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Abstract. We investigate the connection between singular Weyl–Titchmarsh–
Kodaira theory and the double commutation method for one-dimensional Dirac

operators. In particular, we compute the singular Weyl function of the com-

muted operator in terms of the data from the original operator. These results
are then applied to radial Dirac operators in order to show that the singular

Weyl function of such an operator belongs to a generalized Nevanlinna class

Nκ0 with κ0 = b|κ|+ 1
2
c, where κ ∈ R is the corresponding angular momentum.

1. Introduction

Weyl–Titchmarsh–Kodaira theory is the fundament of direct and inverse spectral
theory for ordinary differential operators. The classical theory usually assumes
that one endpoint is regular. However, it has been shown by Kodaira [15], Kac
[14] and more recently by Fulton [11], Gesztesy and Zinchenko [13], Fulton and
Langer [12], Kurasov and Luger [22], and Kostenko, Sakhnovich, and Teschl [16],
[17], [18], [19] that many aspects of this classical theory still can be established
at a singular endpoint. It has recently proven to be a powerful tool for inverse
spectral theory for these operators and further refinements were given in [3], [4],
[5], [6], [7], [10], [20]. The analogous theory for one-dimensional Dirac operators
was developed by Brunnhuber and three of us in [2] (for further extensions see also
[8], [9]). Nevertheless, such operators are still difficult to understand.

One approach, originating from ideas of Krein [21], is to use spectral deforma-
tion methods to reduce a given spectral problem to a simpler one. In the case
of one-dimensional Schrödinger operators there is by now an enormous literature
on this subject and we refer to Kostenko, Sakhnovich, and Teschl [18] for further
references. Moreover, in [18] the connection between these methods and singular
Weyl–Titchmarsh–Kodaira theory was established and it is our present aim to do
the same for Dirac operators. However, here the situation is slightly different. In
fact, since Dirac operators are not bounded from below, a factorization of the type
A∗A is not possible and hence there is no analog of the classical Crum–Darboux
method for Dirac operators. However, an analog of the double commutation method
was established by Teschl [25]. Moreover, this method has been used by Albeverio,
Hryniv, and Mykytyuk [1] to reduce the inverse spectral problem of radial Dirac op-
erators on a compact interval to the case of regular operators following the general
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idea of Krein [21]. Here we will further extend these results in a more general set-
ting. As an application we will find a representation formula for the singular Weyl
function of radial Dirac operators and show that it is in a generalized Nevanlinna
class Nκ0

with κ0 = b|κ|+ 1
2c, extending the results from [2].

2. Singular Weyl–Titchmarsh–Kodaira Theory

Let I = (a, b) ⊆ R (with −∞ ≤ a < b ≤ ∞) be an arbitrary interval. We will be
concerned with Dirac operators in the Hilbert space L2(I,C2) equipped with the
inner product

(2.1) 〈f, g〉 =

∫ b

a

f(y)∗g(y) dy, ‖f‖2 = 〈f, f〉.

To this end, we consider the differential expression

(2.2) τ =
1

i
σ2

d

dx
+Q(x).

Here the potential matrix Q(x) is given by

(2.3) Q(x) = qel(x)1l + qam(x)σ1 + (m+ qsc(x))σ3,

where σ1, σ2, σ3 denote the Pauli matrices

(2.4) σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and m, qsc, qel, and qam are interpreted as mass, scalar potential, electrostatic
potential, and anomalous magnetic moment, respectively (see [26, Chapter 4]). As
usual, we require that m ∈ [0,∞) and that qsc, qel, qam ∈ L1

loc(I) are real-valued.
We do not include a magnetic moment τ̃ = τ+σ2qmg(x) as it can be easily elimi-

nated by a simple gauge transformation τ = Γ−1τ̃Γ, where Γ = exp(−i
∫ x

qmg(r)dr).
If τ is in the limit point case at both a and b, then τ gives rise to a unique self-

adjoint operator H when defined maximally (cf., e.g., [23], [27], [28]). Otherwise,
we fix a boundary condition at each endpoint where τ is in the limit circle case.
Explicitly, such an operator H is given by

H : D(H) → L2(I,C2)
f 7→ τf

(2.5)

where

D(H) = {f ∈ L2(I,C2) | f ∈ ACloc(I,C2), τf ∈ L2(I,C2),

Wa(u−, f) = Wb(u+, f) = 0},
(2.6)

with

(2.7) Wx(f, g) = i〈f∗(x), σ2g(x)〉 = f1(x)g2(x)− f2(x)g1(x)

the usual Wronskian (we remark that the limit Wa,b(., ..) = limx→a,bWx(., ..) exists
for functions as in (2.6)). Here the function u− (resp. u+) used to generate the
boundary condition at a (resp. b) can be chosen to be a non-trivial solution of
τu = 0 if τ is in the limit circle case at a (resp. b) and zero else.

