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Abstract. This paper discusses some general aspects and techniques associ-

ated with the long-time asymptotics of steplike solutions of the Korteweg–de
Vries (KdV) equation via vector Riemann–Hilbert problems. We also elabo-

rate on an ill-posedness of the matrix Riemann–Hilbert problem for the KdV

case in the class of matrices with square integrable singularities. Furthermore,
we refine the asymptotics for the shock wave in the Whitham zone derived

previously and rigorously justify it for a more general class of initial data. In

particular, we clarify the influence of resonances and of the discrete spectrum
on the leading asymptotics.

1. Introduction

The nonlinear steepest descent (NSD) analysis for oscillatory Riemann–Hilbert
problems (RHP) is a versatile tool in asymptotic analysis. This procedure naturally
starts from a reformulation of the original scattering problem as a Riemann–Hilbert
factorization problem. In most cases this will be a matrix RHP as these are typically
more convenient to analyze. Indeed, the fact that a nonsingular solution can be
used to cancel jumps on certain parts of the contour is a crucial trick which lies
at the heart of the theory. However, for some problems, most prominently the
Korteweg–de Vries equation

(1.1) qt(x, t) = 6q(x, t)qx(x, t)− qxxx(x, t), (x, t) ∈ R× R+,

it turned out that a vector RHP is the right choice. This is related to the fact
that even in the simplest case of a single soliton there is a nontrivial solution of
the associated vanishing problem (see [18]). However, this is in contradiction to
the classical uniqueness result for matrix RHPs and shows that the matrix problem
cannot have a solution in this situation. The remedy, as pointed out in [18], is to
work with the vector RHP and impose an additional symmetry condition to retain
uniqueness.

Next, recall that the asymptotic analysis of such a RHP usually consists of three
steps: The first step deforms the problem in such a way that the leading asymptotic
contribution is revealed. In the second step the parts of the jump which are expected
not to contribute to the leading asymptotics are dropped, yielding a model problem
which then needs to be solved explicitly. For applying the Deift–Zhou method,
we require a matrix-valued solution to the model problem. In most cases, it is
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possible to find the matrix solution explicitly and hence the final step, namely
showing that the solution of the vector-valued model problem indeed asymptotically
approximates the solution of the original RHP, can be performed using the well-
established tools for matrix problems. However, for model problems leading to
explicit solutions in terms of Jacobi theta functions, finding a nonsingular1 matrix
solution is not always possible (see [4, Thm. 5.6], [3, Sect. 3], [16, Sect. 3]). Note
that unlike for the model problem, for the initial KdV R-H problem a vector-valued
solution is sufficient for the Deift–Zhou analysis.

The main purpose of the present note is to study in depth such a RHP coming
from the KdV equation, having only singular matrix model solutions for certain
exceptional values of the parameters x and t. Indeed for these values, the initial and
the model problems do not have invertible bounded matrix solutions with admissible
square integrable singularities in the points of discontinuity of the contour. We will
refer to this feature as the ill-posedness of the matrix RHP for the KdV equation.

The specific example that we will consider is the RHP associated with the long-
time asymptotical behavior of shock waves for the KdV equation. Here the KdV
shock problem is the Cauchy problem for (1.1) with initial data q(x, 0) = q(x)
satisfying:

(1.2)

{
q(x) → 0, as x→ +∞,
q(x) → −c2, as x→ −∞, c > 0.

We recall that the asymptotic behavior of the shock wave was first described on
a physical level of rigor in the pioneering works of Gurevich and Pitayevskii [19],
[20]. By applying the Whitham approach to the pure step initial data (q(x) = 0
for x > 0 and q(x) = −c2 for x ≤ 0), the authors derived the leading asymptotics
in terms of a modulated elliptic wave. For arbitrary steplike initial data (1.2) the
analogous asymptotic term was calculated in [11] and [13] using the NSD method.
In particular, it was shown that in the elliptic zone −6c2t < x < 4c2t the shock
wave is expected to be close to a modulated one gap solution of the KdV equation
as t→ ∞. However, this has not been rigorously justified until now.

The main result of this paper is the completion of the asymptotic analysis for the
shock wave in the Whitham zone, in the framework of the standard NSD method.
Even though the inverse scattering transform for the KdV equation is given in
terms of a vector RHP, the NSD approach involves building a matrix solution to
the model RHP in order to match it with the local parametrix solutions. Since
the nonsingular matrix model solution does not exist for certain arbitrary large
pairs x and t, we will instead use a singular matrix model solution which, despite
its singular behavior, can be used to bound the error term in the asymptotics, as
shown in [16, Sect. 3]. Note that for decaying initial data or rarefaction waves,
meaning q(x) → 0 as x→ +∞ and q(x) → c2 as x→ −∞, the nonsingular matrix
model solutions always exist (see [1], [18]).

As for the shock wave case, to characterize the pairs (x, t) for which the non-
singular matrix model solution fails to exist, we must recall the trace formula for
a finite gap KdV solution. Denote by ξ = x

12t the slowly varying parameter and

1In what follows nonsingular refers to the matrix solution being invertible with at most L2-
integrable singularities on either side of the jump contour
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consider values (x, t) satisfying

(1.3) ξ ∈ Iε := [−c
2

2
+ ε,

c2

3
− ε],

for an arbitrary small ε > 0. Then, as is shown in [19], [11], there exists a smooth

monotonously increasing positive function a = a(ξ) such that a(− c2

2 ) = 0 and

a( c
2

3 ) = c. This function characterizes the Whitham zone of the modulated elliptic

wave qmod(x, t, ξ), which is the periodic one gap solution of the KdV equation on
the ray ξ = const. This one gap solution is associated with the spectrum

(1.4) G(ξ) := [−c2,−a2(ξ)] ∪ R+,

and with the initial Dirichlet divisor (λ(0, 0, ξ),±) defined via the scattering data
of the potential (1.2) by the formulas (5.16) and (4.5)-(4.7) below. Let λ(x, t, ξ) ∈
[−a2(ξ), 0 ] be the solution of the Dubrovin equations ([24, Ch. 12]) corresponding
to the initial value (λ(0, 0, ξ),±). Then the well-known trace formula implies

qmod(x, t, ξ) = −c2 − a(ξ)2 − 2λ(x, t, ξ).

We will show (see Remark 5.3) that the set of local minima of qmod(x, t, ξ):

O(ξ) = {(x, t) : λ(x, t, ξ) = 0},
coincides with the set of points where the associated matrix model problem has no
nonsingular solution. Evidently, these pairs (x, t) appear for each ξ ∈ Iε and for
arbitrary large t.

In turn, the circumstances which lead to the ill-posedness of the initial matrix
RHP associated with the shock wave for certain (arbitrary large) points (x, t) are
the following. Let ϕ(k, x, t) be the right Jost solution to the underlying spectral
equation of the problem (1.1)–(1.2):

(1.5) L(t)y = − d2

dx2
y + q(x, t)y = k2y,

normalized as

(1.6) lim
x→+∞

e−ikxϕ(k, x, t) = 1.

In Section 3 we show that if ϕ(0, x, t) = 0 for a pair (x, t), then the nonsingular ma-
trix solution for the initial RHP does not exist. In connection with this observation
an additional spectral problem appears: to find conditions which would guarantee
that the right Jost solution associated with the shock wave is nonzero at the edge
of the continuous spectrum for sufficiently large x and t with (x, t) ∈ Dε, where

(1.7) Dε := {(x, t) ∈ R× R+ :
x

12t
∈ Iε}.

It should be noted that the same condition ϕ(0, x, t) = 0 leads to the ill-posedness
of the matrix RHP in the decaying case q(x, t) → 0, x → ±∞ too. Unlike in the
steplike case, here we can propose sufficient conditions which guarantee ϕ(0, x, t) ̸=
0. Indeed, assuming that the discrete spectrum is absent in the decaying case, the
Jost solutions are positive below the spectrum (cf. [15, Corollary 2.4]) and hence
also at the boundary of the spectrum k = 0 by continuity (note that the zeros of
a nontrivial solution of a Sturm–Liouville equation must always be simple). Thus
a nonsingular matrix solution always exists in this situation (this also follows from
[28, Theorem 9.3]). However, in the presence of an discrete spectrum this is no
longer true.
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Our main result is the following

Theorem 1.1. Let q(x, t) be the unique solution of the initial value problem (1.1)–
(1.2) with the initial data satisfying

(1.8)

∫ +∞

0

eηx(|q(x)|+ |q(−x) + c2|)dx <∞, x4q(i)(x) ∈ L1(R), i = 1, ..., 7,

for some positive η > 0. For any ξ ∈ Iε with ε > 0 (see (1.3)), let a = a(ξ) ∈ (0, c)
be defined implicitly by

(1.9)

∫ ia

0

(
k2 + ξ +

c2 − a2

2

)√
k2 + a2

k2 + c2
dk = 0.

Let p0 = p0(ξ) be the point on the two-sheeted Riemann surface associated with
G(ξ) (see (1.4)), uniquely defined via the Jacobi inversion problem

(1.10)

∫ p0

−a2

dλ√
λ(λ+ c2)(λ+ a2)

= i∆(ξ),

with

(1.11) ∆(ξ) =

∫ ic

ia

2 log
∣∣∣T (s)

∏N
j=1

s−iκj
s+iκj

∣∣∣+log| s+icℓ
s |

|(s2+c2)(s2+a2)|1/2 ds∫ ia

0
((s2 + c2)(s2 + a2))

−1/2
ds

− πℓ

2
,

where:

• T (k) is the right transmission coefficient for the initial datum (1.8);
• −κ21 < ... < −κ2N is the discrete spectrum of the problem;
• ℓ = −1 if the initial datum has a resonance at the point ic, and ℓ = 1 in

the general (nonresonant) case.

Let qmod(x, t, ξ) be the periodic (one gap) solution to the KdV equation associated
with the spectrum G(ξ) and the initial Dirichlet divisor p0 = (λ(0, 0, ξ),±). Then
for all x→ ∞, t→ +∞ such that (x, t) ∈ Dε, the following asymptotics is valid:

(1.12) q(x, t) = qmod(x, t,
x

12t
) +O(t−1),

where the error term O(t−1) is uniform with respect to ξ ∈ Iε.

Formula (1.12) is obtained in the framework of a standard NSD approach applied
to a vector RHP. It includes some transformations (conjugations and deformations)
which lead to an equivalent RHP with the jump matrix asymptotically close, as
t → ∞, to an exactly solvable model RHP except in small neighbourhoods of the
two extreme points ±ia(ξ). The approach also involves the construction of a proper
matrix model solution and an associated matrix solution of the local parametrix
problems. However, when performing this analysis in the KdV steplike case, it is
essential to take into account some specific features of the vector RHP. Note that
unlike the matrix RHP, the proof of uniqueness for a vector RHP is typically more
sophisticated and depends on particular properties of the jump matrix and of the
contour, as well as on the class of admissible singularities for the solution. That is
why it seems important for us to perform NSD deformations and conjugations in
a way that does not affect this uniqueness. To this end, in each transformation we
impose additional symmetry assumptions on the contour, on the jump matrix and
on the solution itself, including the model problem solution (see Hypothesis 3.2).
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The solution (m1(k, x, t),m2(k, x, t)) of the initial RHP is unique (see Theorem
2.1) and satisfies the aforementioned symmetry assumption. This symmetry re-
quirement implies a symmetry of the ”error vector”, which in turn, allows us to
apply a new formula

(1.13) q(x, t) = lim
k→∞

2k2 (m1(k, x, t)m2(k, x, t)− 1)

for computing the leading term of the asymptotics, and this essentially simplifies
the final asymptotical analysis.

