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Abstract. The present paper is about Bernstein-type estimates for Jacobi
polynomials and their applications to various branches in mathematics. This is

an old topic but we want to add a new wrinkle by establishing some intriguing

connections with dispersive estimates for a certain class of Schrödinger equations
whose Hamiltonian is given by the generalized Laguerre operator. More precisely,
we show that dispersive estimates for the Schrödinger equation associated with

the generalized Laguerre operator are connected with Bernstein-type inequalities
for Jacobi polynomials. We use known uniform estimates for Jacobi polynomials
to establish some new dispersive estimates. In turn, the optimal dispersive

decay estimates lead to new Bernstein-type inequalities.

1. Introduction

To set the stage, for α, β > −1, let w(α,β)(x) = (1− x)α(1 + x)β for x ∈ (−1, 1)

be a Jacobi weight. The corresponding orthogonal polynomials P
(α,β)
n , normalized

by

P (α,β)
n (1) =

(
n+ α

n

)
=

(α+ 1)n
n!

(1.1)

for all n ∈ N0 (see (1.21) for notation of Pochhammer symbols and binomial
coefficients), are called the Jacobi polynomials. They are expressed as (terminating)
Gauss hypergeometric series (1.22) by [44, (4.21.2)]

P
(α,β)
n (x)

P
(α,β)
n (1)

= 2F1

(
−n, n+ α+ β + 1

α+ 1
;

1− x
2

)
. (1.2)

They also satisfy Rodrigues’ formula [44, (4.3.1), (4.3.2)]

P (α,β)
n (x) =

n∑
k=0

(
n+ α

n− k

)(
n+ β

k

)(
x− 1

2

)k (
x+ 1

2

)n−k
(1.3)

=
(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
{

(1− x)α+n(1 + x)β+n
}
. (1.4)

Note that, by (1.3), P
(α,β)
n (x) is for given n a polynomial in x, α and β. Thus, if we

don’t need the orthogonality relations of the Jacobi polynomials, then we are not
restricted by the bounds α, β > −1.
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The (squared normalized) L2 norm of P
(α,β)
n is given by [44, (4.3.3)]

Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)

∫ 1

−1
|P (α,β)
n (x)|2w(α,β)(x)dx

=
n+ α+ β + 1

2n+ α+ β + 1

(α+ 1)n(β + 1)n
(α+ β + 2)n n!

. (1.5)

Jacobi polynomials include the ultraspherical (Gegenbauer) polynomials [44, (4.37.1)]

P (λ)
n (x) :=

(2λ)n
(λ+ 1/2)n

P
(λ− 1

2 ,λ−
1
2 )

n (x), (1.6)

where λ > −1/2 (for λ = 0, one needs to replace (1.6) by a suitable limit, see [44,
Eq. (4.7.8)]), and the Legendre polynomials

Pn(x) := P (1/2)
n (x) = P (0,0)

n (x) =
1

2nn!

dn

dxn
(x2 − 1)n. (1.7)

We shall denote the corresponding orthonormal polynomials by p
(α,β)
n for Jacobi,

p
(λ)
n for Gegenbauer, and pn for Legendre polynomials.

The Rodrigues formula (1.4) immediately implies

P (α,β)
n (−x) = (−1)nP (β,α)

n (x), (1.8)

and hence

P (α,β)
n (−1) = (−1)n

(
n+ β

n

)
= (−1)n

(β + 1)n
n!

. (1.9)

It is well known that the absolute value of P
(α,β)
n attains its maximum at the

endpoints of the interval [−1, 1]

max
x∈[−1,1]

∣∣P (α,β)
n (x)

∣∣ = max
x∈{−1,1}

∣∣P (α,β)
n (x)

∣∣ =

(
n+ max(α, β)

n

)
, (1.10)

if max(α, β) ≥ −1/2 (see [44, Theorem 7.32.1]).
The asymptotic behavior of Jacobi polynomials for large n is rather well under-

stood (see, e.g., [44, Chapter VIII]), however, almost all these formulas are not
uniform in α and β. The main focus of the present paper is on uniform estimates for

(1− x)a(1 + x)b
∣∣P (α,β)
n (x)

∣∣ (1.11)

on the whole segment of orthogonality [−1, 1] with some a ≥ 0 and b ≥ 0 (which
might depend on α and β). Historically, the first result of this type is Bernstein’s
inequality1 for the Legendre polynomials ([44, Theorem 7.3.3])

(1− x2)1/4|Pn(x)| ≤ 2√
π(2n+ 1)

, x ∈ [−1, 1], (1.12)

(the refined version (1.12) was proved in [4], see also [38]). The constant
√

2/π in
(1.12) is sharp. Moreover (see [44, Theorem 12.1.6]), the following expression

(1− x2)1/4
√
w(α,β)(x) p(α,β)

n (x) (1.13)

1In order to avoid confusions with the Bernstein inequality for (algebraic) polynomials in the

unit disk (max|z|≤1 |P ′(z)| ≤ n ·max|z|≤1 |P (z)|, where n is the degree of P ), throughout the text

“Bernstein’s inequality” should read as “Bernstein’s inequality for Legendre/Gegenbauer/Jacobi
polynomials” meaning the uniform (weighted) estimate for the corresponding family of orthogonal
polynomials.
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asymptotically equioscillates between −
√

2/π and
√

2/π when n tends to infinity
(the latter holds for a wider class of orthonormal polynomials) and hence a lot of

effort has been put in proving the estimates for (1.11) with a = α
2 + 1

4 and b = β
2 + 1

4 .
Thus, for ultraspherical polynomials the corresponding estimates can be found in
[44, Theorem 7.33.2] (the case λ ∈ (0, 1), see also [39] for a refinement), [37] (the
case λ > 0) and [14] (the case λ ≥ 1). In the nonsymmetric case, let us mention [8],
[13] and the recent papers [20], [31], [32]. Let us also mention that it was conjectured
by Erdélyi, Magnus and Nevai [13] that

max
x∈(−1,1)

(1− x2)1/4
√
w(α,β)(x) |p(α,β)

n (x)| ≤ C max(1, (|α|+ |β|)1/4) (1.14)

for all n ∈ N0 and α, β ≥ −1/2. Notice that a weaker bound O(max(1, (α2+β2)1/4))
was proved in [13, Theorem 1]. On the other hand, the Erdélyi–Magnus–Nevai
conjecture (1.14) was confirmed for all n ∈ N0 and α, β ∈ (−1/2, 1/2) in [8] (with a

sharp estimate of the error term, see also [15]) and for all n ≥ 6 and α, β ≥ (1+
√

2)/4
in [31], [32] (see also [20]).

The estimates for (1.11) with a 6= α
2 + 1

4 and b 6= β
2 + 1

4 are much less studied,
however, they are important in many applications. Let us mention only a few
of them. First of all, ultraspherical polynomials arise in quantum mechanics as
spherical harmonics. More precisely, the L2 normalized spherical harmonics, which
are eigenfunctions of the Laplace–Beltrami operator on the sphere S2, are given by
(cf. [44, (4.7.35)])

Y ml (θ, ϕ) :=
(−1)m√

2π
eimϕ sinm(θ) p

(m+1/2)
l−m (cos(θ)), (1.15)

if m ∈ {0, . . . , l}. Therefore, (1.11) provides uniform weighted L∞ estimates on
eigenfunctions of the Laplace–Beltrami operator on S2. In particular, the following
inequality was established in [6, Theorem 1]:

max
x∈(−1,1)

|x|1/6(1− x2)m/2+1/6
∣∣p(m+1/2)
n (x)

∣∣ ≤ C (n+m+ 1)1/6, (1.16)

with some C > 0, which does not depend on n, m ∈ N0. Moreover, (1.16) and
Krasikov’s estimates [32] were employed in [6] and [42], respectively, in order to
obtain bounds on the number of samples necessary for recovering sparse eigenfunction
expansions on surfaces of revolution.

