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Abstract. We discuss the algebro-geometric initial value problem for the

Toda hierarchy with complex-valued initial data and prove unique solvabil-
ity globally in time for a set of initial (Dirichlet divisor) data of full mea-

sure. To this effect we develop a new algorithm for constructing stationary

complex-valued algebro-geometric solutions of the Toda hierarchy, which is of
independent interest as it solves the inverse algebro-geometric spectral prob-

lem for generally non-self-adjoint Jacobi operators, starting from a suitably

chosen set of initial divisors of full measure. Combined with an appropriate
first-order system of differential equations with respect to time (a substitute

for the well-known Dubrovin equations), this yields the construction of global

algebro-geometric solutions of the time-dependent Toda hierarchy.
The inherent non-self-adjointness of the underlying Lax (i.e., Jacobi) oper-

ator associated with complex-valued coefficients for the Toda hierarchy poses
a variety of difficulties that, to the best of our knowledge, are successfully

overcome here for the first time. Our approach is not confined to the Toda

hierarchy but applies generally to 1+1-dimensional completely integrable (dis-
crete and continuous) soliton equations.

1. Introduction

The principal aim of this paper is an explicit construction of unique global so-
lutions of the algebro-geometric initial value problem for the Toda hierarchy with
complex-valued initial data. More precisely, we intend to describe a solution of the
following problem: Given p ∈ N0, assume a(0), b(0) to be complex-valued solutions
of the pth stationary Toda system s-Tlp(a, b) = 0 associated with a prescribed hy-
perelliptic curve Kp of genus p (with nonsingular affine part) and let r ∈ N0; we
want to construct unique global solutions a = a(tr), b = b(tr) of the rth Toda flow
Tlr(a, b) = 0 with a(t0,r) = a(0), b(t0,r) = b(0) for some t0,r ∈ R. Thus, we seek a
unique global solution of the initial value problem

Tlr(a, b) = 0,

(a, b)
∣∣
tr=t0,r

=
(
a(0), b(0)

)
,

(1.1)

s-Tlp
(
a(0), b(0)

)
= 0 (1.2)
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for some t0,r ∈ R, p, r ∈ N0, where a = a(n, tr), b = b(n, tr) satisfy

a : Z× R→ C \ {0}, b : Z× R→ C,

a( · , t), b( · , t) ∈ CZ, t ∈ R, a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z.
(1.3)

In the special case of a self-adjoint Lax (i.e., Jacobi) operator L, where a and
b are real-valued and bounded, the actual solution of this algebro-geometric initial
value problem consists of the following two-step procedure discussed in detail in [6]
(see also [14, Sect. 1.3], [32, Sect. 8.3]):1

(i) An algorithm that constructs finite nonspecial divisors Dµ̂(n) ∈ Symp(Kp)
in real position for all n ∈ Z starting from an initial Dirichlet divisor Dµ̂(n0) ∈
Symp(Kp) in an appropriate real position (i.e., with Dirichlet eigenvalues in appro-
priate spectral gaps of L). “Trace formulas” of the type (3.25) and (3.26) then
construct the stationary real-valued solutions a(0), b(0) of s-Tlp(a, b) = 0.

(ii) The first-order Dubrovin-type system of differential equations (5.42), aug-
mented by the initial divisor Dµ̂(n0,t0,r) = Dµ̂(n0) together with the analogous “trace
formulas” (5.40), (5.41) then yield unique global real-valued solutions a = a(tr), b =
b(tr) of the rth Toda flow Tlr(a, b) = 0 satisfying a(t0,r) = a(0), b(t0,r) = b(0).

This approach works perfectly in the special self-adjoint case where the Dirichlet
divisors µ̂(n, tr) = (µ̂1(n, tr), . . . , µ̂p(n, tr)) ∈ Symp(Kp), (n, tr) ∈ Z × R, yield
Dirichlet eigenvalues µ1(n, tr), . . . , µp(n, tr) of the Lax operator L situated in p
different spectral gaps of L on the real axis. In particular, for fixed (n, tr) ∈ Z×R,
the Dirichlet eigenvalues µj(n, tr), j = 1, . . . , p, are pairwise distinct and formulas
(5.41) for a and (5.42) for (d/dtr)µj(n, tr), j = 1, . . . , p, are well-defined.

This situation drastically changes if complex-valued initial data a(0), b(0) or
Dµ̂(n0,t0,r) are permitted. In this case the Dirichlet eigenvalues µj(n, tr), j =
1, . . . , p, are no longer confined to well separated spectral gaps of L on the real axis
and, in particular, they are in general no longer pairwise distinct and “collisions”
between them can occur at certain values of (n, tr) ∈ Z× R. Thus, the stationary
algorithm in step (i) as well as the Dubrovin-type first-order system of differential
equations (5.42) in step (ii) above, breaks down at such values of (n, tr). A priori,
one has no control over such collisions, especially, it is not possible to identify ini-
tial conditions Dµ̂(n0,t0,r) at some (n0, t0,r) ∈ Z × R which avoid collisions for all
(n, tr) ∈ Z×R. We solve this problem head on by explicitly permitting collisions in
the stationary as well as time-dependent context from the outset. In the stationary
context, we properly modify the algorithm described above in step (i) in the self-
adjoint case by alluding to a more general interpolation formalism (cf. Appendix B)
for polynomials, going beyond the usual Lagrange interpolation formulas. In the
time-dependent context we replace the first-order system of Dubrovin-type equa-
tions (5.42), augmented with the initial divisor Dµ̂(n0,t0,r), by a different first-order
system of differential equations (6.27) with initial conditions (6.28) which focuses
on symmetric functions of µ1(n, tr), . . . , µp(n, tr) rather than individual Dirichlet
eigenvalues µj(n, tr), j = 1, . . . , p. In this manner it will be shown that collisions
of Dirichlet eigenvalues no longer pose a problem.

