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Abstract. A natural algebraic approach to the KdV hierarchy and its algebro-geometric
finite-gap solutions is developed. In addition, a new derivation of associated higher-order
trace formulas in connection with one-dimensional Schrödinger operators is presented.

1. Introduction

The purpose of this paper is to advocate a most natural algebraic approach to hierar-
chies of completely integrable evolution equations such as the AKNS and Toda hierarchies
and a systematic treatment of associated trace formulas. Specifically, we shall treat in
great detail the simplest example of these completely integrable systems, the Korteweg-de
Vries (KdV) hierarchy, and derive the corresponding higher-order trace formulas for one-
dimensional Schrödinger operators. Even though the main ingredients of our approach to
the KdV hierarchy (to be outlined below) appear to be well-known, it seems to us that no
systematic attempt to combine them all into a complete description of the KdV hierarchy
and its algebro-geometric solutions has been undertaken in the literature thus far. The prin-
cipal aim of this paper is to fill this gap and at the same time provide the intimate connection
with general higher-order trace formulas for the associated Lax operator.

The key ingredients just mentioned are a recursive approach to Lax pairs following Al’ber
[1], [2] (see also [9], Ch. 12, [15]), naturally leading to the celebrated Burchnall-Chaundy poly-
nomial [6], [7] and hence to hyperelliptic curves Kg of genus g ∈ N0(= N∪{0}) and a classic
representation of positive divisors of Kg of degree g due to Jacobi [27] and first applied to the
KdV case by Mumford [36], Section III a).1, with subsequent extensions due to McKean [33].
Finally, following a recent series of papers on trace formulas for Schrödinger operators [16]–
[19], [22]–[24] we present a new algorithm for deriving higher-order trace formulas associated
with the KdV hierarchy.

In Section 2 we briefly review Al’ber’s recursive approach to the KdV hierarchy. In par-
ticular, we illustrate the role of commuting differential expressions of order 2g + 1, g ∈ N0

and 2, respectively, in connection with the Burchnall-Chaundy polynomial, hyperelliptic
curves Kg of genus g branched at infinity, and the equations of the stationary (i.e., time-
independent) KdV hierarchy. Section 3 combines Al’ber’s recursion formalism with Jacobi’s
representation of positive divisors of degree g of Kg as applied to the KdV case by Mumford
and McKean and provides a detailed construction of the stationary KdV hierarchy and its
algebro-geometric solutions. The principal new result of Section 3, summarized in (3.50)–
(3.64), concern divisors of degree g+1 of Kg associated with Schrödinger-type operators with
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general boundary conditions of the type defined in (3.45). In Section 4 we present a system-
atic extension of this body of ideas to the time-dependent KdV hierarchy going beyond the
standard treatment in the literature. Especially, our t-dependent discussion in connection
with divisors of degree g + 1 of Kg associated with the general eigenvalue problem (3.45) as
presented in (4.36)–(4.50) is without precedent. Moreover, our proof of the theta function
representation (4.51) of the Baker-Akhiezer function ψ(P, x, x0, t, t0) in Theorem 4.6, based
on the fundamental meromorphic function φ(P, x, t) defined in (4.15), is new. In Section 5
we turn to (higher-order) trace formulas for Schrödinger operators associated with general
boundary conditions (cf. (5.3)), a key ingredient in the solution of inverse spectral problems.
Unlike Sections 3 and 4, the approach in Section 5 applies to general (not necessarily algebro-
geometric finite-gap) solutions of the KdV hierarchy. The principal new results of Section 5
are the (universally valid) nonlinear differential equation (5.18) for Γβ(z, x), β ∈ R (defined
in (5.4)), the resulting recursion relation (5.21), and, in particular, our method of proof of
Theorem 5.3 (i). In Appendix A we provide a brief summary on hyperelliptic curves of the
KdV-type and their theta functions and establish our basic notation used in Sections 3 and
4. Finally, Appendix B provides an explicit illustration of the Riemann-Roch theorem in
connection with hyperelliptic curves branched at infinity which appears to be of independent
interest.

We emphasize that the methods of this paper are widely applicable to 1 + 1-dimensional
completely integrable systems. The corresponding account for the Toda and Kac-van Moer-
beke hierarchy can be found in [5].

2. The KdV Hierarchy, Recursion Relations, and Hyperelliptic Curves

In this section we briefly review the construction of the KdV hierarchy using a recursive
approach advocated by Al’ber [1], [2] (see also [9], Ch. 12, [15], [20]) and outline its connection
with the Burchnall-Chaundy polynomial [6], [7] and associated hyperelliptic curves branched
at infinity.

Suppose

V (., t) ∈ C∞(R), t ∈ R, V (x, .) ∈ C1(R), x ∈ R (2.1)

and consider the differential expressions (Lax pair)

L(t) = − d2

dx2
+ V (x, t), (2.2)

P2g+1(t) =

g∑
j=0

[
fj(x, t)

d

dx
− 1

2
fj,x(x, t)

]
L(t)g−j, g ∈ N0, (x, t) ∈ R2, (2.3)

where the {fj}0≤j≤g satisfy the recursion relation

f0 = 1, fj,x = −1

4
fj−1,xxx + V fj−1,x +

1

2
Vxfj−1, 1 ≤ j ≤ g. (2.4)

Define in addition fg+1 by

fg+1,x = −1

4
fg,xxx + V fg,x +

1

2
Vxfg. (2.5)

Then one computes

[P2g+1, L] = 2fg+1,x, (2.6)
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where [., .] denotes the commutator. The Lax equation

d

dt
L(t)− [P2g+1(t), L(t)] = 0, t ∈ R (2.7)

is then equivalent to
KdVg(V ) = Vt − 2fg+1,x, t ∈ R. (2.8)

Varying g ∈ N0 yields the KdV hierarchy

KdVg(V ) = 0, g ∈ N0. (2.9)

Explicitly, one obtains from (2.4),

f0 = 1 = f̃0,

f1 = 1
2
V + c1 = c1f̃0 + f̃1,

f2 = −1
8
Vxx + 3

8
V 2 + c1

1
2
V + c2 = c2f̃0 + c1f̃1 + f̃2, (2.10)

f3 = 1
32
Vxxxx − 5

16
V Vxx − 5

32
V 2
x + 5

16
V 3 + c2

1
2
V + c1[−1

8
Vxx + 3

8
V 2] + c3

= c3f̃0 + c2f̃1 + c1f̃2 + f̃3,

etc.

Hence by (2.8),

KdV0(V ) = Vt − Vx = 0,

KdV1(V ) = Vt + 1
4
Vxxx − 3

2
V Vx − c1Vx, (2.11)

KdV2(V ) = Vt − 1
16
Vxxxxx + 5

8
V Vxxx + 5

4
VxVxx − 15

8
V 2Vx − c2Vx + c1[

1
4
Vxxx − 3

2
V Vx],

etc.

represent the first few equations of the KdV hierarchy. Here c` denote integration constants
which naturally arise when solving (2.4). Moreover, the corresponding homogeneous KdV
equations, obtained by taking all integration constants equal to zero, c` ≡ 0, ` ≥ 1 are then
denoted by

K̃dVg(V ) := KdVg(V )
∣∣
c`≡0, 1≤`≤g

(2.12)

and similarly we denote by P̃2g+1 := P2g+1(c` ≡ 0), f̃j := fj(c` ≡ 0), etc. the corresponding
homogeneous quantities.

Before we turn to a discussion of the stationary KdV hierarchy we briefly sketch the main
steps leading to (2.3)–(2.8). Let Ker(L(t)− z), z ∈ C denote the two-dimensional nullspace
of L(t) − z (in the algebraic sense as opposed to the functional analytic one). We seek a
representation of P2g+1(t) on Ker(L(t)− z) of the form

P2g+1(t)
∣∣
Ker(L(t)−z) = Fg(z, x, t)

d

dx
+Gg−1(z, x, t), (2.13)

where Fg are polynomials in z of the type

Fg(z, x, t) =

g∑
j=0

fg−j(x, t)z
j, (2.14)

Gg−1(z, x, t) =

g−1∑
j=0

gg−j(x, t)z
j. (2.15)
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The Lax equation (2.7) restricted to Ker(L(t)− z) then yields

0 = {L̇− [P2g+1, L]}
∣∣
Ker(L−z) = {L̇+ (L− z)P2g+1}

∣∣
Ker(L−z)

=
{
− [Fg,xx + 2Gg−1,x]

d

dx
+ [Vt − FgVx − 2(V − z)Fg,x −Gg−1,xx]

}∣∣
Ker(L−z)

(2.16)

implying

Gg−1 = −Fg,x/2 (2.17)

(neglecting a trivial integration constant) and

Vt = −1

2
Fg,xxx + 2(V − z)Fg,x + VxFg. (2.18)

Insertion of (2.14) into (2.18) then yields (2.8). We omit further details and just record a
few of the polynomials Fg,

F0 = 1 = F̃0,

F1 = c1 + 1
2
V + z = c1F̃0 + F̃1,

F2 = c2 + c1
1
2
V − 1

8
Vxx + 3

8
V 2 + (c1 + 1

2
V )z + z2 = c2F̃0 + c1F̃1 + F̃2,

etc.

(2.19)

One verifies

P2g+1 =

g∑
m=0

cg−mP̃2m+1, c0 = 1. (2.20)

Finally, we specialize to the stationary KdV hierarchy characterized by Vt = 0 in (2.9)
(respectively (2.8)), or more precisely, by commuting differential expressions

[P2g+1, L] = 0 (2.21)

of order 2g + 1 and 2, respectively. Eq. (2.18) then becomes

Fg,xxx − 4(V − z)Fg,x − 2VxFg = 0 (2.22)

and upon multiplying by Fg and integrating one infers

1

2
Fg,xxFg −

1

4
F 2
g,x − (V − z)F 2

g = R2g+1(z), (2.23)

where R2g+1(z) is of the form

R2g+1(z) =

2g∏
n=0

(z − En), {En}0≤n≤2g ⊂ C. (2.24)

Because of (2.21) one computes[
P2g+1

∣∣
Ker(L−z)

]2
= −

[1
2
Fg,xxFg −

1

4
F 2
g,x − (V − z)F 2

g

]∣∣
Ker(L−z) = −R2g+1(z). (2.25)

Since z ∈ C is arbitrary, one obtains the Burchnall-Chaundy polynomial [6], [7] relating
P2g+1 and L,

− P 2
2g+1 = R2g+1(L) =

2g∏
n=0

(L− En). (2.26)
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The resulting hyperelliptic curve Kg of (arithmetic) genus g, obtained upon one-point com-
pactification of the curve

y2 = R2g+1(z) =

2g∏
n=0

(z − En) (2.27)

(cf. Appendix A), will be the basic ingredient in our algebro-geometric treatment of the KdV
hierarchy in Sections 3 and 4.

The spectral theoretic content of the polynomials Fg, Gg−1 is clearly displayed in (3.35),
(3.37), (3.40)–(3.44).

3. The Stationary Formalism

Combining the recursion formalism of Section 2 with a polynomial approach to represent
positive divisors of degree g of a hyperelliptic curve Kg of genus g originally developed by
Jacobi [27] and applied to the KdV case by Mumford [36], Section III a).1 and McKean
[33], we provide a detailed construction of the stationary KdV hierarchy and its algebro-
geometric solutions. Our considerations (3.50)–(3.64) in connection with the general β-
boundary conditions for Schrödinger-type operators in (3.45) are new.