Note that the traditional formula which connects the potential q(x, t) with the
solution of the initial RHP (i)–(iii), Theorem 2.1 is the following one:

(1.14)
∂

∂x
lim
k→∞

2ik(m1(k, x, t)− 1) = q(x, t).

Formula (1.13) not only avoids the necessity to justify the differentiation with re-
spect to x in the asymptotical expansion form1(k, x, t), but also allows us to extract
the asymptotics from the solution of the model vector RHP in a shorter and more
transparent way (see Section 4) compared to [11], [13] and [16]. In particular, this
approach allows us to apply the trace formulas when computing asymptotics.

2. Well-posedness of the initial (meromorphic) vector RHP

In this section we recall the statement of the initial vector RHP for the KdV
shock wave (see [11]) and prove its well-posedness. Note that in the present study
we weaken the decay conditions on the initial data compared to [11], where it is
assumed that

|q(x)|+ |q(−x) + c2| = O(e−(c+η)x), x→ +∞, η > 0.

We choose the still quite restrictive condition (1.8) to avoid complications with
the analytical continuation of the scattering data in the framework of the NSD
method. However, (1.8) also guarantees the existence of the unique classical solution
q(x, t) for the Cauchy problem (1.1)–(1.2) (cf. [14, 17]) satisfying

(2.1)

∫ +∞

0

|x|(|q(x, t)|+ |q(−x, t) + c2|)dx <∞, t ∈ R.

In turn, this means that the use of the inverse scattering transform for the formu-
lation of the respective RHP is well grounded.

We start with recalling some well known facts of the scattering theory for the
step-like Schrödinger operator (1.5) with emphasis on analytical properties of the
scattering data due to (1.8) and with a detailed description of the influence of
resonance on them.

The spectrum of the operator (1.5) with potential (2.1) consists of an absolutely
continuous part [−c2,∞) plus a finite number of eigenvalues −κ2j ∈ (−∞,−c2),
1 ≤ j ≤ N enumerated as in Theorem 1.1.

Let ϕ(k, x, t) be the right Jost solution of (1.5) satisfying (1.6) and let ϕ1(k, x, t)
be the Jost solution asymptotically close to the free exponent associated with the
left background:

(2.2) lim
x→−∞

eik1xϕ1(k, x, t) = 1, k1 :=
√
k2 + c2.

Here k1 > 0 for k ∈ [0, ic)r. The last notation denotes the right side of the cut
along the interval [0, ic]. Accordingly, k1 < 0 for k ∈ [0, ic)l, the left side of the
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cut. The left Jost solution admits the usual representation via the transformation
operator ([25]):

ϕ1(k, x, t) = e−ik1x +

∫ x

−∞
K1(x, y, t)e

−ik1ydy,

where K1(x, y, t) is a real-valued function with

(2.3) |K1(x, y, t)| ≤ C

∫ x+y
2

−∞
|q(s, t) + c2|ds.

Note that the function ϕ(k, x, t) is a holomorphic function of k in C+ := {k ∈
C : Im k > 0} and continuous up to the real axis. It is real-valued for k ∈ [0, ic],
and does not have a discontinuity on this interval. As for the function ϕ1(k, x, t), it
is holomorphic in the domain C+ \ (0, ic] and continuous up to the boundary, where

[ϕ1(k, x, t)]r = [ϕ1(k, x, t)]l for k ∈ [0, ic].
We observe that condition (1.8) together with (2.3) imply that for t = 0 the

second left Jost solution:

ϕ̆1(k, x, 0) = eik1x +

∫ x

−∞
K1(x, y, 0)e

ik1ydy,

defined for k1 ∈ R, where ϕ̆1 = ϕ1, admits an analytical continuation into the
domain

V = {k : Re k1 ∈ [−c, c], 0 < Im k1(k) < η}.
Note that V is a neighbourhood of the interval [ic, 0). Then the limiting values
satisfy

(2.4) [ϕ̆1(k, x, 0)]r = [ϕ1(k, x, 0)]l, [ϕ̆1(k, x, 0)]l = [ϕ1(k, x, 0)]r, for k ∈ [0, ic].

For k ∈ V introduce two Wronskians :

W (k) = ϕ1(k, x, 0)ϕ
′(k, x, 0)− ϕ′1(k, x, 0)ϕ(k, x, 0);

W̆ (k) = ϕ̆1(k, x, 0)ϕ
′(k, x, 0)− ϕ̆′1(k, x, 0)ϕ(k, x, 0),

where f ′ = ∂
∂xf . Then by (2.4)

(2.5) [W (k)]r = [W̆ (k)]l = [W (k)]l = [W̆ (k)]r.

The Wronskian W (k) of the Jost solutions is in fact a holomorphic function in
C+ \ (0, ic] with simple zeros at points iκj of the discrete spectrum. It is continuous
up to the boundary of the domain, with the only possible additional zero at the
point k = ic, the edge of the continuous spectrum. Unlike the case considered in
[11], we admit the possible resonance at the point ic, that is, we do not assume the
condition W (ic) ̸= 0 corresponding to the nonresonant case. In the resonant case
the Wronskian has a square root zero at k = ic (cf. [12]).

In V introduce also the function

(2.6) χ(k) :=
4kk1

W (k)W̆ (k)
.

From (2.5) it follows that its limiting values satisfy

(2.7) [χ(k)]r = i|χ(k)|, [χ(k)]l = −i|χ(k)|, k ∈ [0, ic].

We also observe that

(2.8) χ(k) = C(k − ic)ℓ/2(1 + o(1)), C ̸= 0, k → ic,



KDV SHOCK WAVES 7

where

ℓ :=

{
1, if W (ic) ̸= 0 (nonresonant case);

−1, if W (ic) = 0 (resonant case).

Let R(k) be the right reflection coefficient of the initial data satisfying (1.8) and let

γj := ∥ϕ(iκj , ·, 0)∥−2
L2(R)

be the right normalizing constants for j = 1, ..., N . The set

(2.9) {R(k), k ∈ R; |χ(k)|, k ∈ [0, ic]; iκj , γj , j = 1, ..., N},

constitute the minimal set of the scattering data to reconstruct uniquely the solution
of the initial value problem (1.1)–(1.2) (cf. [2], Corollary 4.4)

Next, the Jost solutions (2.2) and (1.6) are connected by the scattering relation

(2.10) T (k, t)ϕ1(k, x, t) = ϕ(k, x, t) +R(k, t)ϕ(k, x, t), k ∈ R,

where T (k, t) = 2ik
W (k,t) and R(k, t) are the right transmission and reflection coeffi-

cients. We use the notation T (k) = T (k, 0) and R(k) = R(k, 0). Observe that

(2.11) |T (k)|2 = k

[
χ(k)√
k2 + c2

]
r,l

, k ∈ [0, ic].

We define a vector-valued function m(k, x, t) = (m1(k, x, t),m2(k, x, t)), mero-
morphic in the spectral parameter k ∈ C \ (R ∪ [−ic, ic]) for fixed x, t, as follows
(2.12)

m(k, x, t) =

{ (
T (k, t)ϕ1(k, x, t)e

ikx, ϕ(k, x, t)e−ikx
)
, k ∈ C+ \ (0, ic],

m(−k, x, t)σ1, k ∈ C− \ [−ic, 0),

where σ1 =

(
0 1
1 0

)
is the first Pauli matrix. The vector function m(k, x, t) evi-

dently has at most simple poles at the points ±iκj . It is known that the following
asymptotical formula, for k → ∞, holds:

m(k, x, t) = (1, 1)− 1

2ik

(∫ +∞

x

q(y, t)dy

)
(−1, 1) +O

(
1

k2

)
.

This expansion allows us to extract the shock wave solution using formula (1.14).
However, as was mentioned in the introduction, the formula (1.13), which can be
computed using the well-known asymptotic formulas for the Weyl functions, is more
convenient.

Indeed, it is known that for k large enough both functions ϕ(k, x, t) and ϕ1(k, x, t)
do not vanish for all x and t. Thus,

m1(k, x, t)m2(k, x, t) = T (k, t)ϕ(k, x, t)ϕ1(k, x, t)

=
2ik

ϕ′(k,x,t)
ϕ(k,x,t) − ϕ′

1(k,x,t)
ϕ1(k,x,t)

=
2ik

m(k, x, t)−m1(k, x, t)
,

where m and m1 are the right and left Weyl functions corresponding to the potential
q(x, t). For k → ∞ we have (cf. [6]):

m(k, x, t) = ik +
q(x, t)

2ik
+
f(x, t)

4k2
+O(k−3),

m1(k, x, t) = −ik − q(x, t)

2ik
+
f(x, t)

4k2
+O(k−3).
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Thus,

m1(k, x, t)m2(k, x, t)− 1 =
2ik

2ik + q(x,t)
ik +O(k−3)

− 1 =
q(x, t)

2k2
+O(k−4),

which proves (1.13). □
The following existence/uniqueness result is then valid:

Theorem 2.1. Let

• the potential q(x) satisfy (1.2) and (1.8);
• the set (2.9) be its right scattering data;
• Σ = R ∪ [ic,−ic] be the jump contour oriented left-to-right∪ top-down;
• the phase function Φ(k) = Φ(k, x, t) be defined by the formula:

Φ(k) = 4ik3 + ik
x

t
, k ∈ C.

Then m(k) = m(k, x, t) defined in (2.12) for all (x, t) ∈ R × R+ is the unique
solution of the following vector RHP:
Find a vector-valued function m(k), meromorphic away from Σ, satisfying:

(i) The jump condition m+(k) = m−(k)v(k), where

(2.13) v(k) =



(
1− |R(k)|2 −R(k)e−2tΦ(k)

R(k)e2tΦ(k) 1

)
, k ∈ R,

(
1 0

i|χ(k)|e2tΦ(k) 1

)
, k ∈ [ic, 0],

σ1(v(−k))−1σ1, k ∈ [0,−ic];

(ii) the pole conditions

(2.14)

Resiκj
m(k) = lim

k→iκj

m(k)

(
0 0

iγ2j e
tΦ(iκj) 0

)
,

Res−iκj
m(k) = lim

k→−iκj

m(k)

(
0 −iγ2j e

tΦ(iκj)

0 0

)
,

(iii) the symmetry condition

(2.15) m(−k) = m(k)σ1, k ∈ C \ Σ,

(iv) and the normalization condition

(2.16) lim
κ→∞

m(iκ) = (1 1).

(v) In addition, the function m(k) has the following behavior in a neighbour-
hood of the point ic: If χ(k) satisfies (2.8) with ℓ = 1 then m(k) has
continuous limits as k approaches ic from the domain C \ Σ. If ℓ = −1
then one has

(2.17)
m(k) =

(
C1(x, t)(k − ic)−1/2, C2(x, t)

)
(1 + o(1)) C1C2 ̸= 0; or

m(k) = (C(x, t), 0) (1 + o(1)) as k → ic.

At the point −ic the analog of condition (2.17) holds by symmetry (2.15).
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Proof. The facts that m satisfies the jump condition (2.13) and the pole conditions
(2.14) are established in [11]. Note that the jump matrix on R also satisfies the
symmetry v(k) = σ1(v(−k))−1σ1. To prove uniqueness, assume first that m̃(k) and
m̂(k) are two solutions for the RHP (i)–(v). Then µ(k) := m̃(k) − m̂(k) satisfies
(i)–(iii), (v) and instead of (iv) we have

µ(k) = O(k−1), k → ∞.