The next example is also widely known. More precisely, Jacobi polynomials appear
as coefficients of the so-called Wigner d-matrix (see Theorem 4.2). Thus Bernstein-
type estimates imply uniform bounds on a complete set of matrix coefficients for
irreducible representations of SU(2) (see [20] and Section 4 below). Furthermore,
these inequalities play a very important role in the study of simple Lie groups.
Namely, the Bernstein inequality and the Haagerup–Schlichtkrull inequality (see
(4.10) below) were used in [36] and [18], [19], respectively, to study the approximation
property of Haagerup and Kraus [17] for connected simple Lie groups.
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Finally, our interest in the estimates of the type (1.11) comes from the so-called
dispersive estimates for discrete Laguerre operators

Hα :=


1 + α

√
1 + α 0 · · ·

√
1 + α 3 + α

√
2(2 + α) · · ·

0
√

2(2 + α) 5 + α · · ·
...

...
...

. . .

 , α > −1, (1.17)

acting in `2(N0). Explicitly, Hα =
(
h
(α)
n,m

)
n,m∈N0

with h
(α)
n,m = 0 if |n−m| > 1 and

h(α)n,n = 2n+ 1 + α, h
(α)
n,n+1 = h

(α)
n+1,n =

√
(n+ 1)(n+ 1 + α), n ∈ N0.

It is a special case of a self-adjoint Jacobi operator whose generalized eigenfunctions

are precisely the Laguerre polynomials L
(α)
n , explaining our name for (1.17).

The operator Hα features prominently in the recent study of nonlinear waves in
(2 + 1)-dimensional noncommutative scalar field theory [1, 2, 16]. The coefficient α
in (1.17) can be seen as a measure of the delocalization of the field configuration and
it is related to the planar angular momentum [2]. In particular, α = 0 corresponds
to spherically symmetric waves and it has attracted further interest in [7, 33, 34, 35].
As this operator appears as the linear part in the nonlinear Klein–Gordon equation
[7] and the nonlinear Schrödinger equation

iψ̇(t, n) = H0ψ(t, n)− |ψ(t, n)|2σψ(t, n), σ ∈ N, (t, n) ∈ R+ × N0, (1.18)

investigated in the recent work of Krueger and Soffer [33, 34, 35], dispersive estimates
play a crucial role in the understanding of stability of the soliton manifolds appearing
in these models (for further details see [7, 16, 33, 34, 35]). It turns out that the
required dispersive decay estimates for the evolution group e−itHα lead to Bernstein-
type estimates for (1.11) (see [28] and Sections 6–7 below). All these connections
are mathematically very appealing and we hope that this note will stimulate further
research in this direction.

In conclusion let us briefly outline the content of the paper. In the next section
we introduce discrete Laguerre operators and briefly review their spectral properties.
In Section 3, we present a connection between discrete Laguerre operators Hα

and Jacobi polynomials. More precisely, we show that the kernel of the evolution
group eitHα can be expressed by means of Jacobi polynomials (Theorem 3.1). This
result establishes a connection between uniform estimates for (1.11) and dispersive
estimates for the evolution group eitHα . In Section 4, we review the connection
between irreducible representations of SU(2) and Jacobi polynomials. The latter, in

particular, implies the estimates for (1.11) with a = α
2 and b = β

2 when α, β ∈ N0

(see (4.8) and (4.9)). In Section 5, we prove the following Bernstein-type estimate(
1 + x

2

)β/2 ∣∣∣P (α,β)
n (x)

∣∣∣ ≤ (n+ α

n

)
, x ∈ [−1, 1], (1.19)

if β ≥ 0 and α ≥ β − bβc.
Finally, Bernstein-type inequalities enable us to prove the decay estimates for

the evolution group e−itHα , which we discuss in Section 6. First of all, using the
known Bernstein-type inequalities, we prove the decay estimates of order O(t−1)
(Theorem 6.1) and O(t−1/2) if α ≥ 0, however, with a better behavior of weights σ
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(Theorem 6.3). On the other hand, the new inequality (1.19) enables us to show
that

‖e−itHα‖`1(σα)→`∞(σ−1
α ) =

(
1

1 + t2

) 1+α
2

, t ∈ R, (1.20)

for all α ≥ 0, with the weights σα given by σα = {
(
n+α
n

)1/2}n≥0 (see Theorem 6.5).
We finish our paper with some further comments on new Bernstein-type inequalities
and certain parallels between dispersive estimates for discrete Laguerre operators
and one-dimensional spherical Schrödinger operators (see Section 7).

Notation. R and C have the usual meaning. Also write R+ := (0,∞), N :=
{1, 2, . . .} and N0 := N ∪ {0}. By Γ is denoted the classical gamma function [40,
(5.2.1)]. For x ∈ C and n ∈ N0

(x)n :=

{
x(x+ 1) · · · (x+ n− 1), n ∈ N
1, n = 0

;

(
n+ x

n

)
:=

(x+ 1)n
n!

(1.21)

denote the Pochhammer symbol [40, (5.2.4)] and the binomial coefficient, respectively.
Notice that for −x /∈ N0

(x)n =
Γ(x+ n)

Γ(x)
,

(
n+ x

n

)
=

Γ(x+ n+ 1)

Γ(x+ 1)Γ(n+ 1)
.

Moreover, the above formulas allow to define the Pochhammer symbol and the
binomial coefficient for noninteger x, n > 0. Finally, for −c /∈ N0 the Gauss
hypergeometric function [40, (15.2.1)] is defined by

2F1

(
a, b

c
; z

)
:=

∞∑
k=0

(a)k(b)k
(c)kk!

zk (|z| < 1 or else −a or −b ∈ N0). (1.22)

2. Spectral properties of the discrete Laguerre operators

We start with a precise definition of the operator Hα associated with the Jacobi
matrix (1.17). For a sequence u = {un}n≥0 we define the difference expression
τα : u 7→ ταu by setting

(ταu)n :=
√
n(n+ α)un−1 + (2n+ 1 + α)un +

√
(n+ 1)(n+ 1 + α)un+1, (2.1)

where u−1 := 0 for notational convenience. Then the operator Hα associated with
the Jacobi matrix (1.17) is defined by

Hα : Dmax → `2(N0)
u 7→ ταu

,
(2.2)

where Dmax = {u ∈ `2(N0)| ταu ∈ `2(N0)}. The spectral properties of Hα are well
known. For the sake of completeness we collect them in the following theorem and
give a short proof.

Theorem 2.1. Let α > −1. Then:

(i) The operator Hα is a positive self-adjoint operator.
(ii) The spectrum of Hα is purely absolutely continuous and coincides with [0,∞).

http://dlmf.nist.gov/5.2.E1
http://dlmf.nist.gov/5.2.E4
http://dlmf.nist.gov/15.2.E1
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(iii) The Weyl function and the corresponding spectral measure are given by

mα(z) =
1

Γ(α+ 1)

∫ +∞

0

e−λλα

λ− z
dλ = e−zE1+α(−z), z ∈ C \ [0,∞),

dρα(λ) =
1R+(λ)

Γ(α+ 1)
e−λλαdλ, λ ∈ R, (2.3)

where Ep(z) := zp−1
∫∞
z

e−tt−pdt denotes the principal value of the generalized
exponential integral [40, (8.19.2)].