As indicated at the end of Section 2, the stationary KdV hierarchy is intimately con-
nected with pairs of commuting differential expressions P2g+1 and L of orders 2g + 1 and
2, respectively and hyperelliptic curves Kg obtained upon one-point compactification of the
curve

y2 = R2g+1(z) =

2g∏
n=0

(z − En) (3.1)

described in detail in Appendix A (whose results and notations we shall freely use in the
remainder of this paper). Since we are interested in real-valued KdV solutions we now make
the additional assumption

{En}0≤n≤2g ⊂ R, E0 < E1 < · · · < E2g, g ∈ N0. (3.2)

Writing

Fg(z, x) =

g∑
j=0

fg−j(x)zj =

g∏
j=1

[z − µj(x)] (3.3)

and combining (2.23) and (3.3) yields

µ′j(x)2 = −4R2g+1(µj(x))

g∏
k=1
k 6=j

[µj(x)− µk(x)]−2, 1 ≤ j ≤ g, x ∈ R. (3.4)

Integrating the nonlinear first-order system (3.4) as a vector field on the (complex) manifold
Kg × · · · ×Kg = Kg

g , its solution is well-defined as long as the µ’s do not collide. Since we
focus on real-valued solutions V of the KdV hierarchy, we may restrict the vector field to the

submanifold
g
×
j=1
π̃−1([E2j−1, E2j]) which is isomorphic to the torus S1 × · · · × S1 = T g. Thus

µ′j(x) = −2iR
1/2
2g+1(µ̂j(x))

g∏
k=1
k 6=j

[µj(x)− µk(x)]−1, 1 ≤ j ≤ g, x ∈ R, (3.5)
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with the initial conditions

{µ̂j(x0)}1≤j≤g ⊂ Kg, π̃(µ̂j(x0)) = µj(x0) ∈ [E2j−1, E2j], 1 ≤ j ≤ g (3.6)

for some fixed x0 ∈ R, has the unique solution {µ̂j(x)}1≤j≤g ⊂ Kg satisfying

µ̂j(.) ∈ C∞(R, Kg), π̃(µ̂j(x)) ∈ [E2j−1, E2j], 1 ≤ j ≤ g, x ∈ R. (3.7)

These facts are verified using the charts (A.7), (A.8) which also shows that the solution µ̂j(x)
changes sheets whenever it hits E2j−1 or E2j and its projection µj(x) = π̃(µ̂j(x)) remains
trapped in [E2j−1, E2j] for all x ∈ R.

Given (3.3), (3.5), and (2.17) one obtains

Gg−1(z, x) = −1

2
Fg,x(z, x) =

1

2

g∑
j=1

µ′j(x)

g∏
k=1
k 6=j

[z − µk(x)]

= −i
g∑
j=1

R
1/2
2g+1(µ̂j(x))

g∏
k=1
k 6=j

( z − µk(x)

µj(x)− µk(x)

) (3.8)

and hence

R
1/2
2g+1(µ̂j(x)) = σj(x)R2g+1(µj(x))1/2 = iGg−1(µj(x), x),

µ̂j(x) = (µj(x), iGg−1(µj(x), x)), 1 ≤ j ≤ g.
(3.9)

Moreover, since
[R2g+1(z) +Gg−1(z, x)2]

∣∣
z=µj(x)

= 0, 1 ≤ j ≤ g, (3.10)

one infers
R2g+1(z) +Gg−1(z, x)2 = Fg(z, x)Hg+1(z, x) (3.11)

for some polynomial Hg+1 in z of degree g + 1,

Hg+1(z, x) =

g∏
`=0

[z − ν`(x)]. (3.12)

Eqs. (3.9), (3.11), and (3.12) suggest defining {ν̂`(x)}0≤`≤g ⊂ Kg by

R
1/2
2g+1(ν̂`(x)) = −iGg−1(ν`(x), x), ν̂`(x) = (ν`(x),−iGg−1(ν`(x), x)), 0 ≤ ` ≤ g. (3.13)

One verifies
ν0(x) ≤ E0, ν`(x) ∈ [E2`−1, E2`], 1 ≤ ` ≤ g, x ∈ R. (3.14)

Next, we define the fundamental meromorphic function φ(P, x) on Kg,

φ(P, x) =
iR

1/2
2g+1(P )−Gg−1(π̃(P ), x)

Fg(π̃(P ), x)
=
iR

1/2
2g+1(P ) + 1

2
Fg,x(π̃(P ), x)

Fg(π̃(P ), x)

=
−Hg+1(π̃(P ), x)

iR
1/2
2g+1(P ) +Gg−1(π̃(P ), x)

, P = (π̃(P ), R
1/2
2g+1(P )), x ∈ R,

(3.15)

with divisor (φ(., x)) given by

(φ(., x)) = Dν̂0(x)ν̂(x) −DP∞µ̂(x). (3.16)

Here we abbreviated

ν̂(x) = (ν̂1(x), . . . , ν̂g(x)), µ̂(x) = (µ̂1(x), . . . , µ̂g(x)). (3.17)
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Given φ(P, x) we define the stationary Baker-Akhiezer (BA) function ψ(P, x, x0), meromor-
phic on Kg\{P∞}, by

ψ(P, x, x0) = exp
[ ∫ x

x0

dyφ(P, y)
]
, (x, x0) ∈ R2. (3.18)

Properties of V (x), φ(P, x), and ψ(P, x, x0) are summarized in the following

Lemma 3.1. Let P = (z, σR2g+1(z)1/2) = (π̃(P ), R
1/2
2g+1(P )) ∈ Kg\{P∞}, (z, x, x0) ∈ C×R2.

Then

(i). V (x) = E0 +

g∑
j=1

[E2j−1 + E2j − 2µj(x)].

(3.19)

(ii). φ(P, x)satisfies the Riccati-type equation

φx(P, x) + φ(P, x)2 = V (x)− z. (3.20)

(iii). ψ(P, x, x0) satisfies the Schrödinger equation

− ψxx(P, x, x0) + [V (x)− z]ψ(P, x, x0) = 0. (3.21)

(iv). φ(P, x)φ(P ∗, x) = Hg+1(z, x)/Fg(z, x). (3.22)

(v). φ(P, x) + φ(P ∗, x) = −2Gg−1(z, x)/Fg(z, x) = Fg,x(z, x)/Fg(z, x). (3.23)

(vi). φ(P, x)− φ(P ∗, x) = 2iR
1/2
2g+1(P )/Fg(z, x). (3.24)

(vii). ψ(P, x, x0)ψ(P ∗, x, x0) = Fg(z, x)/Fg(z, x0). (3.25)

(viii). ψx(P, x, x0)ψx(P
∗, x, x0) = Hg+1(z, x)/Fg(z, x0). (3.26)

(ix). ψ(P, x, x0) = [Fg(z, x)/Fg(z, x0)]
1/2 exp

[
iR

1/2
2g+1(P )

∫ x

x0

dyFg(z, y)−1
]
. (3.27)

Proof. (i). Insert (3.3) into (2.23) and compare the coefficient of z2g. (ii). Combine (2.17),
(2.23), and (3.15). (iii). Follows from ψxx/ψ = φx + φ2 = V − z. (iv). Multiply the first
and third expression in (3.15) replacing P by P ∗ in one of the two factors. (v), (vi) are clear
from (3.15). (vii). Combine (3.18) and (3.23). (viii). Use (3.22), (3.25), and ψx = φψ. (ix).
Invoke (2.17), (3.15), and (3.18). �

Eq. (3.19) represents a trace formula for the finite-gap potential V (x). The method of
proof of Lemma 3.1 (i) indicates that higher-order trace formulas associated with the KdV
hierarchy can be obtained from (3.3) and (2.23) comparing powers of z. Since we shall derive
trace formulas for general potentials in Section 5, we postpone the special case of finite-gap
potentials at this point and refer to Example 5.5.

We also record

Lemma 3.2. Let (z, x) ∈ C× R. Then

(i). Hg+1(z, x) =
1

2
Fg,xx(z, x)− [V (x)− z]Fg(z, x).

(3.28)

(ii). Hg+1,x(z, x) = −2[V (x)− z]Gg−1(z, x). (3.29)
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Proof. (i). By (2.17), (2.23), and (3.11),

− 1
2
Fg,xx = −1

4
F−1g F 2

g,x − (V − z)Fg − F−1g R2g+1

= −(V − z)Fg − F−1g (R2g+1 +G2
g−1) = −(V − z)Fg −Hg+1.

(ii). By (2.17), (2.22), and (3.28),

Hg+1,x = −Gg−1,xx − (V − z)Fg,x − VxFg
= 1

2
Fg,xxx − (V − z)Fg,x − VxFg = (V − z)Fg,x = −2(V − z)Gg−1. �

Explicitly, one computes from (2.4), (2.14), and (3.28),

H1 = H̃1 = −V + z,

H2 = −c1V + 1
4
Vxx − 1

2
V 2 +

(
c1 − 1

2
V
)
z + z2 = c1H̃1 + H̃2,

H3 = −c2V + c1(
1
4
Vxx − 1

2
V 2
)
− 1

16
Vxxxx + 3

8
V 2
x + 1

2
V Vxx − 3

8
V 3

+ [c2 − c1 12V + 1
8
Vxx − 1

8
V 2]z + [c1 − 1

2
V
]
z2 + z3 = c2H̃1 + c1H̃2 + H̃3,

etc.

(3.30)

We also mention the following well-known result connecting Dirichlet and Neumann eigen-
values.

Lemma 3.3. [33] Suppose µj(x0) ∈ {E2j−1, E2j}, 1 ≤ j ≤ g. Then ν0(x0) = E0, νj(x0) ∈
{E2j−1, E2j}\{µj(x0)}, 1 ≤ j ≤ g. Conversely, suppose νj(x0) ∈ {E2j−1, E2j}, 1 ≤ j ≤ g.
Then ν0(x0) = E0, µj(x0) ∈ {E2j−1, E2j}\{νj(x0)}, 1 ≤ j ≤ g.

Proof. If µj(x0) ∈ {E2j−1, E2j}, 1 ≤ j ≤ g then Gg−1(z, x0) = 0 in (3.11) yields R2g+1(z) =
Fg(z, x0)Hg+1(z, x0) and hence proves the first claim. Conversely, assuming νj(x0) ∈ {E2j−1, E2j},
1 ≤ j ≤ g one infers from (3.13) that Gg−1(νj(x0), x0) = iR

1/2
2g+1(ν̂j(x0)) = 0, 1 ≤ j ≤ g,

i.e., again Gg−1(z, x0) = 0. Hence R2g+1(z) = Fg(z, x0)Hg+1(z, x0) also proves the second
claim. �

Given the bounded potential V (x) in (3.19), consider the differential expression τ = − d2

dx2
+

V (x) and define the corresponding self-adjoint Schrödinger operator H in L2(R) by

Hf = τf, τ = − d2

dx2
+ V (x), x ∈ R, f ∈ D(H) = H2,2(R), (3.31)

with Hm,n(.) the usual Sobolev spaces. The resolvent of H reads

((H − z)−1f)(x) =

∫
R
dx′G(z, x, x′)f(x′), z ∈ C\σ(H), f ∈ L2(R), (3.32)

where the Green’s function G(z, x, x′) is explicitly given by

G(z, x, x′) = W (ψ+(z, ., x0), ψ−(z, ., x0))
−1

{
ψ+(z, x, x0)ψ−(z, x′, x0), x ≥ x′

ψ+(z, x′, x0)ψ−(z, x, x0), x ≤ x′
, (3.33)

with W (f, g) = fg′−f ′g the Wronskian of f and g and ψ±(z, x, x0) the branches of ψ(P, x, x0)
in the charts (Π±, π̃). One computes