In C+ \ (0, ic] introduce the meromorphic function

F (k) = µ1(k)µ1(k) + µ2(k)µ2(k),

where µ1,2 are the components of µ. Then F (k) = O(k−2) as k → ∞. Note that
since the exact values of the constants C1, C2 and C in (2.17) are not specified, they
may be different for m̃ and m̂. Furthermore, since −k = k for k ∈ iR, it follows
from the symmetry condition (iii) that for such k, µi(k) = µj(k), i ̸= j. We thus

get F (k) = O((k− ic)−1/2) as k → ic when ℓ = −1. For the nonresonant case ℓ = 1
the function F (k) has continuous limits everywhere on R∪ [0, ic]. Let us denote for
simplicity Fr(k) and Fl(k) the limiting values of F from the right and left sides of
[0, ic], and F+(k) for the limiting values on the real axis from above. Then by the
symmetry condition (2.15) we get

F+(k) = µ1,+(k)µ1,−(k) + µ2,+(k)µ2,−(k),

Fr(k) = µ1,r(k)µ2,l(k) + µ2,r(k)µ1,l(k),

Fl(k) = µ1,l(k)µ2,r(k) + µ2,l(k)µ1,r(k).

The jump condition (2.13) implies

F+(k) = (1− |R(k)|2)|µ1,−|2 + |µ2,−|2 + 2i Im
(
R(k)e2tΦ(k)µ1,−(k)µ2,−(k)

)
,

(2.18)
Fl(k) = Re

(
µ1,l(k)µ2,l(k)

)
− i|µ2,l(k)|2|χ(k)|e2tΦ(k),

Fr(k) = Re
(
µ1,l(k)µ2,l(k)

)
+ i|µ2,l(k)|2|χ(k)|e2tΦ(k).

Note that Φ(k) ∈ R for k ∈ iR. From this and (2.18) it follows that

(2.19)
ReFl(k) = ReFr(k) = Re

(
µ1,l(k)µ2,l(k)

)
,

ImFl(k) = − ImFr(k) ∈ R−.

The pole condition (2.14) is satisfied by the vector µ(k). Alongside with the sym-
metry property this implies

Resiκj
F (k) = 2iγ2j |µ2(iκj)|2 ∈ iR+.

Let now ω > c be arbitrary large and let Cω be the boundary of the domain
(C+ ∩ {k : |k| < ω}) \ (0, ic]. We treat Cω as a closed contour oriented counter-
clockwise. By Cauchy’s theorem∮

Cω

F (k)dk = 2πi

N∑
j=1

Resiκj
F (k),



10 I. EGOROVA, M. PIORKOWSKI, AND G. TESCHL

and since F (k) = O(k−2) as k → ∞, the integral over the upper semicircle will
asymptotically vanish as ω → ∞ and we get∫

R
F+(k)dk +

∫ ic

0

Fl(k)dk +

∫ 0

ic

Fr(k)dk + 4π

N∑
j=1

γ2j |µ2(iκj)|2 = 0.

Taking into account (2.19), the real part of this integral reads

0 =

∫
R

(
(1− |R(k)|2)|µ1,−|2 + |µ2,−|2

)
dk + 2

∫ c

0

|µ2,l(is)|2|χ(is)|e2tΦ(is)ds

+ 4π

N∑
j=1

γ2j |µ2(iκj)|2.

But |R(k)| < 1 for k ∈ R \ {0}, and therefore all summands in the last formula are
non-negative. Thus, we obtain µ2(iκj) = 0 (which implies that µ1(k) does not have
a pole at iκj) and

µ2,−(k) = 0, for k ∈ R; µ2,l(k) = 0, for k ∈ [ic, 0]; µ1,−(k) = 0, for k ∈ R.

From this and (2.13) it immediately follows that µ1,+(k) = µ2,+(k) = 0 and
µ2,r(k) = µ2,l(k) = 0 for k ∈ [ic, 0]. Thus, the function µ2(k) is a holomorphic
function in C with µ2(k) → 0 as k → ∞. By Liouville’s theorem µ2(k) ≡ 0 in C.
In turn, this identity and formula (2.13) imply: µ1,r(k) = µ1,l(k) for k ∈ [ic, 0].
Therefore, µ1(k) is also a holomorphic function in C vanishing at infinity, thus
µ1(k) ≡ 0. This proves uniqueness.

It remains to verify (v). The case ℓ = 1 implies that the Wronskian W (k, t) of
the Jost solutions ϕ(k, x, t) and ϕ1(k, x, t) does not vanish at k = ic for all t (cf.
[13], formula (6.2)). This implies that T (k, t) is bounded and continuous as k → ic,
and the same is true for the components of the vector m.

If ℓ = −1 then W (ic, t) = 0. Now, if in turn ϕ(ic, x, t) ̸= 0, then ϕ1(ic, x, t) ̸= 0
(otherwise the Wronskian would not have a zero at k = ic). This proves the
first line of (2.17). If ϕ(ic, x, t) = 0, then also ϕ1(ic, x, t) = 0. Since W (k, t) =

C̃(t)(k − ic)1/2(1 + o(1)) and ϕ1(k, x, t) = C̃1(x, t)(k − ic)1/2(1 + o(1)) as k → ic,
this proves the second line of (2.17). □

Theorem 2.1 guarantees the well-posedness of the initial meromorphic vector
RHP (IM RHP) for all (x, t) ∈ R × R+. In the domain Dε given by (1.7), (1.3)
where we intend to study and justify the asymptotics of its solution m(k, x, t) as
k → ∞, the IM RHP admits an equivalent holomorphic statement.

3. Holomorphic statement of the initial vector RHP

In this section we take a closer look at the ill-posedness of the associated matrix
RHP. Let a(ξ) be defined implicitly by (1.9), then as shown in [11]:

0 < a(−c
2

2
+ ε) ≤ a(ξ) ≤ a(

c2

3
− ε) < c.
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Recall that the discrete spectrum is denoted by −κ2j , j = 1, . . . , N , with c < κ1 <
... < κN . Choose ρ > 0 sufficiently small, such that

(3.1)

ρ <
1

4
min

{√
c2 + η2 − c, κN − c, a(−c

2

2
+ ε),

c− a(
c2

3
− ε), min

j=2,..,N
|κj−1 − κj |, ρ1

}
,

where η > 0 is the decay estimate from (1.8) and ρ1 > 0 is defined implicitly by

formula (4.3) below. Note, that since k1 =
√
c2 + k2 and η >

√
c2 + η2 − c, the

reflection coefficient R(k) and the function χ(k) from (2.13) are well defined in the
domains

(3.2)
ΩR := {k : ρ > Im k > 0}, and

Ωχ := {k : Im k ∈ (0, c+ ρ), |Re k| < ρ} \ (0, ic]},
respectively, up to their boundaries.

Denote by
Dj := {k : |k − iκj | < ρ.}, j = 1, . . . , N

and by
Tj := ∂Dj = {k : |k − iκj | = ρ}, j = 1, . . . , N

the small nonintersecting contours around the points of the discrete spectrum ori-
ented counterclockwise. Let C := {k : Im k = ρ} be the upper boundary of ΩR

considered as a contour oriented from left to right. We observe that with our choice
of ρ (cf. (3.1))

dist (T1, Ωχ) > 2ρ, dist (ia
(
−c2/2 + ε

)
, ΩR) > 3ρ.

Introduce also the functions:

(3.3) P (k) :=

N∏
j=1

k + iκj
k − iκj

, k ∈ C; Q(k) :=

(
k − ic

k + ic

) ℓ
4

, k ∈ C \ [−ic, ic];

where ℓ is as in Theorem 1.1 and Q(∞) = 1.
Redefine now the solution m(k) = m(k, x, t) of the IM RHP as follows:

(3.4)

mini(k) =



m(k)Aj(k) (P (k)Q(k))
−σ3 , k ∈ Dj , j = 1, .., N ;

m(k)A0(k) (P (k)Q(k))
−σ3 , k ∈ ΩR;

m(k) (P (k)Q(k))
−σ3 , k ∈ C+ \ (ΩR ∪ [0, ic] ∪ ∪N

j=1Dj);

mini(−k)σ1, k ∈ C−,

where we denoted

Aj(k) =

(
1 − k−iκj

iγ2
j e

2tΦ(iκj)

0 1

)
, A0(k) =

(
1 0

−R(k)etΦ(k) 1

)
, σ3 =

(
1 0
0 −1

)
.

Introduce the contours in the lower half plane: C∗ := {k : −k ∈ C} oriented right-to
left, and T∗

j := {k : −k ∈ Tj}, j = 1, ..., N oriented counterclockwise. Define the
functions (cf. (3.2),(3.3)):

(3.5)
R(k) := R(k)P−2(k)Q−2(k), k ∈ C;
X(k) := χ(k)Q−2(k)P−2(k), k ∈ Ωχ.
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Note that

(3.6) X±(k) = ±i|X(k)|, k ∈ [ic, 0].

Then we have the following

Lemma 3.1. For all (x, t) ∈ Dε the vector function mini(k) = mini(k, x, t) is the
unique solution of the following RHP:

Find a vector-valued function, holomorphic in the domain

C \ Σini, Σini := C ∪ C∗ ∪ [ic,−ic] ∪ ∪j(Tj ∪ T∗
j ),

satisfying

• the symmetry condition mini(−k) = mini(k)σ1, k ∈ C \ Σini;
• the jump condition mini

+ (k) = mini
− (k)vini(k), k ∈ Σini, where

(3.7) vini(k) =



(
1 0

R(k)e2tΦ(k) 1

)
, k ∈ C,(

exp( iℓπ2 ) 0

i|X(k)|e2tΦ(k) exp(−iℓπ
2 )

)
, k ∈ [ic, iρ],1

(k−iκj)P
2(k)Q2(k)

iγ2
j e

2tΦ(iκj)

0 1

 , k ∈ Tj ,

exp( iℓπ2 σ3), k ∈ [iρ,−iρ],

σ1[v
ini(−k)]−1σ1, k ∈ [−iρ,−ic],

σ1[v
ini(−k)]σ1, k ∈ C∗ ∪ ∪N

j=1T∗
j .

• the normalizing condition mini(k) → (1, 1) as k → ∞.
• at points ±ic it has at most fourth root singularities:
mini(k) = O(k ∓ ic)−1/4 as k → ±ic.

Proof. The proof is very similar to that one given in [11], with only one difference:
we can use the identity R−(k)−R+(k)+i|χ(k)| = 0 (Lemma 3.2, [11]) on the interval
[iρ, 0] and take into account the influence of the function Q(k). In particular, we
used that Q−(k)Q

−1
+ (k) = exp( iℓπ2 ), and Q+(k)Q−(k) = |Q2(k)| for k ∈ [ic,−ic].

□

Since mini(k) is a piecewise holomorphic vector function, we call the problem
stated in Lemma 3.1 the initial holomorphic (IH) RHP. As already mentioned in
the Introduction, the symmetry condition is crucial for uniqueness and plays an
essential role in the final asymptotical analysis. That is why, all transformations
steps carried out from the initial RHP to an RHP asymptotically close to an exactly
solvable model vector RHP, should respect the following symmetry conditions:

Hypothesis 3.2. Each vector RHP should satisfy:

• The jump contour Σ is symmetric with respect to the map k 7→ −k;
• On C \ Σ the vector solution m(k) is holomorphic and satisfies
m(−k) = m(k)σ1;
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Figure 1. Jump contour Σini

• Let L ⊂ Σ be a subcontour of Σ which does not contain symmetric points.
We denote by L∗ = {k : −k ∈ L} ⊂ Σ its inversion, if L∗ has the
orientation of the following type: when k moves in the positive direction
along L, then −k moves in the positive direction along L∗. In this case,
the jump matrix v(k) of the jump problem

(3.8) m+(k) = m−(k)v(k), k ∈ Σ,

should satisfy det v(k) = 1 and the symmetry

(3.9) v(−k) = σ1v(k)σ1, k ∈ L ∪ L∗.