Proof. (i) Self-adjointness clearly follows from the Carleman test (see, e.g., [3], [45,
(2.165)]). Nonnegativity as well as item (ii) immediately follow from (iii), so let us
prove (iii). Notice that the orthogonal polynomials for Hα are given by

Pα,n(z) =
(−1)n

σα(n)
L(α)
n (z), n ∈ N0, (2.4)

where

σα(n) =

√
L
(α)
n (1) =

(
n+ α

n

)1/2

, (2.5)

and L
(α)
n are the Laguerre polynomials [44, Section 5.1]

L
(α)
n (z)

L
(α)
n (1)

= 1F1

(
−n
α+ 1

; z

)
=

n∑
k=0

(−n)k
(α+ 1)k k!

zk. (2.6)

The recurrence formula for the Laguerre polynomials [44, (5.1.10)] implies that u :=
{Pα,n(z)}n∈N0

satisfies (ταu)n = zun for all n ≥ 0. Furthermore, the polynomials

L
(α)
n satisfy the orthogonality relations [44, (5.1.1)]

1

Γ(α+ 1)

∫ ∞
0

L(α)
n (λ)L

(α)
k (λ)e−λλα dλ =

(
n+ α

n

)
δnk, n, k ∈ N0. (2.7)

Therefore, (2.7) and (i) imply that dρα is the spectral measure of Hα, that is, Hα is
unitarily equivalent to a multiplication operator in L2(R+, dρα). It remains to note
that the corresponding Weyl function is the Stieltjes transform of the measure dρα
(cf. e.g. [45, Chapter 2]). �

Remark 2.2. The operator Hα, when restricted to `2c(N0), can be seen as occurring
in a discrete series representation of the Lie algebra sl(2,R). First define operators
A,X, Y on this linear span by

Aun := (2n+α+1)un, Xun :=
√

(n+ 1)(n+ α+ 1)un+1, Y un :=
√
n(n+ α)un−1.

They satisfy the commutator relations

[A,X] = 2X, [A, Y ] = −2Y, [X,Y ] = −A.
Now consider the skew-hermitian operators

J0 := X − Y, J+ := 1
2 i(−A+X + Y ), J− := 1

2 i(A+X + Y ) = 1
2 iHα.

They form an sl(2,R) triple:

[J0, J+] = 2J+, [J0, J−] = −2J−, [J+, J−] = J0.

Thus we have a representation of the Lie algebra sl(2,R):(
1 0
0 −1

)
→ J0,

(
0 1
0 0

)
→ J+,

(
0 0
1 0

)
→ J−.

http://dlmf.nist.gov/8.19.E2
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In particular,
(
0 −1
1 0

)
, which spans the Lie subalgebra of the subgroup K :=SO(2) of

sl(2,R), is mapped in this representation to iA. If we compare with [25, Section 7],
which builds on [5, Section 3], we see that this representation, when exponentiated
to a unitary representation of the Lie group SL(2,R), is a so-called discrete series
representation D+

1
2 (α+1)

of SL(2,R) for α ∈ N0, and otherwise, for real α > − 1
2 , a

similar representation of the universal covering group of SL(2,R) (see [43]).

3. The evolution group e−itHα

In this and the following sections we look at the one-dimensional discrete
Schrödinger equation

iψ̇(t, n) = Hαψ(t, n), (t, x) ∈ R× N0, (3.1)

associated with the Laguerre operator Hα defined in the previous section. We
begin by establishing a connection between the discrete Laguerre operators and
Jacobi polynomials, which follows from the fact that the Laplace transform of a
product of two Laguerre polynomials is expressed by means of a terminating Gauss
hypergeometric series.

Theorem 3.1. Let α > −1. The kernel2 of the operator e−itHα is given by

e−itHα(n,m) = e−itHα(m,n)

=
1

(1 + it)1+α

(
t+ i

t− i

)n(
t

t− i

)m−n
σα(m)

σα(n)
P (α,m−n)
n

(
t2 − 1

t2 + 1

)
(3.2)

for all n, m ∈ N0.

Proof. Similar to the case α = 0 (see [28]), one gets by employing Stone’s formula
(cf., e.g. [46, §4.1])

e−itHα(n,m) =
(−1)n+m

σα(n)σα(m)Γ(α+ 1)

∫ ∞
0

e−itλL(α)
n (λ)L(α)

m (λ)e−λλα dλ (3.3)

for all n, m ∈ N0. It follows from (3.3) that every element of the kernel of the
operator e−itHα is the Laplace transform of a product of two Laguerre polynomials.
Then using [12, (4.11.35)] and [40, (15.8.7)] together with Euler’s transformation
[40, (15.8.1)], after lengthy but straightforward calculations one arrives at (3.2). �

Remark 3.2. It is interesting to mention that the unitarity of e−itHα is equivalent
to the orthogonality relations for the Meixner polynomials [40, (18.20.7)]

Mn(x;β, c) := 2F1

(
−n,−x
β

; 1− c−1
)
. (3.4)

Namely,

Mn(x;β, c) =
n!

cn(β)n
P (β−1,x−n)
n (2c− 1), (3.5)

and then equation (3.2) reads

e−itHα(n,m)

σα(m)σα(n)
=

1

(1 + it)1+α

(
−it

1 + it

)n+m
Mn

(
m;α+ 1,

t2

1 + t2

)
. (3.6)

2In analogy with the (integral) kernel of an integral operator we speak about the (summation)
kernel of a summation operator acting by a matrix.

http://dlmf.nist.gov/15.8.E7
http://dlmf.nist.gov/15.8.E1
http://dlmf.nist.gov/18.20.E7
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It remains to note that the orthogonality relations are [40, Table 18.19.1] (with
positive weights if β > 0 and 0 < c < 1)

(1− c)β
∞∑
x=0

(β)xc
x

x!
Mn(x;β, c)Mk(x;β, c) =

n!

(β)ncn
δnk. (3.7)

Remark 3.3. We continue Remark 2.2 and assume, for convenience, that α ∈ N0,
so that we can refer to [25, Section 7]. In the realization of the discrete series
representation given there, a K-basis [25, (7.16)] is given in terms of Laguerre
polynomials and the K-K matrix elements [25, (7.20)] are in terms of Meixner
polynomials. This provides a further explanation of the observations in Remark 3.2.

The next result provides recurrence relations for the kernel of eitHα .

Corollary 3.4. Let α > −1 and n ≤ m. Then

e−itHα(n+ 1,m+ 1) =

√
(m+ 1)(m+ 1 + α)

(n+ 1)(n+ 1 + α)

i + t

i− t
e−itHα(n,m)

+
n+m+ α+ 2√

(n+ 1)(n+ 1 + α)

t

i− t
e−itHα(n,m+ 1) (3.8)

=
n+m+ α+ 2√
(n+ 1)(m+ 1)

1

1 + it
e−itHα+1(n,m)

+

√
(n+ α+ 1)(m+ 1 + α)

(n+ 1)(m+ 1)

i + t

i− t
e−itHα(n,m). (3.9)

Proof. Using the recurrence relations for Jacobi polynomials (see [44, (4.5.4)]):

P
(α,β)
n+1 (x) =

n+ α+ 1

n+ 1
P (α,β)
n (x)− 2n+ α+ β + 2

n+ 1

1− x
2

P (α+1,β)
n (x)

=
2n+ α+ β + 2

n+ 1

1 + x

2
P (α,β+1)
n (x)− n+ β + 1

n+ 1
P (α,β)
n (x),

straightforward calculations complete the proof. �

We collect some special cases explicitly for later use.