W (ψ+(z, ., x0), ψ−(z, ., x0)) = (2/i)R2g+1(z)1/2Fg(z, x0)
−1 (3.34)
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and

G(z, x, x) =
i
∏g

j=1[z − µj(x)]

2R2g+1(z)1/2
=

iFg(z, x)

2R2g+1(z)1/2
, (3.35)

taking into account our convention (A.3) for R2g+1(z)1/2. In particular, the spectrum σ(H)
of H is given by

σ(H) =

g−1⋃
j=0

[E2j, E2j+1] ∪ [E2g,∞). (3.36)

Eq. (3.35) illustrates the spectral theoretic content of the polynomial Fg(z, x). Moreover, the
Weyl m-functions m±(z, x0), associated with the restriction of τ to (x0,±∞) with a Dirichlet
boundary condition at x0, read

m±(z, x0) = φ±(z, x0) = [±iR2g+1(z)1/2 −Gg−1(z, x0)]Fg(z, x0)
−1, (3.37)

where φ±(z, x) denote the branches of φ(P, x) in the charts (Π±, π̃). As a consequence, the
Weyl m-matrix M(z, x0) associated with H is given by (see, e.g., [32], Ch. 8)

M(z, x0) =[m−(z,x0)−m+(z,x0)]−1

 m−(z,x0)m+(z,x0) [m−(z,x0)+m+(z,x0)]/2

[m−(z,x0)+m+(z,x0)]/2 1


=

(
∂1∂2G(z, x0, x0)

1
2
(∂1 + ∂2)G(z, x0, x0)

1
2
(∂1 + ∂2)G(z, x0, x0) G(z, x0, x0)

)
=

i

2R2g+1(z)1/2

(
Hg+1(z, x0) −Gg−1(z, x0)
−Gg−1(z, x0) Fg(z, x0)

)
,

(3.38)

where

∂1G(z, x0, x
′) = ∂xG(z, x, x′)

∣∣
x=x0

, ∂2G(z, x, x0) = ∂x′G(z, x, x′)
∣∣
x′=x0

,

∂1∂2G(z, x0, x0) = ∂x∂x′G(z, x, x′)
∣∣
x=x0=x′

, etc.
(3.39)

The corresponding self-adjoint spectral matrix ρ(λ, x0), defined by

Mp,q(z, x0) =

∫
R
(z − λ)−1dρp,q(λ, x0), (3.40)

ρp,q(λ, x0)− ρp,q(µ, x0) = lim
δ↓0

lim
ε↓0

π−1
∫ λ+δ

µ+δ

dν Im[Mp,q(ν + iε, x0)],

λ, µ ∈ R, 1 ≤ p, q ≤ 2,

(3.41)

explicitly reads (cf., e.g., [32], Ch. 8)

dρ1,1(λ, x0)

dλ
=


Hg+1(λ, x0)

2πR2g+1(λ)1/2
, λ ∈ σ(H)o

0, λ ∈ R\σ(H)
, (3.42)

dρ1,2(λ, x0)

dλ
=
dρ2,1(λ, x0)

dλ
=


−Gg−1(λ, x0)

2πR2g+1(λ)1/2
, λ ∈ σ(H)o

0, λ ∈ R\σ(H)
, (3.43)

dρ2,2(λ, x0)

dλ
=


Fg(λ, x0)

2πR2g+1(λ)1/2
, λ ∈ σ(H)o

0, λ ∈ R\σ(H)
. (3.44)
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(Here Ao denotes the interior of A ⊂ R.)
Closely associated with H is Hβ

x0
in L2(R) defined by

Hβ
x0
f = τf, β ∈ R ∪ {∞}, x0 ∈ R,

f ∈ D(Hβ
x0

) = {g ∈ L2(R)|g, g′ ∈ AC([x0,±R]) for all R > 0,

lim
ε↓0

[g′(x0 ± ε) + βg(x0 ± ε)] = 0, τg ∈ L2(R)},
(3.45)

with AC(loc)(I) the set of (locally) absolutely continuous functions on I. Here, in obvious
notation, β = ∞ denotes the Dirichlet Schrödinger operator HD

x0
= H∞x0 and β = 0 the

corresponding Neumann Schrödinger operator HN
x0

= H0
x0

. Moreover, Hβ
x0

decomposes into
the direct sum of half-line operators

Hβ
x0

= Hβ
−,x0 ⊕H

β
+,x0 , L

2(R) = L2((−∞, x0])⊕ L2([x0,∞)). (3.46)

The resolvent of Hβ
x0

reads

((Hβ
x0
− z)−1f)(x) =

∫
R
dx′Gβ

x0
(z, x, x′)f(x′), z ∈ C\σ(Hβ

x0
), f ∈ L2(R), (3.47)

Gβ
x0

(z, x, x′) = G(z, x, x′)− (β + ∂2)G(z, x, x0)(β + ∂1)G(z, x0, x
′)

(β + ∂1)(β + ∂2)G(z, x0, x0)
,

β ∈ R, z ∈ C\{σ(Hβ
x0

) ∪ σ(H)},
(3.48)

G∞x0(z, x, x
′) = G(z, x, x′)−G(z, x, x0)G(z, x0, x

′)G(z, x0, x0)
−1,

z ∈ C\{σ(H∞x0 ) ∪ σ(H)}.
(3.49)

Next we define the polynomial Kβ
g+1(z, x), β ∈ R of degree g + 1 in z,

Kβ
g+1(z, x) = Hg+1(z, x)− 2βGg−1(z, x) + β2Fg(z, x) =

g∏
`=0

[z − λβ` (x)], β ∈ R. (3.50)

In particular,

Hg+1(z, x) = K0
g+1(z, x), ν`(x) = λ0`(x), 0 ≤ ` ≤ g. (3.51)

Explicitly, one computes

Kβ
1 = β2 − V + z = K̃β

1 ,

Kβ
2 = c1(β

2 − V ) + 1
4
Vxx − 1

2
V 2 + 1

2
βVx + 1

2
β2V

+
(
c1 + β2 − 1

2
V
)
z + z2 = c1K̃

β
1 + K̃β

2 ,

Kβ
3 = c2(β

2 − V ) + c1
(
1
2
β2V + 1

2
βVx + 1

4
Vxx − 1

2
V 2
)
− 1

8
βVxxx

+ 3
4
βV Vx − 1

8
β2Vxx + 3

8
β2V 2 − 1

16
Vxxxx + 3

8
V 2
x + 1

2
V Vxx − 3

8
V 3

+ [1
2
βVx + β2c1 + 1

2
β2V − 1

2
c1V + c2 + 1

8
Vxx − 1

8
V 2]z + [c1 + β2 − 1

2
V ]z2 + z3

= c2K̃
β
1 + c1K̃

β
2 + K̃β

3 ,

etc.

(3.52)

Then (3.35) and

(β + ∂1)(β + ∂2)G(z, x, x) =
iKβ

g+1(z, x)

2R2g+1(z)1/2
, β ∈ R (3.53)
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together with (3.47) and (3.48) yield

σ(Hβ
x0

) = σ(H) ∪ {λβ` (x0)}0≤`≤g, β ∈ R, (3.54)

σ(H∞x0 ) = σ(H) ∪ {µj(x0)}1≤j≤g, µj(x0) = λ∞j (x0), 1 ≤ j ≤ g, (3.55)

with

λβ0 (x0) ≤ E0, β ∈ R, λβ` (x0) ∈ [E2`−1, E2`], 1 ≤ ` ≤ g, β ∈ R ∪ {∞}. (3.56)

Next, one verifies

φ(P, x) + β =
iR

1/2
2g+1(P )−Gg−1(π̃(P ), x) + βFg(π̃(P ), x)

Fg(π̃(P ), x)

=
−Kβ

g+1(π̃(P ), x)

iR
1/2
2g+1(P ) +Gg−1(π̃(P ), x)− βFg(π̃(P ), x)

,

(3.57)

R2g+1(z) + [Gg−1(z, x)− βFg(z, x)]2 = Fg(z, x)Kβ
g+1(z, x), (3.58)

[φ(P, x) + β][φ(P ∗, x) + β] = Kβ
g+1(z, x)/Fg(z, x), (3.59)

[ψx(P, x, x0) + βψ(P, x, x0)][ψx(P
∗, x, x0) + βψ(P ∗, x, x0)] = Kβ

g+1(z, x)/Fg(z, x0). (3.60)

The divisor of φ(., x) + β, β ∈ R is given by

(φ(., x) + β) = D
λ̂β0 (x)λ̂

β
(x)
−DP∞µ̂(x), (3.61)

with

R
1/2
2g+1(λ̂

β
` (x)) = −iGg−1(λ

β
` (x), x) + iβFg(λ

β
` (x), x),

λ̂β` (x) = (λβ` (x),−iGg−1(λ
β
` (x), x) + iβFg(λ

β
` (x), x)), 0 ≤ ` ≤ g, β ∈ R.

(3.62)

The first-order system of differential equations for λβ` (x), β ∈ R, i.e., the analog of (3.5) in
the case β = ∞, will be derived in the next section (see (4.45) for r = 0). Here we only
record the final result for completeness,

λβ`
′(x) = −2i[β2 − V (x) + λβ` (x)]R

1/2
2g+1(λ̂

β
` (x))

g∏
m=0
m 6=`

[λβ` (x)− λβm(x)]−1,

π̃(λ̂β0 (x)) = λβ0 (x) ≤ E0, π̃(λ̂β` (x)) = λβ` (x) ∈ [E2`−1, E2`], 1 ≤ ` ≤ g, (β, x) ∈ R2.

(3.63)

In particular, taking β = 0 in (3.63) then yields the first-order system of differential equations
for ν`(x), 0 ≤ ` ≤ g. (We remark that V (x) in (3.63) has been used for reasons of brevity

only. In order to obtain a system of differential equations for λβ` (x) one needs to replace
V (x) by the corresponding trace formula (see, e.g., (5.23), (5.30), and (5.34)).)

We emphasize that due to our convention (A.3) for R
1/2
2g+1(P ), the differential equations

(3.5) and (3.63) exhibit the well-known monotonicity properties of µj(x) and λβj (x), β ∈ R,
j ≥ 1 with respect to x ∈ R. For instance, Dirichlet eigenvalues corresponding to the
right (left) half axis (x,∞) ((−∞, x)) associated with the decomposition (3.46) are always
increasing (decreasing) with respect to x ∈ R, etc.
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We conclude with the θ-function representation for φ(P, x), ψ(P, x, x0), V (x) to be derived
in Section 4 (cf. Theorem 4.6) in the general t-dependent case.

φ(P, x) =− β +
θ(ΞP0

− AP0
(P∞) + αP0

(µ̂(x)))

θ(ΞP0
− AP0

(P∞) + αP0
(λ̂

β
(x)))

•

•
θ(ΞP0

− AP0
(P ) + αP0

(λ̂
β
(x)))

θ(ΞP0
− AP0

(P ) + αP0
(µ̂(x)))

exp
[
−
∫ P

P0

ω
(3)

P∞,λ̂
β
0 (x)

]
,

(3.64)

ψ(P, x, x0) =
θ(ΞP0

− AP0
(P ) + αP0

(µ̂(x)))

θ(ΞP0
− AP0

(P∞) + αP0
(µ̂(x)))

θ(ΞP0
− AP0

(P∞) + αP0
(µ̂(x0)))

θ(ΞP0
− AP0

(P ) + αP0
(µ̂(x0)))

•

• exp
[
− i(x− x0)

∫ P

P0

ω
(2)
P∞,0

]
, P0 = (E0, 0), β ∈ R,

(3.65)

with the linearizing property of the Abel map,

αP0
(µ̂(x)) = αP0

(µ̂(x0)) +
U

(2)
0

2π
(x− x0), (x, x0) ∈ R2, (3.66)

U
(2)
0 = (U

(2)
0,1 , . . . , U

(2)
0,g ), U

(2)
0,j =

∫
bj

ω
(2)
P∞,0

, 1 ≤ j ≤ g. (3.67)

The Its-Matveev formula [26], [4], Ch. 3, [38], Ch. II for V (x) then reads

V (x) = E0 +

g∑
j=1

(E2j−1 + E2j − 2λj)− 2∂2x ln[θ(ΞP0
− AP0

(P∞) + αP0
(µ̂(x)))]

= E0 +

g∑
j=1

(E2j−1 + E2j − 2λj)− 2∂2x ln[θ(ΞP0
+ AP0

(λ̂β0 (x)) + αP0
(λ̂

β
(x)))],

(3.68)

where λj ∈ [E2j−1, E2j], 1 ≤ j ≤ g are determined from

ω
(2)
P∞,0

= −[2R
1/2
2g+1(.)]