For a given point c ∈ I consider the operators HD
(a,c) and HD

(c,b) which are ob-

tained by restricting H to (a, c) and (c, b) with a Dirichlet boundary condition
f1(c) = 0 at c, respectively. The corresponding operators with a Neumann bound-
ary condition f2(c) = 0 will be denoted by HN

(a,c) and HN
(c,b).
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Our main object will be singular Weyl–Titchmarsh–Kodaira theory which, for
Dirac operators, was developed only recently in [2]. Hence we will start by reviewing
some relevant facts from [2]. We will need a system of real entire solutions Φ(z, x),
Θ(z, x) of the underlying homogeneous equation τu = zu such that Φ(z, x) lies in
the domain of H near a and W (Θ(z),Φ(z)) = 1. To this end we introduce the
following hypothesis:

Hypothesis 2.1. Suppose that the spectrum of HD
(a,c) is purely discrete for one

(and hence for all) c ∈ (a, b).

Lemma 2.2 ([2, Lemma 2.2]). The following are equivalent:

(i) The spectrum of HD
(a,c) is purely discrete for some c ∈ I.

(ii) There is a real entire solution Φ(z, x) that is non-trivial and lies in the domain
of H near a for each z ∈ C.

(iii) There are real entire solutions Θ(z, x),Φ(z, x) with W (Θ(z),Φ(z)) = 1, such
that Φ(z, x) is non-trivial and lies in the domain of H near a for each z ∈ C.

Assuming Hypothesis 2.1 we can introduce the singular Weyl function

(2.8) M(z) = −W (Θ(z), u+(z))

W (Φ(z), u+(z))

such that the solution which is in the domain of H near b is given by

(2.9) Ψ(z, x) = Θ(z, x) +M(z)Φ(z, x).

Here, u+(z) is the (up to scalar multiples unique) non-trivial solution of τu = zu
which lies in the domain of H near b. We stress the fact that there is no natural
choice of a fundamental system Φ and Θ. The regular solution can be multiplied by
a (zero free) real entire function, Φ̃(z, x) = eg(z)Φ(z, x) for some real entire function
g. Due to the requirement that the Wronskian has to be normalized, the singular
solution needs to be of the form Θ̃(z, x) = e−g(z)Θ(z, x) − f(z)Φ(z, x), where f is
again some real entire function. This will change the Weyl function according to

(2.10) M̃(z) = e−2g(z)M(z) + eg(z)f(z).

Associated with M(z) is a corresponding spectral measure ρ given by the Stieltjes–
Livšić inversion formula

(2.11)
1

2

(
ρ
(
(λ0, λ1)

)
+ ρ
(
[λ0, λ1]

))
= lim

ε↓0

1

π

∫ λ1

λ0

Im
(
M(λ+ iε)

)
dλ.

Then there exists a spectral transformation which maps the Dirac operator H in
L2(I,C2) to the multiplication operator with the independent variable in L2(R, dρ).
Conversely, M(z) can be reconstructed from ρ up to an entire function.

Theorem 2.3 ([17, Theorem 4.1]). Let M(z) be a singular Weyl function and ρ
its associated spectral measure. Then there exists an entire function g(z) such that
g(λ) ≥ 0 for λ ∈ R and e−g(λ) ∈ L2(R, dρ).