If the inversion of L has the opposite orientation, we denote it by (L∗)−1.
For example, L = [ic, 0] and (L∗)−1 = [0,−ic] are both oriented top-bottom.
In this case,

(3.10) v(−k) = σ1v(k)
−1σ1, k ∈ L ∪ (L∗)−1;

• The vector-function m(k) is continuous up to the boundary, except at the
node points of the contour (the ends and self intersections of Σ, and a
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finite number of points of discontinuity of the jump matrix), where fourth
root singularities are admissible;

• m(k) → (1, 1) as k → ∞.

Evidently, the IH RHP formulated in Lemma 3.1 satisfies all these requirements.
Alongside with it, we can write down an analogous matrix RHP with the same jump
matrix vini(k) given by (3.7). This can be done in two ways. Either by imposing
a symmetry condition on the matrix solution(see (3.14) below), or by the standard
normalization to the unit matrix I at infinity. Simultaneous use of both conditions
may seem excessive. In fact, we observe the following.

Let Σ ⊂ C be a union of finitely many smooth curves (finite or infinite) which
intersect in at most a finite number of points and all intersections are transversal
(this condition can of course be relaxed, but it is sufficient for the applications we
have in mind). We will also require Σ to be symmetric with respect to the inversion
k 7→ −k.

Let now v(k) be a piecewise continuous bounded matrix function on Σ satisfying
(3.9) or (3.10), with det v(k) ≡ 1. The points of discontinuity of the jump matrix,
together with the (finite) set of boundary points ∂Σ and the self intersection points
of Σ, are denoted by G. We assume that 0 /∈ G.

Finally, let H be the class of 2× 2 matrix functions M(k) holomorphic in C \Σ,
which have continuous limits up to the boundary Σ \G, and have a limit as k → ∞
avoiding Σ. At points of G we allow singularities of the form:

(3.11) M(k) = O((k − κ)−1/4), as k → κ ∈ G.

Now for an admissible M ∈ H(Σ) we consider the following RHP

(3.12) M+(k) =M−(k)v(k), k ∈ Σ,

together with the normalization condition

(3.13) M(∞) := lim
k→∞

M(k) = I

and the symmetry condition

(3.14) M(−k) = σ1M(k)σ1, k ∈ C \ Σ.

Theorem 3.3. Suppose Σ ⊂ C is an admissible contour and v(k), k ∈ Σ an
admissible matrix as specified above. Then the following propositions are valid:

(a) If a solution M ∈ H(Σ) of the jump problem (3.12) exists and detM(∞) ̸=
0, then the matrix M(∞)−1M(k) solves the RHP (3.12)–(3.13), and every

other solution of (3.12) is given by M̃(k) = M̃(∞)M(∞)−1M(k) in this case.
Moreover, detM(k) = detM(∞).

(b) If the jump problem (3.12) has a nonsingular, that is invertible solution from
H(Σ), then every solutionM ∈ H(Σ) of (3.12) satisfies the symmetry condition
(3.14) provided M(∞) satisfies the symmetry condition. In this case M is of
the form

M(k) =

(
α(k) β(k)
β(−k) α(−k)

)
, M(∞) =

(
a b
b a

)
with detM(∞) = a2 − b2. If M is nonsingular then a+ b ̸= 0.
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(c) Suppose (3.12) has a nonsingular solution M satisfying (3.14). Then the vector
function m(k)

m(k) =
1

a+ b
(1, 1)M(k) =

1

a+ b
(α(k) + β(−k), β(k) + α(−k)).

solves the same jump problem m+(k) = m−(k)v(k) and satisfies (2.15) and
(2.16). Moreover, in this case m is the unique solution of this problem with
admissible singularities of the type (3.11).

(d) Suppose the vector problem satisfying Hypothesis 3.2 has a solution m which
satisfies the condition m±(0) = (0, 0). Then there is no invertible solution of
the problem (3.12), (3.14) in H(Σ).

Proof. (a). This follows similarly as in [7, Theorem 7.18].
(b). Let M(k) ∈ H(Σ) be the solution of the problem (3.12)–(3.13). By (a) it

suffices to show that M satisfies (3.14). To this end set M̃(k) = σ1M(−k)σ1. Then
M̃(∞) = I and M̃(k) ∈ H. Taking into account the symmetry of Σ, for example,
(3.10), we see that

M̃+(k) = σ1M−(−k)σ1 = σ1M+(−k)v−1(−k)σ1
= σ1M+(−k)σ1σ1v−1(−k)σ1 = M̃−(k)v(k).

Thus M̃(k) solves (3.12)–(3.13) and by uniqueness, M̃(k) ≡ M(k). This proves
(3.14). The rest is straightforward.
(c). By assumption we have a solution M as in (b) and hence one easily checks
that m satisfies (3.8), as well as (2.15) and (2.16). If m̃ is a second solution, then as
in (a) we see that (3.8) implies that c = m̃(k)M−1(k) is a constant vector. Hence
by (2.16) we see c = 1

a+b (1, 1).

(d). Suppose that there exists an invertible symmetric matrix M(k) satisfying
(3.12). Without loss of generality we can assume M(∞) = I and hence by (c) this
implies m+(0) = (α+(0) + β−(0), β+(0) + α−(0)) = (0, 0). Consequently

M+(0) =

(
α+(0) β+(0)
−α+(0) −β+(0)

)
implying detM(k) = detM+(0) = 0. □

In particular, item (d) implies that any technique relying on existence of a
bounded nonsingular matrix solution is bound to fail at all points in the (x, t)-
plane where m+(0, x, t) = (0, 0) holds. Recall now that the vector function (2.12)
is the unique solution of the IM RHP, making mini(k) the unique solution of the
IH RHP. After the transformation (3.4) the point k = 0 became an inner point of
the contour Σini. Moreover, taking into account the scattering relation (2.10) and

the fact ϕ(+0, x, t) = ϕ(−0, x, t) = ϕ(+0, x, t), it is straightforward to check that

mini
± (0, x, t) =

(
ϕ(±0, x, t)P−1(0)Q−1

± (0), ϕ(±0, x, t)P (0)Q±(0)
)

= (−1)Nϕ(0, x, t)
(
e±

iℓπ
4 , e∓

iℓπ
4

)
Thus, if ϕ(0, x∗, t∗) = 0 for arbitrary large (x∗, t∗) ∈ Dε, then mini

± (0, x∗, t∗) = 0
and by Theorem 3.3, (d) we can talk about ill-posedness of the respective matrix
RHP. Moreover, even for the one-soliton (reflectionless, decaying) case this occurs
as pointed out in the discussion after Lemma 2.5 in [18].
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4. From the IH RHP to the model RHP

Now we recall briefly the conjugation and deformation steps which lead to the
model problem solution in the domain Dε. As is shown in [11] (see also [13]), for

ξ = x
12t ∈ (− c2

2 ,
c2

3 ) the equality (1.9) generates an implicitly given positive smooth

function a(ξ), monotonously increasing such that a(− c2

2 ) = 0, a( c
2

3 ) = c. In the
domain C \ [ic,−ic] we introduce the function

(4.1) g(k) := g(k, x, t) = 12

∫ k

ic

(
k2 + ξ +

c2 − a2

2

)√
k2 + a2

k2 + c2
dk.

Here we use the standard branch of the square root with the cut along R−.

Lemma 4.1. ([11]). The function g possesses the following properties

(a) g(k) = −g(−k) for k ∈ C \ [ic,−ic];
(b) g−(k) + g+(k) = 0 as k ∈ [ic, ia] ∪ [−ia,−ic];
(c) g−(k)− g+(k) = B as k ∈ [ia,−ia], where B := B(ξ) = −2g+(ia) > 0;
(d) the asymptotical behavior

Φ(k, ξ)− ig(k, ξ) = O

(
1

k

)
.

holds as k → ∞.

The signature table for the imaginary part of function g is shown in the following
figure:
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Figure 2. Sign of Im(g)

STEP 1. Let mini(k) be the unique vector solution of the IH RHP. Redefine it
by

(4.2) m(1)(k) := mini(k)e(itg(k)−tΦ(k))σ3 .

Then m(1)(k) is a piecewise-holomorphic function in C which satisfies the sym-

metry requirements of Hypothesis 3.2 and solves the jump problem m
(1)
+ (k) =
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m
(1)
− (k)v(1)(k) with

v(1)(k) =



(
1 0

R(k)e2itg(k) 1

)
, k ∈ C,(

eit(g+−g−)+ iℓπ
2 0

i|X(k)|eit(g++g−) e−it(g+−g−)− iℓπ
2

)
, k ∈ [ic, iρ],(

1 hj(k, t)

0 1

)
, k ∈ Tj , j = 1, .., N,

exp((−itB + i ℓπ2 )σ3), k ∈ [iρ,−iρ],

σ1[v
(1)(−k)]−1σ1, k ∈ [−iρ,−ic],

σ1[v
(1)(−k)]σ1, k ∈ C∗ ∪ ∪jT∗

j ,

where R(k) and X(k) are given by (3.5) and

hj(k, t) := hj(k, t, ξ) = −i(k − iκj)P
2(k)Q2(k)γ−2

j e−2t(Φ(iκj)−Φ(k))−2tig(k).

Since Im g(iκj) < −δ < 0 (cf. Figure 2), uniformly with respect to ξ ∈ Iε, we
conclude that there exists ρ1 > 0 such that

(4.3) max
j=1,..,N

sup
|k−κj |≤ρ1

(|Φ(iκj)− Φ(k)|+ Im g(k)) < −C(ε) < 0.

Taking into account (3.1), we prove

Lemma 4.2. The following estimate is valid uniformly with respect to ξ ∈ Iε 2

max
j

sup
k∈Tj

|hj(k, t)| = O(e−C(ε)t).

Put now b := a−ρ. Recall that the smoothness of the initial data (1.8) up to the
7-th derivative implies that R(k) for k ∈ R is a smooth function with R(k) = O(k−6)
as k → ±∞ ([12], Theorem 4.1). From item (c) of Lemma 4.1, (3.1) and the
signature table of g(k) we conclude that the following proposition is valid:

Lemma 4.3. Uniformly with respect to ξ ∈ Iε
∥v(1)(k)− I∥L∞(C) + ∥v(1)(k)− I∥L1(C) = O(e−C(ε)t),

∥v(1)(k)− e(−itB+iπℓ
2 )σ3∥L∞([0,ib]) = O(e−C(ε)t).

STEP 2. Our next conjugation step deals with a factorization of the jump
matrix on the set [ic, ia] ∪ [−ia,−ic]. To this end consider the following function
F (k) = F (k, ξ), k ∈ C \ [ic,−ic]:
(4.4)

F (k) := exp

{
w(k)

2πi

(∫ ia

ic

f(s)

s− k
ds+

∫ −ia

−ic

f(s)

s− k
ds− i∆F

∫ ia

−ia

ds

w(s)(s− k)

)}
,

where

w(k) =
√
(k2 + c2)(k2 + a2), k ∈ C \ ([ic, ia] ∪ [−ia,−ic]), w(0) > 0,

(4.5) f(k) :=
log |X(k)|
w+(k)

, k ∈ [ic,−ic],

2by C(ε) we will denote any positive constant with respect to k, ξ, x and t
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and

(4.6) ∆F = ∆F (ξ) := 2i

∫ ic

ia

f(s)ds

(∫ ia

−ia

ds

w(s)

)−1

∈ R.