−1
g∏
j=1

(π̃ − λj)dπ̃ =
ζ→0

[ζ−2 + 0(1)] dζ near P∞ (3.69)

and the second equality in (3.68) is a consequence of the equivalence DP∞µ̂(x) ∼ Dλ̂β0 (x)λ̂β(x),
i.e.,

AP0
(P∞) + αP0

(µ̂(x)) = AP0
(λ̂β0 (x)) + αP0

(λ̂
β
(x)), x ∈ R. (3.70)

4. The Time-Dependent Formalism

In this section we construct algebro-geometric solutions of the KdV hierarchy correspond-
ing to g-gap initial values on the basis of a suitable time-dependent generalization of the
polynomial approach developed in Chapters 2 and 3. Even though the final results (4.51)–
(4.55) are well-known, in fact, classical by now, the approach presented in this section, based
on the fundamental meromorphic function φ(P, x, t) in (4.15), merits attention since it easily
extends to general 1 + 1-dimensional completely integrable systems such as the AKNS and
Toda hierarchies. (The corresponding approach to the Toda and Kac-van Moerbeke lattices
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is presented in detail in [5].) The results (4.36)–(4.50) in connection with the general β-
boundary condition in (3.45) and our strategy of proof of the theta function representation
of the BA function ψ(P, x, x0, t, t0) in (4.51), based on (4.15) and (4.16), are new.

Our starting point will be a g-gap solution V (0) of the stationary KdVg equation,

V (0)(x) = E0 +

g∑
j=1

[E2j−1 + E2j − 2µ
(0)
j (x)], µ

(0)
j (x) ∈ [E2j−1, E2j], 1 ≤ j ≤ g (4.1)

satisfying
g∑
`=0

cg−`f`+1,x = 0, c0 = 1, (4.2)

where f`+1 are given by (2.4) with V = V (0). Our principal aim then is to construct the
KdV flow

KdVr(V ) = 0, V (x, t0) = V (0)(x), x ∈ R (4.3)

for some r ∈ N0. In terms of Lax operators this amounts to solving

d

dt
L(t)− [P2r+1(t), L(t)] = 0, t ∈ R, [P2g+1(t0), L(t0)] = 0. (4.4)

As a consequence one then obtains that

[P2g+1(t), L(t)] = 0, t ∈ R, (4.5)

− P2g+1(t)
2 = R2g+1(L(t)) =

2g∏
n=0

(L(t)− En), t ∈ R (4.6)

since the KdVr flows are isospectral deformations of L(t0). In this paper we shall base
the explicit solution of (4.3) not directly on (4.4) and (4.5) but instead take the following
equations as our point of departure,

Vt = −1

2
F̂r,xxx + 2(V − z)F̂r,x + VxF̂r, (x, t) ∈ R2, (4.7)

Fg,xxFg −
1

2
F 2
g,x − 2(V − z)F 2

g = 2R2g+1(z), (x, t) ∈ R2, (4.8)

where

Fg(z, x, t) =

g∏
j=1

[z − µj(x, t)] (4.9)

(cf. (2.14), (2.18), and (2.23)). In order to stress the fact that the integration constants c`
used in Fg and Fr (cf. (2.10), (2.14)) in general can differ from each other, we explicitly

employ the notation Fg, Gg−1, Hg+1, K
β
g+1, etc. and F̂r, Ĝr−1, Ĥr+1, K̂

β
r+1, etc. throughout

this section. Similarly to (3.5)–(3.8), (3.11), and (3.12) we have

µj,x(x, t) = −2iR
1/2
2g+1(µ̂j(x, t))

g∏
k=1
k 6=j

[µj(x, t)− µk(x, t)]−1, 1 ≤ j ≤ g, (x, t) ∈ R2, (4.10)

{µ̂j(x0, t)}1≤j≤g ⊂ Kg, π̃(µ̂j(x0, t)) = µj(x0, t) ∈ [E2j−1, E2j], 1 ≤ j ≤ g, t ∈ R, (4.11)

Gg−1(z, x, t) = −1

2
Fg,x(z, x, t) = −i

g∑
j=1

R
1/2
2g+1(µ̂j(x, t))

g∏
k=1
k 6=j

(
z − µk(x, t)

µj(x, t)− µk(x, t)

)
, (4.12)
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R2g+1(z) +Gg−1(z, x, t)
2 = Fg(z, x, t)Hg+1(z, x, t), (4.13)

Hg+1(z, x, t) =

g∏
`=0

[z − ν`(x, t)]. (4.14)

In analogy to (3.15) and (3.18) one then considers the meromorphic function φ(P, x, t) on
Kg,

φ(P, x, t) =
iR

1/2
2g+1(P )−Gg−1(π̃(P ), x, t)

Fg(π̃(P ), x, t)
=

−Hg+1

iR
1/2
2g+1(P ) +Gg−1(π̃(P ), x, t)

, (x, t) ∈ R2

(4.15)
and the t-dependent BA function ψ(P, x, x0, t, t0), meromorphic on Kg\{P∞},

ψ(P, x, x0, t, t0) = exp
{∫ t

t0

ds[F̂r(z, x0, s)φ(P, x0, s) + Ĝr−1(z, x0, s)] +

∫ x

x0

dyφ(P, y, t)
}
,

(x, x0, t, t0) ∈ R4. (4.16)

Lemma 4.1. Let P = (z, σR2g+1(z)1/2) = (π̃(P ), R
1/2
2g+1(P )) ∈ Kg\{P∞}, (z, x, x0, t, t0) ∈

C× R4, r ∈ N0. Then

(i). V (x, t) = E0 +

g∑
j=1

[E2j−1 + E2j − 2µj(x, t)].

(4.17)

(ii). φ(P, x, t) satisfies

φx(P, x, t) + φ(P, x, t)2 = V (x, t)− z, (4.18)

φt(P, x, t) = ∂x[F̂r(z, x, t)φ(P, x, t) + Ĝr−1(z, x, t)]. (4.19)

(iii). ψ(P, x, x0, t, t0) satisfies

− ψxx(P, x, x0, t, t0) + [V (x, t)− z]ψ(P, x, x0, t, t0) = 0, (4.20)

ψt(P, x, x0, t, t0) = F̂r(z, x, t)ψx(P, x, x0, t, t0) + Ĝr−1(z, x, t)ψ(P, x, x0, t, t0). (4.21)

(iv). φ(P, x, t)φ(P ∗, x, t) = Hg+1(z, x, t)/Fg(z, x, t). (4.22)

(v). φ(P, x, t) + φ(P ∗, x, t) = −2Gg−1(z, x, t)/Fg(z, x, t) = Fg,x(z, x, t)/Fg(z, x, t). (4.23)

(vi). φ(P, x, t)− φ(P ∗, x, t) = 2iR
1/2
2g+1(P )/Fg(z, x, t). (4.24)

Proof. The proof of (i), (4.18), (4.20), and (iv)–(vi) is analogous to that in Lemma 3.1. In
order to prove (4.19) one can argue as follows. By (4.7) and (4.18),

∂t(φx + φ2) = φtx + 2φφt = Vt = (F̂rφ+ Ĝr−1)xx + 2φ(F̂rφ+ Ĝr−1)x,

which implies

(∂x + 2φ)[φt − (F̂rφ+ Ĝr−1)x] = 0 and hence φt = (F̂rφ+ Ĝr−1)x + Ce−2
∫ x dyφ,

where C is independent of x (but may depend on P and t). The high-energy behavior of
φ(P, x, t) derived from (4.15) yields φ(P, x, t) =

z→∞
±i(z)1/2 + 0(1), P ∈ Π± uniformly in

(x, t) ∈ R2 and hence C = 0 proving (4.19). (4.21) then immediately follows from (4.16) and
(4.19). �
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In analogy to (3.28) we now introduce

Ĥr+1(z, x, t) =
1

2
F̂r,xx(z, x, t)− [V (x, t)− z]F̂r(z, x, t). (4.25)

From (4.7) and (4.8) one then computes

Ĥr+1,x =
1

2
F̂r,xxx − (V − z)F̂r,x − VxF̂r = −Vt − 2(V − z)Ĝr−1. (4.26)

The t-dependence of Fg, Gg−1, and Hg+1 is governed by

Lemma 4.2. Let (z, x, t) ∈ C× R2, r ∈ N0. Then

(i). Fg,t(z, x, t) = 2[Fg(z, x, t)Ĝr−1(z, x, t)− F̂r(z, x, t)Gg−1(z, x, t)].
(4.27)

(ii). Gg−1,t(z, x, t) = Fg(z, x, t)Ĥr+1(z, x, t)− F̂r(z, x, t)Hg+1(z, x, t). (4.28)

(iii). Hg+1,t(z, x, t) = 2[Ĥr+1(z, x, t)Gg−1(z, x, t)−Hg+1(z, x, t)Ĝr−1(z, x, t)]. (4.29)

Proof. By (2.17), (4.19), and (4.24),

φt(P )− φt(P ∗) = −2iR
1/2
2g+1(P )F−2g Fg,t

= ∂x[F̂r(φ(P )− φ(P ∗))] = 2iR
1/2
2g+1(P )(FgF̂r,x − Fg,xF̂r)F−2g ,

implying (4.27). Similarly, by (2.17) and (4.25),

Gg−1,t = −1
2
Fg,tx = F̂rGg−1,x − FgĜr−1,x = FgĤr+1 − F̂rHg+1.

Finally, (2.17), (4.25)–(4.28) yield

Hg+1,t = −Gg−1,tx − (V − z)Fg,t − VtFg = −Fg,xĤr+1 − FgĤr+1,x + F̂r,xHg+1 + F̂rHg+1,x

− 2(V − z)(FgĜr−1 − F̂rGg−1)− VtFg = 2(Gg−1Ĥr+1 − 2Ĝr−1Hg+1). �

As a consequence of (4.27) one obtains the following time-dependence of µj(x, t).

Corollary 4.3. Let (x, t) ∈ R2, r ∈ N0. Then

µj,t(x, t) = −2iF̂r(µj(x, t), x)R
1/2
2g+1(µ̂j(x, t))

g∏
k=1
k 6=j

[µj(x, t)− µk(x, t)]−1,

µ̂j(x, t0) = µ̂
(0)
j (x), 1 ≤ j ≤ g,

(4.30)

π̃(µ̂j(x, t)) = µj(x, t) ∈ [E2j−1, E2j], 1 ≤ j ≤ g. (4.31)

Proof. Take z = µj(x, t) in (4.27) and observe (4.1), (4.3), (4.9), and

R
1/2
2g+1(µ̂j(x, t)) = iGg−1(µj(x, t), x, t), µ̂j(x, t) = (µj(x, t), iGg−1(µj(x, t), x, t)), (4.32)

the latter fact following from (4.12) (as in (3.9)). �

One observes that the special case r = 0 (i.e., F̂0 = 1) in (4.30) is equivalent to (4.10),
(4.11).