Corollary 3.5. (i) In the case n = 0 we have

e−itHα(0,m) =
1

(1 + it)1+α

(
−it

1 + it

)m√
(α+ 1)m

m!
, m ∈ N0. (3.10)

(ii) In the case n = 1 we have for m ∈ N

e−itHα(1,m) =
1

(1 + it)1+α

(
−it

1 + it

)m+1
(1 + α)t2 −m

t2

√
(α+ 2)m−1

m!
. (3.11)

(iii) In the case n = m we have

e−itHα(m,m) =
1

(1 + it)1+α

(
t+ i

t− i

)m
P (α,0)
m

(
t2 − 1

t2 + 1

)
, m ∈ N0. (3.12)

Proof. Just observe

P
(α,m)
0 (z) = 1, P

(α,m−1)
1 (z) = −m+ (m+ 1 + α)

z + 1

2
. �

Let us also mention the following estimate.

http://dlmf.nist.gov/18.19.T1
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Lemma 3.6. If α > −1 and β + n ∈ N0, then(
1− x

2

)(α+1)/2(
1 + x

2

)β/2 ∣∣∣P (α,β)
n (x)

∣∣∣ ≤ (Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)

)1/2

(3.13)
for all x ∈ [−1, 1] and n ∈ N0.

Proof. Noting that |e−itHα(n,m)| ≤ 1 for all t ∈ R since e−itHα is a unitary group
on `2, after the change of variables

x = x(t) :=
t2 − 1

t2 + 1
, t ∈ [0,∞), (3.14)

in (3.2), we arrive at (3.13). �

Remark 3.7. The estimate (3.13) is of course weaker than (4.8) (see below),
however, it holds for a larger range of parameters. Furthermore note that Lemma
3.6 is also a consequence of (3.7) and (3.5).

It is not difficult to see that the weighted `1 → `∞ estimates for the evolu-
tion group e−itHα are closely connected with Bernstein-type estimates for Jacobi
polynomials. Indeed, taking absolute values in (3.2) we get

∣∣e−itHα(n,m)
∣∣ =

σα(m)

σα(n)

(
1

1 + t2

) 1+α
2
(

t2

1 + t2

)m−n
2
∣∣∣∣P (α,m−n)
n

(
t2 − 1

t2 + 1

)∣∣∣∣ ,
(3.15)

for all t ∈ R. With the rough inequality t2/(1 + t2) < 1 one immediately obtains the
following estimates.

Lemma 3.8. Let α > −1. Then

(1 + t2)
1+α
2

∣∣e−itHα(n,m)
∣∣ ≤



σα(n)σα(m), α ≥ |m− n|,
σα(m)

σα(n)

(
m

n

)
, m− n ≥ α,

σα(n)

σα(m)

(
n

m

)
, n−m ≥ α.

(3.16)

for all t ∈ R, and

lim
t→+∞

(1 + t2)
1+α
2

∣∣e−itHα(n,m)
∣∣ = σα(n)σα(m) (3.17)

for every fixed n, m ∈ N0.

Proof. The standard estimate (1.10) applied to (3.15) gives (3.16). Moreover, (3.15)
together with (1.9) implies (3.17). �

Lemma 3.8 indicates a decay of order O(|t|−(1+α)) for e−itHα(n,m) if one uses
weighted spaces. In fact, we shall show in Section 6 that for α ≥ 0 the optimal
weights for this decay are given by (2.5). Let us only record the following special
cases which can be established directly from Corollary 3.5.

Corollary 3.9. Suppose α ≥ 0.

(i) In the case n = 0 we have for all m ∈ N0

(1 + t2)
1+α
2

∣∣e−itHα(0,m)
∣∣ ≤ σα(m), t ∈ R. (3.18)
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(ii) In the case n = 1 we have for all m ∈ N0

(1 + t2)
1+α
2

∣∣e−itHα(1,m)
∣∣ ≤ σα(1)σα(m), t ∈ R. (3.19)

(iii) In the case n = m ∈ N0 we have

(1 + t2)
1+α
2

∣∣e−itHα(m,m)
∣∣ ≤ σα(m)2, t ∈ R. (3.20)

Proof. (i) and (iii) are immediate from Corollary 3.5. This works for (ii) as well if
α ≥ |m− 1| or if m = 0. Otherwise we use for (ii) the new variable x = t2/(1 + t2),
so that (ii) is equivalent to

max
x∈[0,1]

|fm(x)| ≤ 1 + α, fm(x) = x
m−1

2

(
(m+ 1 + α)x−m

)
Notice that

f1(x) = (2 + α)x− 1

and hence

max
x∈[0,1]

|f1(x)| = max(−1, 1 + α) = 1 + α.

For m > 1 one computes

f ′m(x) = x
m−3

2

(m− 1

2

(
(m+ 1 + α)x−m

)
+ (m+ 1 + α)x

)
.

Therefore,

max |fm(x)| = max(|fm(0)|, |fm(1)|, |fm(x0)|) = max(|fm(x0)|, 1 + α)

where

x0 =
m(m− 1)

(m+ 1)(m+ 1 + α)
.

Moreover,

|fm(x0)| = 2m

m+ 1

(
m(m− 1)

(m+ 1)(m+ 1 + α)

)m−1
2

< 2

((
m

m+ 1

)m(
m− 1

m

)m−1)1/2

≤ 2
√

2

3

for m ≥ 2 since the sequence {( m
m+1 )m}m≥1 is strictly decreasing. �

We finish this section with another representation for the kernel of the evolution
group. Define the following functions

F (α)
n (t) =

1

(1/2 + it)1+α

(
it− 1/2

it+ 1/2

)n
, (3.21)

and

G(α)
n (t) =

1

1/2 + it

n∑
k=0

(
k + α− 1

k

)(
it− 1/2

it+ 1/2

)n−k
, (3.22)

for all n ∈ N0 and t ∈ R. Note that the right-hand side of (3.22) involves the
truncated binomial series [11, Section 2.5.4]

n∑
k=0

(α)k
k!

zk = 2F1

(
−n, α
−n

; z

)
.
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Theorem 3.10. Let F
(α)
n and G

(α)
m be given by (3.21) and (3.22). Then

e−itHα(n,m) = (−1)n+m
σα(n)

σα(m)

(
F (α)
n ∗G(α)

m

)
(t), (3.23)

where (f ∗ g)(t) = 1
2π

∫
R f(x)g(t− x)dx is the convolution of f and g.

Proof. Notice that by [12, (4.11.28)]

Γ(n+ 1)

Γ(n+ α+ 1)

∫ ∞
0

e−itλL(α)
n (λ)e−λ/2λαdλ =

1

(1/2 + it)1+α

(
it− 1/2

it+ 1/2

)n
= F (α)

n (t),

and by [12, (4.11.27)]∫ ∞
0

e−itλL(α)
m (λ)e−λ/2dλ =

1

1/2 + it

m∑
k=0

(
k + α− 1

k

)(
it− 1/2

it+ 1/2

)m−k
= G(α)

m (t).

It remains to note that the Fourier transform of a product of two L1 functions is
equal to the convolution of their Fourier transforms. �

4. Irreducible representations of SU(2) and Jacobi polynomials

The theory of representations of Lie groups provides a unified point of view
on the theory of basic classes of special functions. In particular, the connection
between irreducible representations of the special unitary group SU(2) and Jacobi
polynomials is widely known. In this section we give a brief account of this connection
(for a detailed discussion we refer to [26], [47, Ch. III], [48, Ch. 6]). First, recall that
a group homomorphism % : G → GL(H) of a group G into a group of all invertible
linear transformation GL(H) on a finite dimensional complex linear space H is
called a representation of G (by linear operators). The dimension of H is called the

degree of the representation %. A linear subspace H̃ ⊂ H is called invariant with
respect to the representation % of G if %(g)H̃ ⊂ H̃ for all g ∈ G. A representation %
is called irreducible if {0} and H are the only invariant subspaces.