Remark 4.4. Putting together (2.11), (3.5) and (3.3) we conclude that ∆ = ∆(ξ)
given by (1.11) and ∆F given by (4.6), (4.5) are connected by

(4.7) ∆ = ∆F − ℓπ

2
.

Next, since X(k) = χ(k)Q−2(k)P−2(k) has bounded non-vanishing values at
points ±ic, we get

Lemma 4.5 ([11],[26]). The function F (k) possesses the following properties:

(1) F (−k) = F−1(k) for k ∈ C \ [ic,−ic];
(2) F+(k)F−(k) = |X(k)| for k ∈ [ic, ia];
(3) F+(k) = F−(k)e

i∆F for k ∈ [ia,−ia];
(4) F (k) → 1 as k → ∞;

(5) F+(k)F−(k) = (F+(−k)F−(−k))−1
for k ∈ [−ia,−ic];

(6) F (k) has finite limits as k → ±ic.

Taking into account these properties and property (2.7) we observe that the
matrix v(1)(k) can be factorized on [ic, ia] as follows:

v(1)(k) = G−(k)

(
0 i
i 0

)
G+(k)

−1,

where (cf. (3.2), (3.5), (3.3), (2.6)):

G(k) =

(
F−1(k) −F (k)e−2itg(k)

X(k)

0 F (k)

)
, k ∈ Ωχ.

Inside the domain Ωχ introduce the subdomain Ω1 surrounded by the contour Σ1

oriented as depicted in Figure 3. Denote by Σ∗
1 its inversion in C−. Define m(2)(k)

as

m(2)(k) := m(1)(k)


G(k), k ∈ Ω1,

(F (k))−σ3 , k ∈ C+ \ Ω1,
m(2)(−k)σ1, k ∈ C−.

Since F (k) → 1 as k → ∞, the normalization condition is preserved for m(2)(k).
The correctness of its definition by symmetry in the lower half plane is due to
properties of (1), (2), (5) of Lemma 4.5. Moreover, due to property (6), (4.2) and
Lemma 3.1, we have

m(2)(k) = O(k ∓ ic)−1/4, as k → ±ic; m(2)(k) = O(1), as k → ±ia;

m(2)(k) = O(1), as k → ±iρ.

Note that the set G(2) = {±ic,±ia,±iρ} is the set of all node points of the RHP for
m(2)(k). Taking into account property (c) of Lemma 4.1, property (3) of Lemma
4.5 and (4.7), we see that

(4.8)
F−(k)

F+(k)
eit(g+(k)−g−(k)+iℓπ/2) = e−itB−i∆, k ∈ [ia,−ia],
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and therefore the jump matrix for m(2)(k) looks as follows
(4.9)

v(2)(k) =



(
0 i
i 0

)
, k ∈ [ic, ia],(

F−
F+

eit(g+−g−)+iℓπ/2 0
i|X|

F+F−
eit(g++g−)) F+)

F−
eit(g−−g+)−iℓπ/2

)
k ∈ [ia, ib](

e−itB−i∆ 0
0 eitB+i∆

)
+A(k, t), k ∈ [ib, 0],(

1 −F 2(k)
X(k) e

−2itg(k)

0 1

)
, k ∈ Σ1,(

1 0
R(k)F−2(k)e2itg(k) 1

)
, k ∈ C,(

1 F 2(k)hj(k, t)
0 1

)
, k ∈ Tj , j = 1, .., N,

σ1(v
(2)(−k))−1σ1, k ∈ [0,−ic]

σ1v
(2)(−k)σ1, k ∈ Σ∗

1 ∪ C∗ ∪ ∪jT∗
j ,

where the matrix

A(k, t) = [F−(k)]
σ3

(
v(1)(k)− e(−itB+i ℓπ2 )σ3

)
[F−(k)]

−σ3

is supported on [ib, iρ] and admits, according to Lemma 4.3, the estimate

∥A(k, t)∥L∞([0,ib]) = O(e−C(ε)t).
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Figure 3. Jump contour Σ(2) in C+ (without the Tj ’s)

Lemma 4.3 and Lemma 4.2 together with properties (1) and (4) of Lemma 4.5
also imply

Lemma 4.6. Uniformly with respect to ξ ∈ Iε
∥v(2)(k)− I∥L∞(K) + ∥v(2)(k)− I∥L1(K) = O(e−C(ε)t), as t→ ∞,

where K = C ∪ C∗ ∪ ∪j(Tj ∪ T∗
j ).
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Remark 4.7. Formula (4.8) allows us to shorten the expression for v(2)(k) on
the interval [ia, ib]. However, we use the form (4.9) of the jump matrix on [ia, ib] ∪
[−ib,−ia], because it simplifies further considerations of the local parametrix prob-
lem.

Let B be a neighbourhood of point ia with the boundary ∂B satisfying
ρ

2
< dist (∂B, ia) < 2ρ,

where ρ is defined by (3.1). Its precise shape will be described later in Section 7.
Without loss generality one can assume that ib ∈ ∂B. Denote B∗ = {k : −k ∈ B}
and the jump contour for m(2)(k) by

(4.10) Σ(2) := C ∪ C∗ ∪ Σ1 ∪ Σ∗
1 ∪ ∪j(Tj ∪ T∗

j ) ∪ [ic,−ic],

and let

(4.11) Σρ = Σ(2) \ (B ∪ B∗)

be the part of our contour outside the small neighbourhoods of the points ±ia. Put

(4.12) vmod(k) =


iσ1, k ∈ [ic, ia],
e−iΛσ3 , k ∈ [ia, 0],
σ1(v

mod(−k))−1σ1, k ∈ [0,−ic],
I, k ∈ Σ(2) \ [ic,−ic],

where

(4.13) Λ := tB +∆ ∈ R.
The consideration above shows that uniformly with respect to ξ ∈ Iε
(4.14) ∥v(2)(k)− vmod(k)∥L∞(Σρ)∩L1(Σρ) = O(e−C(ε)t), t→ ∞.

The matrix vmod(k) is piecewise constant with respect to k. In the next section
we study briefly the respective vector RHP. It was solved in [11], [13], however
the uniqueness was not established there. Moreover, using the trace formula we
propose here a shorter and more transparent way to compute the expansion of
mmod

1 (k)mmod
2 (k) as k → ∞, which will approximate the analogous expansion for

the initial RHP, because of

(4.15) m
(2)
1 (k)m

(2)
2 (k) = mini

1 (k)mini
2 (k), | Im k| > κN + ρ.

5. Unique solution for the vector model RHP

Lemma 5.1. The following RHP has a unique solution:
find a vector-valued function mmod(k) = (mmod

1 (k) mmod
2 (k)) holomorphic in the

domain C \ [ic,−ic], which is continuous up to the boundary except at points of the
set Gmod := {ic, ia,−ia,−ic}, and satisfies the jump condition:

(5.1) mmod
+ (k) = mmod

− (k)vmod(k),

(5.2) vmod(k) =



(
0 i
i 0

)
, k ∈ [ic, ia],(

0 −i
−i 0

)
, k ∈ [−ia,−ic],(

e−iΛ 0
0 eiΛ

)
, k ∈ [ia,−ia],
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the symmetry condition

(5.3) mmod(−k) = mmod(k)

(
0 1
1 0

)
,

and the normalization condition

(5.4) lim
k→i∞

mmod(k) = (1 1).

At any point κ ∈ Gmod the vector function mmod(k) can have at most a fourth root
singularity: mmod(k) = O((k − κ)−1/4)), k → κ.

Proof. We prove the uniqueness. Let m and m̂ be two solutions of the RH problem
(5.1)–(5.4). Their difference m̃ = m − m̂ is a holomorphic vector in C \ [ic,−ic]
which satisfies conditions (5.2) and (5.3) and has the following behavior

m̃(k) = (1 − 1)
h̃

k
(1 + o(1)) as k → i∞.

Moreover, m̃(k) = O((k − κ)−1/4)) as k → κ for κ ∈ Gmod.
In C \ [ic,−ic], introduce a holomorphic function

(5.5) f(k) := m̃1(k)m̃1(k) + m̃2(k)m̃2(k).

Due to (5.3) this function is even : f(−k) = f(k) and satisfies

(5.6) f(k) =
2|h̃|2

k2
(1 +O(k−2)), as k → i∞;

(5.7) f(k) = O((k − κ)−1/2)) as k → κ, for κ ∈ Gmod.

Since −k = k for k ∈ iR and taking into account (5.3), for k ∈ [ic,−ic] we get

f+(k) = m̃1,+(k)m̃2,−(k) + m̃2,+(k)m̃1,−(k),

f−(k) = m̃1,−(k)m̃2,+(k) + m̃2,−(k)m̃1,+(k),
k ∈ [ic,−ic].

By use of (5.2)

f+(k) = ±i
(
|m̃2,−(k)|2 + |m̃1,−(k)|2

)
= −f−(k) ∈ iR, k ∈ [±ic,±ia],

(5.8)

f+(k) = e−iΛm̃1,−(k)m̃2,−(k) + eiΛm̃2,−(k)m̃1,−(k) = f−(k) ∈ R, k ∈ [ia,−ia].

Thus the function f(k) has no jump on [ia,−ia] and is the solution of the following
jump problem

f+(k) = −f−(k), k ∈ [ic, ia] ∪ [−ia,−ic],

which satisfies (5.6) and (5.7). The unique solution of this problem is given by the
formula

f(k) = − 2|h̃|2√
(k2 + c2)(k2 + a2)

.

Therefore, if h̃ ̸= 0 then f(0) < 0. But according to (5.5) and (5.8) we have

f+(0) = f−(0) ≥ 0. Thus, h̃ = 0 and hence

m̃1,−(k) = m̃1,+(k) = m̃2,+(k) = m̃2,−(k) = 0, k ∈ [ic, ia] ∪ [−ia,−ic].

In particular, we see that the jump along [ic, ia] ∪ [−ia,−ic] is removable and the
only solution of this problem is trivial : m̃(k) ≡ 0. □
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Now we recall briefly how to solve problem (5.1)–(5.4) (cf. [11], [13]). Consider
the two-sheeted Riemann surface X = X(ξ) associated with the function

w(k) =
√

(k2 + c2)(k2 + a2),

defined on C \ ([−ic,−ia] ∪ [ia, ic]) with w(0) > 0. The sheets of X are glued along
the cuts [ic, ia] and [−ia,−ic]. Points on this surface are denoted by p = (k,±).
To simplify notations we keep the notation k = (k,+) for the upper sheet of X.
The canonical homology basis of cycles {a,b} is chosen as follows: The a-cycle
surrounds the points −ia, ia starting on the upper sheet from the left side of the
cut [ic, ia] and continues on the upper sheet to the left part of [−ia,−ic] and returns
after changing sheets. The cycle b surrounds the points ia, ic counterclockwise on
the upper sheet. Consider the normalized holomorphic differential

(5.9) dω = Γ
dζ

w(ζ)
, where Γ :=

(∫
a

dζ

w(ζ)

)−1

∈ iR−,

then
∫
a
dω = 1 and

(5.10) τ = τ(ξ) =

∫
b

dω ∈ iR+.

Let

θ3(z
∣∣ τ) =∑

n∈Z
exp

{
(n2τ + 2nz)πi

}
, z ∈ C,

be the Jacobi theta function. Recall that θ3 is an even function, θ3(−z
∣∣ τ) =

θ3(z
∣∣ τ), and satisfies

θ3(z + n+ τ(ξ)ℓ
∣∣ τ) = θ3(z

∣∣ τ) exp{−πiτℓ2 − 2πiℓz
}

for l, n ∈ Z.

