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Abstract. Oscillation theory for one-dimensional Dirac operators with sep-

arated boundary conditions is investigated. Our main theorem reads: If

λ0,1 ∈ R and if u, v solve the Dirac equation Hu = λ0u, Hv = λ1v (in the
weak sense) and respectively satisfy the boundary condition on the left/right,

then the dimension of the spectral projection P(λ0,λ1)(H) equals the number
of zeros of the Wronskian of u and v. As an application we establish finiteness

of the number of eigenvalues in essential spectral gaps of perturbed periodic

Dirac operators.

1. Introduction

In [16] Sturm originated oscillation theory for second-order differential equations
one hundred and fifty years ago. Since then numerous extensions have been made
(see, e.g., [2],[11],[14],[17], and the references therein). In [24] Weidmann extended
results for Sturm–Liouville operators from Hartman [5], [6], Hartman and Put-
nam [7], and himself [23] to the case of Dirac operators. In particular, he proves
Sturm-type comparison theorems and applies the results to investigate the essential
spectrum of Dirac operators. With the present paper we want to complement [24]
in the sense that we will use oscillation theory to investigate the discrete spectrum.

Using standard oscillation theory would mean to count zeros of components of
solutions of the Dirac equation. Unfortunately this approach soon leads into severe
troubles:

(i). Components of solutions might vanish identically on some intervals.
(ii). Zeros of components of solutions are not monotone with respect to the spec-

tral parameter. Hence solutions can pick up or lose zeros as the spectral parameter
increases which, in general, destroys the connection between zeros and number of
eigenvalues (cf. Remark 3.3).

The natural remedy is to look at zeros of the Wronskian instead, that is, use a
renormalized version of oscillation theory developed in [4] for the case of Sturm–
Liouville operators (see [18] in the case of Jacobi operators). In addition, this
approach avoids technical difficulties arising from the fact that Dirac operators, in
contradistinction to Sturm–Liouville operators, are not bounded from below.
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To set the stage, let I = (a, b) ⊆ R (with −∞ ≤ a < b ≤ ∞) be an arbitrary
interval and consider the Dirac differential expression

(1.1) τ =
1

i
σ2

d

dx
+ φ(x).

Here

(1.2) φ(x) = φel(x)1l + φam(x)σ1 + (m+ φsc(x))σ3,

σ1, σ2, σ3 denote the Pauli matrices

(1.3) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and m, φsc, φel, and φam are interpreted as mass, scalar potential, electrostatic
potential, and anomalous magnetic moment, respectively (see [19], Chapter 4). As
usual we require m ∈ [0,∞) and φsc, φel, φam ∈ L1

loc(I,R) real-valued. We don’t
include a magnetic moment τ̂ = τ + σ2φmg(x) since it can be easily eliminated
by a simple gauge transformation τ = Uτ̂U−1, U = exp(i

∫ x
φmg(t)dt) (there is

also a gauge transformation which gets rid of φam or φel (see [12], Section 7.1.1)).
Explicitly we have

(1.4) τf =

(
φ11 − d

dx + φ12
d
dx + φ12 φ22

)(
f1

f2

)
=

(
−f ′2 + φ12f2 + φ11f1

f ′1 + φ12f1 + φ22f2

)
,

f ∈ ACloc(I,C2), where primes denote derivatives with respect to x and φ11 =
φel +m+ φsc, φ12 = φ21 = φam, φ22 = φel −m− φsc.

If τ is limit point at both a and b, then τ gives rise to a unique self-adjoint
operator H when defined maximally (cf., e.g., [12], [22], [24]). Otherwise, we fix a
boundary condition at each endpoint where τ is limit circle.

By u±(z, x) we will denote (non identically vanishing) solutions of the differential
equation τu = zu, z ∈ C, which satisfy the following requirements (whenever such
solutions exist).

(i). u±(z, .) ∈ ACloc(I,C2) and τu±(z) = zu±(z).
(ii). u+(z, .) (resp. u−(z, .)) is square integrable near b (resp. a) and fulfills the

boundary condition of H at b (resp. a) if any (i.e., if τ is limit circle at b
(resp. a)).

