay rate of linear damped elastic systems, Tübinger Berichte 1997,
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