Furthermore, let A(p) =
∫ p

ic
dω be the Abel map on X. We identify the upper

sheet of X with the complex plane with cuts: C \ ([ic, ia] ∪ [−ia,−ic]), and put
(k,+) = k. Allowing only paths of integration in C \ [ic,−ic] we observe that A(k)
is a holomorphic function in the given domain with the following properties:

• A+(k) = −A−(k) (mod 1) for k ∈ [ic, ia] ∪ [−ia,−ic];
• A+(k)−A−(k) = −τ as k ∈ [ia,−ia];
• A(−k) = −A(k) + 1

2 ( mod 1) as k ∈ C \ [ic,−ic],

• A+(ia) = − τ
2 = −A−(ia), A+(−ia) = − τ

2 + 1
2 , A−(−ia) = τ

2 + 1
2 .

• A((∞,+)) = 1
4 ; A(k)−A((∞,+)) = −Γk−1 +O(k−3) as k → ∞.

On C \ [ic,−ic] introduce two functions

αΛ(k) = θ3

(
A(k)− 1

2
− Λ̃

2

∣∣ τ) θ3(A(k)− Λ̃

2

∣∣ τ) ,
βΛ(k) = θ3

(
−A(k)− 1

2
− Λ̃

2

∣∣ τ) θ3(−A(k)− Λ̃

2

∣∣ τ) ,
where Λ̃ = Λ

2π ∈ R and A(k) = A((k,+)) for k ∈ C. The properties of the Abel

integrals listed above imply that the functions α0(k) and β0(k) have square root
singularities at the points ±ia. Using the formula (cf. [10])

θ3
(
u
∣∣ τ) θ3(u− 1

2

∣∣ τ) = θ3

(
2u− 1

2

∣∣ 2τ) θ3

(
1

2

∣∣ 2τ) ,
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we can represent the functions αΛ(k) and βΛ(k) as

αΛ(k) = θ3

(
2A(k)− 1

2
− Λ̃

∣∣ 2τ) θ3

(
1

2

∣∣ 2τ) ,
βΛ(k) = θ3

(
−2A(k) +

1

2
− Λ̃

∣∣ 2τ) θ3

(
1

2

∣∣ 2τ) .
This is the analytic counterpart to the fact that the vector-valued solution mmod(k)
in (5.14) can be viewed as a scalar-valued function on the Riemann surface with
period 2τ rather then τ , see [27] for more details.

Introduce the functions

(5.11) α̂(k) :=
αΛ(k)

α0(k)
=
θ3

(
2A(k)− 1

2 − Λ̃
∣∣ 2τ)

θ3
(
2A(k)− 1

2

∣∣ 2τ)
(5.12) β̂(k) :=

βΛ(k)

β0(k)
=
θ3

(
−2A(k) + 1

2 − Λ̃
∣∣ 2τ)

θ3
(
−2A(k) + 1

2

∣∣ 2τ) .

Evidently, both functions α̂(k) and β̂(k) have square root singularities at the points

±ia if Λ̃ /∈ Z. Moreover,

lim
k→∞

α̂(k) = lim
k→∞

β̂(k) =
θ3

(
Λ̃
∣∣ 2τ)

θ3
(
0
∣∣ 2τ) .

Due to the first three properties of the Abel map we get

α̂+(k) = β̂−(k) and β̂+(k) = α̂−(k) for k ∈ [ic, ia] ∪ [−ia,−ic],

α̂+(k) = e−iΛα̂−(k) and β̂+(k) = eiΛβ̂−(k) for k ∈ [ia,−ia],

α̂(−k) = β̂(k) for k ∈ C \ [ic,−ic].

Now introduce the function

(5.13) γ̃(k) =
4

√
k2 + a2

k2 + c2
,

defined uniquely on the set C \ ([ic, ia] ∪ [−ia,−ic]) by the condition arg γ̃(0) = 0.
This function satisfies the jump conditions

γ̃+(k) = iγ̃−(k), k ∈ [ic, ia],
γ̃+(k) = −iγ̃−(k), k ∈ [ia,−ic].

Thus, the following result is valid:

Lemma 5.2. ([11], [13]) Let α̂(k), β̂(k), γ̃(k) be defined by formulas (5.11)-(5.13).
Then the vector function

(5.14) mmod(k) =

(
γ̃(k)

α̂(k)

α̂(∞)
, γ̃(k)

β̂(k)

β̂(∞)

)
solves problem (5.1)–(5.4).

Note that both components of the vector-valued function mmod(k) are bounded
everywhere except for small neighbourhoods of the points of the set Gmod, where
they have singularities of the type (k − κ)−1/4, κ ∈ Gmod.
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Remark 5.3. We observe that

α̂±(0) =
θ3

(
∓τ − 1− Λ̃

∣∣ 2τ)
θ3
(
±τ + 1

∣∣ 2τ) , β̂±(0) :=
θ3

(
±τ + 1− Λ̃

∣∣ 2τ)
θ3
(
±τ + 1

∣∣ 2τ) .

This means that for Λ̃ = 1
2 (mod n) we have mmod

± (0) = (0, 0). From Theorem

3.3 it follows then that for Λ = 2πΛ̃ = π(2n + 1), n ∈ Z the matrix model RHP
associated with the jump (5.2) does not have an invertible solution.

Recall now that we constructed the solution for the jump problem (5.2) with

Λ̃ = Λ
2π and Λ given by formula (4.13). Due to (5.3), the asymptotic expansion of

the vector components product should be the following:

(5.15) mmod
1 (k)mmod

2 (k) = 1 +
qmod(x, t, ξ)

2k2
+O(k−4).

Let us show that in fact for any fixed ξ ∈ (− c2

2 ,
c2

3 ), q
mod(x, t, ξ) represents the

classical one-gap solution for the KdV equation associated with the spectrum G(ξ)
(cf. (1.4)) and with the initial Dirichlet divisor p0 defined uniquely by the Jacobi
inversion (compare (1.10), (1.11)):

(5.16)

∫ p0

−a2

dω̂ = i∆, p0 = (λ(0, 0, ξ),±).

Here dω̂ is the normalized holomorphic Abel differential of the first kind on the
elliptic Riemann surface M = M(ξ) associated with the function

R(λ, ξ) =
√
λ(λ+ c2)(λ+ a2(ξ)),

with cuts along the spectrum.
Let b̂, â be the canonical basis on M, where the cycle b̂ surrounds the interval

[−c2,−a2] counterclockwise on the upper sheet and the cycle â supplements b̂ by
passing along the gap [−a2, 0] in the positive direction on the lower sheet and then
changing the sheet. The normalization for dω̂ is given by formula

∫
â
dω̂ = 2πi.

Denote
∫
b̂
dω̂ = τ̂ . It is straightforward to check that τ̂ = 4πiτ (cf. (5.10)).

Furthermore, let Â(p) :=
∫ p

∞ dω̂ be the associated Abel map and

K := −Â(−a2) = − τ̂
2
− πi

be the Riemann constant. Introduce the wave and frequency numbers V = V (ξ) and

W =W (ξ) ([22], [25]), which are b̂ - periods of the normalized Abelian differentials
of the second kind dΩ1 and dΩ3 on M uniquely defined by the order of the pole at
infinity

dΩ1 =
i

2
√
λ
(1 +O(λ−1))dλ, dΩ3 = −3i

2

√
λ(1 +O(λ−1))dλ, λ→ ∞,

and by the normalization conditions
∫
â
dΩ1,3 = 0. Thus,

iV :=

∫
b̂

dΩ1, iW :=

∫
b̂

dΩ3.

The following result is obtained in [13].
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Lemma 5.4. Let B = B(ξ) be as in Lemma 4.1, (c) and Γ = Γ(ξ) be given by
(5.9). Then the following identities hold

tB = V x− 4Wt, 4πiΓ = −V.

Recall now that the one-gap solution corresponding to the spectrum G(ξ) and
to the initial divisor (5.16), can be expressed by the trace formula:

(5.17) qper(x, t, ξ) = −c2 − a2 − 2λ(x, t, ξ),

where λ(x, t) = λ(x, t, ξ) ∈ [−a2, 0] is the projection of p(x, t) = (λ(x, t),±) ∈ M,
which is the unique solution of the Jacobi inversion problem

(5.18)

∫ p(x,t)

p0

dω̂ = i(V x− 4Wt) (mod 2πi).

Due to (1.10) we can also represent it as∫ p(x,t)

−a2

dω̂ = i(V x− 4Wt+∆).

Evidently λ(x, t) = 0 corresponds to the local minimum of qper(x, t). Indeed,

λ(x, t) = 0 iff
V x− 4Wt+∆

2π
=

1

2
(mod Z).

Let us now compare the function qper(x, t, ξ) with the second term of the expan-
sion for the product mmod

1 (k)mmod
2 (k) =: p(k), which is given by the formula (see

(5.11), (5.12)):

p(k) = γ̃2(k)
θ3(2A(k)− 1

2 − Λ̃) θ3(−2A(k) + 1
2 − Λ̃) θ3(0)

2

(θ3(2A(k)− 1
2 ))

2(θ3(Λ̃))2
.

To this end we first prove

Lemma 5.5. The function p(k), k ∈ C, admits the following representation:

(5.19) p(k) =
k2 − λ(x, t)√

(k2 + a2)(k2 + c2)
.

Proof. Given (5.11) and (5.12), consider the function

p̃(k) = p(k)γ̃−2(k) =
α̂(k)β̂(k)

α̂(∞)β̂(∞)
.

By the symmetry property we have p̃(−k) = p̃(k). Moreover, this function does
not have jumps for k ∈ [−ic, ic], and p̃(k) → 1 as k → ∞. Thus, it must be a
meromorphic (in fact, rational) function of λ = k2 in the whole complex plane.

Due to (5.16) and (5.18) the function α̂(k)β̂(k) has the only zero, simple with
respect to λ, at the point λ = λ(x, t), and the only simple pole (again with respect
to λ) at λ = −a2. We conclude that

p̃(k) =
α̂(k)β̂(k)

α̂(∞)β̂(∞)
=
k2 − λ(x, t)

k2 + a2
,

which together with (5.13) implies (5.19). □
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In turn, decomposing (5.19) with respect to 1
2k2 we get the same trace formula

(5.17) for qmod(x, t, ξ) in (5.15). It proves that

(5.20) qmod(x, t, ξ) = qper(x, t, ξ).

Moreover, the property of the combination of theta functions involved inmmod
1 mmod

2

to be a rational function of the spectral parameter λ = k2 is tightly connected
with the analogous property of the product of two branches of the Baker–Akhiezer
function. It allows us to expect that this approach may considerably simplify the
evaluation of asymptotics in the case of finite gap backgrounds.

6. The solution of the model matrix RHP and its properties

In this section we propose a proper matrix model solution with a nonintegrable
singularity at the point k = 0. This construction can also be found in [16, Sect. 3.4].

Theorem 6.1. There exists a matrix model solution Mmod(k) of the model RHP
which satisfies the following properties:

(1) It is holomorphic in C \ [ic,−ic], continuous up to the sides of the contour
[ic,−ic] except of points Gmod ∪ {0};

(2) At points of Gmod it has weak singularities, Mmod(k) = O(k − κ)−1/4 as k →
κ ∈ Gmod, and Mmod(k) = O(k−1) as k → 03;

(3) It possesses the symmetry property:

(6.1) Mmod(−k) = σ1M
mod(k)σ1;

(4) It satisfies the normalization property

(6.2) M(k) → I, k → ∞.