In order to construct an irreducible representation of SU(2) of degree d ∈ N one
needs to consider the space Hd of homogeneous polynomials of degree d − 1. Set
l := (d − 1)/2. The inner product on Hd is defined by the requirement that the
normalized monomials

ψdk(z1, z2) =

(
2l

l − k

)1/2

zl−k1 zl+k2 , k ∈ {−l,−l + 1, . . . , l − 1, l}, (4.1)

form an orthonormal basis.
The group SU(2) consists of all 2 × 2 unitary matrices of determinant 1. It is

immediate to check that each A ∈ SU(2) has the form

A =

(
a b
−b∗ a∗

)
, |a|2 + |b|2 = 1, (4.2)

where z∗ denotes the complex conjugate of z, and hence SU(2) is homeomorphic to
the unit sphere S3 in R4. Moreover, A admits the following decomposition

A =A(φ, θ, ϕ) =

(
cos(θ) ei(φ+ϕ) − sin(θ) ei(φ−ϕ)

sin(θ) e−i(φ−ϕ) cos(θ) e−i(φ+ϕ)

)
=

(
eiφ 0
0 e−iφ

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
eiϕ 0
0 e−iϕ

)
= A(φ, 0, 0)A(0, θ, 0)A(0, 0, ϕ),
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where φ ∈ [0, π), θ ∈ [0, π/2] and ϕ ∈ [0, π) are determined uniquely by

cos(θ) = |a|, arg(a) = φ+ ϕ, arg(b) = π + φ− ϕ,
if ab 6= 0. Now define a linear operator %d(A) ∈ GL(Hd) by

%d(A) : f(z1, z2) 7→ f(az1 − b∗z2, bz1 + a∗z2). (4.3)

It is straightforward to check that %d is well defined.

Theorem 4.1. The mapping %d : SU(2)→ GL(Hd) is an irreducible unitary repre-
sentation of degree d of SU(2).

The proof of this result can be found in [47, Section III.2.3] (see also [26]). It turns
out that the matrix representation of %d(A) in the basis (4.1) (the so-called Wigner
d-matrix) can be expressed by means of Jacobi polynomials. Indeed, introduce the
function

g(α,β)
n (x) =

(
Γ(n+ 1)Γ(n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)

)1/2(
1− x

2

)α/2(
1 + x

2

)β/2
P (α,β)
n (x).

(4.4)

Clearly,
{
g
(α,β)
n

}
n∈N0

is an orthogonal system in L2(−1, 1) and by (1.5)∫ 1

−1

∣∣g(α,β)
n (x)

∣∣2dx =
2

2n+ α+ β + 1
. (4.5)

Moreover, comparing (4.4) with (1.5), we get

g(α,β)
n (x) =

(
2

2n+ α+ β + 1

)1/2√
w(α,β)(x) p(α,β)

n (x). (4.6)

Now we are ready to state the connection between %d and Jacobi polynomials (see
[47, Section III.3.9]).

Theorem 4.2. Let A = A(φ, θ, ϕ) ∈ SU(2), d ∈ N and %d be given by (4.3). Let
also l = (d−1)/2 and k, j ∈ {−l,−l+ 1, . . . , l−1, l}. Then for all k ≥ 0 and |j| ≤ k

%d(A)k,j :=
〈
%d(A)ψdj , ψ

d
k

〉
Hd

= e−2i(kφ+jϕ)g
(k−j,k+j)
l−k

(
cos(2θ)

)
. (4.7)

Since %d(A) is a unitary matrix and k ± j ∈ N0 in the formulation of Theorem
4.2, we immediately conclude that∣∣g(α,β)

n (x)
∣∣ ≤ 1 (4.8)

for all x ∈ [−1, 1], α, β ∈ N0 and n ∈ N0. An analytic proof of a refined version of
(4.8) can be found in [20] (see inequality (20) on p.234).

Lemma 4.3 ([20]).∣∣g(α,β)
n (x)

∣∣ ≤ ( (n+ 1)(n+ α+ β + 1)

(n+ α+ 1)(n+ β + 1)

)1/4

(4.9)

for all x ∈ [−1, 1], α, β ∈ N0 and n ∈ N0.

Remark 4.4. Surprisingly enough we were not able to find the estimates (4.8) and
(4.9) for noninteger values of α and β in the literature. Numerically both seem to be
true for noninteger values of α and β.

Let us also mention the following Bernstein-type inequality obtained recently by
Haagerup and Schlichtkrull in [20].
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Theorem 4.5 ([20]). There is a constant C < 12 such that∣∣(1− x2)1/4g(α,β)
n (x)

∣∣ ≤ C
4
√

2n+ α+ β + 1
(4.10)

for all x ∈ [−1, 1], α, β ≥ 0 and n ∈ N0.

A few remarks are in order.

Remark 4.6. (i) The optimal value for the constant C in (4.10) is not known.
(ii) The decay rate n−1/4 in (4.10) is optimal as α and β tend to infinity. However,

for fixed α and β, the decay rate is n−1/2 as n→∞ (see (1.12)).
(iii) It was observed in [20] that (4.10) implies the following interesting estimate

for the matrix entries of %d(A)

| sin(2θ)|1/2
∣∣%d(A(φ, θ, ϕ))j,k

∣∣ ≤ Cd−1/4,
which provides the uniform decay d−1/4 for the matrix coefficients, where d is
the dimension of the representation %d.

5. Uniform weighted estimates for Jacobi polynomials

The main aim of this section is to prove the following inequality.

Theorem 5.1. The Bernstein-type estimate(
1 + x

2

)β/2 ∣∣∣P (α,β)
n (x)

∣∣∣ ≤ (n+ α

n

)
, x ∈ [−1, 1], (5.1)

holds for all n ∈ N0, β ≥ 0 and α ≥ β − bβc, where b . c is the usual floor function.
Equivalently, in terms of Meixner polynomials (3.4), we have

c(n+x)/2
∣∣Mn(x;β, c)

∣∣ ≤ 1, x ≥ n, (5.2)

where 0 < c < 1 and β ≥ x− bxc+ 1.

The proof is based on the product formula for biangle polynomials. More precisely,
let

B = {(x1, x2)| 0 ≤ x22 ≤ x1 ≤ 1} (5.3)

be the parabolic biangle. Following [22, 23], let R
(α,β)
n denote the Jacobi polynomials

normalized by R
(α,β)
n (1) = 1, that is,

R(α,β)
n (x) =

P
(α,β)
n (x)

P
(α,β)
n (1)

. (5.4)

For α, β > −1 and n, k ∈ N0 such that k ≤ n, define the parabolic biangle polynomials
(see, e.g., [10, §2.6.1] and [24, §3.3], however, with a different notation)

Rα,βn,k (x1, x2) = R
(α,β+k+1/2)
n−k (2x1 − 1) · xk/21 R

(β,β)
k (x2/

√
x1), (x1, x2) ∈ B. (5.5)

Clearly, these functions are polynomials in x1 and x2 of degree n. Moreover, for
fixed α and β they are orthogonal with respect to the measure

(1− x1)α(x1 − x22)β dx1dx2.