Moreover, for any entire function ĝ(z) such that ĝ(λ) > 0 for all λ ∈ R and
(1+λ2)−1ĝ(λ)−1 ∈ L1(R, dρ) (e.g. ĝ(z) = e2g(z)) we have the integral representation

(2.12) M(z) = E(z) + ĝ(z)

∫
R

(
1

λ− z
− λ

1 + λ2

)
dρ(λ)

ĝ(λ)
, z ∈ C\σ(H),

where E(z) is a real entire function.
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If the endpoint a is regular, or at least limit circle, then, with the usual choice
for Φ and Θ, the Weyl function is a Herglotz–Nevanlinna function and we can
choose ĝ(z) ≡ 1 and E(z) = Re(M(i)) in the previous theorem. However, this
will not be true in general. The following theorem gives a criterion when the
singular Weyl function belongs to the class N∞κ of generalized Nevanlinna functions
with no non-real poles and the only generalized pole of nonpositive type at ∞ (for
further information on generalized Nevanlinna functions we refer to [24], see also
[19, Appendix B]).

Theorem 2.4 ([17, Theorem 4.3]). Fix the solution Φ(z, x) and k ∈ N ∪ {0}.
Then there is a corresponding solution Θ(z, x) such that M(z) ∈ N∞κ for some
κ ≤ k if and only if (1 + λ2)−k−1 ∈ L1(R, dρ). Moreover, κ = k if k = 0 or
(1 + λ2)−k 6∈ L1(R, dρ).

3. The Double Commutation Method

As explained in the introduction, we want to investigate the effect of the double
commutation method introduced for Dirac operators in [25] on the singular Weyl
function. Hence we will review some prerequisites on this method first.

Given a one-dimensional Dirac operator H associated with τ in H = L2(I,C2)
we denote by u−(z, x), u+(z, x) its corresponding Weyl solutions, that is, solutions
of τu = zu which are in the domain of H near a, b, respectively. In general, u−(z, x)
(u+(z, x)) might not exist unless z ∈ C\σess(HD

(a,c)) (z ∈ C\σess(HD
(c,b))) and by

using them we will always implicitly suppose their existence in such a situation.
Without loss of generality we will also assume u±(z∗, x) = u±(z, x)∗ such that
u±(λ, x) is real whenever λ ∈ R.

Given u−(λ, x), λ ∈ R, and γ ∈ [−‖u−(λ)‖−2,∞] let us set1

uγ(λ, x) =
u−(λ, x)

cγ(λ, x)
, cγ(λ, x) =

1

γ
+

∫ x

a

u−(λ, y)>u−(λ, y)dy(3.1)

and define

Hγf = τγf := (τ +Qγ)f, D(Hγ) = {f ∈ H | f ∈ ACloc(I,C2), τγf ∈ H,

Wa(uγ(λ), f) = Wb(uγ(λ), f) = 0},
(3.2)

Qγ(x) =
2

cγ(λ, x)
Re
(1

i
σ2u−(λ, x)u−(λ, x)>

)
=
u−,1(λ, x)2 − u−,2(λ, x)2

cγ(λ, x)
σ1 − 2

u−,1(λ, x)u−,2(λ, x)

cγ(λ, x)
σ3.

(3.3)

Then the main result from [25] states that H and Hγ are unitarily equivalent up
to possibly some one-dimensional subspaces. More precisely, denote by P and
Pγ the orthogonal projections onto the one-dimensional subspaces of H spanned,
respectively, by u− and uγ (set P , Pγ = 0 if u−, uγ 6∈ H). Then we have

Theorem 3.1 ([25]). Let u−(λ, x), λ ∈ R, and γ ∈ [−‖u−(λ)‖−2,∞] be given and
define Hγ as in (3.2). If u−(λ) ∈ H, then we also require λ ∈ σp(H).

Suppose first that u−(λ) 6∈ H.

1Here and henceforth we employ the convention ∞−1 = 0. The case γ = 0 has to be read as
H0 = H and this case is of course trivial.
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(i) If γ > 0, then H and (1l − Pγ(λ))Hγ are unitarily equivalent. Moreover, Hγ

has the additional eigenvalue λ with eigenfunction uγ,−(λ).
(ii) If γ =∞, then H and Hγ are unitarily equivalent.

Suppose that u−(λ) ∈ H and λ ∈ σp(H) (i.e., λ is an eigenvalue of H).

(i) If γ ∈ (−‖u−(λ)‖−2,∞), then H and Hγ are unitarily equivalent.
(ii) If γ = −‖u−(λ)‖−2 or ∞, then (1l− P (λ))H and Hγ are unitarily equivalent,

that is, the eigenvalue λ is removed.