Next we record the remaining t-dependent analogs of Lemma 3.1 (vii)–(ix).
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Lemma 4.4. Let P = (z, σR2g+1(z)1/2) = (π̃(P ), R
1/2
2g+1(P )) ∈ Kg\{P∞}, (z, x, x0, t, t0) ∈

C× R4, r ∈ N0. Then

(i). ψ(P, x, x0, t, t0)ψ(P ∗, x, x0, t, t0) = Fg(z, x, t)/Fg(z, x0, t0).

(4.33)

(ii). ψx(P, x, x0, t, t0)ψx(P
∗, x, x0, t, t0) = Hg+1(z, x, t)/Fg(z, x0, t0). (4.34)

(iii). ψ(P, x, x0, t, t0) = [Fg(z, x, t)/Fg(z, x0, t0)]
1/2•

• exp
{
iR

1/2
2g+1(P )

[ ∫ t

t0

dsF̂r(z, x0, s)Fg(z, x0, s)
−1 +

∫ x

x0

dyFg(z, y, t)
−1]}. (4.35)

Proof. (i). Combining (4.16), (4.23), and (4.27) yields

ψ(P, x, x0, t, t0)ψ(P ∗, x, x0, t, t0)

= exp
[ ∫ t

t0

dsFg,s(z, x0, s)Fg(z, x0, s)
−1 +

∫ x

x0

dyFg,y(z, y, t)Fg(z, y, t)
−1]

= [Fg(z, x0, t)/Fg(z, x0, t0)][Fg(z, x, t)/Fg(z, x0, t)] = Fg(z, x, t)/Fg(z, x0, t0).

(ii). (4.22), (4.33) and ψx = φψ imply

ψx(P, x, x0, t, t0)ψx(P
∗, x, x0, t, t0)

= [Hg+1(z, x, t)/Fg(z, x, t)][Fg(z, x, t)/Fg(z, x0, t0)] = Hg+1(z, x, t)/Fg(z, x0, t0).

(iii). Follows from (4.15), (4.16), and (4.27). �

Remark 4.5. We emphasize that instead of taking (4.7) and (4.8) as our starting point for
solving (4.3), and subsequently deriving the first-order differential system (4.10), (4.30), one
could have started directly with the system (4.10), (4.30) and derived (4.7), (4.8) and the
remaining facts of this section (cf. [5]).

Next, we turn to the t-dependent analog of (3.50)–(3.63) and start by introducing

Kβ
g+1(z, x, t) = Hg+1(z, x, t)− 2βGg−1(z, x, t) + β2Fg(z, x, t) =

g∏
`=0

[z − λβ` (x, t)], β ∈ R,

(4.36)
with

Hg+1(z, x, t) = K0
g+1(z, x, t), ν`(x, t) = λ0`(x, t), 0 ≤ ` ≤ g. (4.37)

One then verifies in analogy to (3.57)–(3.62) that

φ(P, x, t) + β =
iR

1/2
2g+1(P )−Gg−1(π̃(P ), x, t) + βFg(π̃(P ), x, t)

Fg(π̃(P ), x, t)

=
−Kβ

g+1(π̃(P ), x, t)

iR
1/2
2g+1(P ) +Gg−1(π̃(P ), x, t)− βFg(π̃(P ), x, t)

,

(4.38)

R2g+1(z) + [Gg−1(z, x, t)− βFg(z, x, t)]2 = Fg(z, x, t)K
β
g+1(z, x, t), (4.39)

[φ(P, x, t) + β][φ(P ∗, x, t) + β] = Kβ
g+1(z, x, t)/Fg(z, x, t), (4.40)
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[ψx(P, x, x0, t, t0) + βψ(P, x, x0, t, t0)][ψx(P
∗, x, x0, t, t0) + βψ(P ∗, x, x0, t, t0)]

= Kβ
g+1(z, x, t)/Fg(z, x0, t0),

(4.41)

(φ(., x, t) + β) = D
λ̂β0 (x,t)λ̂

β
(x,t)
−DP∞µ̂(x,t), (4.42)

with

R
1/2
2g+1(λ̂

β
` (x, t)) = −iGg−1(λ

β
` (x, t), x, t) + iβFg(λ

β
` (x, t), x, t),

λ̂β` (x, t) = (λβ` (x, t),−iGg−1(λ
β
` (x, t), x, t) + iβFg(λ

β
` (x, t), x, t)), 0 ≤ ` ≤ g.

(4.43)

Eq. (4.36) and Lemma 4.2 then yield

Kβ
g+1,t(z, x, t) = 2{K̂β

r+1(z, x, t)[Gg−1(z, x, t)− βFg(z, x, t)]

−Kβ
g+1(z, x, t)[Ĝr−1(z, x, t)− βF̂r(z, x, t)]}

(4.44)

and in analogy to Corollary 4.3 one obtains from (4.44),

λβ`,t(x, t) = −2iK̂β
r+1(λ

β
` (x, t), x, t)R

1/2
2g+1(λ̂

β
` (x, t))

g∏
m=0
m 6=`

[λβ` (x, t)− λβm(x, t)]−1,

λ̂β` (x, t0) = λ̂
β,(0)
` (x), 0 ≤ ` ≤ g, (x, t) ∈ R2,

(4.45)

π̃(λ̂β0 (x, t)) = λβ0 (x, t) ≤ E0, π̃(λ̂β` (x, t)) = λβ` (x, t) ∈ [E2`−1, E2`], (x, t) ∈ R2, (4.46)

where {λβ,(0)` (y)}0≤`≤g are the corresponding eigenvalues of H
β,(0)
y (cf. (3.45), (3.54), and

(3.56)) associated with the initial value V (0)(x) in (4.1).

In an analogous fashion one can analyze the behavior of λβ` (x, t) as a function of β ∈ R.
In fact, (4.36) yields

∂

∂β
Kβ
g+1(z, x, t) = −2[Gg−1(z, x, t)− βFg(z, x, t)] (4.47)

and hence

∂

∂β
Kβ
g+1(z, x, t)

∣∣
z=λβ` (x,t)

= −
[ ∂
∂β

λβ` (x, t)
] g∏
m=0
m 6=`

[λβ` (x, t)− λβm(x, t)]

= −2[Gg−1(λ
β
` (x, t), x, t)− βFg(λβ` (x, t), x, t)] = −2iR

1/2
2g+1(λ̂

β
` (x, t))

(4.48)

by (4.43). This implies for (β, x, t) ∈ R3,

∂

∂β
λβ` (x, t) = 2iR

1/2
2g+1(λ̂

β
` (x, t))

g∏
m=0
m 6=`

[λβ` (x, t)− λβm(x, t)]−1, 0 ≤ ` ≤ g. (4.49)

As in Section 3 we conclude with the θ-function representation of φ(P, x, t), ψ(P, x, x0, t, t0),
and V (x, t).



18 F. GESZTESY, R. RATNASEELAN, AND G. TESCHL

Theorem 4.6. Let P = (z, σR2g+1(z)1/2) ∈ Kg\{P∞}, (z, x, x0, t, t0) ∈ C×R4, P0 = (E0, 0).
Then

φ(P, x, t) = −β +
θ(ΞP0

− AP0
(P∞) + αP0

(µ̂(x, t)))

θ(ΞP0
− AP0

(P∞) + αP0
(λ̂

β
(x, t)))

•

•
θ(ΞP0

− AP0
(P ) + αP0

(λ̂
β
(x, t)))

θ(ΞP0
− AP0

(P ) + αP0
(µ̂(x, t)))

exp
[
−
∫ P

P0

ω
(3)

P∞,λ̂
β
0 (x,t)

]
(4.50)

and

ψ(P, x, x0, t, t0) =
θ(ΞP0

− AP0
(P ) + αP0

(µ̂(x, t)))

θ(ΞP0
− AP0

(P∞) + αP0
(µ̂(x, t)))

•

•
θ(ΞP0

− AP0
(P∞) + αP0

(µ̂(x0, t0)))

θ(ΞP0
− AP0

(P ) + αP0
(µ̂(x0, t0)))

exp
[
− i(x− x0)

∫ P

P0

ω
(2)
P∞,0
− i(t− t0)

∫ P

P0

Ω
(2)
P∞,2r

]
,

(4.51)

where (cf. (A.26))

Ω
(2)
P∞,2r

=
r∑
s=0

cr−s(2s+ 1)ω
(2)
P∞,2s

, (4.52)

αP0
(µ̂(x, t)) = αP0

(µ̂(x0, t0)) +
U

(2)
0

2π
(x− x0) +

U
(2)
2r

2π
(t− t0), (4.53)

U
(2)
2r = (U

(2)
2r,1, . . . , U

(2)
2r,g), U

(2)
2r,j =

∫
bj

Ω
(2)
P∞,2r

, 1 ≤ j ≤ g. (4.54)

The Its-Matveev formula ([26], [4], Ch. 3, [38], Ch. II) for V (x, t) reads (cf. (3.68))

V (x, t) = E0 +

g∑
j=1

(E2j−1 + E2j − 2λj)− 2∂2x ln[θ(ΞP0
− AP0

(P∞) + αP0
(µ̂(x, t)))]. (4.55)

Sketch of Proof. Since (4.50) follows directly from (4.42) and (A.29), and (4.55) can be
inferred from (4.51) and (4.20) upon expanding all quantities in (4.20) near P∞ in a well-
known manner, we first concentrate on the proof of (4.51). Let ψ(P, x, x0, t, t0) be defined
as in (4.16) and denote the right-hand-side of (4.51) by Ψ(P, x, x0, t, t0). In order to prove
that ψ = Ψ, one first observes from (4.10) and (4.30) that

F̂r(π̃(P ), x0, s)φ(P, x0, s) = ∂
∂s

ln[µj(x0, s)− π̃(P )] + 0(1) for P near µ̂j(x0, s) (4.56)

and

φ(P, y, t) = ∂
∂y

ln[µj(y, t)− π̃(P )] + 0(1) for P near µ̂j(y, t). (4.57)

Hence

exp
{∫ t

t0

ds[ ∂
∂s

ln(µj(x0, s)− π̃(P )) + 0(1)]
}

=


[µj(x0, t)− π̃(P )]0(1) for P near µ̂j(x0, t) 6= µ̂j(x0, t0)

0(1) for P near µ̂j(x0, t) = µ̂j(x0, t0)

[µj(x0, t0)− π̃(P )]−10(1) for P near µ̂j(x0, t0) 6= µ̂j(x0, t)

(4.58)
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and

exp
{∫ x

x0

dy[ ∂
∂y

ln(µj(y, t)− π̃(P )) + 0(1)]
}

=


[µj(x, t)− π̃(P )]0(1) for P near µ̂j(x, t) 6= µ̂j(x0, t)

0(1) for P near µ̂j(x, t) = µ̂j(x0, t)

[µj(x0, t)− π̃(P )]−10(1) for P near µ̂j(x0, t) 6= µ̂j(x, t)

,

(4.59)

where 0(1) 6= 0 in (4.58) and (4.59). Consequently, all zeros and poles of ψ and Ψ on
Kg\{P∞} are simple and coincide. By an application of the Riemann-Roch theorem it
remains to identify the essential singularity of ψ and Ψ at P∞. For that purpose we first
recall the known fact that the diagonal Green’s function G(z, x, x, t) of H(t) satisfies

G(z, x, x, t) =
ζ→0

(i/2)ζ
∞∑
j=0

f̃j(x, t)ζ
2j, ζ = 1/

√
z, (4.60)

with f̃j(x, t) the homogeneous coefficients as introduced in the context of (2.12) satisfying
the recursion (2.4) for all j ∈ N. Combining

G(z, x, x, t) =
iFg(z, x, t)

2R2g+1(z)1/2
(4.61)

(cf. (3.35)), (4.15), (4.16), and (4.60) then yields∫ x

x0

dyφ(P, y, t) =
ζ→0

∫ x

x0

dy
iR

1/2
2g+1(P )

Fg(π̃(P ), y, t)
+ 0(ζ2) =

ζ→0
i(x− x0)[ζ−1 + 0(1)], (4.62)

which coincides with the singularity at P∞ of the x-dependent term in the exponent of (4.51)
taking into account (3.69). Finally, in order to identify the t-dependent essential singularity
of ψ and Ψ, we may allude to (2.20) and, without loss of generality, consider the homogeneous
case where c0 = 1, cq = 0, 1 ≤ q ≤ r. Invoking (4.27) then yields from (4.15) and (4.61)∫ t

t0

ds[F̃r(z, x0, s)φ(P, x0, s) + G̃r−1(z, x0, s)]

=

∫ t

t0

ds
{
F̃r(z, x0, s)iR

1/2
2g+1(P )Fg(z, x0, s)

−1 + 1
2
∂
∂s

ln[Fg(z, x0, s)]
}

=
ζ→0
−1

2

∫ t
t0
dsF̃r(z, x0, s)G(z, x0, x0, s)

−1 + 0(1), ζ = 1/
√
z.