Explicitly, H is given by

(1.5) H : D(H) → L2(I,C2)
f 7→ τf

,

where

(1.6) D(H) = {f ∈ L2(I,C2)| f ∈ ACloc(I,C2), τf ∈ L2(I,C2),
Wa(u−(λ0), f) = Wb(u+(λ0), f) = 0}

with

(1.7) Wx(f, g) = f1(x)g2(x)− f2(x)g1(x)

the usual Wronskian (we remark that the limit Wa,b(., ..) = limx→a,bWx(., ..) exists
for functions as in (1.6)). The resolvent of H can be expressed in terms of u±(z)
as follows

(1.8) (H − z)−1f(x) =

∫ b

a

G(z, x, y)f(y)dy,
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where

(1.9) G(z, x, y) =
u±(z, x)⊗ u∓(z, y)

W (u+(z), u−(z))
, ±(x− y) > 0.

Recall that Wx(u+(z), u−(z)) is independent of x (cf. (2.1)). In addition, we set
G(z, x, x) = limε→0(G(z, x+ ε, x) +G(z, x− ε, x))/2.

Denote by Hx,− (resp. Hx,+), x ∈ I self-adjoint operators associated with τ on
L2((a, x),C2) (resp. L2((x, b),C2)) obtained from H by imposing the additional
boundary condition f1(x) = 0. Then Hx,− ⊕Hx,+ is a rank one resolvent pertur-
bation of H and hence σess(H) = σess(Hx,−) ∪ σess(Hx,+) (cf. [25], Korollar 6.2).
Here σess(.) denotes the essential spectrum. If Gx,±(z, ., ..) denotes the resolvent
kernel of Hx,± we define the Weyl m-functions mx,±(z) (w.r.t. the base point x) by

(1.10) Gx,±(z, x, x) =

(
0 ± 1

2
± 1

2 mx,±(z)

)
.

The first resolvent identity shows that mx,±(z) are Herglotz functions (cf., e.g.,
[20]).

Lemma 1.1. The solutions u±(z, x) exist for z ∈ C\σess(Hx0,±). They can be
assumed real analytic with respect to z ∈ C\σ(Hx0,±). In addition, we can include
a finite number of isolated eigenvalues in the domain of holomorphy of u±(z, x) by
removing the corresponding poles.

Proof. If U(z, x, x0), z ∈ C is a fundamental matrix solution for τu = zu (i.e.,
U(z, x0, x0) = 1l, x0 ∈ I) and mx0,±(z) are the Weyl m-functions with respect to
the base point x0. Then we can choose

(1.11) u±(z, x) = U(z, x, x0)

(
1

±mx0,±(z)

)
.

By removing the corresponding poles of mx0,±(z) we can include a finite number
of isolated eigenvalues in the domain of holomorphy of u±(z, x). �

A finite end point is called regular if φ11, φ12, φ22 are integrable near this end
point. In this case boundary values for all functions exist at this end point. In
particular, τ is called regular if both end points a, b are regular, that is, a, b ∈ R
and φ11, φ12, φ22 ∈ L1(I,R). In the regular case the resolvent of H is Hilbert-
Schmidt and hence the spectrum is purely discrete (i.e., σess(H) = ∅).

2. Wronskians

In this section we want to investigate the Wronskian of two solutions u, v. A
straightforward calculation gives

(2.1) W ′x(u, v) = (λ0 − λ1)u(x)v(x)

if τu = λ0u and τv = λ1v. Note that (in contradistinction to the Sturm–Liouville
case) the Wronskian of two solutions can only have simple zeros (unless λ0 = λ1, u =
v or u ≡ 0 (resp. v ≡ 0) of course). Moreover, Wx(u, v) = 0 if u(x), v(x) are parallel
and W ′x(u, v) = 0 if u(x), v(x) are orthogonal.

