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Abstract. The paper aims at developing the Riemann–Hilbert (RH) approach for the mod-
ified Camassa–Holm (mCH) equation on the line with non-zero boundary conditions, in the
case when the solution is assumed to approach two different constants at different sides of the
line. We present detailed properties of spectral functions associated with the initial data for
the Cauchy problem for the mCH equation and obtain a representation for the solution of this
problem in terms of the solution of an associated RH problem.

1. Introduction

In the present paper, we consider the initial value problem for the mCH equation (1.1a):

mt +
(
(u2 − u2

x)m
)
x
= 0, m := u− uxx, t > 0, −∞ < x < +∞, (1.1a)

u(x, 0) = u0(x), −∞ < x < +∞, (1.1b)

assuming that

u0(x)→

{
A1 as x→ −∞
A2 as x→∞

, (1.2)

where A1 and A2 are some different constants, and that the solution u(x, t) preserves this behavior
for all fixed t > 0.

Equation (1.1a) is an integrable modification, with cubic nonlinearity, of the Camassa–Holm
(CH) equation [20,21]

mt + (um)x + uxm = 0, m := u− uxx. (1.3)
The Camassa–Holm equation has been studied intensively over more than two decades, due to its
rich mathematical structure as well as applications for modeling the unidirectional propagation of
shallow water waves over a flat bottom [28,51]. The CH and mCH equations are both integrable in
the sense that they have Lax pair representations, which allows developing the inverse scattering
transform (IST) method, in one form or another, to study the properties of solutions of initial
(Cauchy) and initial boundary value problems for these equations. In particular, the inverse
scattering method in the form of a Riemann–Hilbert (RH) problem developed for the CH equation
with linear dispersion [14] allowed studying the large-time behavior of solutions of initial as well
as initial boundary value problems for the CH equation [8, 11, 15, 16] using the (appropriately
adapted) nonlinear steepest descent method [31].

Over the last few years various modifications and generalizations of the CH equation have been
introduced, see, e.g., [70] and references therein. Novikov [62] applied a perturbative symmetry
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approach in order to classify integrable equations of the form(
1− ∂2

x

)
ut = F (u, ux, uxx, uxxx, . . . ), u = u(x, t), ∂x := ∂/∂x,

assuming that F is a homogeneous differential polynomial over C, quadratic or cubic in u and
its x-derivatives (see also [59]). In the list of equations presented in [62], equation (32), which
was the second equation with cubic nonlinearity, had the form (1.1a). In an equivalent form,
this equation was given by Fokas in [41] (see also [63] and [44]). Shiff [67] considered equation
(1.1a) as a dual to the modified Korteweg–de Vries (mKdV) equation and introduced a Lax pair
for (1.1a) by rescaling the entries of the spatial part of a Lax pair for the mKdV equation. An
alternative (in fact, gauge equivalent) Lax pair for (1.1a) was given by Qiao [65], so the mCH
equation is also referred to as the Fokas–Olver–Rosenau–Qiao (FORQ) equation [48].

The local well-posedness and wave-breaking mechanisms for the mCH equation and its general-
izations, particularly, the mCH equation with linear dispersion, are discussed in [24,25,43,47,57].
Algebro-geometric quasiperiodic solutions are studied in [48]. The local well-posedness for clas-
sical solutions and for global weak solutions to (1.1a) in Lagrangian coordinates are discussed in
[45].

The Hamiltonian structure and Liouville integrability of peakon systems are discussed in
[2, 22, 47, 63]. In [52], a Liouville-type transformation was presented relating the isospectral
problems for the mKdV equation and the mCH equation, and a Miura-type map from the
mCH equation to the CH equation was introduced. The Bäcklund transformation for the mCH
equation and a related nonlinear superposition formula are presented in [68].

In the case of the Camassa–Holm equation, the inverse scattering transform method (partic-
ularly, in the form of a Riemann–Hilbert factorization problem) works for the version of this
equation (considered for functions decaying at spatial infinity) that includes an additional linear
dispersion term. Equivalently, this problem can be rewritten as a Cauchy problem for equation
(1.3) considered on a constant, nonzero background. Indeed, the inverse scattering transform
method requires that the spatial equation from the Lax pair associated to the CH equation have
continuous spectrum. On the other hand, the asymptotic analysis of the dispersionless CH equa-
tion (1.3) on zero background (where the spectrum is purely discrete) requires a different tool
(although having a certain analogy with the Riemann–Hilbert method), namely, the analysis of
a coupling problem for entire functions [33–35].

In the case of the mCH equation, the situation is similar: the inverse scattering method for the
Cauchy problem can be developed when equation (1.1a) is considered on a nonzero background.
The Riemann–Hilbert formalism for this problem is developed in [9], and the asymptotic analysis
of the large-time behavior of the solutions on a uniform nonzero background is presented in [10].

Integrable nonlinear PDE with non-vanishing boundary conditions at infinity has received
plenty of attention in the literature, see e.g.[3,7,32,49]. Particularly, initial value problems with
initial data approaching different “backgrounds” at different spatial infinities (the so-called step-
like initial data) have attracted considerable attention because they can be used as models for
studying expanding, oscillatory dispersive shock waves (DSW), which are large scale, coherent
excitation in dispersive systems [4, 40]. Large-time evolution of step-like initial data has been
studied for models of uni-directional (Korteweg–de Vries equation) wave propagation [1, 36] as
well as bi-directional (Nonlinear Schrödinger equation) wave propagation [5, 6, 12,13,19,42,50].

The RH problem formalism for the step-like initial value problem for the Camassa–Holm
equation was presented in [60], and the large-time behavior of the solutions of this problem was
discussed in [61].

In the present paper, we develop the Riemann–Hilbert formalism to problem (1.1) with the
step-like initial data (1.2) assuming that 0 < A1 < A2 and that u(x, t) approaches its large-x
limits sufficiently fast. We also assume that m(x, 0) = u0(x) − u0xx(x) > 0 for all x; then it
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can be shown that m(x, t) > 0 for all t (see Appendix A, for the case of the CH equation, see
[26,27]). In Section 2, we introduce appropriate transformations of the Lax pair equations and the
associated Jost solutions (“eigenfunctions”) and discuss analytic properties of the eigenfunctions
and the corresponding spectral functions (scattering coefficients), including the symmetries and
the behavior at the branch points. Here the analysis is performed when fixing the branches of
the functions kj(λ) :=

√
λ2 − 1

A2
j
, j = 1, 2 involved in the Lax pair transformations as having

the branch cuts (−∞,− 1
Aj

) ∪ ( 1
Aj

,∞).
In Section 3, the introduced eigenfunctions are used in the construction of the Riemann–

Hilbert problems, whose solutions evaluated at λ = 0 (where λ is the spectral parameter in the
Lax pair equations) give parametric representations of the solution of problem (1.1).

The case 0 < A2 < A1 is briefly discussed in Appendix B.

Notations. In what follows, σ1 := ( 0 1
1 0 ), σ2 :=

(
0 −i
i 0

)
, and σ3 :=

(
1 0
0 −1

)
denote the standard

Pauli matrices, C+ := {λ ∈ C| Im(λ) > 0}, and C− := {λ ∈ C| Im(λ) < 0}.

2. Lax pairs and eigenfunctions

2.1. Lax pairs. The Lax pair for the mCH equation (1.1a) has the following form [65]:

Φx(x, t, λ) = U(x, t, λ)Φ(x, t, λ), (2.1a)
Φt(x, t, λ) = V (x, t, λ)Φ(x, t, λ), (2.1b)

where the coefficients U and V are defined by

U =
1

2

(
−1 λm
−λm 1

)
, (2.1c)

V =

(
λ−2 +

u2−u2
x

2 −λ−1(u− ux)− λ(u2−u2
x)m

2

λ−1(u+ ux) +
λ(u2−u2

x)m
2 −λ−2 − u2−u2

x

2

)
, (2.1d)

with m(x, t) = u(x, t)− uxx(x, t). The RH formalism for integrable nonlinear equations is based
on using appropriately defined eigenfunctions, i.e., solutions of the Lax pair, whose behavior as
functions of the spectral parameter is well-controlled in the extended complex plane. Notice that
the coefficient matrices U and V are traceless, which provides that the determinant of a matrix
solution to (2.1) (composed of two vector solutions) is independent of x and t.

Also notice that U and V have singularities (in the extended complex λ-plane) at λ = 0 and
λ =∞. In particular, U is singular at λ =∞, which necessitates a special care when constructing
solutions with controlled behavior as λ→∞. On the other hand, U becomes u-independent at
λ = 0 (a property shared by many Camassa–Holm-typed equations, including the CH equation
itself), which suggests using the behavior of the constructed solutions as λ → 0 in order to
“extract” the solution of the nonlinear equation in question from the solution of an associated
Riemann–Hilbert problem (whose construction, in the direct problem, involves the dedicated
solutions of the Lax pair equations).

Notations.
• We introduce the following notations for various intervals of the real axis:

Σj = (−∞,− 1

Aj
] ∪ [

1

Aj
,∞), Σ̇j = (−∞,− 1

Aj
) ∪ (

1

Aj
,∞),

Σ0 = [− 1

A1
,− 1

A2
] ∪ [

1

A2
,
1

A1
], Σ̇0 = (− 1

A1
,− 1

A2
) ∪ (

1

A2
,
1

A1
).

Notice that Σ1 ⊂ Σ2 since we assume A1 < A2.
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• For λ ∈ Σj we denote by λ+ (λ−) the point of the upper (lower) side of Σj (i.e. λ± =

limϵ↓0 λ± iϵ). Then we have −λ+ = (−λ)− and λ+ = λ−.
• kj(λ) :=

√
λ2 − 1

A2
j
, j = 1, 2 with the branch cut Σj and the branch is fixed by the

condition kj(0) =
i

Aj
.

Observe that Im kj(λ) ≥ 0 on C, and kj(λ) is real valued on the both sides of Σj . Also
notice that kj(λ) = ω+

j (λ)ω
−
j (λ), where ω+

j (λ) =
√
λ− 1

Aj
with the branch cut [ 1

Aj
,∞) and

ω+
j (0) =

i√
Aj

, and ω−
j (λ) =

√
λ+ 1

Aj
with the branch cut (−∞,− 1

Aj
] and ω−

j (0) =
1√
Aj

.

Observe the following symmetry relations:

kj(−λ) = kj(λ), λ ∈ C \ Σj , (2.2a)
kj(λ+) = −kj((−λ)+), λ ∈ Σj , (2.2b)

kj(λ) = −kj(λ), λ ∈ C \ Σj , (2.2c)

kj(λ+) = kj(λ+), λ ∈ Σj (2.2d)

(here (2.2b) follows from (2.2a) and (2.2c)).
In order to control the large λ behavior of solutions of (2.1), we introduce two gauge transfor-

mations associated with x→ (−1)j∞ and m→ Aj (in a similar way as it was done in the case
of the constant background [9]).

Proposition 2.1. Equation (1.1a) admits Lax pairs of the form (j = 1, 2)

Φ̂jx +QjxΦ̂j = ÛjΦ̂j , (2.3a)

Φ̂jt +QjtΦ̂j = V̂jΦ̂j , (2.3b)

whose coefficients Qj ≡ Qj(x, t, λ), Ûj ≡ Ûj(x, t, λ), and V̂j ≡ V̂j(x, t, λ) are 2×2 matrices given
by (2.7) and (2.8), which are characterized by the following properties:

(i) Qj is diagonal and is unbounded as λ→∞.
(ii) Ûj = O(1) and V̂j = O(1) as λ→∞.
(iii) The diagonal parts of Ûj and V̂j decay as λ→∞.
(iv) Ûj → 0 and V̂j → 0 as x→ (−1)j∞.

Proof. Notice that U in (2.1c) can be written as

U(x, t, λ) =
m(x, t)

2Aj

(
−1 λAj

−λAj 1

)
+

m(x, t)−Aj

2Aj

(
1 0
0 −1

)
, (2.4)

where m(x, t)−Aj → 0 as x→ (−1)j∞. The first (non-decaying, as x→ (−1)j∞) term in (2.4)
can be diagonalized by introducing

Φ̂j(x, t, λ) := Dj(λ)Φ(x, t, λ), (2.5)

where

Dj(λ) :=

√
1

2

√
1

iAjkj(λ)
− 1

(
λAj

1−iAjkj(λ)
−1

−1 λAj

1−iAjkj(λ)

)
(2.6)

with

D−1
j (λ) :=

√
1

2

√
1

iAjkj(λ)
− 1

(
λAj

1−iAjkj(λ)
1

1
λAj

1−iAjkj(λ)

)
.
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The factor
√

1
2

√
1

iAjkj(λ)
− 1 provides detDj(λ) = 1 for all λ, and the branch of the square root

is chosen so that the branch cut is [0,∞) and
√
−1 = i; then √wj = −

√
wj . Observe that√

1
iAjkj(λ)

− 1 is well defined as a function of λ on C \ Σj as well as on the sides of Σj . Then
(2.5) transforms (2.1a) into

Φ̂jx +
ikj(λ)m

2
σ3Φ̂j = ÛjΦ̂j , (2.7a)

where Ûj ≡ Ûj(x, t, λ) is given by

Ûj =
λ(m−Aj)

2Ajkj(λ)
σ2 +

m−Aj

2iA2
jkj(λ)

σ3. (2.7b)

In turn, the t-equation (2.1b) of the Lax pair is transformed into

Φ̂jt + iAjkj(λ)

(
− 1

2Aj
m(u2 − u2

x)−
1

λ2

)
σ3Φ̂j = V̂jΦ̂j , (2.7c)

where V̂j ≡ V̂j(x, t, λ) is given by

V̂j = −
1

2Ajkj(λ)

(
λ(u2 − u2

x)(m−Aj) +
2(u−Aj)

λ

)
σ2 +

ũx

λ
σ1

− 1

iAjkj(λ)

(
Aj(u−Aj) +

1

2Aj
(u2 − u2

x)(m−Aj)

)
σ3.