Furthermore, the solutions of the new operator Hγ can be expressed in terms of
the solutions of H.

Lemma 3.2 ([25, Lemma 3.4]). Let u ∈ ACloc(I,C2) fulfill τu = zu, z ∈ C\{λ},
and set

(3.4) v(z, x) = u(z, x) +
uγ(λ, x)

z − λ
Wx(u−(λ), u(z)).

Then v ∈ ACloc(I,C2) and v fulfills τγv = zv. We also note that if û, v̂ are
constructed analogously, then

Wx(v(z), v̂(ẑ)) = Wx(u(z), û(ẑ))− 1

cγ(λ, x)
×

z − ẑ
(z − λ)(ẑ − λ)

Wx(u−(λ), u(z))Wx(u−(λ), û(ẑ)).

(3.5)

In addition, the solutions

(3.6) u±,γ(z, x) = u±(z, x) +
uγ(λ, x)

z − λ
Wx(u−(λ), u±(z)),

are square integrable near a, b and satisfy the boundary condition of Hγ at a, b,
respectively.

Remark 3.3. All the previous considerations still hold if one starts from the right
endpoint b instead of the left endpoint a. One just needs to interchange the following
roles:

u−(λ, x)→ u+(λ, x), cγ(x)→ − 1

γ
−
∫ b

x

u+(λ, y)>u+(λ, y)dy.(3.7)

Now we are ready to relate this method to singular Weyl–Titchmarsh–Kodaira
theory.

Theorem 3.4. Let Hγ be constructed from u−(λ, x) = Φ(λ, x), λ ∈ R, with γ ∈
[−‖Φ(λ)‖−2,∞) and set Φ̃γ(λ, x) = Φ(λ, x)/cγ(λ, x). Moreover, if Φ(λ) ∈ H we
require λ ∈ σp(H).

The operator Hγ has a system of real entire solutions

Φγ(z, x) = Φ(z, x)− Φ̃γ(λ, x)

∫ x

a

Φ(λ, y)>Φ(z, y)dy

= Φ(z, x) +
1

z − λ
Φ̃γ(λ, x)Wx(Φ(λ),Φ(z)),

(3.8)

Θγ(z, x) = Θ(z, x) +
1

z − λ

(
Φ̃γ(λ, x)Wx(Φ(λ),Θ(z)) + γΦγ(z, x)

)
,(3.9)
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with W (Θγ(z),Φγ(z)) = 1. In fact, for z = λ, we have

Φγ(λ, x) = γ−1Φ̃γ(λ, x),(3.10)

Θγ(λ, x) = Θ(λ, x) + Φ̃γ(λ, x)Wx(Φ(λ), Θ̇(λ)) + γΦ̇γ(λ, x),(3.11)

where the dot denotes the derivative with respect to the spectral parameter z. In
particular, Hγ satisfies again Hypothesis 2.1.

The Weyl solutions of Hγ are given by

Φγ(z, x), Ψγ(z, x) = Ψ(z, x) +
1

z − λ
Φ̃γ(λ, x)Wx(Φ(λ),Ψ(z))

= Θγ(z, x) +Mγ(z)Φγ(z, x),
(3.12)

where

Mγ(z) = M(z)− γ

z − λ
(3.13)

is the singular Weyl function of Hγ .

Proof. Using Lemma 3.2 it is straightforward to check that Φγ(z, x), Θγ(z, x) is a
real entire system of solutions whose Wronskian equals one. The extra multiple of
Φγ(z, x) has been added to Θγ(z, x) to remove the pole at z = λ. The rest is a
straightforward calculation. �

Note that in the previous theorem the singularity at the left endpoint is not
changed, which is reflected by the fact that also the asymptotic behavior of the
Weyl function is almost unchanged.

In the limiting case γ =∞ we obtain

Theorem 3.5. Let H∞ be constructed from u−(λ, x) = Φ(λ, x), λ ∈ R, with γ =∞
and set Φ̃∞(λ, x) = Φ(λ, x)/c∞(λ, x). Moreover, if Φ(λ) ∈ H we require λ ∈ σp(H).