For certain values of α and β the parabolic biangle polynomials have an interpretation
as spherical functions for a Gelfand pair (K,M), where K is a compact group and
M is a closed subgroup. For these values of the parameters, the general theory of
spherical functions on Gelfand pairs yields the existence of suitable product formulas
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and related hypergroup structures. The product formula in the general case was
established in [27, Thm. 2.1]:

Theorem 5.2. Let α ≥ β + 1/2 ≥ 0. Let also 0 ≤ |x2| ≤ x1 ≤ 1 and 0 ≤ |y2| ≤
y1 ≤ 1. If (x1, x2), (y1, y2) ∈ B \ {(0, 0)}, then the parabolic biangle polynomials
satisfy the following hypergroup-type product formula:

Rα,βn,k (x21, x2) ·Rα,βn,k (y21 , y2) =

∫
I×J3

Rα,βn,k (E2, EG)dµα,β(r1, ψ1, ψ2, ψ3), (5.6)

where I = [0, 1], J = [0, π],

D = D(x, y; r, ψ) = xy + (1− x2)1/2(1− y2)1/2r cosψ,

E = E(x1, y1; r1, ψ1)

=
(
x21y

2
1 + (1− x21)(1− y21)r21 + 2x1y1(1− x21)1/2(1− y21)1/2r1 cosψ1

)1/2
,

G = D

(
D(x1, y1; r1, ψ1)

E(x1, y1; r1, ψ1)
, D(

x2
x1
,
y2
y1

; 1, ψ2); 1, ψ3

)
,

and

dmβ(ψ) =
Γ(β + 3

2 )

Γ( 1
2 )Γ(β + 1)

(sinψ)2β+1dψ,

dm−1(ψ) = d
[
1
2δ0(ψ) + 1

2δπ(ψ)
]
,

dmα,β(r, ψ) =
2Γ(α+ 1)

Γ(α− β)Γ(β + 1)
(1− r2)α−β−1r2β+1dr dmβ− 1

2 (ψ),

dmα,α(r, ψ) =
Γ(α+ 1)

Γ(α+ 1
2 )Γ( 1

2 )
(sinψ)2α d(δ1)(r) dψ,

dµα,β(r, ψ1, ψ2, ψ3) = dmβ− 1
2 (ψ3) · dmβ− 1

2 (ψ2) · dmα,β+ 1
2 (r, ψ1)

are positive probability measures.

Before proving Theorem 5.1, we need the following simple fact.

Lemma 5.3. Let X be a compact topological space and X0 a dense subset of X.
Suppose that φ ∈ C(X,R) such that for each x, y ∈ X0 there is a (positive) probability
Borel measure µx,y on X with the property that

φ(x)φ(y) =

∫
X

φ(z) dµx,y(z). (5.7)

Then

max
x∈X
|φ(x)| ≤ 1. (5.8)

Proof. Let M := maxx∈X |φ(x)| ≥ 0. Then, from (5.7) we see

φ(x)2 = φ(x)φ(x) =

∫
X

φ(z) dµx,x(z) ≤M, x ∈ X0.

Since φ is continuous and X0 is dense in X, we infer M2 ≤M , that is, M ≤ 1. �

Remark 5.4. In the context of hypergroups Lemma 5.3 is well known as an in-
equality for bounded characters on a commutative hypergroup, see for instance the
paper by Dunkl [9, Prop. 2.2(2)].
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Proof of Theorem 5.1. Using the product formula and Lemma 5.3, we immediately
conclude that ∣∣Rα,βn,k (x21, x2)

∣∣ ≤ 1, (x1, x2) ∈ B, (5.9)

for all k ≤ n and α ≥ β + 1/2 ≥ 0. By (1.10) and (5.4) we know∣∣R(β,β)
k (x2/

√
x1)
∣∣ ≤ 1, (x1, x2) ∈ B \ {(0, 0)}

for all k ∈ N0 and β ≥ −1/2, and hence we conclude (replacing β + 1/2 by β)(
x+ 1

2

)k/2 ∣∣∣P (α,β+k)
n−k (x)

∣∣∣ ≤ (n− k + α

n− k

)
, x ∈ [−1, 1], (5.10)

for all k ≤ n and α ≥ β ≥ 0. Since n ∈ N0 is arbitrary, we can replace n − k by
n ∈ N0. Moreover, choosing β ∈ [0, 1) and noting that k ∈ N0 is arbitrary, we finally
end up with (

x+ 1

2

)bβc/2 ∣∣∣P (α,β)
n (x)

∣∣∣ ≤ (n+ α

n

)
, x ∈ [−1, 1],

which holds for all n ∈ N0 and α ≥ β − bβc. Since (x+ 1)/2 ≤ 1 for all x ∈ [−1, 1],
this completes the proof. �

Remark 5.5. In fact, [27, Thm. 2.1] gives (5.6) also for the case (x1, x2) = (0, 0)
or (y1, y2) = (0, 0), with a somewhat simpler measure on the right-hand side. Hence
we might have worked with a version of Lemma 5.3 without the restriction to a dense
subset.

We would like to finish this section with the following remark. We have two more
proofs of Theorem 5.1 (see Appendix A), however, for a smaller set of parameters
α and β. More precisely, using the addition formula for disk polynomials [23], one
can prove (5.1) for all α ≥ 0 and β ∈ N0. The third proof is based on (4.8) and
hence inherits the restriction α and β ∈ N0. It uses the Sonin–Pólya theorem3 [44,
footnote to Theorem 7.31.1] and leads to the following result:

Theorem 5.6. Inequality (5.1) holds for all indices α, β for which (4.8) holds.

We firmly expect that (4.8) holds for all x ∈ [−1, 1] and α, β ≥ 0, which in
particular would imply (5.1) for all α, β ≥ 0.

6. Dispersion estimates for the evolution group e−itHα

It turns out that Theorem 3.1 (see also (3.15)) establishes a connection between
Bernstein-type inequalities and dispersion estimates for the discrete Laguerre op-
erators Hα. In this section we shall present some `1 → `∞ decay estimates for
the evolution group e−itHα based on Bernstein-type inequalities from the previous
sections.

First, notice that (3.15) can be rewritten in terms of the function g
(α,β)
n introduced

in (4.4): ∣∣e−itHα(n,m)
∣∣ =

1√
1 + t2

∣∣∣∣g(α,m−n)
n

(
t2 − 1

t2 + 1

)∣∣∣∣ , m ≥ n. (6.1)

Hence the estimate (4.8) immediately implies

3In the literature Sonin is also written as Sonine.
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Theorem 6.1. Let α ∈ N0. Then the following estimate

‖e−itHα‖`1→`∞ ≤
1√

1 + t2
, t ∈ R, (6.2)

holds. Moreover, in the case α = 0, the inequality can be replaced by equality.

Proof. To prove the last claim it suffices to note that

‖e−itH0‖`1→`∞ ≥
∣∣e−itH0(0, 0)

∣∣ =
1√

1 + t2

for all t ∈ R. �

Remark 6.2. (i) The case α = 0 was proven in [28]. Using a different approach,
a weaker estimate in the case α = 0 was obtained in [34].

(ii) Using Lemma 4.3 (see also (4.8)), we get the somewhat stronger estimate∣∣e−itHα(n,m)
∣∣ ≤ 1√

1 + t2

(
(n+ 1)(m+ α+ 1)

(m+ 1)(n+ α+ 1)

)1/4

,

which holds for all m ≥ n, α ∈ N0 and t ∈ R.

Conjecture 6.1. We conjecture that (4.8) as well as Lemma 4.3 hold true for all
α, β ≥ 0 and consequently Theorem 6.1 holds for all α ≥ 0.

Applying the Haagerup–Schlichtkrull inequality (4.10) to (6.1) we obtain another
estimate, which holds for all α ≥ 0:

Theorem 6.3. Let α ≥ 0. There is a positive constant C < 6
√

2 such that the
following inequality ∣∣e−itHα(n,m)

∣∣ ≤ C|t|−1/2
4
√
n+m+ α+ 1

, (6.3)

holds for all n, m ∈ N0 and t 6= 0.