(2.7d)

Now notice that equations (2.7a) and (2.7c) have the desired form (2.3), if we define Qj by

Qj(x, t, λ) := pj(x, t, λ)σ3, (2.8a)

with

pj(x, t, λ) := iAjkj(λ)

(
1

2Aj

∫ x

(−1)j∞
(m(ξ, t)−Aj)dξ +

x

2
− t
( 1

λ2
+

A2
j

2

))
. (2.8b)

Indeed, we obviously have pjx =
ikj(λ)m

2 ; on the other hand, the equality

pjt = iAjkj(λ)

(
− 1

2Aj
m(u2 − u2

x)−
1

λ2

)
follows from (1.1a). □

Remark 2.2. In [9], which deals with the mCH equation on a single background, introducing a
uniformizing spectral parameter (such that λ and the respective k(λ) are rational with respect
to it) allowed getting rid of square roots and thus avoiding the problem of specifying particular
branches. In the present case, since we have to deal with two different functions, k1(λ) and
k2(λ), associated with two different backgrounds, we keep the original spectral parameter λ as
the spectral variable in the RH problem formalism we are going to develop.

2.2. Eigenfunctions. The Lax pair in the form (2.7) allows us to determine, via associated inte-
gral equations, dedicated solutions having a well-controlled behavior as functions of the spectral
parameter λ for large values of λ. Indeed, introducing

Φ̃j = Φ̂je
Qj (2.9)

(understanding Φ̃j as a 2× 2 matrix), equations (2.7a) and (2.7c) can be rewritten as{
Φ̃jx + [Qjx, Φ̃j ] = ÛjΦ̃j ,

Φ̃jt + [Qjt, Φ̃j ] = V̂jΦ̃j ,
(2.10)
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where [ · , · ] stands for the commutator. We now determine the Jost solutions Φ̃j ≡ Φ̃j(x, t, λ),
j = 1, 2 of (2.10) as the solutions of the associated Volterra integral equations:

Φ̃j(x, t, λ) = I +

∫ x

(−1)j∞
eQj(ξ,t,λ)−Qj(x,t,λ)Ûj(ξ, t, λ)Φ̃j(ξ, t, λ)e

Qj(x,t,λ)−Qj(ξ,t,λ)dξ, (2.11)

or, taking into account the definition (2.8) of Qj ,

Φ̃j(x, t, λ) = I +

∫ x

(−1)j∞
e

ikj(λ)

2

∫ ξ
x
m(τ,t)dτσ3Ûj(ξ, t, λ)Φ̃j(ξ, t, λ)e

−
ikj(λ)

2

∫ ξ
x
m(τ,t)dτσ3dξ, (2.12)

(I is the 2× 2 identity matrix).
Hereafter, Φ̂j := Φ̃je

−Qj , j = 1, 2 denote the corresponding Jost solutions of (2.7) whereas
Φj := D−1

j (λ)Φ̂j denote the corresponding Jost solutions of (2.1).
We are now able to analyze the analytic and asymptotic properties of the solutions Φ̃j of

(2.12) as functions of λ, using Neumann series expansions. Let A(1) and A(2) denote the columns
of a 2× 2 matrix A =

(
A(1) A(2)

)
. Using these notations we have the following properties:

• Φ̃
(j)
j is analytic in C \ Σj and has a continuous extension on the lower and upper sides of Σ̇j .

• Φ̃
(1)
j and Φ̃

(2)
j are well defined and continuous on the lower and upper sides of Σ̇j .

In (2.10) the coefficients are traceless matrices, from which it follows that det Φ̃j is independent
on x and t, and hence
• det Φ̃j ≡ 1.

Regarding the values of Φ̃j at particular points in the λ-plane, (2.12) implies the following:
• ( Φ̃(1)

1 Φ̃
(2)
2 ) → I as λ → ∞ (since the diagonal part of Ûj is O( 1λ ) and the off-diagonal part of

Ûj is bounded).
• Φ̃j has singularities at λ = ± 1

Aj
of order 1

2 (this will be discussed below, see Subsection 2.8).

2.3. “Background” solution. Introduce Φ0,j(x, t, λ) := D−1
j (λ)e−Qj(x,t,λ). We see that Φ0,j

satisfy the differential equations:
Φ0,jx = m(x,t)

2Aj

(
−1 λAj

−λAj 1

)
Φ0,j ,

Φ0,jt =
(
− 1

2Aj
m(u2 − u2

x)− 1
λ2

)( −1 λAj

−λAj 1

)
Φ0,j .

(2.13)

Comparing this with (2.3), Φj(x, t, λ) can be characterized as the solutions of the integral
equations:

Φj(x, t, λ) = Φ0,j(x, t, λ) +

∫ x

(−1)j∞
Φ0,j(x, t, λ)Φ

−1
0,j(y, t, λ)

m(y, t)−Aj

2Aj
σ3Φj(y, t, λ)dy. (2.14)

Observe that Φ0,j(x, t, λ)Φ
−1
0,j(y, t, λ) is entire w.r.t. λ. Hence the “lack of analyticity” (jumps)

of Φj(x, t, λ) is generated by the “lack of analyticity” of Φ0,j(x, t, λ). Notice that detΦj =
detΦ0,j = 1.

2.4. Spectral functions. Introduce the scattering matrices s(λ±) for λ ∈ Σ̇1 as matrices relat-
ing Φ1 and Φ2:

Φ1(x, t, λ±) = Φ2(x, t, λ±)s(λ±), λ ∈ Σ̇1 (2.15)
with det s(λ±) = 1. In turn, Φ̃1 and Φ̃2 are related by

D−1
1 (λ±)Φ̃1(x, t, λ±) = D−1

2 (λ±)Φ̃2(x, t, λ±)e
−Q2(x,t,λ±)s(λ±)e

Q1(x,t,λ±), λ ∈ Σ̇1. (2.16)
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Introducing
s̃(x, t, λ±) := e−Q2(x,t,λ±)s(λ±)e

Q1(x,t,λ±) (2.17)

we have
(D−1

1 Φ̃1)(x, t, λ±) = (D−1
2 Φ̃2)(x, t, λ±)s̃(x, t, λ±), λ ∈ Σ̇1. (2.18)

Notice that the scattering coefficients (sij) can be expressed as follows:

s11 = det(Φ
(1)
1 ,Φ

(2)
2 ), (2.19a)

s12 = det(Φ
(2)
1 ,Φ

(2)
2 ), (2.19b)

s21 = det(Φ
(1)
2 ,Φ

(1)
1 ), (2.19c)

s22 = det(Φ
(1)
2 ,Φ

(2)
1 ). (2.19d)

Accordingly,

s̃1j = det((D−1
1 Φ̃1)

(j), (D−1
2 Φ̃2)

(2)), (2.20a)

s̃2j = det((D−1
2 Φ̃2)

(1), (D−1
1 Φ̃1)

(j)). (2.20b)

Then (2.19a) implies that s11(λ) can be analytically extended to C \ Σ2 and defined on the
upper and lower sides of Σ̇2. On the other hand, since Φ

(1)
1 is analytic in C \ Σ1 and Φ

(1)
2 is

defined on the upper and lower sides of Σ2, s21(λ) can be extended by (2.19c) to the lower and
upper sides of Σ̇2. It follows that (2.15) and (2.16) restricted to the first column hold also on
Σ0, namely,

Φ
(1)
1 (x, t, λ±) = s11(λ±)Φ

(1)
2 (x, t, λ±) + s21(λ±)Φ

(2)
2 (x, t, λ±), λ ∈ Σ̇0, (2.21)

and, respectively,

(D−1
1 Φ̃

(1)
1 )(λ±) = s̃11(λ±)(D

−1
2 Φ̃

(1)
2 )(λ±) + s̃21(λ±)(D

−1
2 Φ̃

(2)
2 )(λ±), λ ∈ Σ̇0. (2.22)

2.5. Symmetries. Let’s analyse the symmetry relations amongst the eigenfunctions and scat-
tering coefficients. In order to simplify the notations, we will omit the dependence on x and t
(e.g., U(λ) ≡ U(x, t, λ)).

First symmetry: λ←→ −λ.

Proposition 2.3. The following symmetries hold:

Φ
(1)
1 (λ) = −σ3Φ

(1)
1 (−λ), λ ∈ C \ Σ1, (2.23a)

Φ
(2)
2 (λ) = σ3Φ

(2)
2 (−λ), λ ∈ C \ Σ2. (2.23b)

Proof. Observe that σ3U(λ)σ3 ≡ U(−λ) and σ3V (λ)σ3 ≡ V (−λ). Hence σ3Φ
(j)
j (−λ) solves (2.1)

together with Φ
(j)
j (λ). Comparing their asymptotic behaviour as x→ (−1)j∞ and using (2.2a),

the symmetries (2.23) follow. □

Corollary 2.4. We have
(1)

s11(−λ) = s11(λ), λ ∈ C \ Σ2. (2.24)

(2)

Φ̃
(1)
1 (λ) = σ3Φ̃

(1)
1 (−λ), λ ∈ C \ Σ1, (2.25a)

Φ̃
(2)
2 (λ) = −σ3Φ̃

(2)
2 (−λ), λ ∈ C \ Σ2. (2.25b)
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(3)

(D−1
1 Φ̃

(1)
1 )(−λ) = −σ3(D

−1
1 Φ̃

(1)
1 )(λ), λ ∈ C \ Σ1, (2.26a)

(D−1
2 Φ̃

(2)
2 )(−λ) = σ3(D

−1
2 Φ̃

(2)
2 )(λ), λ ∈ C \ Σ2. (2.26b)

Proof. (1) Substitute (2.23) into (2.19a).
(2) Observe that due to (2.2a), we have D−1

j (−λ) = −σ3D
−1
j (λ)σ3 and Qj(−λ) = Qj(λ).

Combining this with (2.23) and using the connection between Φj and Φ̃j , we obtain
(2.25).

(3) Combine D−1
j (−λ) = −σ3D

−1
j (λ)σ3 and (2.25).

□

Proposition 2.5. The following symmetry holds

Φj(λ+) = −σ3Φj(−λ+)σ3, λ ∈ Σ̇j . (2.27)

Proof. Since σ3U(λ)σ3 ≡ U(−λ) and σ3V (λ)σ3 ≡ V (−λ) and U and V do not have jumps
along Σj , it follows that if Φj(λ+) solves (2.1), so does σ3Φj(−λ+). Comparing their asymptotic
behaviour as x→ (−1)j∞ and using (2.2a), the symmetry (2.27) follows. □

Corollary 2.6. We have
(1)

s(λ+) = σ3s(−λ+)σ3, λ ∈ Σ̇1 (2.28)
(2)

Φ̃j(λ+) = σ3Φ̃j(−λ+)σ3, λ ∈ Σ̇j . (2.29)
(3)

(D−1
j Φ̃j)((−λ)−) = −σ3(D

−1
j Φ̃j)(λ+)σ3, λ+ ∈ Σ̇j . (2.30)

Proof. (1) Substitute (2.27) into (2.15).
(2) Observe that due to (2.2a), we have D−1

j (−λ+) = −σ3D
−1
j (λ+)σ3 and Qj(−λ+) =

Qj(λ+). Combining this with (2.27) and using the connection between Φj and Φ̃j , we
obtain (2.29).

(3) Combine D−1
j (−λ+) = −σ3D

−1
j (λ+)σ3 and (2.29).

□

Second symmetry: λ←→ −λ.