(4.63)

Comparing (2.14) (in the homogeneous case) and (4.60) implies

− 1
2
F̃r(z, x0, s)G(z, x0, x0, s)

−1 =
ζ→0

iζ−2r−1 + 0(1) (4.64)

and hence∫ t

t0

ds[F̃r(z, x0, s)φ(P, x0, s) + G̃r−1(z, x0, s)] =
ζ→0

i(t− t0)[ζ−2r−1 + 0(1)], (4.65)

completing the proof of (4.51). The linearity of the Abel map with respect to x and t
in (4.53) then follows by a standard argument considering the differential Ω(x, x0, t, t0) =
d lnψ(., x, x0, t, t0). �
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5. General Trace Formulas

Following a recent series of papers on new trace formulas for Schrödinger operators [16]–
[19], [22]–[24], [39], we first discuss appropriate Krein spectral shift functions, the key tool
for general higher-order trace formulas. Subsequently, we develop a new method for deriving
small-time heat kernel (respectively high-energy resolvent) expansion coefficients associated
with the general β-boundary conditions in (5.3). Interest in these types of trace formulas
stems from their crucial role in the solution of inverse spectral problems.

Unlike Sections 3 and 4, where we focused on the special case of stationary finite-gap
solutions of the KdV hierarchy (the natural extension of solitons as reflectionless potentials),
we now turn to the general situation and consider potentials of the type

V ∈ C∞(R), V (x) ≥ c, x ∈ R, V real-valued. (5.1)

As in Section 3 we introduce the differential expression τ = − d2

dx2
+ V (x), x ∈ R and define

the self-adjoint operators H and Hβ
x0

in L2(R),

Hf = τf, f ∈ D(H) = {g ∈ L2(R)|g, g′ ∈ ACloc(R); τg ∈ L2(R)} (5.2)

and for β ∈ R ∪ {∞}, x0 ∈ R,

Hβ
x0
f = τf, f ∈ D(Hβ

x0
) ={f ∈ L2(R)|g, g′ ∈ AC([x0,±R]) for all R > 0,

lim
ε↓0

[g′(x0 ± ε) + βg(x0 ± ε)] = 0, τg ∈ L2(R)}, (5.3)

with H∞x0 = HD
x0

(H0
x0

= HN
x0

) the corresponding Dirichlet (Neumann) Schrödinger operator.
If G(z, x, x′) denotes the Green’s function of H (as in (3.32), (3.33)), formulas (3.47)–(3.49)
for the resolvent of Hβ

x0
apply without change in the present general situation. In particular,

defining

Γβ(z, x) =

{
(β + ∂1)(β + ∂2)G(z, x, x), β ∈ R
G(z, x, x), β =∞

(5.4)

(cf. the notation introduction in (3.39)) one computes for β ∈ R ∪ {∞},

Tr[(Hβ
x − z)−1 − (H − z)−1] = − d

dz
ln[Γβ(z, x)], z ∈ C\{σ(Hβ

x ) ∪ σ(H)}. (5.5)

Given hypothesis (5.1), one can prove the existence of asymptotic expansions of the type

Tr[(Hβ
x − z)−1 − (H − z)−1] =

z→i∞

∞∑
j=0

rβj (x)z−j, β ∈ R ∪ {∞} (5.6)

uniformly with respect to x ∈ R (cf. [24]). In particular, one can derive the heat kernel
expansion

Tr[e−τH
∞
x − e−τH ] ∼

τ↓0

∞∑
j=0

s∞j (x)τ j, x ∈ R, (5.7)

where
s∞j (x) = (−1)j+1(j!)−1r∞j (x), j ∈ N0 (5.8)

and s∞j (r∞j ) are the well-known invariants of the KdV hierarchy.

In the special case of finite-gap potentials the connection of Γβ(z, s) in (5.4) with our
polynomial approach in Section 3 is clearly demonstrated by (3.35) for β = ∞ and (3.53)
for β = R.
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Before describing a new constructive (i.e., recursive) approach to the coefficients rβj (x),
β ∈ R, we recall the definition of Krein’s spectral shift function [30] associated with the
pair (Hβ

x , H) (cf. [19], [23], [24]). The rank-one resolvent difference of Hβ
x and H (cf. (3.47),

(3.48)) is intimately connected with the fact that for each x ∈ R, β ∈ R ∪ {∞},

Γβ(z, x) is Herglotz with respect to z (5.9)

(i.e., a holomorphic map C+ → C+, where C+ = {z ∈ C| Im(z) > 0}). The exponential
Herglotz representation for Γβ(z, x) (cf. [3]) then reads for each x ∈ R,

Γβ(z, x) = exp
{
cβ +

∫
R
[(λ− z)−1 − λ(1 + λ2)−1][ξβ(λ, x) + δβ] dλ

}
,

cβ ∈ R, β ∈ R ∪ {∞}, δβ =

{
1, β ∈ R
0, β =∞

, (5.10)

where, by Fatou’s lemma,

ξβ(λ, x) = π−1 lim
ε↓0

Im{ln[β + ∂1)(β + ∂2)G(λ+ iε, x, x)]} − δβ, β ∈ R ∪ {∞} (5.11)

for a.e. λ ∈ R. Moreover,

− 1 ≤ ξβ(λ, x) ≤ 0, ξβ(λ, x) = 0, λ < inf σ(Hβ
x ), β ∈ R,

0 ≤ ξ∞(λ, x) ≤ 1, ξ∞(λ, x) = 0, λ < inf σ(H)
(5.12)

for a.e. λ ∈ R. As a consequence, one obtains (cf. [39])

Tr[f(Hβ
x )− f(H)] =

∫
R
dλf ′(λ)ξβ(λ, x), β ∈ R ∪ {∞}, x ∈ R (5.13)

for any f ∈ C2(R) with (1 + λ2)f (j) ∈ L2((0,∞)), j = 1, 2 and for f(λ) = (λ − z)−1,
z ∈ C\[inf σ(Hβ

x ),∞). In particular, (5.13) holds for traces of heat kernel and resolvent
differences, i.e., for any β ∈ R ∪ {∞}, x ∈ R,

Tr[e−τH
β
x − e−τH ] = −τ

∫ ∞
eβx,0

dλe−τλξβ(λ, x), τ > 0, (5.14)

Tr[(Hβ
x − z)−1 − (H − z)−1] = −

∫ ∞
eβx,0

dλ(λ− z)−2ξβ(λ, x), z ∈ C\{σ(Hβ
x ) ∪ σ(H)},

(5.15)

where

eβx,0 =

{
inf σ(Hβ

x ), β ∈ R
inf σ(H), β =∞ . (5.16)

Returning to a recursive approach for the expansion coefficients rβj (x) in (5.6) we first
consider the expansion

Γβ(z, x) =
z→i∞

(i/2)
∞∑

j=−δβ
γβj (x)z−j−1/2, β ∈ R ∪ {∞}. (5.17)

(A comparison of (5.17) and (4.60) reveals that γ∞j (x) = f̃j(x), j ∈ N0 in the case β =∞.)

In order to obtain a recursion relation for γβj (x) one can use the following result.
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Lemma 5.1. Let z ∈ C\σ(H), x ∈ R.
(i). Assume β ∈ R. Then Γβ(z, x) = (β + ∂1)(β + ∂2)G(z, x, x) satisfies

2[V (x)− β2 − z]Γβxx(z, x)Γβ(z, x)− [V (x)− β2 − z]Γβx(z, x)2 − 2Vx(x)Γβx(z, x)Γβ(z, x)

− 4{[V (x)− z][V (x)− β2 − z]− βVx(x)}Γβ(z, x)2 = −[V (x)− z − β2]3.
(5.18)

(ii). Assume β =∞. Then Γ∞(z, x) = G(z, x, x) satisfies

Γ∞xxx(z, x)− 4[V (x)− z]Γ∞x (z, x)− 2Vx(x)Γ∞(z, x) = 0 (5.19)

and

− 2Γ∞xx(z, x)Γ∞(z, x) + Γ∞x (z, x)2 + 4[V (x)− z]Γ∞(z, x)2 = 1. (5.20)

While the results (5.19) and (5.20) in the Dirichlet case β = ∞ are well-known, see,
e.g., [14], the result (5.18) (with the exception of the Neumann case β = 0 which was
first presented in [21]) is new. Unfortunately, we have no reasonably short derivation of
the differential equation (5.18). It can be verified (not without tears) after quite tedious
though straightforward calculations (we recommend additional help in the form of symbolic
computations).

Insertion of the expansion (5.17) into (5.18) and (5.20) in Lemma 5.1 yields

Lemma 5.2. The coefficients γβj (x) in (5.17) satisfy the following recursion relation.
(i). Assume β ∈ R. Then

γβ−1 = 1, γβ0 = β2 − 1
2
V, γβ1 = 1

2
β2V + 1

2
βVx − 1

8
V 2 + 1

8
Vxx,

γβ2 = − 1
16
V 3 + 3

8
β2V 2 + 3

16
Vx(4βV + Vx) + 1

8
Vxx(V − β2)− 1

8
βVxxx − 1

64
Vxxxx,

γβj+1 = 1
8

∑j
`=1[2(V − β2)γβ`−1γ

β
j−`,xx − (V − β2)γβ`−1,xγ

β
j−`,x

− 4γβ` γ
β
j−`+1 − 4V (V − β2)γβ`−1γ

β
j−` − 2Vxγ

β
`−1γ

β
j−`,x + γβ`−1γ

β
j−`]

+ 1
8

∑j
`=0[γ

β
`,xγ

β
j−`,x − 2γβ` γ

β
j−`,xx − 4(β2 − 2V )γβ` γ

β
j−`], j ≥ 2.

(5.21)

(ii). Assume β =∞. Then

γ∞0 = 1, γ∞1 = 1
2
V,

γ∞j+1 = −1
2

∑j
`=1 γ

∞
` γ
∞
j+1−` + 1

2

∑j
`=0[V γ

∞
` γ
∞
j−` + 1

4
γ∞`,xγ

∞
j−`,x − 1

2
γ∞`,xxγ

∞
j−`], j ≥ 1.