Clearly this implies

Lemma 2.1. Let τu = λ0u and τv = λ1v for some λ1 6= λ0. If u, v ∈ L2((c, d),C2)
and Wc(u, v) = Wd(u, v) for some a ≤ c < d ≤ b then u, v are orthogonal on (c, d),

that is,
∫ d
c
u(t)v(t)dt = 0.
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Proof. Integrating (2.1) we obtain Wd(u, v) −Wc(u, v) = (λ0 − λ1)
∫ d
c
u(t)v(t) dt,

c, d ∈ I, and hence the result is immediate (take limits if c = a or d = b). �

Lemma 2.2. Let λ ∈ R\σess(H). Then

(2.2) Wx(u±(λ), u̇±(λ)) =

{
−
∫ b
x
u+(λ, t)2dt∫ x

a
u−(λ, t)2dt

,

where the dot denotes a derivative with respect to λ.

Proof. From Lemma 2.1 we know

(2.3) Wx(u±(λ), u±(λ̃)) = (λ̃− λ)

{
−
∫ b
x
u+(λ, t)u+(λ̃, t)dt∫ x

a
u−(λ, t)u−(λ̃, t)dt

.

Now use this to evaluate the limit limλ̃→λWx(u±(λ), (u±(λ)−u±(λ̃))/(λ− λ̃)). �

3. Oscillation theory

We first introduce Prüfer variables for u ∈ C(I,R) defined by

(3.1) u1(x) = ρu(x) sin(θu(x)) u2(x) = ρu(x) cos(θu(x)).

If u is never (0, 0) and u is continuous, then ρu is positive and θu is uniquely
determined once a value of θu(x0), x0 ∈ I is chosen by the requirement θu ∈ C(I,R).

Clearly

(3.2) Wx(u, v) = ρu(x)ρv(x) sin(θu(x)− θv(x)).

An important role is played by the following observation.

Lemma 3.1. Let λ0 < λ1, let u, v solve τu = λ0u, τv = λ1v, and introduce

(3.3) ∆u,v(x) = θu(x)− θv(x).

Then, if ∆u,v(x) ≡ 0 mod π,

(3.4) lim
x→x0

∆u,v(x)−∆u,v(x0)

x− x0
= (λ1 − λ0) > 0.

Proof. If ∆u,v(x0) ≡ 0 mod π, then (from (3.2))

(3.5) lim
x→x0

ρu(x)ρv(x) sin(∆u,v(x))

x− x0
= W ′x0

(u, v) > 0

implies the assertion using (2.1). �

Or, put differently, the last proposition implies that the integer part of ∆u,v(x)/π
is increasing.

Lemma 3.2. Let λ0 < λ1 and let u, v solve τu = λ0u, τv = λ1v. Denote by
#(u, v) the number of zeros of W (u, v) inside the interval (a, b). Then

(3.6) #(u, v) = lim
x↑b

[[∆u,v(x)/π]]− lim
x↓a

[[∆u,v(x)/π]],

where [[x]] denotes the integer part of a real number x, that is, [[x]] = sup{n ∈ Z|n ≤
x}.

Proof. We start with an interval [x0, x1] containing no zeros of W (u, v). Hence
[[∆u,v(x)/π]] = [[∆u,v(x)/π]]. Now let x0 ↓ a, x1 ↑ b and use Lemma 3.1. �
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If λ ∈ R\σess(H) holds, then equation (2.2) clearly implies

(3.7) θ̇+(λ, x) =

∫ b
x
u+(λ, t)2dt

ρ+(λ, x)2
> 0, θ̇−(λ, x) = −

∫ x
a
u−(λ, t)2dt

ρ−(λ, x)2
< 0,

where we have abbreviated ρ±(λ, x) = ρu±(λ)(x) and θ±(λ, x) = θu±(λ)(x).

Remark 3.3. We remark that linking zeros of uj to the rotation number θu is
not possible since (unlike in the Sturm–Liouville case) the integer part of θu does
not count zeros of uj. Indeed, (assuming φ continuous for a moment) shows that
u1(x) = 0 implies θ′u(x0) = φ22(x0) − λ0 which is not necessarily positive. Hence
the integer part of θu/π can increase or decrease (or stay the same) at zeros of u1

(cf. the discussion at the end of Section 2 in [24]). In addition, this implies that
zeros of u±,1(λ, .), are not monotone with respect to λ. Hence solutions can pick up
or lose zeros as λ increases. This, in general, destroys the connection between zeros
and number of eigenvalues. Moreover, if φ22(x)− λ0, vanishes on a subinterval of
I, then u1(x) can vanish on the same interval (without u being identically zero).