Proposition 2.7. The following symmetry holds

Φj(λ+) = σ3Φj((−λ)+)σ2, λ ∈ Σ̇j . (2.31)

Proof. Since U and V are single valued functions of λ, we have σ3U(λ+)σ3 ≡ U((−λ)+) and
σ3V (λ+)σ3 ≡ V ((−λ)+) for λ ∈ Σj . Hence, if Φj(λ+) solves (2.1), so does σ3Φj((−λ+).
Comparing their asymptotic behaviour as x → (−1)j∞ and using (2.2b) and the equality√

1
iAjkj(λ+) − 1

√
− 1

iAjkj(λ+) − 1 = − λ+

kj(λ+) for λ+ ∈ Σ̇j , the symmetry (2.31) follows. □

Corollary 2.8. We have
(1)

s(λ+) = σ2s((−λ)+)σ2, λ ∈ Σ̇1. (2.32)
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(2)
s(λ+) = σ1s(λ−)σ1, λ ∈ Σ̇1. (2.33)

(3)
Φ̃j(λ+) = σ2Φ̃j((−λ)+)σ2, λ ∈ Σ̇j . (2.34)

(4)
(D−1

j Φ̃j)((−λ)+) = σ3(D
−1
j Φ̃j)(λ+)σ2, λ ∈ Σ̇j . (2.35)

Proof. (1) Substitute (2.31) into (2.15).
(2) Combine (2.32) with (2.28).
(3) Observe that kj(λ+) ∈ R and that due to (2.2b) and

√
1

iAjkj(λ+) − 1
√
− 1

iAjkj(λ+) − 1 =

− λ+

kj(λ+) , we have Dj(λ+)σ3D
−1
j ((−λ)+) = σ2 and Qj((−λ)+) = −Qj(λ+) for λ ∈ Σ̇j .

Combining this with (2.31) and using the connection between Φj and Φ̃j , we obtain
(2.34).

(4) Combine Dj(λ+)σ3D
−1
j ((−λ)+) = σ2 and (2.34).

□

Third symmetry: λ←→ λ.

Proposition 2.9. The following symmetries hold

Φ
(j)
j (λ) = −Φ(j)

j (λ), λ ∈ C \ Σj . (2.36)

Proof. Since U(λ) ≡ U(λ) and V (λ) ≡ V (λ), it follows that Φ
(j)
j (λ) solves (2.1a) together with

Φ
(j)
j (λ). Hence, comparing their asymptotic behaviour as x→ (−1)j∞ and using (2.2c) and the

equality
√

1
iAjkj(λ)

− 1 = −
√

1
iAjkj(λ)

− 1, we obtain the symmetries (2.36). □

Corollary 2.10. We have
(1)

s11(λ) = s11(λ), λ ∈ C \ Σ2. (2.37)

(2)

Φ̃
(j)
j (λ) = Φ̃

(j)
j (λ), λ ∈ C \ Σj . (2.38)

(3)

(D−1
j Φ̃

(j)
j )(λ) = −(D−1

j Φ̃
(j)
j )(λ), λ ∈ C \ Σj . (2.39)

Proof. (1) Substitute (2.36) into (2.19a).

(2) Observe that due to (2.2c) and
√

1
iAjkj(λ)

− 1 = −
√

1
iAjkj(λ)

− 1, we have D−1
j (λ) =

−D−1
j (λ) and Qj(λ) = Qj(λ). Hence combining this with (2.36) and using the connection

between Φj and Φ̃j , we obtain (2.38).
(3) Combine D−1

j (λ) = −D−1
j (λ) and (2.38).

□

Proposition 2.11. The following symmetry holds

Φj(λ+) = −Φj(λ+), λ ∈ Σ̇j . (2.40)
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Proof. As above, since U(λ) ≡ U(λ) and V (λ) ≡ V (λ) and U and V have no jumps along Σj ,
we have U(λ−) ≡ U(λ+) and V (λ−) ≡ V (λ+). It follows that if Φj(λ+) solves (2.1), so does
Φj(λ+). Comparing their asymptotic behaviour as x → (−1)j∞ and using (2.2c) and the fact

that
√

1
iAjkj(λ)

− 1 = −
√

1
iAjkj(λ)

− 1, the symmetry (2.40) follows. □

Corollary 2.12. We have
(1)

s(λ+) = s(λ+), λ ∈ Σ̇1. (2.41)
(2)

Φ̃j(λ+) = Φ̃j(λ+), λ ∈ Σ̇j . (2.42)
(3)

(D−1
j Φ̃j)(λ+) = −(D−1

j Φ̃j)(λ+), λ ∈ Σ̇j . (2.43)

Proof. (1) Substitute (2.40) into (2.15).

(2) Observe that due to (2.2c) and
√

1
iAjkj(λ)

− 1 = −
√

1
iAjkj(λ)

− 1, we have D−1
j (λ−) =

−D−1
j (λ+) and Qj(λ−) = Qj(λ+) for λ ∈ Σ̇j . Combining this with (2.40) and using the

connection between Φj and Φ̃j , we obtain the result.
(3) Combine D−1

j (λ−) = −D−1
j (λ+) and Qj(λ−) = Qj(λ+) and (2.42).

□

Fourth symmetry λ+ ←→ λ+.

Proposition 2.13. The following symmetry holds

Φj(λ+) = iΦj(λ+)σ1, λ ∈ Σ̇j . (2.44)

Proof. Since U(λ+) ≡ U(λ+) and V (λ+) ≡ V (λ+) for λ ∈ Σj , in follows that if Φj(λ+)

solves (2.1), so does Φj(λ+). Comparing their asymptotic behaviour as x→ (−1)j∞ and using
(2.2d) and the equalities

√
− 1

iAjkj(λ+) − 1 · λ+Aj

1+iAjkj(λ+) = −i
√

1
iAjkj(λ+) − 1 and

√
1

iAjkj(λ+) − 1 ·
λ+Aj

1−iAjkj(λ+) = i
√
− 1

iAjkj(λ+) − 1 for λ ∈ Σ̇j , the symmetry (2.44) follows. □

Corollary 2.14. We have
(1) s(λ+) = σ1s(λ+)σ1, λ ∈ Σ̇1, which, in terms of the matrix entries, reads as follows:

s11(λ+) = s22(λ+), (2.45a)

s12(λ+) = s21(λ+). (2.45b)

(2) |s11(λ+)|2 − |s21(λ+)|2 = 1 for λ ∈ Σ̇1.
(3)

∣∣ s21(λ+)
s11(λ+)

∣∣ ≤ 1 for λ ∈ Σ̇1.

Notice that
∣∣ s21(λ+)
s11(λ+)

∣∣ = 1 for λ ∈ Σ̇1 iff s11(λ+) =∞.
(4)

s11(λ−) = s22(λ−), λ ∈ Σ̇1, (2.46a)

s12(λ−) = s21(λ−), λ ∈ Σ̇1. (2.46b)

(5)
Φj(λ+) = iΦj(λ−)σ1, λ ∈ Σ̇j . (2.47)
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(6)

Φ
(1)
1 (λ+) = iΦ

(2)
1 (λ−), λ ∈ Σ̇1, (2.48a)

Φ
(2)
2 (λ+) = iΦ

(1)
2 (λ−), λ ∈ Σ̇2. (2.48b)

(7)

s11(λ+) = s22(λ−), λ ∈ Σ̇1, (2.49a)

s11(λ+) = −is21(λ−), λ ∈ Σ̇0, (2.49b)

s11(λ−) = is21(λ+), λ ∈ Σ̇0. (2.49c)

(8)
∣∣ s21(λ+)
s11(λ+)

∣∣ = 1 for λ ∈ Σ̇0.
(9)

Φ̃j(λ+) = σ1Φ̃j(λ+)σ1, λ ∈ Σ̇j . (2.50)

(10)

Φ̃
(1)
1 (λ−) = σ1Φ̃

(2)
1 (λ+), λ ∈ Σ1, (2.51a)

Φ̃
(2)
2 (λ−) = σ1Φ̃

(1)
2 (λ+), λ ∈ Σ2. (2.51b)

(11)

(D−1
j Φ̃j)(λ+) = i(D−1

j Φ̃j)(λ+)σ1, λ ∈ Σ̇j . (2.52)

(12)

D−1
j (λ−)Φ̃

(j)
j (λ−) = (−iD−1

j (λ+)Φ̃j(λ+)σ1)
(j), λ ∈ Σ̇1, (2.53a)

D−1
2 (λ−)Φ̃

(2)
2 (λ−) = (−iD−1

2 (λ+)Φ̃2(λ+)σ1)
(2), λ ∈ Σ̇0, (2.53b)

D−1
1 (λ−)Φ̃

(1)
1 (λ−) = D−1

1 (λ+)Φ̃
(1)
1 (λ+), λ ∈ Σ̇0. (2.53c)

(13)

(D−1
1 Φ̃1)((−λ)+) = σ3(D

−1
1 Φ̃1)(λ+), λ ∈ Σ̇1, (2.54a)

(D−1
2 Φ̃2)((−λ)+) = −σ3(D

−1
2 Φ̃2)(λ+), λ ∈ Σ̇2. (2.54b)

(14)
s11((−λ)+) = s11(λ+), λ ∈ Σ̇1. (2.55)

Proof. (1) Substitute (2.44) into (2.15).
(2) This follows from the fact that det s(λ±) = 1 for all λ ∈ Σ1 and (2.45).
(3) Dividing the previous equality by |s11(λ+)|2, we obtain 1 −

∣∣ s21(λ+)
s11(λ+)

∣∣2 =
∣∣ 1
s11(λ+)

∣∣2 ≥ 0.

Hence
∣∣ s21(λ+)
s11(λ+)

∣∣ ≤ 1.
(4) Combine (2.45) and (2.41).
(5) Combine (2.44) and (2.40).
(6) Rewrite (2.47) columnwise.
(7) Substituting (2.47) into (2.19a) leads to (2.49). Notice that in proving (2.49b) and (2.49c)

we use the fact that Φ
(1)
1 is analytic on Σ0.

(8) Using the previous result for the first equality and (2.37) for the second one, we get∣∣ s21(λ+)
s11(λ+)

∣∣ = ∣∣−is11(λ−)
s11(λ+)

∣∣ = ∣∣ s11(λ+)
s11(λ+)

∣∣ = 1.
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(9) Observe that
√
− 1

iAjkj(λ+) − 1 · λ+Aj

1+iAjkj(λ+) = −i
√

1
iAjkj(λ+) − 1 and

√
1

iAjkj(λ+) − 1 ·
λ+Aj

1−iAjkj(λ+) = i
√
− 1

iAjkj(λ+) − 1 imply D−1
j (λ+) = iD−1

j (λ+)σ1 and Dj(λ+) = −iσ1Dj(λ+),

and (2.2d) imply Qj(λ+) = −Qj(λ+) for λ ∈ Σ̇j . Combining this with (2.44) and using
the connection between Φj and Φ̃j , we obtain (2.50).

(10) Combine (2.50) and (2.42).
(11) Combine D−1

j (λ+) = iD−1
j (λ+)σ1 and (2.50).

(12) Use (2.52) combined with (2.43) for the first two equalities and the fact that k1(λ) is
analytic on Σ̇0 for the last one.

(13) Combine (2.52) and (2.35).
(14) (2.32) implies s22(λ+) = s11((−λ)+). Combine this with (2.45a).

□

2.6. Limits of the eigenfunctions and scattering coefficients from below and above
the branch cut. Recall that kj(λ) is analytic in C \ Σj and discontinuous across Σj .

Notations. It will be useful in what follows to introduce the following notations (for λ ∈ Σj):

k+j (λ) := kj(λ+) = lim
ϵ↓0

kj(λ+ iϵ), k−j (λ) := kj(λ−) = lim
ϵ↓0

kj(λ− iϵ).

Similarly,

Φ̃
(1)+
1 (λ) := Φ̃

(1)
1 (λ+) = lim

ϵ↓0
Φ̃

(1)
1 (λ+ iϵ), Φ̃

(1)−
1 (λ) := Φ̃

(1)
1 (λ−) = lim

ϵ↓0
Φ̃

(1)
1 (λ− iϵ).

Observe that

k−j (λ) = −k
+
j (λ), λ ∈ Σ1, (2.56a)

k−1 (λ) = k+1 (λ) = k1(λ), λ ∈ Σ0, (2.56b)

k−2 (λ) = −k
+
2 (λ), λ ∈ Σ0. (2.56c)

Combining (2.50) and (2.42) we have

Φ̃
(1)−
1 (λ) = σ1Φ̃

(2)+
1 (λ), λ ∈ Σ1, (2.57a)

Φ̃
(2)−
2 (λ) = σ1Φ̃

(1)+
2 (λ), λ ∈ Σ2. (2.57b)

2.7. Discrete spectrum and zeros of scattering coefficients. Multiplying (2.1a) by
(
0 −1
1 0

)
we arrive at the spectral problem for a weighted Dirac operator:

2

m

((
0 −1
1 0

)
Φx +

1

2

(
0 1
1 0

)
Φ

)
= λΦ, x ∈ (−∞,∞). (2.58)

Since limx→(−1)j∞ m(x, t) = Aj ̸= 0, this operator can be viewed as a self-adjoint operator in
L2(−∞,∞) and thus its spectrum in real.

Observe that for λ ∈ Σ̇1, both kj(λ), j = 1, 2 are real-valued and hence the eigenfunctions
Φj are bounded but not square integrable near (−1)j∞. Since they are related by a matrix
independent on x and t, Φj are bounded and not square integrable near ±∞. Hence Σ̇1 comprise
the continuous spectrum.