The operator H∞ has a system of real entire solutions

Φ∞(z, x) =
1

z − λ

(
Φ(z, x)− Φ̃∞(λ, x)

∫ x

a

Φ(λ, y)>Φ(z, y)dy

)
,(3.14)

Θ∞(z, x) = (z − λ)Θ(z, x) + Φ̃∞(λ, x)Wx(Φ(λ),Θ(z)),(3.15)

with W (Θ∞(z),Φ∞(z)) = 1. In fact, for z = λ, we have

Φ∞(λ, x) = Φ̇(λ, x)− Φ̃∞(λ, x)

∫ x

a

Φ(λ, y)>Φ̇(λ, y)dy,(3.16)

Θ∞(λ, x) = −Φ̃∞(λ, x).(3.17)

In particular, H∞ satisfies again Hypothesis 2.1.
The Weyl solutions of H∞ are given by

Φ∞(z, x), Ψ∞(z, x) = (z − λ)Ψ(z, x) + Φ̃∞(λ, x)Wx(Φ(λ),Ψ(z))

= Θ∞(z, x) +M∞(z)Φ∞(z, x),
(3.18)

where

M∞(z) = (z − λ)2M(z)(3.19)

is the singular Weyl function of H∞.
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Proof. In the limiting case γ →∞ the definition from the previous theorem would
give Φ∞(λ, x) = 0 (see (3.10)) and we simply need to remove this zero. The rest
follows as before. �

Note that in this case the singularity at the left endpoint is changed, however, the
growth of M(z) is increased whereas it would be desirable to have a transformation
which decreases the growth. Hence we need to invert the above procedure. To this
end note that the new operator H∞ has Θ∞(λ, x) = u∞,+(λ, x). So this shows
that we should look at the case where Hγ is computed from u+(λ, x) = Θ(λ, x)
(cf. Remark 3.3). Let us also stress that the following result is essential for the
application to the perturbed radial Dirac operator in the next section.

Theorem 3.6. Let Hγ be constructed from u+(λ, x) = Θ(λ, x) 6∈ H, λ ∈ R, with
γ ∈ (0,∞] and set

Θ̃γ(λ, x) =
Θ(λ, x)

cγ(λ, x)
, cγ(λ, x) = − 1

γ
−
∫ b

x

Θ(λ, y)>Θ(λ, y)dy.(3.20)

The operator Hγ has a system of real entire solutions

Φγ(z, x) = (z − λ)
(

Φ(z, x) +
1

z − λ
Θ̃γ(λ, x)Wx(Θ(λ),Φ(z))

)
,(3.21)

Θγ(z, x) =
1

z − λ

[
Θ(z, x) +

1

z − λ
Θ̃γ(λ, x)Wx(Θ(λ),Θ(z))

+
( 1

γ
−Wb(Θ(λ), Θ̇(λ))

)
Φγ(z, x)

]
,

(3.22)

with W (Θγ(z),Φγ(z)) = 1. Moreover,

Φγ(λ, x) = Θ̃γ(λ, x).(3.23)

In particular, Hγ satisfies again Hypothesis 2.1.
The Weyl solutions of Hγ are given by

Φγ(z, x), Ψγ(z, x) =
1

z − λ

[
Ψ(z, x) +

1

z − λ
Θ̃γ(λ, x)Wx(Θ(λ),Ψ(z))

]
= Θγ(z, x) +Mγ(z)Φγ(z, x),

(3.24)

where

Mγ(z) =
M(z) +Wb(Θ(λ), Θ̇(λ))(z − λ)

(z − λ)2
− γ−1

z − λ
(3.25)

is the singular Weyl function of Hγ .

Proof. That Φγ is entire is obvious. For Θγ use l’Hôpital’s rule,

lim
z→λ

(
Θ(z, x)+

1

z − λ
Θ̃γ(λ, x)Wx(Θ(λ),Θ(z))

)
= Θ(λ, x) + Θ̃γ(λ, x)Wx(Θ(λ), Θ̇(λ))

= −
( 1

γ
−Wb(Θ(λ), Θ̇(λ))

)
Θ̃γ(λ, x)

since

Wx(Θ(λ), Θ̇(λ)) = Wb(Θ(λ), Θ̇(λ)) +

∫ b

x

Θ(λ, y)>Θ(λ, y)dy,
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which is obtained by differentiating the Lagrange identity