However, if φ22, is bounded from above (resp. below), we can apply standard
oscillation theory for values of λ with φ22(x)− λ < 0 (resp. φ22(x)− λ > 0) for all
x ∈ I (cf. Remark 4.10 (ii)). Similar for u2.

To further illustrate these problems we consider the following example with

(3.8) φ =

(
θ′ 0
0 θ′

)
.

We will normalize θ(x0) = 0 for some x0 ∈ I. The solution u of τu = λ0u satisfying
the initial condition u(x0) = ρ0(sin θ0, cos θ0) is given by

(3.9) u(x) = ρ0

(
sin(θ0 − λ0(x− x0) + θ(x))
cos(θ0 − λ0(x− x0) + θ(x))

)
.

Clearly, if θ′(x) = λ0 for x ∈ (x0, x0 + ε) and θ0 = 0, then u(x) = (0, ρ0) for
x ∈ (x0, x0 + ε).

To get more specific, let I = (0, 1), θ(x) = 4x(x − 1), x0 = 0, and impose the
boundary conditions f1(0) = f1(1) = 0. We easily obtain σ(H) = πZ and

(3.10) θ−(λ, x) = θ(x)− λx, θ+(λ, x) = θ(x)− λ(x− 1).

This implies the following for the zeros of u−,1(λ, .) as λ increases. At λ = 0 ∈ σ(H)
there are no zeros. At λ = 4(

√
π − 1) 6∈ σ(H) we pick up two zeros one of which

gets lost again at λ = π ∈ σ(H). As soon as λ > 4 we have θ′(x) − λ > 0 for all
x ∈ I and from now on u−,1(λ, .) picks up precisely one zero whenever λ hits an
eigenvalue (and no zeros get lost).

To end this remark we compute ∆u−(λ0),u+(λ1)(x) = λ1(x − 1) − λ0x, where all
unpleasant factors cancel.

4. Number of eigenvalues and zeros of Wronskians

The objective of this section is to establish the connection between zeros of the
Wronskian and spectra of Dirac operators. As a warm up we considers the regular
case.

Theorem 4.1. Suppose τ is regular. Denote by PΩ(H) the family of spectral pro-
jections for H. Then we have for λ0 < λ1

(4.1) dim Ran P(λ0,λ1)(H) = #(u−(λ0), u+(λ1)) = #(u+(λ0), u−(λ1)),
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where #(u, v) is the number of zeros of W (u, v) inside (a, b).

Proof. We only carry out the proof for the #(u−(λ0), u+(λ1)) case. Defining
#(u−(λ0), u+(λ1)) as in (3.6) shows that our claim is true for λ1 close to λ0.
Abbreviate ∆(λ, x) = ∆u−(λ0),u+(λ)(x). Since ∆(λ, b) is independent of λ it suf-
fices to look at ∆(λ, a). As λ increases from λ0 to λ1, −∆(λ, a) increases by (3.7)
and is 0 mod π if and only if λ is an eigenvalue of H (Lemma 3.2, equation (1.6))
completing the proof. �

Next, we want to prove Theorem 4.1 in the general case. This will be done in
two parts.

Theorem 4.2. Let λ0 < λ1 and σ0, σ1 ∈ {±}. Suppose uσj (λj , .), j = 0, 1 exist.
Then

(4.2) dim Ran P(λ0,λ1)(H) ≥ #(uσ0
(λ0), uσ1

(λ1)).

Proof. Again the proof is only done for σ0 = −. Abbreviate u = u−(λ0) and v =
u+(λ1) and n = #(u, v). Suppose n finite, otherwise the following argument works
for arbitrary large n. Let x1, . . . , xn be the zeros of Wx(u, v). Since Wxj (u, v) = 0
there exists constants γj such that

(4.3) ηj(x) =

{
u(x), x ≤ xj
γjv(x), x > xj

, 1 ≤ j ≤ n,

is in the domain of H (i.e., u(xj) = γjv(xj)). Furthermore, set

(4.4) η̃j(x) =

{
−u(x), x ≤ xj
γjv(x), x > xj

, 1 ≤ j ≤ n.