For λ ∈ (−1/A2, 1/A2), Φ
(1)
1 decays (exponentially fast) as x → −∞ and Φ

(2)
2 decays (expo-

nentially fast) as x→ +∞; hence the the eigenvalues in (−1/A2, 1/A2) coincides with the zeros
of s11(λ) = det(Φ

(1)
1 ,Φ

(2)
2 ).
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Note that since |s11(λ+)|2−|s21(λ+)|2 = 1 for λ ∈ Σ̇1 (see Corollary 2.14), we have s11(λ+) ̸= 0

for λ ∈ Σ̇1.
Let’s show that s11(λ+) ̸= 0 as well as s21(λ+) ̸= 0 for λ ∈ Σ̇0 (the similar result for λ− will

then follow from the symmetry (2.41)). Indeed, we have | s21s11
(λ±)| = 1 for λ ∈ Σ̇0 (see Corollary

2.14). Hence s11(λ0+)s21(λ0+) = 0 iff s11(λ0+) = 0 and s21(λ0+) = 0 simultaneously. But
s11(λ0+) = 0 implies that Φ

(1)
1 (λ0+) and Φ

(2)
2 (λ0+) are dependent. Silarly, s21(λ0+) = 0 implies

that Φ
(1)
1 (λ0+) and Φ

(1)
2 (λ0+) are dependent. Hence Φ

(1)
2 (λ0+) and Φ

(2)
2 (λ0+) are dependent,

which contradicts the fact that detΦ0,2 ≡ 1 (the latter follows from evaluating detΦ0,2(x, t, λ)
as x→∞ and using the fact that the determinant of a matrix composed by two vector solutions
of (2.58) does not depend on x).

Assumption. We will assume that s11(λ) has a finite number of zeros on R \ Σ2. Since s11 is
analytic on C \Σ2, the uniqueness theorem implies that the sufficient condition is s11(± 1

A2
) ̸= 0.

Let {λk}nk=1 be the zeros of s11(λ). For such λk we have

Φ
(1)
1 (λk) = bkΦ

(2)
2 (λk), bk := b(λk).

Proposition 2.15. The zeros of s11(λ) are simple.

Proof. We will denote by ′ the dirivative w.r.t. λ.
Using the definition of s11(λ) we have

s′11(λ) = det(Φ
(1)
1 ,Φ

(2)
2 )′(λ) = det((Φ′)

(1)
1 ,Φ

(2)
2 )(λ) + det(Φ

(1)
1 , (Φ′)

(2)
2 )(λ).

Since Φ
(j)
j solves (2.1a), we have

(Φ′)
(j)
jx = U(Φ′)

(j)
j +m

(
0 1
−1 0

)
Φ

(j)
j ,

and, using the fact that det(U(Φ′)
(1)
1 ,Φ

(2)
2 ) = −det((Φ′)

(1)
1 , UΦ

(2)
2 ), we have

d

dx
det((Φ′)

(1)
1 ,Φ

(2)
2 ) = det

((
0 m
−m 0

)
Φ

(1)
1 ,Φ

(2)
2

)
,

and
d

dx
det(Φ

(1)
1 , (Φ′)

(2)
2 ) = −det

((
0 m
−m 0

)
Φ

(2)
2 ,Φ

(1)
1

)
.

Evaluating at λ = λk and using Φ
(1)
1 (λk) = bkΦ

(2)
2 (λk), we get

d

dx
det((Φ′)

(1)
1 ,Φ

(2)
2 )(λk) = bkm det

((
0 1
−1 0

)
Φ

(2)
2 (λk),Φ

(2)
2 (λk)

)
,

d

dx
det(Φ

(1)
1 , (Φ′)

(2)
2 )(λk) = −bkm det

((
0 1
−1 0

)
Φ

(2)
2 (λk),Φ

(2)
2 (λk)

)
.

Using the symmetry (2.36) and observing that λk ∈ R, we have

det(

(
0 1
−1 0

)
Φ

(2)
2 (λk),Φ

(2)
2 (λk)) = −(|(Φ2)22|2 + |(Φ2)12|2)(λk)

and hence
d

dx
det((Φ′)

(1)
1 ,Φ

(2)
2 )(λk) = bk

∫ ∞

x

m(|(Φ2)22|2 + |(Φ2)12|2)dτ,

d

dx
det(Φ

(1)
1 , (Φ′)

(2)
2 )(λk) = bk

∫ x

−∞
m(|(Φ2)22|2 + |(Φ2)12|2)dx.
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It follows that
s′11(λk) = bk

∫ ∞

−∞
m(|(Φ2)22|2 + |(Φ2)12|2)dx,

and thus s′11(λk) ̸= 0.
□

Observe that due to the symmetry (2.24), if s11(λk) = 0, then s11(−λk) = 0 as well. Since,
according to Proposition 2.15, all zeros of s11 are simple, it follows that s11(0) ̸= 0. This fact
will also be discussed in Subsection 3.2.

2.8. Behaviour at the branch points. Observe that kj(± 1
Aj

) = 0.

Proposition 2.16. Φ̃j(x, t, λ) has the following behaviour at the branch points

Φ̃j(x, t, λ) =
iαj(x, t)

ω+
j (λ)

(
1 1
−1 −1

)
+

(
aj(x, t) bj(x, t)
bj(x, t) aj(x, t)

)
+O(

√
λ− 1

Aj
), λ→ 1

Aj
,

Φ̃j(x, t, λ) =
αj(x, t)

ω−
j (λ)

(
1 −1
1 −1

)
+

(
aj(x, t) −bj(x, t)
−bj(x, t) aj(x, t)

)
+O(

√
λ+

1

Aj
), λ→ − 1

Aj
,

whith some real-valued αj(x, t), aj(x, t), and bj(x, t), j = 1, 2.

Proof. Recall that ω+
j (λ) =

√
λ− 1

Aj
with a branch cut on [ 1

Aj
,∞) and ω+

j (0) = i√
Aj

, and

ω−
j (λ) =

√
λ+ 1

Aj
with a branch cut on (−∞,− 1

Aj
] and ω−

j (0) =
1√
Aj

.

First, consider the behavior of the eigenfunctions near 1
Aj

. Introduce ˜̃Φj(x, t, λ) such that

Φ̃j(x, t, λ) = W+ ˜̃Φj(x, t, λ) with W+ =

(
1 i

ω+
j (λ)

1 − i
ω+

j (λ)

)
. Then ˜̃Φj(x, t, λ) solves the following

integral equation:

˜̃Φj(x, t, λ) =
1

2

(
1 1

−iω+
j (λ) iω+

j (λ)

)
+

∫ x

(−1)i∞
A−1e

i
2kj(λ)

∫ ξ
x
mdτσ3ÛjA

˜̃Φje
− i

2kj(λ)
∫ ξ
x
mdτσ3 .

The kernel of this equation and hence ˜̃Φj has no singularity at 1
Aj

. Hence

Φ̃j(x, t, λ) =
i

ω+
j (λ)

(
˜̃cj

˜̃
dj

−˜̃cj − ˜̃
dj

)
+

(
aj bj
cj dj

)
+O

(√
λ− 1

Aj

)
, λ→ 1

Aj
.

Using (2.42), we get ˜̃cj ,
˜̃
dj ∈ R and aj , bj , cj , dj ∈ R. Then, using (2.50), we get ˜̃cj =

˜̃
dj and

aj = dj , cj = bj ; thus

Φ̃j(x, t, λ) =
iαj(x, t)

ω+
j (λ)

(
1 1
−1 −1

)
+

(
aj bj
bj aj

)
+O

(√
λ− 1

Aj

)
, λ→ 1

Aj
.

In order to get the simiular result for − 1
Aj

, we use W− =

( i
ω−

j (λ)
1

i
ω−

j (λ)
−1

)
instead of W+,

which leads to

Φ̃j(x, t, λ) =
βj(x, t)

ω−
j (λ)

(
−1 1
−1 1

)
+

(
âj b̂j
b̂j âj

)
+O(

√
λ+

1

Aj
), λ→ − 1

Aj
.

Finally, using (2.29) and (2.34), we get αj = −βj and aj = âj and bj = −b̂j . □
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Evaluating D−1
j (λ) near ± 1

Aj
gives

Proposition 2.17. D−1
j (λ) has the following behaviour at the branch points:

D−1
j (λ) =

e
3πi
4

(2Aj)
1
4 ν+j (λ)

(
1 1
1 1

)
+

ie
3πi
4 (2Aj)

1
4 ν+j (λ)

2

(
1 −1
−1 1

)
+O((λ− 1

Aj
)

3
4 ), λ→ 1

Aj

and

D−1
j (λ) =

i

(2Aj)
1
4 ν−j (λ)

(
−1 1
1 −1

)
+

i(2Aj)
1
4 ν−j (λ)

2

(
1 1
1 1

)
+O((λ+

1

Aj
)

3
4 ), λ→ − 1

Aj
.

Here ν+j (λ) = (λ− 1
Aj

)
1
4 with the branch cut ( 1

Aj
,∞) and ν+j (0) = e

πi
4

(Aj)
1
4
, and ν−j (λ) = (λ+ 1

Aj
)

1
4

with the branch cut (−∞,− 1
Aj

) and ν−j (0) = 1

(Aj)
1
4

(observe that (ν±j (λ))2 = ω±
j (λ)).

3. Riemann–Hilbert problems

3.1. RH problem parametrized by (x, t).

Notations. We denote

ρ(λ) :=
s21(λ+)

s11(λ+)
, λ ∈ Σ̇1 ∪ Σ̇0. (3.1)

Observe that Corollary 2.14 implies that

|ρ(λ)| ≤ 1, λ ∈ Σ̇1, (3.2a)

|ρ(λ)| = 1, λ ∈ Σ̇0. (3.2b)

Motivated by the analytic properties of eigenfunctions and scattering coefficients, we introduce
the matrix-values function

M(x, t, λ) =

(
(D−1

1 Φ̃
(1)
1 )(x, t, λ)

s11(λ)ep1(x,t,λ)−p2(x,t,λ)
, (D−1

2 Φ̃
(2)
2 )(x, t, λ)

)
, λ ∈ C \ Σ2, (3.3a)

meromorphic in C \ Σ2, where pj , j = 1, 2 are defined in (2.8b).
Observe that D−1

j (λ)Φ̃j(x, t, λ) = Φj(x, t, λ)e
Qj(x,t,λ) and thus M(x, t, λ) can be written as

M(x, t, λ) =

(
Φ

(1)
1 (x, t, λ)

s11(λ)
,Φ

(2)
2 (x, t, λ)

)
ep2(x,t,λ)σ3 . (3.3b)

It follows that detM ≡ 1.

3.1.1. Jump matrix. Since (D−1
1 Φ̃

(1)
1 )(λ) is analytic in C \ Σ1, the limiting values M± of M as

λ approaches Σ2 from C± can be expressed as follows:

M±(x, t, λ) := M(x, t, λ±) =

(
(D−1

1 Φ̃
(1)
1 )(x, t, λ±)

s11(λ±)ep1(x,t,λ±)−p2(x,t,λ±)
, (D−1

2 Φ̃
(2)
2 )(x, t, λ±)

)
, λ ∈ Σ̇1,

M±(x, t, λ) := M(x, t, λ±) =

(
(D−1

1 Φ̃
(1)
1 )(x, t, λ)

s11(λ±)ep1(x,t,λ)−p2(x,t,λ±)
, (D−1

2 Φ̃
(2)
2 )(x, t, λ±)

)
, λ ∈ Σ̇0.



16 I. KARPENKO, D. SHEPELSKY, AND G. TESCHL

Proposition 3.1. M+ and M− are related as follows:

M+(x, t, λ) = M−(x, t, λ)J(x, t, λ), λ ∈ Σ̇1 ∪ Σ̇0,

where

J(x, t, λ) =

(
0 i
i 0

)(
e−p2(x,t,λ+) 0

0 ep2(x,t,λ+)

)
J0(λ)

(
ep2(x,t,λ+) 0

0 e−p2(x,t,λ+)

)
(3.4a)

with

J0(λ) =



(
1− |ρ(λ)|2 −ρ(λ)

ρ(λ) 1

)
, λ ∈ Σ̇1,(

0 − 1
ρ(λ)

ρ(λ) 1

)
, λ ∈ Σ̇0.

(3.4b)

Proof. (i) λ ∈ Σ̇1. Considering (2.18) columnwise, rearranging the columns and using (2.53a)
for λ ∈ Σ̇1, we obtain

M+(x, t, λ) = M−(x, t, λ)i

(
s̃21(x,t,λ+)s̃11(x,t,λ−)
s̃11(x,t,λ+)s̃22(x,t,λ+)

s̃11(x,t,λ−)
s̃22(x,t,λ+)

1− s̃21(x,t,λ+)s̃12(x,t,λ+)
s̃11(x,t,λ+)s̃22(x,t,λ+) − s̃12(x,t,λ+)

s̃22(x,t,λ+)

)
. (3.5)

Since ep1(x,t,λ−)−p2(x,t,λ−) = ep2(x,t,λ+)−p1(x,t,λ+), from (2.41) and (2.45a) we have s̃11(λ−)
s̃22(λ+) =

s11(λ−)
s22(λ+) = 1. Moreover, using the definition (3.1) of ρ(λ) and (2.45), we have ρ(λ) = s12(λ+)

s22(λ+) .
Hence we can rewrite the jump condition (3.5) as (3.4a) with (3.4b).