Remark 6.4. (i) The estimate in Theorem 6.3 provides only a t−1/2 decay, how-
ever, it gives an (n+m)−1/4 decay of the matrix coefficients.

(ii) Let us also mention that the Erdélyi–Magnus–Nevai conjecture (1.14) would
imply the following estimate∣∣e−itHα(n,m)

∣∣ ≤ C√
|t|

(α+ |m− n|)1/4

(n+m+ α+ 1)1/2
, t 6= 0. (6.4)

The latter shows that on diagonals, i.e., when m− n = const, the decay of the
matrix elements is n−1/2 as n→∞. However, it does not improve (6.3) when
m− n tends to infinity.

The estimates (6.2) and (6.3) provide a non-integrable decay as t→∞. However,
in order to establish stability for soliton type solutions to nonlinear equations it
is desirable to have an integrable decay in t. As we mentioned in Section 3, we
expect a decay of order O(|t|−(1+α)), however, in weighted spaces. To this end let
σ = {σ(n)}n≥0 be a positive sequence. Consider the weighted `p spaces equipped
with the norm

‖u‖`p(σ) =

{(∑
n∈N0

σ(n)|u(n)|p
)1/p

, p ∈ [1,∞),

supn∈N0
σ(n)|u(n)|, p =∞.
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Of course, the case σ ≡ 1 corresponds to the usual `p(σ) = `p spaces without weight.
Specifically we will work with the weights σα(n), given in (2.5), and consider the
weighted spaces `1(σα) and `∞(σ−1α ). Notice that

σα(n) =
nα/2√

Γ(α+ 1)
(1 + o(1)), n→∞. (6.5)

Theorem 6.5. The following equality

‖e−itHα‖`1(σα)→`∞(σ−1
α ) =

(
1

1 + t2

) 1+α
2

, t ∈ R, (6.6)

holds for all α ≥ 0.

Proof. First of all, noting that e−itHα(0, 0) = (1 + it)−1−α (see Corollary 3.5(i)), we
get

‖e−itHα‖`1(σα)→`∞(σ−1
α ) ≥

(
1

1 + t2

) 1+α
2

, t ∈ R.

The converse inequality∣∣e−itHα(n,m)
∣∣

σα(n)σα(m)
≤
(

1

1 + t2

) 1+α
2

, t ∈ R, n,m ∈ N0, (6.7)

follows from the Bernstein-type estimate (5.1). Indeed, by (3.2), it suffices to consider
the case n ≤ m. Using (3.15) and making the change of variables (3.14), we get

(
1 + t2

) 1+α
2

∣∣e−itHα(n,m)
∣∣

σα(n)σα(m)
=

(
n+ α

n

)−1(
1 + x

2

)m−n
2 ∣∣∣P (α,m−n)

n (x)
∣∣∣ . (6.8)

However, by (5.1), the right-hand side is less than 1, which completes the proof. �

Remark 6.6. An inspection of e−itHα(n,m) with n = m = 1 (see the proof of
Corollary 3.9) shows that (5.1) is no longer true for α < 0. However, we expect that
the following estimate

‖e−itHα‖`1→`∞ = O(|t|−(1+α)), t→∞,
holds true for all α ∈ (−1, 0).

7. Conclusions

7.1. A hunt for Bernstein-type inequalities. The main aim of this paper was
to prove dispersive decay for the evolution group e−itHα . It turned out that this
problem is closely related to Bernstein-type inequalities for (1.11) and, in particular,
has led us to new Bernstein-type inequalities (5.1) and (3.13). In fact, the search
for an optimal decay in t or in m and n for the kernel e−itHα(n,m) leads to a wider
class of Bernstein-type inequalities. More precisely, recall the change of variables
(3.14) and let η ∈ [0, 1 + α], ν ≥ 0 be fixed. Then (6.8), after substitution of (2.5),
can be rewritten as

(1 + t2)
η
2

∣∣e−itHα(n,m)
∣∣ ( t2

1 + t2

) ν
2

=

σα(m)

σα(n)

(
1 + x

2

)m−n+ν
2

(
1− x

2

) 1+α−η
2 ∣∣∣P (α,m−n)

n (x)
∣∣∣ , (7.1)
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for all n ≤ m. Let σ = {σ(n)}n≥0 be a positive weight. Noting that

‖e−itHα‖`1(σ)→`∞(σ−1) = sup
n,m∈N0

σ(n)−1
∣∣e−itHα(n,m)

∣∣σ(m)−1,

we conclude that the dispersive decay estimate

‖e−itHα‖`1(σ)→`∞(σ−1) ≤ C(1 + t2)−η/2, t ∈ R, (7.2)

would follow from the Bernstein-type bound(
1− x

2

) 1+α−η
2

(
1 + x

2

)m−n+ν
2 ∣∣∣P (α,m−n)

n (x)
∣∣∣ ≤ Cσ(n)σ(m)

√
(α+ 1)nm!

(α+ 1)m n!
(7.3)

for all n ≤ m and x ∈ (−1, 1). Clearly, the latter is a uniform weighted estimate

for (1.11) with a = 1+α−η
2 and b = β+ν

2 . In this respect let us mention that our
Theorem 5.1 gives rise to η = 1 + α and ν = 0; the estimates (4.8)–(4.9) correspond
to the case η = 1 and ν = 0; the Erdelyi–Magnus–Nevai conjecture (1.14) and the
Haagerup–Schlichtkrull inequality (4.10) correspond to η = ν = 1/2.

7.2. 1-D spherical Schrödinger operators. Let us finish this paper by compar-
ing our results with the recent study of dispersive estimates for the one-dimensional
spherical Schrödinger operators

Hl = − d2

dx2
+
l(l + 1)

x2
, l ≥ −1

2
,

acting in L2(R+) (Hl denotes the Friedrichs extension if l ∈ (−1/2, 1/2)). In the
free case l = 0, one has

‖e−itH0‖L1(R+)→L∞(R+) = O(|t|−1/2), t→∞.

It was shown in [30] (see also [29]) that ‖e−itHl‖L1→L∞ = O(|t|−1/2) as t→∞ for
all l ≥ −1/2. On the other hand, considering weighted L1 → L∞ estimates, one can
improve the decay in t for positive l > 0 [29, 30]:∥∥e−itHl

∥∥
L1(R+;xl)→L∞(R+;x−l)

= O(|t|−l−1/2), t→∞.

Since α in (1.17) can be seen as a measure of the delocalization of the field configu-
ration and it is related to the planar angular momentum [2], our dispersive decay
estimates (6.2) and (6.6) can be viewed as analogues of the above mentioned results
for spherical Schrödinger operators from [29, 30].