If λ1 is an eigenvalue of H we define in addition η0 = v = η̃0, x0 = a and if λ0 is an
eigenvalue of H, ηn+1 = u = −η̃n+1, xn+1 = b. Lemma 2.1 implies

∫ xk

xj
uv dx = 0

and hence
∫ a
b
ηjηk dx =

∫ a
b
η̃j η̃k dx for all j, k. Using

(4.5) (H − λ1 + λ0

2
)ηj =

λ1 − λ0

2
η̃j

we obtain

(4.6) ‖(H − λ1 + λ0

2
)η‖ =

λ1 − λ0

2
‖η‖

for any η in the span of the ηj ’s. Thus, dim Ran P[λ0,λ1](H) ≥ dim(span{ηj}). But
u and v are independent on each interval (since their Wronskian is non-constant)
and so the ηj are linearly independent. This proves the theorem in the u = u−(λ0),
v = u+(λ1) case.

The case u = u−(λ0), v = u−(λ1) is similar. We define

(4.7) ηj(x) =

{
u(x) + γjv(x), x ≤ xj

0, x > xj
, 1 ≤ j ≤ n

(with ηj ∈ D(H)), and

(4.8) η̃j(x) =

{
−u(x) + γjv(x), x ≤ xj

0, x > xj
, 1 ≤ j ≤ n.

If λ1 is an eigenvalue of H we define in addition η0 = v = η̃0, x0 = b and if λ0 is an
eigenvalue of H, ηn+1 = u = −η̃n+1, xn+1 = b. Again, ηj ’s are linearly independent
by considering their supports. And since

∫ xj

a
uv dx = 0, 1 ≤ j ≤ n we can proceed

as before. �



RENORMALIZED OSCILLATION THEORY FOR DIRAC OPERATORS 1691

Fix functions u, v. Pick am ↓ a, bm ↑ b and set Im = (am, bm). Define H̃m :

D(H̃m)→ L2(Im,C2), f 7→ τf with

(4.9) D(H̃m) = {f ∈ L2(Im,C2)| f ∈ AC(Im,C2), τf ∈ L2(Im,C2),
Wam(u, f) = Wbm(v, f) = 0}.

Consider Hm = α1l ⊕ H̃m ⊕ α1l on L2(I,C2) = L2((a, am),C2) ⊕ L2(Im,C2) ⊕
L2((bm, b),C2), where α is a fixed real constant. Then we have the following stan-
dard result ([22], Chapter 16, [24], Section 1, and [4], Section 5).

Lemma 4.3. Suppose that either H is limit point at a or that u = u−(λ0) for some
λ0 and similarly, that either H is limit point at b or v = u+(λ1) for some λ1. Then
Hm converges to H in strong resolvent sense as m→∞ and hence

(4.10) dim Ran P(λ0,λ1)(H) ≤ lim inf dim Ran P(λ0,λ1)(Hm).

Now we are ready to prove

Theorem 4.4. If u = u∓(λ0) and v = u±(λ1), then

(4.11) dim Ran P(λ0,λ1)(H) ≤ #(u, v).

If H is limit point at b (resp. a) we can replace u−(λj) (resp. u+(λj)) by an
arbitrary solution of τu = λju.

Proof. We can assume #(u, v) < ∞ (otherwise there is nothing to prove). Pick
am ↓ a, bm ↑ b. Let Hm be given as in Lemma 4.3 with α /∈ [λ0, λ1]. If m is
so large, that all zeros of W (u, v) are in (am, bm), Theorem 4.1 implies #(u, v) =

dim Ran P(λ0,λ1)(H̃m) = dim Ran P(λ0,λ1)(Hm) since α /∈ [λ0, λ1]. Thus by Lemma 4.3,
(4.11) holds as was to be proven. �

Combining the last two theorems we get:

Theorem 4.5. Let λ0 < λ1, then

(4.12) dim Ran P(λ0,λ1)(H) = #(u−(λ0), u+(λ1)) = #(u+(λ0), u−(λ1)),

where #(u, v) denotes the number of zeros of W (u, v) inside (a, b). The result still
holds for u = u−(λ0), v = u−(λ1) (resp. u = u+(λ0), v = u+(λ1)) if H is limit
point at b (resp. a).