(ii) λ ∈ Σ̇0. Considering (2.22) columnwise, rearranging the columns and using (2.53b) and
(2.53c) for λ+ ∈ Σ̇0, we obtain

M+(x, t, λ) = M−(x, t, λ)i

(
s̃21(x,t,λ+)
s̃11(x,t,λ+) 1

0 − s̃11(x,t,λ+)
s̃21(x,t,λ+)

)
. (3.6)

Then, using the definition of ρ(λ) together with (2.49c) and (2.49b), we can rewrite the jump
condition (3.6) as (3.4a) with (3.4b).

□

Remark 3.2. Notice that
det J ≡ 1 (3.7)

and that J0(λ) (and hence J) is continuous at ± 1
A1

if |ρ(± 1
A1

)| = 1 and ρ(± 1
A1

+0) = ρ(± 1
A1
−0),

and discontinuous otherwise.

3.1.2. Normalization condition at λ→∞.

Proposition 3.3. As λ→∞:

M(x, t, λ) =


√

1
2

(
−1 i

i −1

)
+O( 1λ ), λ→∞, λ ∈ C+,√

1
2

(
1 i

i 1

)
+O( 1λ ), λ→∞, λ ∈ C−.

(3.8)

Proof. Expanding D−1
j (λ) (2.6) as λ→∞, we get

D−1
j (λ) =


√

1
2

(
−1 i

i −1

)
+O( 1λ ), λ→∞, λ ∈ C+,√

1
2

(
1 i

i 1

)
+O( 1λ ), λ→∞, λ ∈ C−.
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Recalling that ( Φ̃(1)
1 Φ̃

(2)
2 )→ I as λ→∞, we have, for λ ∈ C+,

(D−1
1 Φ̃

(1)
1 )(λ) =

√
1

2

(
−1
i

)
+O(

1

λ
), λ→∞,

(D−1
2 Φ̃

(2)
2 )(λ) =

√
1

2

(
i
−1

)
+O(

1

λ
), λ→∞.

Substituting this into (2.20a), we get s̃11(λ) = 1 + O( 1λ ), λ→∞.
Similarly, for λ ∈ C− we have

(D−1
1 Φ̃

(1)
1 )(λ) =

√
1

2

(
1
i

)
+O(

1

λ
), λ→∞,

(D−1
2 Φ̃

(2)
2 )(λ) =

√
1

2

(
i
1

)
+O(

1

λ
), λ→∞,

and s̃11(λ) = 1 + O( 1λ ), λ→∞. Then the claim follows. □

Remark 3.4. In order to have a standard normalisation as λ→∞, we can introduce

M̃(x, t, λ) :=


√

1
2

(
−1 −i
−i −1

)
M(x, t, λ), λ ∈ C+,√

1
2

(
−1 −i
−i −1

)
M(x, t, λ)iσ1, λ ∈ C−.

(3.9)

Then we have M̃ → I at λ → ∞. On the other hand, M̃ acquires an additional jump across
λ ∈ R \ Σ2:

M̃+(x, t, λ) = M̃−(x, t, λ)J̃(x, t, λ), λ ∈ R \
{
∪j=1,2 {A−1

j } ∪ {−A
−1
j }
}

with

J̃(x, t, λ) =

{
J̃Σj

(x, t, λ), λ ∈ Σ̇j , j = 0, 1

J̃R\Σ2
(x, t, λ), λ ∈ R \ Σ2,

where J̃Σj (x, t, λ) = e−p2(x,t,λ+)σ3J0(λ)e
p2(x,t,λ+)σ3 , j = 0, 1 and J̃R\Σ2

(x, t, λ) = −iσ1.

Remark 3.5. Using (2.20b), we obtain s̃21(λ) = O( 1λ ) as λ → ∞. Notice that ρ(λ) = s21(λ+)
s11(λ+) =

s̃21(λ+)
s̃11(λ+)e

−2p2(x,t,λ+); since p2(x, t, λ+) is purely imaginary for λ ∈ Σ2, e−2p2(x,t,λ+) is bounded
and thus ρ(λ) = O( 1λ ) as λ→∞. Consequently,

J0(λ) =

(
1 0
0 1

)
+O(

1

λ
), λ→ ±∞

and

J(x, t, λ) =

(
0 i
i 0

)
+O(

1

λ
), λ→ ±∞.

3.1.3. Symmetries. From the symmetry properties of the eigenfunctions and scattering functions
(2.26), (2.39), (2.30), and (2.43) it follows that

M(−λ) = −σ3M(λ)σ3, M(λ) = −M(λ), λ ∈ C \ Σ2, (3.10a)

M((−λ)−) = −σ3M(λ+)σ3, M(λ−) = −M(λ+), λ ∈ Σ̇1. (3.10b)

where M(λ) ≡M(x, t, λ).
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3.1.4. Singularities at ± 1
Aj

. Let A(ij) denote the elements of a 2×2 matrix A =

(
A(11) A(12)

A(21) A(22)

)
.

Proposition 3.6. M(x, t, λ) has the following behaviour at the branch points

M(x, t, λ) =



e
3πi
4

ν+
2 (λ)

(
0 Υ2

0 Λ2

)
+O(1), λ→ 1

A2
,

i
ν−
2 (λ)

(
0 Υ2

0 −Λ2

)
+O(1), λ→ − 1

A2
,

c+e
3πi
4

ν+
1 (λ)

(
Υ1 0

Λ1 0

)
+O(1), λ→ 1

A1
, λ ∈ C+,

c+e
3πi
4

ν+
1 (λ)

(
Υ1 0

Λ1 0

)
+O(1), λ→ 1

A1
, λ ∈ C−,

c+i

ν−
1 (λ)

(
−Υ1 0

Λ1 0

)
+O(1), λ→ − 1

A1
, λ ∈ C+,

c+i

ν−
1 (λ)

(
−Υ1 0

Λ1 0

)
+O(1), λ→ − 1

A1
, λ ∈ C−,

(3.11)

where ν±j (λ) are defined in Proposition 2.17, and Υj = −(2Aj)
1
4αj(x, t) +

(aj(x,t)+bj(x,t))

(2Aj)
1
4

, Λj =

(2Aj)
1
4αj(x, t) +

(aj(x,t)+bj(x,t))

(2Aj)
1
4

with αj(x, t), aj(x, t), bj(x, t) ∈ R, j = 1, 2 as in Proposition

2.16.
Moreover, c+(x, t) = 0 if β1(x, t) ̸= 0 and c+(x, t) =

1
s̃11(x,t,

1
A2

)
if β1(x, t) = 0, where β1(x, t)

is defined in (3.12b).

Proof. Combining Proposition 2.16 with Proposition 2.17 we get

D−1
j (λ)Φ̃j(x, t, λ) =

e
3πi
4

ν+j (λ)

(
−(2Aj)

1
4αj

(
1 1
−1 −1

)
+

aj + bj

(2Aj)
1
4

(
1 1
1 1

))
+O

(
(λ− 1

Aj
)1/4

)
as λ→ 1

Aj
, where αj = αj(x, t), aj = aj(x, t) and bj = bj(x, t).

First, consider the behaviour of M near 1
A2

. Since D−1
1 (λ)Φ̃

(1)
1 (x, t, λ) is analytic at 1

A2
, we

have

D−1
1 (

1

A2
)Φ̃

(1)
1 (x, t,

1

A2
) = i

(
a(x, t)
c(x, t)

)
with

a(x, t) =

∣∣∣∣∣
√

A2 + |
√
A2

2 −A2
1|

|
√
A2

2 −A2
1|

∣∣∣∣∣
(

A1

A2 + |
√

A2
2 −A2

1|
Φ̃

(11)
1 (x, t,

1

A2
) + Φ̃

(21)
1 (x, t,

1

A2
)

)
and

c(x, t) =

∣∣∣∣∣
√

A2 + |
√
A2

2 −A2
1|

|
√
A2

2 −A2
1|

∣∣∣∣∣
(

A1

A2 + |
√
A2

2 −A2
1|
Φ̃

(21)
1 (x, t,

1

A2
) + Φ̃

(11)
1 (x, t,

1

A2
)

)
.

Then, using (2.20a), we get the following expansion of s̃11(x, t, λ) at 1
A2

:

s̃11(x, t, λ) =
ie

3πi
4

ν+2 (λ)
β2(x, t) + O(1), λ→ 1

A2
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with β2(x, t) =

(
(2A2)

1
4α2(x, t)(a(x, t) + c(x, t)) + (a2(x,t)+b2(x,t))(a(x,t)−c(x,t))

(2A2)
1
4

)
.

Notice that the symmetry (2.38) implies that Φ̃(11)
1 (x, t, 1

A2
) and Φ̃

(21)
1 (x, t, 1

A2
) are real-valued

and thus a(x, t) ∈ R and c(x, t) ∈ R.
Recall the assumption s11(

1
A2

) ̸= 0, which implies s̃11(
1
A2

) ̸= 0. Thus there are two possibili-
ties: either β2(x, t) ̸= 0 or β2(x, t) = 0 and s̃11(

1
A2

) =: γ ̸= 0. In the both cases,

M(x, t, λ) =
e

3πi
4

ν+2 (λ)

0 −(2A2)
1
4α2(x, t) +

(a2(x,t)+b2(x,t))

(2A2)
1
4

0 (2A2)
1
4α2(x, t) +

(a2(x,t)+b2(x,t))

(2A2)
1
4

+O(1), λ→ 1

A2
.

Now consider the behaviour of M as λ approaches 1
A1

from the upper half-plane. Since

D−1
2 (λ)Φ̃

(2)
2 (x, t, λ) has no singularity at 1

A1
, we have

D−1
2 (

1

A1 +

)Φ̃
(2)
2 (x, t,

1

A1 +

) =

(
b+(x, t)
d+(x, t)

)
with

b+ =

∣∣∣∣∣
√
−iA1 − |

√
A2

2 −A2
1|

|
√
A2

2 −A2
1|

∣∣∣∣∣
(

A2

A1 − i|
√
A2

2 −A2
1|
Φ̃

(12)
2 (x, t,

1

A1 +

) + Φ̃
(22)
2 (x, t,

1

A1 +

)

)
and

d+ =

∣∣∣∣∣
√
−iA1 − |

√
A2

2 −A2
1|

|
√

A2
2 −A2

1|

∣∣∣∣∣
(

A2

A1 − i|
√
A2

2 −A2
1|
Φ̃

(22)
2 (x, t,

1

A1 +

) + Φ̃
(12)
2 (x, t,

1

A1 +

)

)
.

Then, using (2.20a), we get the following expansion of s̃11(x, t, λ) at 1
A1

in the upper half-plane:

s̃11(x, t, λ) =
e

3πi
4

ν+1 (λ)
β1(x, t) + O(1), λ→ 1

A1
, λ ∈ C+ (3.12a)

with

β1(x, t) = −(2A2)
1
4α1(x, t)(b+(x, t) + d+(x, t)) +

(a1(x, t) + b1(x, t))(d+(x, t)− b+(x, t))

(2A1)
1
4

.

(3.12b)
As above, we have two possibilities: either β1(x, t) ̸= 0 (generic case) or β1(x, t) = 0 and
s̃11(

1
A1 +

) = γ+
1 ̸= 0. This gives

M(x, t, λ) =
c+e

3πi
4

ν+1 (λ)

−(2A1)
1
4α1(x, t) +

(a1(x,t)+b1(x,t))

(2A1)
1
4

0

(2A1)
1
4α1(x, t) +

(a1(x,t)+b1(x,t))

(2A1)
1
4

0

+O(1), λ→ 1

A1
, λ ∈ C+,

where c+ = 0 if β1(x, t) ̸= 0, and c+ = 1
s̃11(

1
A1 +

)
if β1(x, t) = 0.

The other the statements follow from the symmetry considerations. □

Remark 3.7. (1) ρ(λ) = s̃21(λ+)
s̃11(λ+)e

−2p2(x,t,λ+) = O(1) as λ → 1
A2

. Indeed, in the proof of

the Proposition 3.6, we have seen that s̃11(x, t, λ) = ie
3πi
4

ν+
2 (λ)

β2(x, t) + O(1) as λ → 1
A2

.

Analogously, due to (2.20b), we have s̃21(x, t, λ) = − ie
3πi
4

ν+
2 (λ)

β2(x, t) + O(1) as λ → 1
A2

.

Moreover, by our assumptions, s̃11( 1
A2

) ̸= 0, and hence the claim follows.
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(2) ρ(λ) = O(1) as λ→ 1
A1

. Indeed, we already know that s̃11(λ) =
e
3πi
4

ν+
1 (λ)

β1(x, t) + O(1) as

λ → 1
A1

, λ ∈ C+. Analogously, (2.20b) together with (2.52) implies that if β1 ̸= 0 we

have s̃21(λ) = ie
3πi
4

ν+
1 (λ)

β1(x, t) + O(1), λ → 1
A1

, λ ∈ C+. Moreover, by our assumptions,

s̃11(
1
A1 +

) ̸= 0, and hence the claim follows.