(5) detMmod(k) = 1 for all k ∈ C;
(6) The vector m(2)(k)[Mmod(k)]−1 is a bounded continuous function in a neigh-

bourhood N of the point k = 0;

We preface the proof of this theorem by the following

Lemma 6.2. There exists a vector solution ν(k) = (ν1(k), ν2(k)) to the jump
problem (5.2) which satisfies:

• The symmetry condition ν1(k) = ν2(−k), k ∈ C \ [ic,−ic];
• The asymptotical behavior :

(6.3) ν(k) = ik(−1, 1)(1 +O(
1

k
)), k → ∞.

• The vector ν(k) is a holomorphic vector function in C\[ic,−ic], continuous
up to the boundary except at the points Gmod, where fourth root singularities
are admissible.

Proof. From Lemma 5.4 it follows that the vector ν solves the jump problem
ν+(k) = ν−(k)v

mod(k) where

(6.4) vmod(k) = vmod(k, x, t, ξ) =


iσ1, k ∈ [ic, ia],

−iσ1, k ∈ [−ia,−ic],

e(4iW (ξ)t−iV (ξ)x−i∆(ξ))σ3 , k ∈ [ia,−ia].

3we can not call it the pole, because the matrix has a jump in this point
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From formulas (2.3) and (2.6) of [13] it follows also that:

iV (ξ) = Z+(k)− Z−(k), for k ∈ [ia,−ia],

Z(k) := Z(k, ξ) = i

∫ k

ic

(s2 − h)ds√
(s2 + c2)(s2 + a2)

,

h =

∫ 0

ia

s2ds√
(s2 + c2)(s2 + a2)

(∫ 0

ia

ds√
(s2 + c2)(s2 + a2)

)−1

.

Recall also that

Z+(k) + Z−(k) = 0 (mod 2πi), k ∈ [ic, ia] ∪ [−ia,−ic].

In fact

Z(k) = i

∫ k2

−c2

λ− h

2R(λ)
dλ

is the classical quasimomentum associated with the Riemann surface M(ξ). Thus,

vmod(k, x, t, ξ) = e(4iW (ξ)t+(Z+(k)−Z−(k))x−i∆(ξ))σ3 , k ∈ [ia,−ia].

We see that the vector

(6.5) S(k) := S(k, x, t, ξ) = mmod(k, x, t, ξ)e−Z(k,ξ)xσ3

solves the jump problem S+(k) = S−(k)v
S(k),

vS(k) = vS(k, t, ξ) =


iσ1, k ∈ [ic, ia],

−iσ1, k ∈ [−ia,−ic],

e(4iW (ξ)t−i∆(ξ))σ3 , k ∈ [ia,−ia].

Let us treat the variables x, t, ξ as independent variables. Then ∂
∂xv

S(k) = 0
and the vector

Ŝ(k) =
∂

∂x
S(k, x, t, ξ)

=

(
(
∂

∂x
mmod

1 (k)− Z(k)mmod
1 (k))e−Z(k)x, (

∂

∂x
mmod

2 (k) + Z(k)mmod
2 (k))eZ(k)x

)
solves the same jump problem as S(k):

Ŝ+(k) = Ŝ−(k)v
S(k).

Going back with the conjugation inverse to (6.5), applied to the vector Ŝ, we
conclude that the vector

ν(k) := Ŝ(k)eZ(k)xσ3

=

(
∂

∂x
mmod

1 (k)− Z(k)mmod
1 (k),

∂

∂x
mmod

2 (k) + Z(k)mmod
2 (k)

)
,

solves the model RHP (6.4), which is the same as (5.2).
Next, since Z(k) = ik(1+O(k−1)) as k → ∞, it is easy to see that (6.3) is fulfilled.

The singularities of ν(k) at the points of Gmod are the same as for mmod(k). This
follows from formulas (5.11)-(5.14) and the fact, that the differentiation ∂

∂xm
mod(k)
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does not affect the part of denominators in (5.14), which are responsible for the
singularities. For example differentiation of the first component leads to

∂

∂x
mmod

1 (k) = γ̃(k)
V (ξ)

2π

θ3(0
∣∣ 2τ)

θ3(2A(k)− 1
2

∣∣ 2τ) d

dΛ̃

θ3
(
2A(k)− 1

2 − Λ̃
∣∣ 2τ)

θ3

(
Λ̃
∣∣ 2τ)

 ,

because ∂Λ̃
∂x = V (ξ)

2π . □

Corollary 6.3. The vector function ν̃(k) = ν(k)
ik satisfies the jump condition (5.2)

of the model RHP defined in Lemma 5.1 and additionally satisfies the antisymmetry
condition

(6.6) ν̃1(−k) = −ν̃2(k),
and the normalization condition

(6.7) ν̃(k) → (−1, 1), k → ∞.

It is holomorphic outside the contour [ic,−ic], has fourth root singularities at Gmod

and a singularity ν̃(k) = O(k−1) as k → 0.

Proof of theorem 6.1. Set

Mmod(k) :=
1

2

(
mmod

1 (k)− ν̃1(k) mmod
2 (k)− ν̃2(k)

mmod
1 (k) + ν̃1(k) mmod

2 (k) + ν̃2(k)

)
.(6.8)

Evidently, it solves the model jump problem. Equality (6.6) guarantees the struc-
ture

Mmod(k) =
1

2

(
ψ1(k) ψ2(k)
ψ2(−k) ψ1(−k)

)
,

and therefore (6.1). Equality (6.2) follows from (6.7). Singularities described by
item (2) are evident.

Let us discuss the invertibility of Mmod(k). Put s(k) := detMmod(k). Comput-
ing it, we get

s(k) =
m1(k)ν2(k)− ν1(k)m2(k)

2ik
,

where ν(k) is defined in Lemma 6.2. Evidently, s(k) does not have jumps. It is
meromorphic with the only possible pole at k = 0, and it is bounded at infinity :
limk→∞ s(k) = 1. Thus, we get s(k) = 1 + C

k , where C is a constant. But we also

know that it is even: s(−k) = s(k), i.e. in fact C = 0 and detMmod(k) ≡ 1. This
proves item (5).

It remains to prove item (6). We have[
Mmod(k)

]−1
=

1

2

(
ψ1(−k) −ψ2(k)
−ψ2(−k) ψ1(k)

)
=

1

2

(
mmod

1 (−k)− ν̃1(−k) −mmod
2 (k) + ν̃2(k)

−mmod
1 (k)− ν̃1(k) mmod

2 (−k) + ν̃2(−k)

)
.

Put now f(k) := m(2)(k)[Mmod(k)]−1 = (f1(k), f2(k)), k ∈ N , where we assume
that N is a small neighbourhood of the point k = 0 with diamN < ρ (implying
that N is located inside the strip between C and C∗).

Since f(k) does not have jumps in N , and we have a symmetry f(−k) = f(k)σ1,
it is sufficient to prove for its first component the following
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Lemma 6.4. The function f1(k) has a removable singularity at the point k = 0.

Proof. The singularity at the point k = 0 is a simple pole for f1. It means that it is
sufficient to prove that f1(k) = o(k−1) from any fixed direction. As an appropriate
direction we take the real positive ray k > 0. We use a trivial fact that if k → 0
then −k → 0.

To simplify notations, put m̃(k) = m(2)(k), m(k) = mmod(k). Then

m̃1(k) → m̃1,+(0), m̃1(−k) → m̃1,−(0), ν1(k) → ν1,+(0), ν1(−k) → ν1,−(0),

and

m̃1,+(0)ν1,−(0) = m̃1,−(0)ν1,+(0),

as the jump in N for the model RHP is diagonal and is the same for m(2) and ν.
According to symmetries

ψ2(−k) = m1(k) +
ν1(k)

ik
.

Then

f1(k) =
1

2
(m̃1(k)ψ1(−k)− m̃2(k)ψ2(−k))

=
1

2ik
(ν1(−k)m̃1(k)− ν2(−k)m̃2(k)) +O(1), k → 0.

But
ν1(−k)m̃1(k)− ν2(−k)m̃2(k) = ν1(−k)m̃1(k)− ν1(k)m̃1(−k) →
m̃1,+(0)ν1,−(0)− m̃1,−(0)ν1,+(0) = 0, k → 0, k ∈ R+,

finishing the proof. □

Corollary 6.5. The vector m(2)(k)[Mmod(k)]−1 is holomorphic in N .

This proves theorem 6.1.

7. The matrix solution of the parametrix problem

In this section we study the matrix solutions of the local RHPs in neighbourhoods
of the points ±ia. Consider first the point ia. Let B be a neighbourhood of this
point as it was introduced at the end of Section 4. Introduce in B a local change
of variables

(7.1) w3/2(k) = −3it

2
(g(k)− g±(ia)), k ∈ B,

with the cut along the interval J := [ic, ia] ∩ B. We observe that

(7.2) w3/2(k) = P (a)e
3πi
4 t(k − ia)3/2(1 +O(k − ia)), P (a) > 0.

Indeed, from (4.1) and Lemma 4.1 it follows that for is→ ia± 0

Re(−ig(is)) = 12

∫ s

a±0

(
c2 − a2

2
+ ξ − s2

)√
a+ s

c2 − s2
√
a− s ds

= −8

(
c2 − 3a2

2
+ ξ

)√
2a

c2 − a2
(a− s)3/2(1 +O(a− s)).

Since a(ξ) is a monotonous function with a( c
2

3 ) = c and a(− c2

2 ) = 0, this implies
(7.2) with P (a) > 0. Thus, w(k) is a holomorphic function in B with w(ia) = 0,
w′(k) ̸= 0.
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Till now we did not specify a particular shape of the boundary ∂B and the shape
of the contour Σ(2) (cf. (4.10) inside B. Treating w(k) as a conformal map, let
us think of B as the preimage of a disc U of radius P 2/3(a)ρt2/3 centered at the
origin. Since w(k) = P1(a)t

2/3(ik+a)(1+o(1)), the function w(k) maps the interval
[ia, ic] ∩ B into the negative half axis. We can always choose the contours Σ(2) ∩ B
to be contained in the preimage of the rays argw = ± 2πi

3 .
Next, in B introduce the function

(7.3) r(k) :=

√
X(k)

F (k)
e∓

iπ
4 e

∓itB
2 , k ∈ B ∩ {k : ±Re k > 0},

where X and F are defined by (3.5) and (4.4) respectively, and B = −2g+(ia). By
(3.6) and Lemma 4.5 we conclude that

r+(k) =

√
|χ(k)|
F+(k)

e−
itB
2 , r−(k) =

√
|χ(k)|
F−(k)

e
itB
2 , k ∈ [ic, 0] ∩ B.

Therefore,

(7.4) r+(k)r−(k) = 1, k ∈ J ; r+(k) = r−(k)e
−i∆−itB , k ∈ J ′,

where J = [ic, ia] ∩ B and

J ′ := [ia, ib] = [ia, 0] ∩ B.

Denote also

L1 = Σ1 ∩ B ∩ {Re k ≥ 0}; L2 = Σ1 ∩ B ∩ { Re k ≤ 0}.

∂B

w
J

J ′

L1L2

∂U

ia
0

Figure 4. The local change of variables w(k).

Recall that the vector function m(2)(k) satisfies the jump condition m
(2)
+ (k) =

m
(2)
− (k)v(2)(k), with the jump matrix (4.9). Now redefine m(2)(k) inside the do-

mains B and B∗ by

(7.5) m(3)(k) =


m(2)(k)[r(k)]−σ3 , k ∈ B,
m(3)(−k)σ1, k ∈ B∗,
m(2)(k), k ∈ C \ (B ∪ B∗).
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By use of (7.4) we get m
(3)
+ (k) = m

(3)
− (k)v(3)(k) with

(7.6) v(3)(k) =



(
1 0

ie−4/3w(k)3/2 1

)
, k ∈ J ′,

iσ1, k ∈ J,(
1 ie4/3w(k)3/2

0 1

)
, k ∈ L1,(

1 −ie4/3w(k)3/2

0 1

)
, k ∈ L2,

r(k)−σ3 , k ∈ ∂B,
σ1[v

(3)(−k)]σ1, k ∈ ∂B∗ ∪ Σ∗
B,

v(2)(k), k ∈ Σ(2) \ (Σ∗
B ∪ ΣB),

where Σ(2) is defined by (4.10),

(7.7) ΣB = J ∪ J ′ ∪ L1 ∪ L2, Σ∗
B = {k : −k ∈ ΣB},

with orientation preserving symmetries for the contours. In particular, ∂B∗ should
be oriented counterclockwise.