(5.22)

The final result for rβj (x) then reads

Theorem 5.3. The coefficients rβj (x) in (5.6) satisfy the following recursion relations.
(i). Assume β ∈ R. Then

rβ0 (x) = −1
2
, rβ1 (x) = β2− 1

2
V (x), rβj (x) = jγβj−1(x)−

∑j−1
`=1 γ

β
j−`−1(x)rβ` (x), j ≥ 2. (5.23)

(ii). Assume β =∞. Then

r∞0 = 1
2
, r∞1 (x) = 1

2
V (x), r∞j (x) = jγ∞j (x)−

∑j−1
`=1 γ

∞
j−`(x)r∞` (x), j ≥ 2. (5.24)

Proof. It suffices to combine (5.5), (5.6), (5.17), and the following well-known fact on as-
ymptotic expansions: F (z) =

|z|→∞

∑∞
j=1 cjz

−j implies ln[1 + F (z)] =
|z|→∞

∑∞
j=1 djz

−j, where

d1 = c1, dj = cj −
∑j−1

`=1(`/j)cj−`d`, j ≥ 2. �
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Theorem 5.3 (i) has first been derived (by using a different strategy) in [24]. The current
derivation, based on the universal differential equation (5.18), is new. Combined with (5.21),

Theorem 5.3 (i) yields the most efficient algorithm to date for computing rβj (x), β ∈ R.

The connection between rβj (x) and ξβ(λ, x) is illustrated in the following result.

Theorem 5.4. [24] Let eβx,0 = inf σ(Hβ
x ), β ∈ R, e∞0 = inf σ(H).

(i). Assume β ∈ R. Then

rβj (x) = −1
2
(eβx,0)

j − lim
z→i∞

∫∞
eβx,0

dλzj+1(λ− z)−j−1j(−λ)j−1[1
2

+ ξβ(λ, x)], j ∈ N. (5.25)

(ii). Assume β =∞. Then

r∞j (x) = 1
2
(e∞0 )j + lim

z→i∞

∫∞
e∞0

dλzj+1(λ− z)−j−1j(−λ)j−1[1
2
− ξ∞(λ, x)], j ∈ N. (5.26)

We conclude with an example that yields the higher-order trace formulas for periodic
potentials which also applies to the (quasi-periodic) finite-gap potentials of Section 3.

Example 5.5. Assume V is periodic, i.e., for some Ω > 0, V (x+ Ω) = V (x) for all x ∈ R
in addition to (5.1). Then Floquet theory implies

σ(H) =
∞⋃
n=1

[E2(n−1), E2n−1], E0 < E1 ≤ E2 < E3 ≤ · · · (5.27)

(i). Assume β ∈ R. Then

σ(Hβ
x ) = {λβn(x)}n∈N0 ∪ σ(H), λβ0 (x) ≤ E0, λ

β
n(x) ∈ [E2n−1, E2n], n ∈ N, (5.28)

ξβ(λ, x) =


0, λ < λβ0 (x), E2n−1 < λ < λβn(x), n ∈ N
−1, λβ0 (x) < λ < E0, λ

β
n(x) < λ < E2n, n ∈ N

−1

2
, E2(n−1) < λ < E2n−1, n ∈ N

. (5.29)

Inserting (5.29) into (5.25) then yields the higher-order periodic trace formulas

rβj (x) = 1
2
Ej

0 − λ
β
0 (x)j + 1

2

∑∞
n=1[E

j
2n−1 + Ej

2n − 2λβn(x)j], j ∈ N. (5.30)

(ii). Assume β =∞. Then

σ(H∞x ) = {µn(x)}n∈N ∪ σ(H), µn(x) ∈ [E2n−1, E2n], n ∈ N, (5.31)

ξ∞(λ, x) =


0, λ < E0, µn(x) < λ < E2n, n ∈ N
1, E2n−1 < λ < µn(x), n ∈ N
1

2
, E2(n−1) < λ < E2n−1, n ∈ N.

. (5.32)

Insertion of (5.32) into (5.26) then yields

r∞j (x) = 1
2
Ej

0 + 1
2

∑∞
n=1[E

j
2n−1 + Ej

2n − 2µn(x)j], j ∈ N. (5.33)

The results (5.29) and (5.32) remain valid in the algebro-geometric finite-gap situation
discussed in Section 3 where

E2n+1 = λβn(x) = E2n+2, n ≥ g + 1, β ∈ R ∪ {∞}. (5.34)

Hence (5.30) and (5.33) apply to the stationary KdV solutions of Section 3 (e.g., (5.33) for
j = 1 coincides with (3.19)) which, in general, are quasi-periodic with respect to x. Moreover,
(5.30) and (5.33) also extend to certain classes of almost-periodic V (x), see, e.g., [8], [28],
[31], [32], Chs. 9, 11.
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The periodic Dirichlet trace formula (5.33) for j = 1 has been noticed by Hochstadt
[25] and later on by Dubrovin [10]. The general case j = N appeared in McKean and van
Moerbeke [34] and Flaschka [13]. More recent accounts of (5.33) can be found in [8], [28],
[31], [32], Chs. 9, 11, [40]. The Neumann case β = 0 in (5.30) is due to McKean and
Trubowitz [35]. The general case β ∈ R was first studied in [24]. Additional references on
the subject of trace formulas and their use in connection with the inverse spectral problem
can be found in the papers cited in this paragraph and in the ones listed at the beginning
of this section.

Appendix A. Hyperelliptic Curves of the KdV-type and Theta Functions

We briefly summarize our basic notation for hyperelliptic KdV-type curves (i.e., those
branched at infinity) and their theta functions as employed in Sections 3 and 4. For details
on this standard material we refer, e.g., to [11], [12], [29], [37].

Consider the points {En}0≤n≤g ⊂ R, E0 < E1 < · · · < E2g, g ∈ N0 and define the cut

plane Π = C\
⋃g−1
j=0[E2j, E2j+1] ∪ [E2g,∞) with the holomorphic function

R2g+1(.)
1/2 :

{
Π→ C
z →

[∏2g
n=0(z − En)

]1/2 (A.1)

on it. R2g+1(.)
1/2 is extended to all of C by

R2g+1(λ)1/2 = lim
ε↓0

R2g+1(λ+ iε)1/2, λ ∈ C\Π, (A.2)

with the sign of the square root chosen according to

R2g+1(λ)1/2 =


(−1)gi|R2g+1(λ)1/2|, λ ∈ (−∞, E0)
(−1)g+ji|R2g+1(λ)1/2|, λ ∈ (E2j−1, E2j), 1 ≤ j ≤ g
(−1)g+j|R2g+1(λ)1/2|, λ ∈ (E2j, E2j+1), 0 ≤ j ≤ g − 1
|R2g+1(λ)1/2|, λ ∈ (E2g,∞)

. (A.3)

Next we define the set

M = {(z, σR2g+1(z)1/2)|z ∈ C, σ ∈ {−,+}} ∪ {P∞ = (∞,∞)} (A.4)

and

B = {(En, 0)}0≤n≤2g ∪ {P∞ = (∞,∞)}, (A.5)

the set of branch points. M becomes a compact Riemann surface upon introducing the
charts (UP0 , ζP0) defined as follows

P0 = (z0, σ0R2g+1(z)1/2) or P0 = P∞,

P = (z, σR2g+1(z)1/2) ∈ UP0 ⊂M, VP0 = ζ(UP0) ⊂ C.
(A.6)

P0 ∈ M\B:

UP0 = {P ∈ M | |z − z0| < C, σR2g+1(z)1/2 the branch obtained by straight line analytic
continuation starting from z0}, C = minn |z0 − En|,

ζP0 :

{
UP0 → VP0

P → (z − z0)
, ζ−1P0

:

{
VP0 → UP0

ζ → (z0 + ζ, σR2g+1(z0 + ζ)1/2)
. (A.7)
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P0 = (En0, 0):

UP0 = {P ∈M | |z − En0| < Cn0}, Cn0 =

{
min
n6=n0

|En − En0 |, g ∈ N

∞, g = 0
,

VP0 = {ζ ∈ C| |ζ| < C1/2
n0
}, ζP0 :

{
UP0 → VP0

P → σ(z − En0)
1/2 ,

(z − En0)
1/2 = |(z − En0)

1/2|e(i/2) arg(z−En0 ), arg(z − En0) ∈
{

[0, 2π), n0 even
(−π, π], n0 odd

,

ζ−1P0
:

{
VP0 → UP0

ζ → (En0 + ζ2, ζ[
∏

n6=n0
(En0 − En + ζ2)]1/2

,[ ∏
n6=n0

(En0 − En + ζ2)
]1/2

= (−1)gi−n0
∣∣[ ∏
n6=n0

(En0 − En)
]1/2∣∣[1 + 2−1ζ2

∑
n6=n0

(En0 − En)−1 + 0(ζ4)
]
.

(A.8)

P0 = P∞:

UP0 = {P ∈M | |z| > C∞}, C∞ = max
n
|En|, VP0 = {ζ ∈ C| |ζ| < C−1/2∞ },

ζP0 :

 UP0 → VP0

P → σ(1/z1/2)
P∞ → 0

,
z1/2 = |z1/2|e(i/2) arg(z),
0 ≤ arg(z) < 2π,

ζ−1P0
:


VP0 → UP0

ζ →
(
ζ−2, ζ−2g−1

[∏
n(1− ζ2En)

]1/2)
0→ P∞

,

[∏
n

(1− ζ2En)
]1/2

= 1− 2−1ζ2
∑
n

En + 0(ζ4).

(A.9)

Upper and lower sheets Π± ⊂M with associated charts ζ± are defined by

Π± = {(z,±R2g+1(z)1/2) ∈M |z ∈ Π}, ζ± :

{
Π± → Π

P → z
. (A.10)

The compact Riemann surface (curve) resulting from (A.4)–(A.9) is denoted by Kg. Topo-
logically, Kg is a sphere with g handles and hence has genus g.

Next, define the holomorphic sheet exchange map (involution)

∗ :

{
Kg → Kg

(z, σR2g+1(z)1/2)→ (z, σR2g+1(z)1/2)∗ = (z,−σR2g+1(z)1/2)
(A.11)

and the two meromorphic projection maps

π̃ :


Kg → C ∪ {∞}
(z, σR2g+1(z)1/2)→ z

P∞ →∞
, R

1/2
2g+1 :


Kg → C ∪ {∞}
(z, σR2g+1(z)1/2)→ σR2g+1(z)1/2

P∞ →∞
. (A.12)
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π̃ has a pole of order 2 at P∞ and two simple zeros at (0,±R2g+1(0)1/2) if R2g+1(0) 6= 0 or a

double zero at (0, 0) if R2g+1(0) = 0 (i.e., if 0 ∈ {En}0≤n≤2g) and R
1/2
2g+1 has a pole of order

2g + 1 at P∞ and 2g + 1 simple zeros at (En, 0), 0 ≤ n ≤ 2g. Moreover,

π̃(P ∗) = π̃(P ), R
1/2
2g+1(P

∗) = −R1/2
2g+1(P ), P ∈ Kg. (A.13)

Thus Kg is a two-sheeted ramified covering of the Riemann sphere C∞(∼= C ∪ {∞}), in
particular, Kg is compact and hyperelliptic.