3.1.5. Residue conditions. By (2.17), zeros of s̃11(λ) coincide with zeros s11(λ); hence, by Propo-
sition 2.15, they are real and simple. Moreover, the symmetry (2.24) implies that −λk is a zero
of s̃11(λ) together with λk; we will denote the set of zeros of s11(λ) by {λk,−λk}n1 , where
λk ∈ (0, 1

A2
).

Proposition 3.8. M (1) has simple poles at {λk,−λk}n1 . Moreover,

Res±λk
M (1)(x, t, λ) =

bk
s′11(λk)

e2p2(λk)M (2)(x, t,±λk), (3.13)

Moreover, bk
s′11(λk)

e2p2(λk) ∈ R.

Proof. Recall that Φ
(1)
1 (λk) = bkΦ

(2)
2 (λk) with bk = b(λk) ∈ R due the symmetry (2.36). Then

(D−1
1 Φ̃

(1)
1 )(λk) and (D−1

2 Φ̃
(2)
2 )(λk) are related as

(D−1
1 Φ̃

(1)
1 )(λk)

s11(λk)ep1(λk)−p2(λk)
=

bk
s11(λk)

e2p2(λk)(D−1
2 Φ̃

(2)
2 )(λk),

and hence (3.13) follows. Moreover, differentiating (2.37) and using the fact that λk ∈ R, we get
s′11(λk) ∈ R, and thus bk

s′11(λk)
e2p2(λk) ∈ R.

Differentiating (2.24), we get s′11(λk) = −s′11(−λk). On the other hand, (2.23) implies that
b(−λk) = −b(λk). Combining these facts, we obtain (3.13) with the minus sign. □

Remark 3.9. In terms of M̃ (3.9), the residue conditions take the following form:

M̃ (1)(x, t, λ) =
1

λ− λk

bk
s′11(λk)

e2p2(λk)M̃ (2)(x, t, λk+) + O(1), λ→ λk, λ ∈ C+, (3.14a)

M̃ (2)(x, t, λ) =
1

λ− λk

bk
s′11(λk)

e2p2(λk)M̃ (1)(x, t, λk−) + O(1), λ→ λk, λ ∈ C−. (3.14b)

3.1.6. RH problem parametrized by (x, t). In the framework of the Riemann–Hilbert approach
to nonlinear evolution equations, one interprets the jump relation, normalization condition, sin-
gularity conditions, and residue conditions as a Riemann–Hilbert problem, with the jump matrix
and residue parameters determined by the initial data for the nonlinear problem in question. The
considerations above imply that M(x, t, λ) can be characterized as the solution of the following
Riemann-Hilbert problem:

Find a 2× 2 meromorphic matrix M(x, t, λ) that satisfies the following conditions:
• Jump condition (3.4).
• Normalization condition (3.8).
• Singularity conditions: the singularities of M(x, t, λ) at ± 1

Aj
are of order not bigger than 1

4 .
• Residue conditions (if any): given {λk, κk}N1 with λk ∈ (0, 1

A2
) and κk ∈ R \ {0}, M (1)(x, t, λ)

has simple poles at {λk,−λk}N1 , with the residues satisfying the equations

Res±λk
M (1)(x, t, λ) = κke

2p2(λk)M (2)(x, t,±λk). (3.15)

Remark 3.10. The solution of the RH problem above, if exists, satisfies the following properties:
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(1) detM ≡ 1 (follows from the fact that det J ≡ 1).
(2) Symmetries

M(−λ) = −σ3M(λ)σ3, M(λ) = −M(λ), λ ∈ C \ Σ2, (3.16a)

M((−λ)−) = −σ3M(λ+)σ3, M(λ−) = −M(λ+), λ ∈ Σ̇1. (3.16b)

where M(λ) ≡ M(x, t, λ) (follows from the respective symmetries of the jump matrix
and the residue conditions, assuming the uniqueness of the solution).

Remark 3.11. We do not need to specify the singularities at the branch points ± 1
Aj

in order to
formulate RH problem. It is enough to require them to be of order not bigger than 1

4 .

As for other Camassa–Holm-type equations, a principal drawback of the RH formalism pre-
sented above is that the jump condition (3.4) involves not only the scattering functions uniquely
determined by the initial data for problem (1.1), but the solution itself, via p2(x, t, λ) involving
m(x, t) (2.8b). In order to have the data for a RH problem to be explicitly determined by the
initial data only, we introduce the space variable y(x, t) := x − 1

A2

∫ +∞
x

(m(ξ, t) − A2)dξ − A2
2t,

which will play the role of a parameter (together with t) for the RH problem, see Section 3.3
below.

In order to determine an efficient way for retrieving the solution of the mCH equation from
the solution of the RH problem, we will use the behavior of the Jost solutions of the Lax pair
equations evaluated at λ = 0, for which the x-equation (2.1a) of the Lax pair becomes trivial
(independent of the solution of the mCH equation).

3.2. Eigenfunctions near 0. In the case of the Camassa–Holm equation [14] as well as other
CH-type nonlinear integrable equations studied so far, see, e.g., [17], the analysis of the behavior
of the respective Jost solutions at a dedicated point in the complex plane of the spectral parameter
(in our case, at λ = 0) requires a dedicated gauge transformation of the Lax pair equations.

It is remarkable that in the case of the mCH equation, in order to control the behavior of the
eigenfunctions at λ = 0, we don’t need to introduce an additional transformation; all we need is
to regroup the terms in the Lax pair (2.7).

Namely, we rewrite (2.7) as follows:

Φ̂jx +
iAjkj(λ)

2
σ3Φ̂j = Û0

j Φ̂j , (3.17a)

where Û0
j ≡ Û0

j (x, t, λ) is given by

Û0
j =

(m−Aj)

2

λ

ikj(λ)

(
λ 1

Aj

− 1
Aj

−λ

)
, (3.17b)

and

Φ̂jt + iAjkj(λ)

(
−
A2

j

2
− 1

λ2

)
σ3Φ̂j = V̂ 0

j Φ̂j , (3.17c)

where V̂ 0
j ≡ V̂ 0

j (x, t, λ) is given by

V̂ 0
j = V̂j + iAjkj(λ)

(
(u2 − u2

x)m

2Aj
−

A2
j

2

)
σ3. (3.17d)

Further, introduce (compare with (2.8b))

p0j (x, t, λ) :=
iAjkj(λ)

2

(
x− 2

(
A2

j

2
+

1

λ2

)
t

)
. (3.18)



22 I. KARPENKO, D. SHEPELSKY, AND G. TESCHL

Then, introducing Q0
j := p0jσ3 and Φ̃0

j := Φ̂je
Q0

j , equations (3.17a) and (3.17c) reduce to{
Φ̃0

jx + [Q0
jx, Φ̃

0
j ] = Û0

j Φ̃
0
j ,

Φ̃0
jt + [Q0

jt, Φ̃
0
j ] = V̂ j

0 Φ̃
0
j .

(3.19)

Define the Jost solutions Φ̃0
j of (3.19) as the solutions of the integral equations

Φ̃0
j (x, t, λ) = I +

∫ x

(−1)j∞
e

−iAjkj(λ)

2 (x−ξ)σ3Û0
j (ξ, t, λ)Φ̃

0
j (ξ, t, λ)e

iAjkj(λ)

2 (x−ξ)σ33dξ. (3.20)

Further, defining Φ̂0
j := Φ̃0

je
−p0

jσ3 , we observe that Φ̂0
j (x, t, λ) and Φ̂j(x, t, λ) satisfy the same

differential equations (2.7) and thus they are related by matrices Cj(λ) independent of x and t:

Φ̂j = Φ̂0
jCj(λ).

Consequently,
Φ̃j(x, t, λ) = Φ̃0

j (x, t, λ)e
−p0

j (x,t,λ)σ3Cj(λ)e
pj(x,t,λ)σ3 . (3.21)

Since pj(x, t, λ)− p0j (x, t, λ) =
ikj(λ)

2

∫ (−1)j∞
x

(m(ξ, t)−Aj)dξ and

Φ̃j(x, t, λ) = Φ̃0
j (x, t, λ)e

ikj(λ)

2

∫ x
(−1)j∞(m(ξ,t)−Aj)dξσ3 ,

passing to the limits x→ (−1)j∞, we get Cj(λ) = I.
Noticing that Û0

j (x, t, 0) ≡ 0, it follows from (3.20) that Φ̃0
j (x, t, 0) ≡ I and thus Φ̃j(x, t, 0) =

e
− 1

2Aj

∫ x
(−1)j∞(m(ξ,t)−Aj)dξσ3 . Combining this with D−1

j (0) =

(
0 i
i 0

)
gives

(D−1
j Φ̃j)(x, t, 0) = i

(
0 e

1
2Aj

∫ x
(−1)j∞(m(ξ,t)−Aj)dξ

e
− 1

2Aj

∫ x
(−1)j∞(m(ξ,t)−Aj)dξ

0

)
Consequently,

s̃11(0) = e−
1

2A1

∫ x
−∞(m(ξ,t)−A1)dξ− 1

2A2

∫ ∞
x

(m(ξ,t)−A2)dξ

(hence s̃11(0) ̸= 0) and

M(x, t, 0) = i

(
0 e−

1
2A2

∫ ∞
x

(m(ξ,t)−A2)dξ

e
1

2A2

∫ ∞
x

(m(ξ,t)−A2)dξ 0

)
. (3.22)

Remark 3.12. Considering M(x, t, λ) as the solution of the RH problem in Section 3.1.6, the
matrix structure of M(x, t, 0) as in (3.22), i.e.,

M(x, t, 0) = i

(
0 a1(x, t)

a−1
1 (x, t) 0

)
(3.23)

with some a(x, t) ∈ R, which follows from the symmetry properties (3.16a) of the solution taking
into account that detM ≡ 1 (provided the solution is unique).

In order to extract the solution of the mCH equation from the solution of the associated RH
problem, it turns to be useful to find the next term in the expansion of M(x, t, λ) at λ = 0.

First, expanding D−1
j (λ) near 0, we have

D−1
j (λ) =

(
0 i
i 0

)
+ λ

(
i
Aj

2 0

0 i
Aj

2

)
+O(λ2).
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On the other hand, e
ikj(λ)

2

∫ x
(−1)j∞(m(ξ,t)−Aj)dξσ3 = e

− 1
2Aj

∫ x
(−1)j∞(m(ξ,t)−Aj)dξσ3

+ O(λ2), λ → 0.

Then, expanding Φ̃0
j (x, t, λ) at 0 using the Neumann series, we have

Φ̃0
j (x, t, λ) = I + λ

(
0 −

∫ x

(−1)j∞ ex−ξ m−Aj

2 dξ∫ x

(−1)j∞ e−(x−ξ)m−Aj

2 dξ 0

)
+O(λ2).

In particular,

s̃11(λ) = e−
1

2A1

∫ x
−∞(m(ξ,t)−A1)dξ− 1

2A2

∫ ∞
x

(m(ξ,t)−A2)dξ +O(λ2).

Finally, we have

M(x, t, λ) = i

(
0 a1(x, t)

a−1
1 (x, t) 0

)
+ iλ

(
a2(x, t) 0

0 a3(x, t)

)
+O(λ2), (3.24)

where

a1(x, t) = e−
1

2A2

∫ ∞
x

(m(ξ,t)−A2)dξ, (3.25a)

a2(x, t) = (

∫ x

−∞
e−(x−ξ)m−A1

2
dξ +

A1

2
)e

1
2A2

∫ ∞
x

(m(ξ,t)−A2)dξ, (3.25b)

a3(x, t) = (

∫ ∞

x

e(x−ξ)m−A2

2
dξ +

A2

2
)e−

1
2A2

∫ ∞
x

(m(ξ,t)−A2)dξ. (3.25c)

Notice that the matrix structure of terms in the r.h.s. of (3.24) is consistent with the symmetry
properties (3.16a) of M .

Proposition 3.13. u(x, t) and ux(x, t) can be algebraically expressed in terms of the coefficients
aj(x, t), j = 1, 3 in the development (3.24) of M(x, t, λ) as follows:

u(x, t) = a1(x, t)a2(x, t) + a−1
1 (x, t)a3(x, t), (3.26a)

ux(x, t) = −a1(x, t)a2(x, t) + a−1
1 (x, t)a3(x, t). (3.26b)

Proof. Introduce v(x, t) := a1(x, t)a2(x, t) + a−1
1 (x, t)a3(x, t). Using (3.25) it follows that

v(x, t) =
A1 +A2

2
+

∫ x

−∞
e−(x−ξ)m−A1

2
dξ +

∫ ∞

x

e(x−ξ)m−A2

2
dξ (3.27)

and thus, differentiating w.r.t. x,

vx(x, t) =
A2 −A1

2
−
∫ x

−∞
e−(x−ξ)m−A1

2
dξ +

∫ ∞

x

e(x−ξ)m−A2

2
dξ. (3.28)

Since we assume that limx→(−1)j∞ m(x, t) = Ai, from (3.27) it follows that v − vxx = m and
that

lim
x→(−1)j∞

v(x, t) = Ai, lim
x→(−1)i∞

vx(x, t) = 0;

thus v ≡ u. Finally, we notice that the expression in the r.h.s. of (3.28) can be written as the
r.h.s. of (3.26b) taking into account (3.25).