We observe that transformation (7.5) applied in B to the matrix model problem
solution,

(7.8) M(k) :=M (mod)(k)[r(k)]−σ3 , k ∈ B,

cancels the jump along J ′, i.e. in B the matrix M satisfies the jump condition
M+(k) = iM−(k)σ1, k ∈ J . Next by (7.1), the function w1/4(k) has the following
jump along the interval J :

w
1/4
+ (k) = w

1/4
− (k)i, k ∈ J.

Recall that U = w(B). It is now straightforward to check that the matrix

N(w) =
1√
2

(
w1/4 w1/4

−w−1/4 w−1/4

)
, w ∈ U ,

solves the jump problem

N+(w(k)) = iN−(w(k))σ1, k ∈ J.

Therefore, in B we haveM(k) = H(k)N(w(k)), whereH(k) is a holomorphic matrix
function in B. Moreover, since detN(w) = det[r(k)σ3 ] = 1, we have

(7.9) detH(k) = detMmod(k) = detM(k).

According to (2.3) we get then

(7.10) Mmod(k) = H(k)N(w(k))r(k)σ3 , k ∈ ∂B.

Next, by property (b) of Lemma 4.1 w+(k)
3/2 = −w−(k)

3/2, k ∈ J , that is

v(3)(k) = d−(k)
σ3S d+(k)−σ3 , k ∈ B,

where

d(k) := d̃(w(k)), d̃(w) = e2/3w
3/2

,
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and

S =



iσ1, k ∈ J,(
1 0
i 1

)
, k ∈ J ′,(

1 i
0 1

)
, k ∈ L1,(

1 −i
0 1

)
, k ∈ L2.

Let us consider the constant matrix S as the jump matrix on the contour Γ :=
w(ΣB) (see (7.7)). Let A(w) be the matrix solution of the jump problem

A+(w) = A−(w)S, w ∈ Γ,

satisfying the boundary condition

A(w) = N(w)Ψ(w)d̃(w)σ3 , w ∈ ∂U , t→ ∞,

where

Ψ(w) = I+
C

w3/2
(1 +O(w−3/2)), w → ∞,

is an invertible matrix and C is a constant matrix with respect to w, t and ξ. The
solution A(w) can be expressed via the Airy functions and their derivatives in a
standard way (see, for example,[8], [5] Chapter 3, [16] or [1]). In particular, in the
domain between the contours w(J ′) and w(L1) we have

A(w) =
√
2π

(
−y′1(w) iy′2(w)
−y1(w) iy2(w)

)
,

where y1(w) = Ai(w) and y2(w) = e−
2πi
3 Ai(e−

2πi
3 w). The precise formula for A(w)

in the other domains can be obtained by simple multiplication on the jump matrix
S, but it is not important for us.

Define the matrix

Mpar(k) := H(k)A(w(k))d(k)−σ3 , k ∈ B \ ΣB.

This matrix then solves in B the jump problem

(7.11) Mpar
+ (k) =Mpar

− (k)v(3)(k), k ∈ ΣB = J ∪ J ′ ∪ L1 ∪ L2,

and satisfies for sufficiently large t the boundary condition

(7.12) Mpar
+ (k) = H(k)N(w(k))Ψ(w(k)) =M(k)Ψ(w(k)), k ∈ ∂B,

where M(k) is defined via (7.8), (7.3). In B∗ we define Mpar(k) by symmetry

Mpar(k) = σ1M
par(−k)σ1.

8. Completion of the asymptotical analysis

The aim of this section is to establish that the solution m(3)(k) given by (7.5) is
well approximated by

(
1 1

)
Mpar(k) inside the domain B∪B∗, and by

(
1 1

)
Mmod(k)

in C \ (B ∪B∗). We follow the well-known approach via singular integral equations
(see e.g., [9], [18], [21] Chapter 4, [23]). Set

(8.1) m̂(k) = m(3)(k)(Mas(k))−1, Mas(k) :=

{
Mpar(k), k ∈ (B ∪ B∗),

Mmod(k), k ∈ C \ (B ∪ B∗).

Formula (7.11) implies that m̂ does not have jumps inside B ∪ B∗. Moreover, from
(7.5) and item (6) of Theorem 6.1 this vector is a holomorphic bounded function
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inside the strip between C and C∗. Let us compute the jump of this vector on ∂B
by use of (7.6), (7.8), (7.10), and (7.12):

m̂+ = m
(3)
+

(
Mpar

+

)−1
= m

(3)
− r−σ3Ψ−1M−1

+ = m
(3)
−
(
Mmod

−
)−1

Mmod
− r−σ3Ψ−1M−1

+

= m̂−M
mod
− r−σ3Ψ−1rσ3

(
Mmod

+

)−1
= m̂−M+Ψ

−1M−1
+ .

Here we took into account (7.8) and the fact that Mmod does not have a jump on
∂B. Note also that both matrices M+(k) and M

mod(k) are bounded with respect
to t uniformly on ∂B.

Next, the structure of the matrix Ψ(w(k)) implies that

Ψ−1(w(k)) = I+
F(k, t)

t(g(k)− g±(ia))
, ∥F(k, t)∥ ≤ O(1), t→ ∞,

where the matrix norm estimate O(1) is uniform with respect to k on the compact
∂B∪∂B∗, and uniform with respect to ξ ∈ Iε. Hence m̂(k) solves the jump problem

m̂+(k) = m̂−(k)v̂(k),

where (cf. (4.10), (4.11)):

v̂(k) =


I+M(k) F(k,t)

t(g(k)−g±(ia))M(k)−1, k ∈ ∂B,
σ1v̂(−k)σ1, k ∈ ∂B∗,

Mmod
− (k)v(3)(k)(Mmod

+ (k))−1, k ∈ Σρ,

and satisfies the symmetry and normalization conditions:

m̂(k) = m̂(−k)σ1, m̂→ (1, 1), k → ∞.

Abbreviate W (k) = v̂(k)− I. Recall the estimate (4.14). Hence

(8.2) W (k) =


1

t(g(k)−g±(ia))M+(k)F(k, t)M−1
+ (k), k ∈ ∂B,

σ1W (−k)σ1, k ∈ ∂B∗,

Mmod
− (k)(v(3)(k)− vmod(k))(Mmod

+ (k))−1, k ∈ Σρ \ [iρ,−iρ],

0 k ∈ [iρ,−iρ],

where we treat vmod as in (4.12). Thus the error vector m̂(k) has jumps on the
contour

Σ̂ = Σρ ∪ ∂B ∪ ∂B∗ \ [iρ,−iρ]

only. This contour is bounded away from the singular points ia,−ia, 0. We observe
that for all (x, t) ∈ Dε the matrix W (k) is continuous on any smooth part of the

contour Σ̂ and bounded with respect to k. Moreover, due to (4.14) and (7.6) we
have

∥kj(v(3)(k)− vmod(k))∥Lp(Σρ\[iρ,−iρ]) = O(e−C(ε)t), p ∈ [1,∞], j = 0, 1, 2,

(the estimates on the higher moments will be used later). Here we took into account
that the reflection coefficient R(k) decays as O(k−6) under condition (1.8). Thus,
using (8.2) and (7.9) we get

Lemma 8.1. The following estimates hold uniformly with respect to ξ ∈ Iε and
(x, t) ∈ Dε:

(8.3) ∥kjW (k)∥Lp(Σ̂) ≤ C(ε)t−1, p ∈ [1,∞], j = 0, 1, 2.



34 I. EGOROVA, M. PIORKOWSKI, AND G. TESCHL

Now we are ready to apply the technique of singular integral equations. Since
this is well known (see, for example, [9], [18], [23]) we will be brief and only list the
necessary notions and estimates.

Let C denote the Cauchy operator associated with Σ̂:

(Ch)(k) =
1

2πi

∫
Σ̂

h(s)
ds

s− k
, k ∈ C \ Σ̂,

where h =
(
h1 h2

)
∈ L2(Σ̂). Let C+f and C−f be its non-tangential limiting

values from the left and right sides of Σ̂ respectively.
As usual, we introduce the operator CW : L2(Σ̂) ∪ L∞(Σ̂) → L2(Σ̂) by the

formula CW f = C−(fW ), where W is our error matrix (8.2). Then,

∥CW ∥L2(Σ̂)→L2(Σ̂) ≤ C∥W∥L∞(Σ̂) ≤ O(t−1),

as well as

(8.4) ∥(I− CW )−1∥L2(Σ̂)→L2(Σ̂) ≤
1

1−O(t−1)

for sufficiently large t. Consequently, for t≫ 1, we may define a vector function

µ(k) = (1, 1) + (I− CW )−1CW

(
(1, 1)

)
(k).

Then by (8.3) and (8.4)

∥µ(k)− (1, 1)∥L2(Σ̃) ≤ ∥(I− CW )−1∥L2(Σ̃)→L2(Σ̃)∥C−∥L2(Σ̃)→L2(Σ̃)∥W∥L∞(Σ̃)

= O(t−1).(8.5)

With the help of µ, (8.1) can be represented as

m̂(k) = (1, 1) +
1

2πi

∫
Σ̂

µ(s)W (s)ds

s− k
,

and in virtue of (8.5) and Lemma 8.1 we obtain as k → i∞ :

m̂(k) = (1, 1) +
1

2πi

∫
Σ̂

(1, 1)W (s)

s− k
ds+ E(k),

where

|E(k)| ≤ C

Im k
∥W∥L2(Σ̂)∥µ(k)− (1, 1)∥L2(Σ̂) ≤

O(t−2)

Im k
,

where O(t−2) is uniformly bounded with respect to ξ ∈ Iε, (x, t) ∈ Dε and k → i∞.
In the same regime Re k = 0, Im k → +∞, we have

1

2πi

∫
Σ̂

(1, 1)W (s)

k − s
ds =

f0(ξ, t)

2ikt
(1, −1) +

f1(ξ, t)

2k2t
(1, 1)

+O(t−1)O(k−3) +O(t−2)O(k−1),

where f0,1(ξ, t) are uniformly bounded for t→ ∞ and ξ ∈ Iε. Furthermore O(k−s)
are vector functions depending on k only and O(t−s) are as above. Hence,

m(3)(k) = m̂(k)Mmod(k) = mmod(k) +
f0(ξ, t)

2ikt
(1, −1)Mmod(k)

+
f1(ξ, t)

2k2t
mmod(k) +O(t−1)O(k−3) +O(t−2)O(k−1).

Now we are in a position to apply (1.13), making use of (4.15), (5.15),(5.20),
(5.17). Note that since all conjugation steps in the neighbourhood of ∞ involved
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diagonal matrices with determinant 1, we have for the solution to the IM RHP from
Theorem 2.1:

m1(k)m2(k) = m
(3)
1 (k)m

(3)
2 (k) = mmod

1 (k)mmod
2 (k) +O(t−1)O(k−2).

Here we used that the entries of Mmod(k) are uniformly bounded for ξ ∈ Iε and
that the k−1 term disappears by symmetry (2.15). Theorem 1.1 is proved.
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