Using our local charts one infers that for g ∈ N, dπ̃/R
1/2
2g+1 is a holomorphic differential on

Kg with a zero of order 2(g − 1) at P∞ and hence

ηj = π̃j−1dπ̃/R
1/2
2g+1(.), 1 ≤ j ≤ g (A.14)

form a basis for the space of holomorphic differentials on Kg.
Next we introduce a canonical homology basis {aj, bj}1≤j≤g for Kg as follows. The cycle

a` starts near E2`−1 on Π+, surrounds E2` counterclockwise thereby changing to Π−, and
returns to the starting point encircling E2`−1, changing sheets again. The cycle b` surrounds
E0, E2`−1 counterclockwise (once) on Π+. The cycles are chosen such that their intersection
matrix reads aj ◦ bk = δj,k, 1 ≤ j, k ≤ g. Introducing the invertible matrix C in Cg,

C = (Cj,k)1≤j,k≤g, Cj,k =

∫
ak

ηj = 2

∫ E2k

E2k−1

zj−1 dz/R2g+1(z)1/2 ∈ iR,

c(k) = (c1(k), . . . , cg(k)), cj(k) = C−1j,k ,

(A.15)

the normalized differentials ωj, 1 ≤ j ≤ g,

ωj =

g∑
`=1

cj(`)η`,

∫
ak

ωj = δj,k, 1 ≤ j, k ≤ g (A.16)

form a canonical basis for the space of holomorphic differentials on Kg. The matrix τ in Cg

of b-periods,

τ = (τj,k)1≤j,k≤g, τj,k =

∫
bk

ωj, 1 ≤ j, k ≤ g (A.17)

then satisfies

τj,k = τk,j, 1 ≤ j, k ≤ g, τ = iT, T > 0. (A.18)

In the chart (UP∞ , ζP∞ = ζ) induced by 1/π̃1/2 near P∞ one infers

ω = −2
{ g∑
j=1

c(j)ζ2(g−j)/
[∏

n

(1− ζ2En)
]1/2}

dζ

= −2
{
c(g) +

[
1
2
c(g)

∑2g
n=0En + c(g − 1)

]
ζ2 + 0(ζ4)

}
dζ.

(A.19)

Associated with the homology basis {aj, bj}1≤j≤g we also recall the canonical dissection of Kg

along its cycles yielding the simply connected interior K̂g of the fundamental polygon ∂K̂g

given by ∂K̂g = a1b1a
−1
1 b−11 a2b2a

−1
2 b−12 · · · a−1g b−1g . The Riemann theta function associated

with Kg is defined by

θ(z) =
∑
n∈Zg

exp[2πi(n, z) + πi(n, τn)], z = (z1, . . . , zg) ∈ Cg, (A.20)
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where (u, v) =
∑g

j=1 ujvj denotes the scalar product in Cg. It has the fundamental properties

θ(z1, . . . , zj−1,−zj, zj+1, . . . , zg) = θ(z),

θ(z +m+ τn) = θ(z) exp[−2πi(n, z)− πi(n, τn)], m, n ∈ Zg.
(A.21)

A divisor D on Kg is a map D : Kg → Z, where D(P ) 6= 0 for only finitely-many P ∈ Kg.
The set of all divisors will be denoted by Div(Kg). With Lg we denote the period lattice

Lg = {z ∈ Cg|z = m+ τn, m, n ∈ Zg} (A.22)

and the Jacobi variety J(Kg) is defined by

J(Kg) = Cg/Lg. (A.23)

The Abel maps AP0
(.), respectively αP0

(.) are defined by

AP0
:

Kg→J(Kg)

P→AP0 (P )=
P∫
P0

ω mod (Lg)
, αP0

:

{
Div(Kg)→J(Kg)

D→αP0 (D)=
∑

P∈Kg
D(P )AP0

(P )
, (A.24)

with P0 ∈ Kg a fixed base point. (In the main text we agree to fix P0 = (E0, 0) for
convenience.)

Next, let M(Kg) and M1(Kg) denote the set of meromorphic functions (0-forms) and
meromorphic differentials (1-forms) on Kg. The residue of a meromorphic differential ν ∈
M1(Kg) at a point Q0 ∈ Kg is defined by resQ0(ν) = (2πi)−1

∫
γQ0

ν, where γQ0 is a counter-

clockwise oriented smooth simple closed contour encircling Q0 but no other pole of ν. Holo-
morphic differentials are also called (Abelian) differentials of the first kind (dfk); (Abelian)
differentials of the second kind (dsk) ω(2) ∈M1(Kg) are characterized by the property that
all their residues vanish. They are normalized, e.g., by demanding that all their a-periods
vanish, i.e., ∫

aj

ω(2) = 0, 1 ≤ j ≤ g. (A.25)

If ω
(2)
P1,n

is a dsk on Kg whose only pole is P1 ∈ K̂g with principal part ζ−n−2 dζ, n ∈ N0 near

P1 and ωj = (
∑∞

m=0 dj,m(P1)ζ
m) dζ near P1, then∫
bj

ω
(2)
P1,n

= [2πi/(n+ 1)]dj,n(P1). (A.26)

A basis for dsk’s on Kg, holomorphic on Kg\{P∞}, is provided by

ω(2)
n = π̃g+1+ndπ̃/R

1/2
2g+1(.), n ∈ N0. (A.27)

Any meromorphic differential ω(3) on Kg not of the first or second kind is defined to be of
the third kind (dtk). A dtk ω(3) ∈ M1(Kg) is usually normalized by the vanishing of its
a-periods, i.e., ∫

aj

ω(3) = 0, 1 ≤ j ≤ g. (A.28)

A normal dtk ω
(3)
P1,P2

associated with two points P1, P2 ∈ K̂g, P1 6= P2 by definition has
simple poles at P1 and P2 with residues +1 at P1 and −1 at P2 and vanishing a-periods. If
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ω
(3)
P,Q is a normal dtk associated with P , Q ∈ K̂g, holomorphic on Kg\{P,Q}, then∫

bj

ω
(3)
P,Q = 2πi

∫ P

Q

ωj, 1 ≤ j ≤ g, (A.29)

where the path from Q to P lies in K̂g (i.e., does not touch any of the cycles aj, bj).
We shall always assume (without loss of generality) that all poles of dsk’s and dtk’s on

Kg lie on K̂g (i.e., not on ∂K̂g).
For f ∈ M(Kg)\{0}, ω ∈ M1(Kg)\{0} the divisors of f and ω are denoted by (f) and

(ω), respectively. Two divisors D, E ∈ Div(Kg) are called equivalent, denoted by D ∼ E , if
and only if D − E = (f) for some f ∈ M(Kg)\{0}. The divisor class [D] of D is then given
by [D] = {E ∈ Div(Kg)|E ∼ D}. We recall that

deg((f)) = 0, deg((ω)) = 2(g − 1), f ∈M(Kg)\{0}, ω ∈M1(Kg)\{0}, (A.30)

where the degree deg(D) of D is given by deg(D) =
∑

P∈Kg D(P ). One calls (f) (respectively

(ω)) a principal (respectively canonical) divisor.
Introducing the complex linear spaces

L(D) = {f ∈M(Kg)|f = 0 or (f) ≥ D}, r(D) = dimC L(D), (A.31)

L1(D) = {ω ∈M1(Kg)|ω = 0 or (ω) ≥ D}, i(D) = dimC L1(D) (A.32)

(i(D) the index of speciality of D), one infers that deg(D), r(D), and i(D) only depend on
the divisor class [D] of D. Moreover, we recall the following fundamental facts.

Theorem A.1. Let D ∈ Div(Kg), ω ∈M1(Kg)\{0}. Then
(i).

i(D) = r(D − (ω)), g ∈ N0. (A.33)

(ii). (Riemann-Roch theorem).

r(−D) = deg(D) + i(D)− g + 1, g ∈ N0. (A.34)

(iii). (Abel’s theorem). D ∈ Div(Kg), g ∈ N is principal if and only if

deg(D) = 0 and αP0
(D) = 0. (A.35)

(iv). (Jacobi’s inversion theorem). Assume g ∈ N, then αP0
: Div(Kg)→ J(Kg) is surjec-

tive.

For notational convenience we agree to abbreviate

DQ :


Kg → {0, 1}

P →

{
1, P = Q

0, P 6= Q

, DQ :


Kg → {0, 1, . . . , g}

P →

{
m if P occurs m-times in {Q1, . . . , Qg}
0 if P 6∈ {Q1, . . . , Qg}

.

(A.36)
for Q = (Q1, . . . , Qg) ∈ σgKg (σnKg then n-th symmetric power of Kg). Moreover, σnKg

can be identified with the set of positive divisors 0 < D ∈ Div(Kg) of degree n.

Lemma A.2. Let DQ ∈ σgKg, Q = (Q1, . . . , Qg). Then 1 ≤ i(DQ) = s(≤ g/2) if and only

if there are s pairs of the type (P, P ∗) ∈ {Q1, . . . , Qg} (this includes, of course, branch points
for which P = P ∗).
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We emphasize that most results in this appendix immediately extend to the case where
{En}0≤n≤2g ⊂ C. (In this case τ is no longer purely imaginary as stated in (A.18) but has a
positive definite imaginary part.)

Appendix B. An Explicit Illustration of the Riemann-Roch Theorem

Finally, we give a brief illustration of the Riemann-Roch theorem in connection with
KdV-type hyperelliptic curves, i.e., hyperelliptic curves branched at infinity, and explicitly
determine a basis for the vector space L(−nDP∞ −Dµ̂(x0)), n ∈ N0.

We freely use the notation introduced in Appendix A and refer, in particular, to the
definition (A.31) of L(D) and the Riemann-Roch theorem stated in Theorem A.1 (ii). In
addition, we use the short-hand notation

nDP∞ +Dµ̂(x0) =
n∑

m=1

DP∞ +

g∑
j=1

Dµ̂j(x0), n ∈ N0, µ̂(x0) = (µ̂1(x0), . . . , µ̂g(x0)) (B.1)

and recall that

L(−nDP∞ −Dµ̂(x0)) = {f ∈M(Kg)|f = 0 or (f) + nDP∞ +Dµ̂(x0) ≥ 0}, n ∈ N0. (B.2)

With φ(P, x), ψ(P, x, x0) defined as in (3.15), (3.18) we obtain the following

Theorem B.1. Assume Dµ̂(x0) to be nonspecial (i.e., i(Dµ̂(x0)) = 0) and of degree g ∈ N.

For n ∈ N0, a basis for the vector space L(−nDP∞ −Dµ̂(x0)) is given by
{1}, n = 0

{π̃j}0≤j≤(n−1)/2 ∪ {π̃jφ(., x0)}0≤j≤(n−1)/2, n odd

{π̃j}0≤j≤n/2 ∪ {π̃jφ(., x0)}0≤j≤(n−2)/2, n even

, (B.3)

or equivalently,

L(−nDP∞ −Dµ̂(x0)) = span
{ ∂j
∂xj

ψ(., x, x0)
∣∣
x=x0

}
0≤j≤n. (B.4)

Proof. The elements in (B.3) easily seen to be linearly independent and belonging to L(−nDP∞−
Dµ̂(x0)). It remains to be shown that they are maximal. From 0 = i(Dµ̂(x0)) = i(DnP∞ +

Dµ̂(x0)) and the Riemann-Roch theorem (A.34) one obtains r(−nDP∞ − Dµ̂(x0)) = n + 1

proving (B.3). In order to prove (B.4), one repeatedly uses the Schrödinger equation (3.21)
to prove inductively that

∂2m+2

∂x2m+2
ψ(P, x, x0) = (−π̃)m+1 +R2m+1(P, x),

∂2m+1

∂x2m+1
ψ(P, x, x0) = (−π̃)m

∂

∂x
ψ(P, x, x0) +R2m(P, x),

(B.5)

where Rn(., x0) ∈ L(−nDP∞ −Dµ̂(x0)). �
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