□
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3.3. RH problem in the (y, t) scale. As we already mentioned, the jump condition (3.4)
involves not only the scattering functions uniquely determined by the initial data for problem
(1.1), but the solution itself, via m(x, t), which enters the definition of p2(x, t, λ) (2.8b). In order
to have the data for the RH problem to be explicitly determined by the initial data only, we
introduce the new space variable y(x, t) by

y(x, t) = x− 1

A2

∫ +∞

x

(m(ξ, t)−A2)dξ −A2
2t, (3.29)

Then, introducing M̂(y, t, λ) so that M(x, t, λ) = M̂(y(x, t), t, λ), the dependence of the jump
matrix in (3.4) on y and t as parameters becomes explicit: the jump condition for M̂(y, t, λ) has
the form

M̂+(y, t, λ) = M̂−(y, t, λ)Ĵ(y, t, λ), λ ∈ Σ̇1 ∪ Σ̇0. (3.30a)
Here

Ĵ(y, t, λ) :=

(
0 i
i 0

)(
e−p̂2(y,t,λ+) 0

0 ep̂2(y,t,λ+)

)
J0(λ)

(
ep̂2(y,t,λ+) 0

0 e−p̂2(y,t,λ+)

)
, (3.30b)

where J0(λ) is defined by (3.4b) and p2 is explicitly given in terms of y and t:

p̂2(y, t, λ) :=
iA2k2(λ)

2

(
y − 2t

λ2

)
. (3.30c)

Similarly, the residue conditions (3.15) become explicit as well:

Res±λk
M̂ (1)(y, t, λ) = κke

2p̂2(y,t,λk)M̂ (2)(y, t,±λk), (3.31)
with κk = bk

s′11(λk)
.

Noticing that the normalization condition (3.8) and the singularity conditions at λ = ± 1
Aj

hold in the new scale (y, t), we arrive at the basic RH problem characterizing problem (1.1a).

Basic RH problem. Given ρ(λ) for λ ∈ Σ̇1 ∪ Σ̇0, and {λk, κk}N1 with λk ∈ (0, 1
A2

) and κk ∈
R\{0}, associated with the initial data u0(x) in (1.1), find a piece-wise (w.r.t. Σ̇2) meromorphic,
2× 2-matrix valued function M̂(y, t, λ) satisfying the following conditions:
• Jump condition (3.30) across Σ̇1 ∪ Σ̇0 (with J0(λ) defined by (3.4b)).
• Residue conditions (3.31).
• Normalization condition:

M̂(y, t, λ) =


√

1
2

(
−1 i

i −1

)
+O( 1λ ), λ→∞, λ ∈ C+,√

1
2

(
1 i

i 1

)
+O( 1λ ), λ→∞, λ ∈ C−.

(3.32)

• Singularity conditions: the singularities of M̂(y, t, λ) at ± 1
Aj

are of order not bigger than 1
4 .

Evaluating the solution of this problem as λ → 0, we are able to present the solution u to
the initial value problem (1.1) in a parametric form, see below. As for the data for the RH
problem, the scattering matrix s(λ) (and hence s11(λ), s21(λ), and ρ(λ)) as well as the discrete
data {λk, κk}n1 are determined by u0(x) via the solutions of (2.11) considered for t = 0.

The uniqueness of the solution of the basic RH problem follows using standard arguments
based on the application of Liouville’s theorem to the ratio M̂1(M̂2)

−1 of two potential solu-
tions, M̂1 and M̂2. Particularly, the singularity condition implies that the possible singularities
of M̂1(M̂2)

−1 are of order no bigger that 1/2 and that these singularities, being isolated, are
removable.
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The uniqueness, in particular, implies the symmetries

M̂(−λ) = −σ3M̂(λ)σ3, M̂(λ) = −M(λ), λ ∈ C \ Σ2, (3.33a)

M̂((−λ)−) = −σ3M̂(λ+)σ3, M̂(λ−) = −M̂(λ+), λ ∈ Σ̇1. (3.33b)

where M̂(λ) ≡ M̂(y, t, λ), which follows from the corresponding symmetries of Ĵ(y, t, λ).

3.4. Recovering u(x, t) from the solution of the basic RH problem. Comparing the
RH problem (3.4), (3.8), (3.15) parametrized by x and t with the RH problem (3.30)–(3.32)
parametrized by y and t and using (3.25)–(3.29) we arrive at our main representation result.

Theorem 3.14. Assume that u(x, t) is the solution of the Cauchy problem (1.1) and let M̂(y, t, x)
be the solution of the associated RH problem (3.30)–(3.32), whose data are determined by u0(x).
Let

M̂(y, t, λ) = i

(
0 â1(y, t)

â−1
1 (y, t) 0

)
+ iλ

(
â2(y, t) 0

0 â3(y, t)

)
+O(λ2) (3.34)

be the development of M̂(y, t, x) at λ = 0. Then the solution u(x, t) of the Cauchy problem (1.1)
can be expressed, in a parametric form, in terms of âj(y, t), j = 1, 2, 3: u(x, t) = û(y(x, t), t),
where

û(y, t) = â1(y, t)â2(y, t) + â−1
1 (y, t)â3(y, t), (3.35a)

x(y, t) = y − 2 ln â1(y, t) +A2
2t. (3.35b)

Additionally, ûx(y, t) can also be algebraically expressed in terms of âj(y, t), j = 1, 2, 3: ux(x, t) =
ûx(y(x, t), t), where

ûx(y, t) = −â1(y, t)â2(y, t) + â−1
1 (y, t)â3(y, t). (3.35c)

Alternatively, one can express ûx(y, t) in terms of the first term in (3.34) only. The price to
pay is that this expression involves the derivatives of this term.

Proposition 3.15. The x-derivative of the solution u(x, t) of the Cauchy problem (1.1) has the
parametric representation

ûx(y, t) = −
1

A2
∂ty ln â1(y, t), (3.36a)

x(y, t) = y − 2 ln â1(y, t) +A2
2t. (3.36b)

Proof. Differentiating the identity x(y(x, t), t) = x w.r.t. t gives

0 =
d

dt
(x(y(x, t), t)) = xy(y, t)yt(x, t) + xt(y, t). (3.37)

From (3.29) it follows that

xy(y, t) =
A2

m̂(y, t)
, (3.38)

where m̂(y, t) = m(x(y, t), t), and

yt(x, t) = −
1

A2
(u2 − u2

x)m.

Substituting this and (3.38) into (3.37) we obtain

xt(y, t) = û2(y, t)− û2
x(y, t). (3.39)

Further, differentiating (3.39) w.r.t. y we get

xty(y, t) = (û2(y, t)− û2
x(y, t))xxy(y, t) = 2A2ûx(y, t) (3.40)
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and thus

ux(x(y, t), t) ≡ ûx(y, t) =
1

2A2
∂tyx(y, t) = −

1

A2
∂ty ln â1(y, t).

□

4. Concluding remarks

We have presented the Riemann-Hilbert problem approach for the modified Camassa–Holm
equation on the line with step-like boundary conditions. In the proposed formalism, we have
taken the branch cut of kj(λ) along the half-lines Σj (outer cuts), which is convenient since we
extract the solution of the mCH equation exploiting the development of the solution of the RH
problem at a point laying in the domain of analyticity. Notice that it is possible to formulate RH
problem taking the branch cut of kj(λ) to be the segments (− 1

Aj
, 1
Aj

) (inner cuts). In the case
with inner cuts, the properties of Jost solutions are more conventional (two of the columns are
analytic in the upper half-plane and other two in the lower half-plane), but, on the other hand,
possible eigenvalues are located on the jump.

The present paper is focused on the representation results while assuming the existence of a
solution of problem (1.1) in certain functional classes. To the best of our knowledge, the question
of existence is still open. One of the ways to answering it is to appeal to functional analytic
PDE techniques to obtain well-posedness in appropriate functional classes. However, very little
is known for the cases of nonzero boundary conditions, particularly, for backgrounds having
different behavior at different infinities. Since 1980s, existence problems for integrable nonlinear
PDE with step-like initial conditions have been addressed using the classical Inverse Scattering
Transform method [53]. A more recent progress in this direction (in the case of the Korteweg-de
Vries equation) has been reported in [37, 39, 46] (see also [38]). Another way to show existence
is to infer it from the RH problem formalism (see, e.g., [42] for the case of defocusing nonlinear
Schrödinger equation), where a key point consists in establishing a solution of the associated
RH problem and controlling its behavior w.r.t. the spatial parameter. For Camassa-Holm-type
equations, where the RH problem formalism involves the change of the spatial variable, it is
natural to study the existence of solution in both (x, t) and (y, t) scales. More precisely, the
solvability problem splits into two problems: (i) the solvability of the RH problem parametrized
by (y, t) and (ii) the bijectivity of the change of the spatial variable. Particularly, it is possible
that it is the change of variables that can be responsible of the wave breaking [9, 18]. The
solvability problem for problem (1.1) in the current setting will be addressed elsewhere.

Another interesting and important problem that can be addressed using the developed ap-
proach is the investigation of the large-time behavior of the solutions of the Cauchy problem
(1.1) adapting the nonlinear steepest descent method.
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No. 0121U111968.

Appendix A. Sign-preserving property of m

Assume that u(x, t) − A1 ∈ H3(−∞, a) and u(x, t) − A2 ∈ H3(a,∞) for any real a and for
any t ∈ (0, T ), where T ≤ +∞ is the maximal existing time. Then Morrey’s inequality implies
that (mux)(s, x) is uniformly bounded for 0 < s < t < T , x ∈ R.

Assume that u(x, t) − A1 ∈ H3(−∞, a) and u(x, t) − A2 ∈ H3(a,∞) for any real a and for
any t ∈ (0, T ), where T ≤ +∞ is the maximal existing time. Then Morrey’s inequality implies
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that (mux)(s, x) is uniformly bounded for 0 < s < t < T , x ∈ R. Consider the Cauchy problem
for q(t, x):

dq

dt
= (u2 − u2

x)(q(t, x), t), t ∈ (0, T ), x ∈ R, (A.1a)

q(0, x) = x, x ∈ R, (A.1b)

where u(x, t) solves (1.1). Differentiating (A.1) with respect to x leads to
d

dt
qx(t, x) = (2mux)(q(t, x), t)qx(t, x), (A.2a)

qx(0, x) = 1, x ∈ R. (A.2b)

It follows that
qx(t, x) = e2

∫ t
0
(mux)(q(s,x),s)ds > 0 (A.3)

and, moreover,
ek(t) ≤ qx(t, x) ≤ eK(t), t ∈ [0, T ) (A.4)

for some k(t) and K(t).
Now observe that from (1.1a) and (A.1) it follows that d

dt [m(q(t, x), t)qx(t, x)] = 0. Indeed,

d

dt
[m(q(t, x), t)qx(t, x)]

= [mt(q(t, x), t) +mx(q(t, x), t)qt(t, x)] (q(t, x), t)qx(t, x) +m(q(t, x), t)qtx(t, x)

=
[
−(u2 − u2

x)xm− (u2 − u2
x)mx +mx(u

2 − u2
x)
]
(q(t, x), t)qx(t, x)

+ 2(m2ux)(q(t, x), t)qx(t, x) = 0.

Thus, due to (A.1b) and (A.2b), we have

m(t, q(t, x))qx(t, x) = m(0, q(0, x))qx(0, x) = m(0, x).

Hence, if m(x, 0) > 0, then m(q(t, x), t) > 0 for all t ∈ [0, T ), x ∈ R. Since qx(t, x) > 0, we have
that q(t, x) is strictly increasing function. Moreover, integrating (A.4) w.r.t. x, we also have
limx→±∞ q(t, x) = ±∞. Hence q(x, t) is one-to-one from R onto R and thus m(t, x) > 0 for all
t ∈ [0, T ), x ∈ R.