Appendix A. Two alternate proof for the main theorem

A.1. The addition formula for disk polynomials. Following [22, 23], let R
(α,β)
n

denote the Jacobi polynomials normalized as in (5.4). Consider the disk polynomials
(see, e.g., [10, §2.6.3] and [24, §3.3], however, with a different notation)

R(α)
m,n(reiφ) = r|m−n|ei(m−n)φR

(α,|m−n|)
min(m,n)

(
2r2 − 1

)
. (A.1)

For α = q − 2 with an integer q ≥ 2 and under a suitable choice of coordinates on
the unit sphere S2q in Cq, these functions are zonal surface harmonics of type (m,n)
as introduced by Ikeda [21]. This interpretation of disk polynomials was the key to
the following addition formula established in [22, 23].
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Theorem A.1 ([23]). Let α > 0. The following addition formula holds:

R(α)
m,n

(
cos(θ1)eiφ1 cos(θ2)eiφ2 + sin(θ1) sin(θ2)reiψ

)
=

m∑
k=0

n∑
l=0

c
(α)
m,n,k,l(sin(θ1))k+lR

(α+k+l)
m−k,n−l

(
cos(θ1)eiφ1

)
(A.2)

× (sin(θ2))k+lR
(α+k+l)
m−k,n−l

(
cos(θ2)eiφ2

)
R

(α−1)
k,l (reiψ),

where

c
(α)
m,n,k,l =

α

α+ k + l

(
m

k

)(
n

l

)
(α+ n+ 1)k(α+m+ 1)l

(α+ l)k(α+ k)l
. (A.3)

The addition formula (A.2) leads to (5.1) for integer β.

Proof of Theorem 5.1: The case α > 0, β ∈ N0. Setting θ1 = θ2 = θ ∈ [0, π], φ1 =
φ2 = ψ = 0, r = 1 in (A.2) and assuming n ≤ m, we end up with

1 = R(α)
m,n

(
1
)

=

m∑
k=0

n∑
l=0

c
(α)
m,n,k,l(sin(θ))2(k+l)R

(α+k+l)
m−k,n−l

(
cos(θ)

)2
. (A.4)

In particular, since all summands are nonnegative and using the normalization, we

easily get the following estimate (notice that c
(α)
m,n,0,0 = 1)

R(α)
m,n

(
cos(θ)

)2 ≤ 1, θ ∈ [0, π], (A.5)

which proves the claim after a simple change of variables. Then the case α = 0,
β ∈ N0 follows by continuity. �

Remark A.2. A different proof of (A.5) can be found in [10, Proposition 2.6.7(i)].

A.2. The Sonin–Polyá theorem. Here we provide a direct proof for Theorem 5.1
using the Sonin–Pólya theorem and the inequality (4.8), which gives some further
insight into the behavior of the left-hand side of (5.1).

We divide the proof in three steps. First, let us establish an explicit neighborhood
of x = 1 where (5.1) holds. For this we recall the Sonin–Pólya theorem [44, footnote
to Theorem 7.31.1], which associates with a solution y of a differential equation

(py′)′ + qy = 0 (A.6)

a Sonin function

S(x) := y(x)2 +
p(x)

q(x)
y′(x)2 (A.7)

and then we observe that

S′(x) = −(pq)′(x)

(
y′(x)

q(x)

)2

,

by which successive relative maxima of y2 form an increasing or decreasing sequence
according as pq decreases or increases on the corresponding interval.

Lemma A.3. Let α, β ≥ 0 and n ∈ N0. Put λn = n(n + α + β + 1). There are
points

− 1 ≤ x0 ≤ x1 ≤ 1 (A.8)
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given explicitly by

x0 = −1 +
2β2

β2 + 2β(1 + α) + 4λn
, x1 = 1− 2(1 + 2α)(β + βα+ 2λn)

(1 + α)
(
β2 + 2β(1 + α) + 4λn

) ,
such that the relative maxima of(

1 + x

2

)β ∣∣P (α,β)
n (x)

∣∣2
are increasing on (x1, 1] and decreasing on (x0, x1). Moreover, inequality (5.1) holds
on [x1, 1] and there are no relative maxima on [−1, x0).

Proof. Abbreviate

y(x) :=

(
1 + x

2

)β/2
P (α,β)
n (x) .

Then rewriting of the differential equation [44, (4.2.1)] for Jacobi polynomials shows
that y satisfies (A.6) with

p(x) = (1− x)α+1(1 + x) and 4p(x)q(x) = f(x)(1− x)2α+1,

where
f(x) = −β2 + 2β(1 + α) + 4λn + x

(
β2 + 2β(1 + α) + 4λn

)
.

The corresponding Sonin function S given by (A.7) then has a singularity at the
zero x0 of f such that S(x) → −∞ or +∞ according as x ↑ x0 or x ↓ x0. Then a
calculation shows that

4(1− x)−2α(pq)′(x) =
(
β2 + 2β(1 + α) + 4λn

)
(1− x)− (2α+ 1)f(x),

which has a zero at x1. The inequalities (A.8) are easily checked. Now we see that
S(x) decreases from 0 to −∞ on [−1, x0), decreases from ∞ to S(x1) on (x0, x1]

and increases from S(x1) to S(1) = P
(α,β)
n (1)2 on [x1, 1]. In particular, S(x) < 0 on

(−1, x0) and hence there cannot be any maxima of y(x)2 in this interval. �

Now let us find an explicit neighborhood of x = −1 where (5.1) holds.

Lemma A.4. Inequality (5.1) holds on the interval

[−1, x2), x2 = 1− 2

((
n+ α

n

)(
n+ α+ β

n+ β

))−1/α
for all indices β, α for which (4.8) holds.

Proof. This follows upon inserting (4.8) into the desired inequality (5.1) and solving
for x. �

We need the following technical lemma, which allows to estimate x2.

Lemma A.5. The following inequality for binomial coefficients holds for all x ≥ 0:(
x+ y

x

)
≥

{
(x+ y)y, 0 ≤ y ≤ 1,

(x+yy )y 1 ≤ y.
(A.9)

Remark A.6. The case 0 ≤ y ≤ 1 follows from an inequality due to Wendel [49,
eqn. (7)]. The case 1 ≤ y can be found in, e.g., [41, eqn. (41)] (as written there after
the formula: the reverse inequality (41) holds if a > 1).

Finally we note:
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Lemma A.7. Suppose α ≥ 1 and n ≥ 1 or α ≥ 0 and n ≥ 2. Then

x1 ≤ x2.

Proof. First of all note that x1 ≤ x2 is equivalent to((
n+ α

n

)(
n+ α+ β

n+ β

))−1/α
≤ (1 + 2α)(β(1 + α) + 2λn)

(1 + α)
(
β2 + 2β(1 + α) + 4λn

) .
Now inequality (A.9) for α ≥ 1 implies that x1 ≤ x2 will hold if

α

n+ α

α

n+ α+ β
≤ (1 + 2α)(β(1 + α) + 2λn)

(1 + α)
(
β2 + 2β(1 + α) + 4λn

) .
However, it is easy to check that a stronger inequality (note that 1 + α ≤ n+ α for
n ≥ 1)

α
(
β2 + 2β(1 + α) + 4λn

)
≤ 2(β(1 + α) + 2λn)(n+ α+ β)

holds true for n ≥ 1 and β, α ≥ 0. The case 0 ≤ α ≤ 1 is similar. �

Combining Lemmas A.3, A.4 and A.7, we arrive at Theorem 5.6:

Proof of Theorem 5.6. Since the cases n = 0, 1 can be checked directly (see Corol-
lary 3.9), combining Lemmas A.3, A.4 and A.7, we conclude that (5.1) holds for all
α, β ≥ 0 for which (4.8) holds and hence in particular for α, β ∈ N0. �

Note added after publication. For yet another proof of the inequality (5.1),
however, for all α, β ≥ 0, see Theorem 2 in:

J. M. Carnicer, E. Mainar, and J. M. Peña, Stability properties of disk polynomials,
Numer. Algorithms, (2020). doi: 10.1007/s11075-020-00960-3
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[35] A. J. Krueger and A. Soffer, Dynamics of noncommutative solitons II: Spectral theory,
dispersive estimates and stability, arXiv:1411.5859.

[36] V. Lafforgue and M. de la Salle, Non commutative Lp spaces without the completely bounded
approximation property, Duke Math. J. 160, 71–116 (2011).
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