(λ− z)
∫ b

x

Θ(λ, y)>Θ(z, y) dy = Wb(Θ(λ),Θ(z))−Wx(Θ(λ),Θ(z))

with respect to z and evaluating at z = λ. Hence the pole of Θγ(z) at z = λ is
removed and the solution is entire. The claim about the Wronskian follows from
(3.5). The rest follows by a straightforward calculation as before. �

Note that by (2.8) we have M(λ) = 0 in the above situation. Moreover, the first
summand in (3.25) has no residue at z = λ since the residue of Mγ(z) must be

given by −‖Φγ(λ)‖−2 = −‖Θ̃γ(λ)‖−2 = −γ−1. Furthermore, if H is limit circle at
b and γ < ∞ then Hγ will be again limit circle at b by [25, Theorem 3.7] (clearly
H∞ is always limit point at b). In the limit circle case, the boundary condition

of Hγ will be generated by Φγ(λ, x) = Θ̃γ(λ, x) ∈ H and hence we can repeat this
procedure at every zero of

z 7→Wb(Θ̃γ(λ),Θγ(z)) =
1

cγ(λ, b)

[ 1

λ− z
Wb(Θ(λ),Θ(z))

−
( 1

γ
−Wb(Θ(λ), Θ̇(λ))

)
Wb(Θ(λ),Φ(z))

]
.

(3.26)

Since we have uγ,+(z, b) = C(z)Θ̃γ(λ, b) with a nonzero entire function C(z) this

implies W (uγ,+(z),Θγ(z)) = C(z)Wb(Θ̃γ(λ),Θγ(z)). Now equation (2.8) implies
that the zeros of this Wronskian coincide with the zeros of Mγ(z). But the residues
of Mγ(z) are always negative and hence there must be an odd number of zeros
between two consecutive poles of Mγ(z). In particular, we see that the above
Wronskian has an infinite number of zeros and we can iterate this procedure which
will be important later on. We also mention that if the function Eγ(z) in the
representation (2.12) is zero, then the derivative at every zero of Mγ(z) is positive
and there will be precisely one zero between each pole.

Finally, one could also consider the case u+(λ, x) = Φ(λ, x). In this case λ is
an eigenvalue and the procedure coincides with the one from Theorem 3.4 if one
makes the replacement γ−1 → γ−1 + ‖Φ(λ)‖2.

4. Applications to Radial Dirac Operators

In this section we are going to apply the double commutation method to per-
turbed radial Dirac operators

(4.1) H =
1

i
σ2

d

dx
+
κ

x
σ1 +Q(x),

{
Q(x) ∈ L1

loc[0, b), |κ| 6= 1
2 ,

(1 + | log(x)|)Q(x) ∈ L1
loc[0, b), |κ| = 1

2 .

In the case Q ≡ 0 the underlying differential equation can be solved in terms of
Bessel functions and in the general case standard perturbation arguments can be
used to show the following:

Lemma 4.1 ([2, Sect. 8]). If κ ≥ 0, then the operator (4.1) has a unique real entire
solution satisfying

(4.2) Φ(z, x) = xκ

(
0√
π

2κΓ(κ+1/2)

)
+ o(xκ)

as x→ 0.
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In addition, this solution satisfies the growth restriction

(4.3) |Φ(z, x)| = O
(
|z|−κe|Im(z)|x)

as |z| → ∞ for all x and has the asymptotics

(4.4) Φ(z, x) ∼ (±z)−κ
(

sin
(
zx∓ κπ

2 −
∫ x

0
qel(y)dy

)
cos
(
zx∓ κπ

2 −
∫ x

0
qel(y)dy

))
as |z| → ∞ in any sector | arg(±z)| < π − δ.

Lemma 4.2 ([1, App. A]). If κ > 1
2 , then (4.1) has a second real entire solution

Θ(z, x) with W (Θ(z),Φ(z)) = 1 satisfying

(4.5) Θ(z, x) =

(
x−κΘ̃1(z, x)

x−κ+1Θ̃2(z, x)

)
,

with Θ̃1(z, .) ∈ C[0, b) and Θ̃2(z, .) ∈ L1
loc[0, b).

Moreover,

(4.6)

∫ c

x

|Θ(z, y)|2 dy = x−2κ+1w̃(z, x), w̃(z, .) ∈W 1,1(0, c), w̃(z, 0) > 0,

for every c ∈ (0, b).