Appendix B. The case A2 < A1

Notice that in this case Σ2 ⊂ Σ1 and Σ0 = [− 1
A2

,− 1
A1

] ∪ [ 1
A1

, 1
A2

].
We define Φi and Φ̃i as in (2.14) and (2.12), and introduce the scattering matrices s(λ±), this

time for λ ∈ Σ̇2, as matrices relating Φ1 and Φ2 (for brevity we keep for it the same notation s):

Φ1(x, t, λ±) = Φ2(x, t, λ±)s(λ±), λ ∈ Σ̇2 (B.1a)

with det s(λ±) = 1. In turn, Φ̃1 and Φ̃2 are related by

D−1
1 (λ±)Φ̃1(x, t, λ±) = D−1

2 (λ±)Φ̃2(x, t, λ±)e
−Q2(x,t,λ±)s(λ+)e

Q1(x,t,λ±), λ ∈ Σ̇2. (B.2a)

The scattering coefficients sij can be expressed as in (2.19). However, in this case, (2.19a)
implies that s11(λ) can be analytically extended to C \ Σ1 and defined on the upper and lower
parts of Σ̇1, and, since Φ

(2)
2 is analytic in C \Σ2 and Φ

(2)
1 is defined on the upper and lower sides

of Σ1, s12(λ) can be extended by (2.19c) to the lower and upper sides of Σ̇1. Thus the following
relations hold also on Σ̇0:

Φ
(2)
2 (x, t, λ±) = s11(λ±)Φ

(2)
1 (x, t, λ±)− s12(λ±)Φ

(1)
1 (x, t, λ±), λ ∈ Σ̇0. (B.3a)
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and, respectively,

(D−1
2 Φ

(2)
2 )(x, t, λ±) = s̃11(x, t, λ±)(D

−1
1 Φ

(2)
1 )(x, t, λ±)− s̃12(x, t, λ±)(D

−1
1 Φ

(1)
1 )(x, t, λ±), λ ∈ Σ̇0, (B.4a)

where s̃(x, t, λ±) := e−Q2(x,t,λ±)s(λ±)e
Q1(x,t,λ±).

B.1. Symmetries. The symmetries are similar to the case A1 < A2. In particular,
(1)

|s11(λ+)|2 − |s12(λ+)|2 = 1, λ ∈ Σ̇2. (B.5)
(2) ∣∣s12(λ+)

s11(λ+)

∣∣ ≤ 1, λ ∈ Σ̇2 (B.6)

(3)

s11(λ+) = s22(λ−), λ ∈ Σ̇2, (B.7a)

s11(λ+) = is12(λ−), λ ∈ Σ̇0, (B.7b)

s11(λ−) = −is12(λ+), λ ∈ Σ̇0. (B.7c)

(4) ∣∣s12(λ+)

s11(λ+)

∣∣ = 1, λ ∈ Σ̇0 (B.8)

(5)
(D−1

j Φ̃j)((−λ)−) = −σ3(D
−1
j Φ̃j)(λ+)σ3, λ+ ∈ Σ̇j . (B.9)

(6)

(D−1
j Φ̃

(j)
j )(λ) = −(D−1

j Φ̃
(j)
j )(λ), λ ∈ C \ Σj , (B.10)

(7)

(D−1
1 Φ̃

(1)
1 )(−λ) = −σ3(D

−1
1 Φ̃

(1)
1 )(λ), λ ∈ C \ Σ1, (B.11a)

(D−1
2 Φ̃

(2)
2 )(−λ) = σ3(D

−1
2 Φ̃

(2)
2 )(λ), λ ∈ C \ Σ2. (B.11b)

(8)

D−1
j (λ−)Φ̃

(j)
j (λ−) = (−iD−1

j (λ+)Φ̃j(λ+)σ1)
(j), λ ∈ Σ̇2, (B.12a)

D−1
1 (λ−)Φ̃

(1)
1 (λ−) = (−iD−1

1 (λ+)Φ̃1(λ+)σ1)
(1), λ ∈ Σ̇0, (B.12b)

D−1
2 (λ−)Φ̃

(2)
2 (λ−) = D−1

2 (λ+)Φ̃
(2)
2 (λ+), λ ∈ Σ̇0. (B.12c)

B.2. Discrete spectrum. It can be shown in a similar way as for the case A1 < A2 that discrete
spectrum is located on (− 1

A1
, 1
A1

) (assuming that spectral singularities do not arise in the branch
points).

B.3. RH problem parametrized by (x, t).

Notations. In this case it is convenient to introduce ρ̌ as

ρ̌(λ) =
s12(λ+)

s11(λ+)
, λ ∈ Σ̇2 ∪ Σ̇0. (B.13)

Observe that (B.6) and (B.8) imply that

|ρ̌(λ)| ≤ 1, λ ∈ Σ̇2, (B.14a)

|ρ̌(λ)| = 1, λ ∈ Σ̇0. (B.14b)
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Recalling the analytic properties of eigenfunctions and scattering coefficients, we introduce
the matrix-valued function

N(x, t, λ) =

(
(D−1

1 Φ̃
(1)
1 )(x, t, λ),

(D−1
2 Φ̃

(2)
2 )(x, t, λ)

s11(λ)ep1(x,t,λ)−p2(x,t,λ)

)
, λ ∈ C \ Σ2, (B.15)

meromorphic in C \ Σ2, where pj , j = 1, 2, are defined in (2.8b). Since D−1
j (λ)Φ̃j(x, t, λ) =

Φj(x, t, λ)e
Qj(x,t,λ), N(x, t, λ) can be written as

N(x, t, λ) =

(
Φ

(1)
1 (x, t, λ),

Φ
(2)
2 (x, t, λ)

s11(λ)

)
ep1(x,t,λ)σ3 .

Proceeding as in case A1 < A2, we conclude that N(x, t, λ) can be characterized as the solution
of the following Riemann-Hilbert problem:

Find a 2× 2 meromorphic matrix N(x, t, λ) that satisfies the following conditions:
• The jump condition

N+(x, t, λ) = N−(x, t, λ)G(x, t, λ), λ ∈ Σ̇2 ∪ Σ̇0, (B.16a)

where

G(x, t, λ) =

(
0 i
i 0

)(
e−p1(λ+) 0

0 ep1(λ+)

)
G0(λ)

(
ep1(λ+) 0

0 e−p1(λ+)

)
(B.16b)

with

G0(λ) =



(
1 −ρ̌(λ)

ρ̌(λ) 1− |ρ̌(λ)|2

)
, λ ∈ Σ̇2,(

1 −ρ̌(λ)
1

ρ̌(λ) 0

)
, λ ∈ Σ̇0.

(B.16c)

• The normalization condition:

N(x, t, λ) =


√

1
2

(
−1 i

i −1

)
+O( 1λ ), λ→∞, λ ∈ C+,√

1
2

(
1 i

i 1

)
+O( 1λ ), λ→∞, λ ∈ C−,

(B.17)

• Singularity conditions: the singularities of N(x, t, λ) at ± 1
Aj

are of order not bigger than 1
4 .

• Residue conditions (if any): given {λ̌k, κ̌k}Ň1 with λ̌k ∈ (0, 1
A1

) and κ̌k ∈ R \ {0}, N (2)(x, t, λ)

has simple poles at {λ̌k,−λ̌k}Ň1 , with the residues satisfying the equations

Res±λ̌k
N (2)(x, t, λ) = κ̌ke

−2p1(λ̌k)N (2)(x, t,±λ̌k). (B.18)

Remark B.1. The solution of the RH problem above, if exists, satisfies the following properties:
(1) detN ≡ 1.
(2) Symmetries:

N(−λ) = −σ3N(λ)σ3, N(λ) = −N(λ), λ ∈ C \ Σ1, (B.19a)

N((−λ)−) = −σ3N(λ+)σ3, N(λ−) = −N(λ+), λ ∈ Σ̇2. (B.19b)

where N(λ) ≡ N(x, t, λ) (follows from the respective symmetries of the jump matrix and
the residue conditions, assuming the uniqueness of the solution).
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B.4. Eigenfunctions near λ = 0. Introducing Φ̃0,j as in (3.20) and proceeding as in case
A1 < A2, the following development of N(x, t, λ) near λ = 0 holds:

N(x, t, λ) = i

(
0 b1(x, t)

b−1
1 (x, t) 0

)
+ iλ

(
b2(x, t) 0

0 b3(x, t)

)
+O(λ2), (B.20)

where

b1(x, t) = e
1

2A1

∫ x
−∞(m(ξ,t)−A1)dξ, (B.21a)

b2(x, t) = (

∫ x

−∞
e−(x−ξ)m−A1

2
dξ +

A1

2
)e−

1
2A1

∫ x
−∞(m(ξ,t)−A1)dξ, (B.21b)

b3(x, t) = (

∫ ∞

x

e(x−ξ)m−A2

2
dξ +

A2

2
)e

1
2A1

∫ x
−∞(m(ξ,t)−A1)dξ. (B.21c)

Proposition B.2. u(x, t) and ux(x, t) can be algebraically expressed in terms of the coefficients
bj(x, t), j = 1, 3 in the development (B.20) of N(x, t, λ) as follows:

u(x, t) = b1(x, t)b2(x, t) + b−1
1 (x, t)b3(x, t), (B.22a)

ux(x, t) = −b1(x, t)b2(x, t) + b−1
1 (x, t)b3(x, t). (B.22b)

B.5. RH problem in the (y, t) scale. Introducing the new space variable y̌(x, t) by

y̌(x, t) = x+
1

A1

∫ x

−∞
(m(ξ, t)−A1)dξ −A2

1t (B.23)

and introducing N̂(y̌, t, λ) so that N(x, t, λ) = N̂(y̌(x, t), t, λ), the jump condition (B.16a) be-
comes

N̂+(y̌, t, λ) = N̂−(y̌, t, λ)Ĝ(y̌, t, λ), λ ∈ Σ̇2 ∪ Σ̇0, (B.24a)

where

Ĝ(y̌, t, λ) :=

(
0 i
i 0

)(
e−p̂1(y̌,t,λ+) 0

0 ep̂1(y̌,t,λ+)

)
G0(λ)

(
ep̂1(y̌,t,λ+) 0

0 e−p̂1(y̌,t,λ+)

)
, (B.24b)

G0(λ) is defined by (B.16c),

p̂1(y̌, t, λ) :=
iA1k1(λ)

2

(
y̌ − 2t

λ2

)
. (B.24c)

Thus G(x, t, λ) = Ĝ(y̌(x, t), t, λ) and p1(x, t, λ) = p̂1(y̌(x, t), t, λ), where the jump G(x, t, λ) and
the phase p1(x, t, λ) are defined in (B.16b) and (2.8b), respectively.

Accordingly, the residue conditions (B.18) become

Res±λ̌k
N̂ (2)(y̌, t, λ) = κ̌ke

−2p̂1(y̌,t,λk)N̂ (1)(y̌, t,±λ̌k), (B.25)

with κ̌k = 1
b̌ks′11(λ̌k)

.
Noticing that the normalization condition (B.17), the symmetries (B.19), and the singularity

conditions at λ = ± 1
Aj

hold in the new scale (y̌, t), we arrive at the basic RH problem.

Basic RH problem. Given ρ̌(λ) for λ ∈ Σ̇2 ∪ Σ̇0, and {λ̌k, κ̌k}Ň1 with λ̌k ∈ (0, 1
A1

) and κ̌k ∈
R\{0}, associated with the initial data u0(x) in (1.1), find a piece-wise (w.r.t. Σ̇1) meromorphic,
2× 2-matrix valued function N̂(y̌, t, λ) satisfying the following conditions:

• The jump condition (B.24) across Σ̇2 ∪ Σ̇0 (with G0(λ) defined by (B.16c)).
• The residue conditions (B.25).
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• The normalization condition:

N̂(y̌, t, λ) =


√

1
2

(
−1 i

i −1

)
+O( 1λ ), λ→∞, λ ∈ C+,√

1
2

(
1 i

i 1

)
+O( 1λ ), λ→∞, λ ∈ C−.

(B.26)

• Singularity conditions: N̂(y̌, t, λ) may have singularities at ± 1
Aj

of order 1
4 .

• Symmetries:

N̂(−λ) = −σ3N̂(λ)σ3, N̂(λ) = −N(λ), λ ∈ C \ Σ2, (B.27a)

N̂((−λ)−) = −σ3N̂(λ+)σ3, N̂(λ−) = −N̂(λ+), λ ∈ Σ̇1. (B.27b)

where N̂(λ) ≡ N̂(y̌, t, λ).

B.6. Recovering u(x, t) from the solution of the RH problem.

Theorem B.3. Assume that u(x, t) is the solution of the Cauchy problem (1.1) and let N̂(y̌, t, x)
be the solution of the associated RH problem (B.24)–(B.26), whose data are determined by u0(x).
Let

N̂(y̌, t, λ) = i

(
0 b̂1(y̌, t)

b̂−1
1 (y̌, t) 0

)
+ iλ

(
b̂2(y̌, t) 0

0 b̂3(y̌, t)

)
+O(λ2) (B.28)

be the development of N̂(y̌, t, x) at λ = 0. Then the solution u(x, t) of the Cauchy problem (1.1)
can be expressed, in a parametric form, in terms of b̂j(y̌, t), j = 1, 2, 3: u(x, t) = û(y̌(x, t), t),
where

û(y̌, t) = b̂1(y̌, t)b̂2(y̌, t) + b̂−1
1 (y̌, t)b̂3(y̌, t), (B.29a)

x(y̌, t) = y̌ − 2 ln b̂1(y̌, t) +A2
2t. (B.29b)

Additionally, ûx(y̌, t) can also be algebraically expressed in terms of b̂j(y̌, t), j = 1, 2, 3: ux(x, t) =
ûx(y̌(x, t), t), where

ûx(y̌, t) = −b̂1(y̌, t)b̂2(y̌, t) + b̂−1
1 (y̌, t)b̂3(y̌, t). (B.29c)
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