Remark 4.6. The limit point assumption in the case u = u∓(λ0), v = u∓(λ1) is
clearly crucial, since the Wronskian contains no information about the boundary
condition at a respectively b in this case.

Finally we state

Theorem 4.7. Let λ0 6= λ1. Let τu = λ0u, τv = λ1v, and τ ṽ = λ1ṽ with v
independent of ṽ. Then the zeros of W (u, v) interlace the zeros of W (u, ṽ) (in the
sense that there is exactly one zero of one function in between two zeros of the
other). In particular, |#(u, v)−#(u, ṽ)| ≤ 1.

Proof. The result is immediate from 0 < ∆v,ṽ(x) < π (for a suitable normalization
of ∆v,ṽ(x)) which follows from constancy of W (v, ṽ). �

By applying this theorem twice, we conclude
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Theorem 4.8. Let λ0 6= λ1. Let u, ũ and v, ṽ be the linearly independent solutions
of τu = λ0u and τv = λ1v, respectively. Then

(4.13) |#(u, v)−#(ũ, ṽ)| ≤ 2.

Moreover, we infer the following useful result.

Corollary 4.9. Let u, v satisfy τu = λ0u, τv = λ1v. Then

(4.14) #(u, v) <∞ ⇔ dim Ran P(λ0,λ1)(H) <∞.

Proof. Using the split up Hx0,−⊕Hx0,+ reduces the problems to the case with one
regular endpoint. Thus the solutions u±(λ) exist at least at one end point. Using
first Theorem 4.5 and then Theorem 4.8 finishes the proof. �

Remark 4.10. (i). We remark that all results obtained thus far also hold for the
more general system

(4.15) τ = k(x)−1
(1

i
σ2(p(x)

d

dx
+

d

dx
p(x)) + φ(x)

)
,

where p ∈ ACloc(I, (0,∞)) and k is a symmetric positive definite matrix with coef-
ficients kij ∈ L1

loc(I,R). The necessary modifications are straightforward (see also
[24], Section 5).
(ii).In the case of supersymmetric Dirac operators (i.e., φ11 = φ22 = 0)

(4.16) H =

(
0 A∗

A 0

)
, A =

d

dx
+ φ12(x)

(note that H and −H are unitarily equivalent) we have

(4.17) H2 =

(
H1 0
0 H2

)
, H1 = A∗A, H2 = AA∗.

Moreover, τu = λu implies τjuj = −u′′j +(φ2
12−(−1)jφ′12)uj = λuj, j = 1, 2, where

τj is the differential expression corresponding to Hj. This says that all oscillation
theoretic results for supersymmetric Dirac operators follow immediately from the
corresponding results for (semi-bounded) one-dimensional Schrödinger operators.

5. Applications

In our final section we want to apply our results to investigate the spectra of
short-range perturbations of periodic Dirac operators. Our objective is to prove
the analog of the Theorem by Rofe-Beketov [15] about the finiteness of the number
of eigenvalues in essential spectral gaps of the perturbed Hill operator. The reader
might find some results for the special case of perturbed constant operators in [10],
[3] and for the general case in [8], [9].

We first recall some basic facts from the theory of periodic Dirac operators (cf.,
e.g., [1], [21], [22], Chapter 12). Let Hp be a Dirac operator associated with periodic
potential φp, that is, φp(x+ 1) = φp(x), x ∈ I = R. The spectrum of Hp is purely
absolutely continuous and consists of a countable number of gaps, that is,

(5.1) σ(Hp) =
⋃
j∈Z

[E2j , E2j+1]
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with · · ·E2j < E2j+1 ≤ E2j+2 < E2j+3 · · · . Moreover, Floquet theory implies the
existence of solutions up,±(z, .) of τpu = zu, z ∈ C (τp the differential expression
corresponding to Hp) satisfying

(5.2) up,±(z, x) = p±(z, x)m(z)±x, p±(z, x+ 1) = p±(z, x),

where m(z) ∈ C is called Floquet multiplier. m(z) satisfies m(z)2 = 1 for z ∈
{Ej}j∈Z, |m(z)| = 1 for z ∈ σ(Hp), and |m(z)| < 1 for z ∈ C\σ(Hp). (This says in
particular, that up,±(z, .) are bounded for z ∈ σ(Hp) and linearly independent for
z ∈ C\{Ej}j∈Z.)