Now our strategy is the usual one (cf. also [1]): We iteratively apply the double
commutation method to lower κ until we end up in the limit circle case |κ| ∈ [0, 1/2).
To be able to satisfy the requirement u+(λ, x) = Θ(λ, x) from Theorem 3.6 we will
assume that the right endpoint b is regular.

Lemma 4.3. Let H be given by (4.1) with κ > 1
2 . Moreover, let Hγ be constructed

from u+(λ, x) = Θ(λ, x), λ ∈ R, with γ ∈ (0,∞] as in Theorem 3.6. Then

(4.7) Hγ =
1

i
σ2

d

dx
+

1− κ
x

σ1 + Q̃(x), Q̃ ∈ L1
loc[0, b).

Moreover, if κ ≥ 1 and Φ(z, x) is normalized according to Lemma 4.1, then so is
iσ2Φγ(z, x).

Proof. By (3.3) and Remark 3.3, the commuted operator is of the form Hγ =
H +Qγ , where

Qγ(x) =
Θ1(λ, x)2 −Θ2(λ, x)2

cγ(λ, x)
σ1 − 2

Θ1(λ, x)Θ2(λ, x)

cγ(λ, x)
σ3

=
c′γ(λ, x)

cγ(λ, x)
σ1 −

2Θ2(λ, x)2

cγ(λ, x)
σ1 − 2

Θ1(λ, x)Θ2(λ, x)

cγ(λ, x)
σ3.

By Lemma 4.2, the denominator is of the form

cγ(λ, x) = − 1

γ
−
∫ b

x

|Θ(λ, y)|2 dy = x−2κ+1
(
− 1

γ
x2κ−1 + w(x)

)
,

with w ∈ W 1,1(0, b) and w > 0 on [0, b]. Note that since κ > 1
2 , the mapping

x 7→ x2κ−1 lies in W 1,1(0, b) too and therefore cγ(λ, x) = x−2κ+1w̃(x), where w̃
shares the same properties as w. Hence

c′γ(λ, x)

cγ(λ, x)
=

d

dx
log(cγ(λ, x)) =

−2κ+ 1

x
+
w̃′(x)

w̃(x)
,
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with w̃′/w̃ ∈ L1(0, b). Using the properties of the singular solution from Lemma 4.2,
one infers that Θ2(λ, .)2/cγ(λ, .) and (Θ1(λ, .)Θ2(λ, .))/cγ(λ, .) lie in L1(0, b) too and
the first part follows.

To see the last part, recall that every entire solution of Hγ which lies in the

domain of Hγ near a = 0 is of the form eg(z)Φγ(z, x). Since Φγ(z, x) ∼ zΦ(z, x) as
|z| → ∞, equations (4.3) and (4.4) show that g(z) ≡ 0. �

Remark 4.4. The new operator Hγ has a negative angular momentum if κ >
1. In this case we employ the gauge transform σ2Hγσ2, resulting in a positive
angular momentum. The corresponding system of fundamental solutions is given
by iσ2Φγ(z, x) and iσ2Θγ(z, x). Note that we again have W (iσ2Θγ(z), iσ2Φγ(z)) =
W (Θγ(z),Φγ(z)) = 1 and the formula (3.25) remains unchanged. If κ ∈ (1/2, 1],
then 1 − κ ∈ [0, 1/2) but Φγ(z, x) will not be normalized according to Lemma 4.1
but will correspond to a different boundary condition (e.g., for κ = 1 it corresponds
to the boundary condition Φγ(z, 0) = (1, 0)).

In order to iterate this procedure we will assume that our operator is regular
at b. Then Hγ will again be regular at b as long as γ ∈ (0,∞). Moreover, by the

discussion after Theorem 3.6 there will be another choice λ̂ such that uγ,+(λ̂) =

Θγ(λ̂) (i.e., such that Θγ(λ̂) satisfies the boundary condition of Hγ at b).
Since the singular Weyl function in the limit circle case will be a Herglotz func-

tion, combining these results with Theorem 3.6, one obtains by induction:

Theorem 4.5. Let H be given by (4.1) with κ > 1
2 , κ+ 1

2 /∈ N, and let b be regular.
Assume also that Φ(z, x) is normalized according to Lemma 4.1. Then there is a
singular Weyl function of the form

(4.8) M(z) = Pbκ+ 1
2 c

(z)2M0(z)−
bκ− 1

2 c∑
n=0

cnPn(z)2(λn − z),

where M0(z) is a Herglotz–Nevanlinna function and

cn = γ−1
n −Wb(Θn(λn), Θ̇n(λn)),(4.9)

Pn(z) =

n−1∏
j=0

(z − λj), P0(z) = 1,(4.10)

depends on the choice of λn and γn in every step of Lemma 4.3. The corresponding
spectral measure is given by

(4.11) dρ(t) = Pbκ+ 1
2 c

(t)2dρ0(t),

where the measure ρ0 satisfies
∫
R dρ0(t) =∞ and

∫
R
dρ0(t)
1+t2 <∞.

Proof. As pointed out before we can reduce κ by 1 using the above method until
we reach the case κ ∈ (1/2, 3/2). If κ ∈ (1, 3/2), the above procedure will lead us
to κ ∈ [0, 1/2) with a properly normalized Φ and the theorem is proven. In the case
κ ∈ (1/2, 1) Lemma 4.3 will give us an operator Hγ of type (4.1) with κ → 1 − κ.
Moreover, as in the proof of the previous lemma we see

Θ̃γ(λ, x) = xκ−1

(
C
0

)
+ o(xκ−1), C 6= 0,
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and by inspection of (3.21) (see also (3.23)) we see

Φγ(z, x) = xκ−1

(
C
0

)
+ o(xκ−1).

Moreover, from W (Θγ(z),Φγ(z)) = 1 we conclude

Θγ(z, x) = x1−κ
(

0
C−1

)
+ o(x1−κ).

The last two equations imply

W0(Θγ(z),Θγ(ẑ)) = 0, W0(Θγ(z),Φγ(ẑ)) = 1,

whereas (3.5) implies

W0(Φγ(z),Φγ(ẑ)) = 0

Hence a direct computation (cf. the proof of Theorem A.7 in [17]) shows

Im(Mγ(z)) = Im(z)

∫ b

0

|ψγ(z, x)|2dx,

which implies that the corresponding Weyl functionMγ(z) is a Herglotz–Nevanlinna
function as required. �

As another consequence we obtain

Corollary 4.6. Let H be given by (4.1) with κ > 1
2 , κ+ 1

2 /∈ N, and let b be regular.
Then there is a corresponding system of entire solutions Φ(z, x), Θ(z, x) with Φ as
in Lemma 4.1 such that M(z) ∈ N∞κ0

with κ0 = bκ+ 1
2c.

Proof. Combining (4.11) with
∫

(1 + t2)−1dρ0(t) <∞ and
∫
dρ0(t) =∞, the claim

follows by applying Theorem 2.4 with κ0 = bκ+ 1
2c. �

Remark 4.7. It is easy to see that the assumption that b is regular is superfluous.
Indeed, observe that Lemma 7.1 from [2] shows that the asymptotics of M(z) as
Im(z)→∞ depend only on the behavior of the potential near a = 0. Furthermore,
[17, Lemma C.2] shows that the required integrability properties of the spectral mea-
sure dρ depend only on the asymptotics of M(z) and hence also depend only on the
behavior of the potential near a = 0.

This generalizes Theorem 8.4 from [2] where the bound κ0 ≤ dκe was given.

Remark 4.8. There is a straightforward connection with the standard theory for
radial Schrödinger operators if our Dirac operator is supersymmetric, that is, qel =
qsc = 0 (see [2, Section 3]). Using the results of this section, we can extend Theorem
4.5 from [19] to Schrödinger operators defined in L2(0, b) by differential expressions

(4.12) ` = aqa
∗
q :=

(
− d

dx
+
κ

x
+ qam(x)

)(
d

dx
+
κ

x
+ qam(x)

)
.

Note that in the case qam ∈ L2
loc[0, b) this differential expression can be written in

the potential form

(4.13) ` = − d2

dx2
+
κ(κ+ 1)

x2
+ q+, q+(x) =

2κ

x
qam(x) + qam(x)2 − q′am(x),

where q+ is a W−1,2
loc [0, b) distribution. For further details we refer to [9].
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