As anticipated, we will study perturbations H of Hp associated with potential
satisfying φ(x) → φp(x) as |x| → ∞. Both H and Hp are limit point (cf. [25],
Satz 5.1) and hence give rise to a unique self adjoint operator when defined maxi-
mally. Using this notation our theorem reads:

Theorem 5.1. Suppose φp is a given periodic potential and Hp is the corresponding
Dirac operator. Let H be a perturbation of Hp such that

(5.3)

∫
R

(1 + |x|)|φ(x)− φp(x)|dx <∞.

Then we have σess(H) = σ(Hp), the point spectrum of H is confined to the spectral
gaps of Hp, that is, σp(H) ⊂ R\σ(Hp) and finite in each gap. Furthermore, the
essential spectrum of Hp is purely absolutely continuous.

Proof. Using (1.8) plus |up,±(z, x)| ≤ C±|m(z)|±x shows that H is relatively com-
pact with respect to Hp, implying σess(H) = σess(Hp). To prove the remaining
claims it suffices to show the existence of solutions u±(λ, .) of τu = λu for λ ∈ σ(Hp)
(continuous w.r.t. λ) satisfying

(5.4) lim
x→±∞

|u±(λ, x)− up,±(λ, x)| = 0.

In fact, for λ ∈ σ(Hp) there exists at least one bounded solution which is not square
integrable and hence there are no eigenvalues in the essential spectrum of H (since
the Wronskian of a bounded and a square integrable solution must vanish). Invoking
Theorem XIII.20 of [13] shows that the essential spectrum of H is purely absolutely
continuous. Moreover, since Wx(up,−(E2j−1), up,+(E2j)) has no zeros, we infer that
Wx(u−(E2j−1), u+(E2j)) has only finitely many zeros. Thus by Corollary 4.9 there
are only finitely many eigenvalues in each gap. It remains to show (5.4). Suppose
u+(λ, .), λ ∈ σ(Hp) satisfies

(5.5) u±(λ, x) = up,±(λ, x)− iσ2

∫ x

±∞
Up(λ, x, y)(φ(y)− φp(y))u±(λ, y)dy,

where Up(λ, ., y) is the fundamental matrix solution of of τpu = λu satisfying the
initial conditions Up(λ, y, y) = 1l. Then u±(λ, .) fulfills τu = λu and (5.4). Existence
of a solution of (5.5) follows upon applying a standard iteration argument (compare
also [8] and [20] in the special case φp = 0) using

(5.6) |Up(λ, x, y)| ≤ C(1 + |x− y|), λ ∈ σ(Hp), C > 0.

�

Clearly, there are several other strategies to prove Theorem 5.1. The proof
given here has the advantage of being rather short and transparent. In addition,
the idea of proof applies to much general scattering situations (where Hp is not
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necessarily periodic) as long as sufficient information about the spectrum of Hp

and the asymptotic behavior of (weak) solutions of Hp and H is available.

Remark 5.2. The fact that the essential spectrum of H is purely absolutely contin-
uous has first been proven by [9] under the weaker assumption

∫
R |φ(x)−φp(x)|dx <

∞. Since (5.3) is only needed to ensure existence of u±(λ, x) for λ at the boundary
of σ(Hp) (for λ in the interior of σ(Hp) we have |Up(λ, x, y)| ≤ C) the weaker as-
sumption above suffices) our proof also covers this situation. However, the following
example

(5.7) φ(x) = φp(x) +

(
x2−1

(x2+1)2 0

0 0

)
, φp(x) =

(
1 0
0 −1

)
shows that (5.3) cannot be replace by

∫
R(1 + |x|ε)|φ(x) − φp(x)|dx < ∞, ε < 1.

Indeed, H has an eigenvalue 1 ∈ σ(Hp) = (−∞,−1] ∪ [1,∞) with corresponding
eigenfunction

(5.8) u(1, x) =
1

(x2 + 1)2

(
x2 + 1
−x

)
.
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