In addition, there is a second nontrivial complication in the non-self-adjoint
case: Since the Dirichlet eigenvalues µj(n, tr), j = 1, . . . , p, are no longer confined
to spectral gaps of L on the real axis as (n, tr) vary in Z × R, it can no longer

1We freely use the notation of divisors of degree p as introduced in Appendix A.
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be guaranteed that µj(n, tr), j = 1, . . . , p, stay finite for all (n, tr) ∈ Z × R. As
discussed in Section 4 in the stationary case, this phenomenon is related to certain
deformations of the algebraic curve Kp under which for some n0 ∈ Z, a(n0) → 0
and µj(n0 + 1) → ∞ for some j ∈ {1, . . . , p}. We solve this particular problem
in the stationary as well as time-dependent case by properly restricting the initial
Dirichlet divisors Dµ̂(n0,t0,r) ∈ Symp(Kp) to a dense set of full measure.

Summing up, we offer a new algorithm to solve the inverse algebro-geometric
spectral problem for generally non-self-adjoint Jacobi operators, starting from a
properly chosen dense set of initial divisors of full measure. Combined with an
appropriate first-order system of differential equations with respect to time (a sub-
stitute for the well-known Dubrovin equations), this yields the construction of global
algebro-geometric solutions of the time-dependent Toda hierarchy.

We emphasize that the approach described in this paper is not limited to the
Toda hierarchy but applies universally to constructing algebro-geometric solutions
of 1+1-dimensional integrable soliton equations. In particular, it applies to differential-
difference (i.e., lattice) systems and we are now in the process of applying it to the
Ablowitz–Ladik hierarchy. Moreover, the principal idea of replacing Dubrovin-type
equations by a first-order system of the type (6.27) is also relevant in the context of
general non-self-adjoint Lax operators for the continuous models in 1+1-dimensions.
(In particular, the models studied in detail in [13] can be revisited from this point
of view.) We also note that while the periodic case with complex-valued a, b is of
course included in our analysis, we throughout consider the more general algebro-
geometric case (in which a, b need not even be quasi-periodic).

Finally we briefly describe the content of each section. Section 2 presents a quick
summary of the basics of the Toda hierarchy, its recursive construction, Lax pairs,
and zero-curvature equations. The stationary algebro-geometric Toda hierarchy so-
lutions, the underlying hyperelliptic curve, trace formulas, etc., are the subject of
Section 3. A new algorithm solving the algebro-geometric inverse spectral problem
for generally non-self-adjoint Jacobi operators is presented in Section 4. In Section 5
we briefly summarize the properties of algebro-geometric time-dependent solutions
of the Toda hierarchy and formulate the algebro-geometric initial value problem.
Uniqueness and existence of global solutions of the algebro-geometric initial value
problem as well as their explicit construction are then presented in our final and
principal Section 6. Appendix A reviews the basics of hyperelliptic Riemann sur-
faces of the Toda-type and sets the stage of much of the notation used in this
paper. Various interpolation formulas of fundamental importance to our station-
ary inverse spectral algorithm developed in Section 4 are summarized in Appendix
B. Finally, Appendix C summarizes asymptotic spectral parameter expansions of
various quantities fundamental to the polynomial recursion formalism presented in
Section 2. These appendices support our intention to make this paper reasonably
self-contained.

2. The Toda Hierarchy in a Nutshell

In this section we briefly review the recursive construction of the Toda hierarchy
and associated Lax pairs and zero-curvature equations following [6], [14, Sect. 1.2],
and [32, Ch. 12].

Throughout this section we make the following assumption:
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Hypothesis 2.1. Suppose

a, b ∈ CZ and a(n) 6= 0 for all n ∈ Z. (2.1)

Here CJ denotes the set of complex-valued sequences indexed by J ⊆ Z.
We consider the second-order Jacobi difference expression

L = aS+ + a−S− + b, (2.2)

where S± denote the shift operators

(S±f)(n) = f±(n) = f(n±1), n ∈ Z, f ∈ CZ. (2.3)

To construct the stationary Toda hierarchy we need a second difference expres-
sion of order 2p + 2, p ∈ N0, defined recursively in the following. We take the
quickest route to the construction of P2p+2, and hence to the Toda hierarchy, by
starting from the recursion relations (2.4)–(2.6) below.

Define {f`}`∈N0 and {g`}`∈N0 recursively by

f0 = 1, g0 = −c1, (2.4)

2f`+1 + g` + g−` − 2bf` = 0, ` ∈ N0, (2.5)

g`+1 − g−`+1 + 2
(
a2f+

` − (a−)2f−`
)
− b(g` − g−` ) = 0, ` ∈ N0. (2.6)

Explicitly, one finds

f0 = 1,
f1 = b+ c1,

f2 = a2 + (a−)2 + b2 + c1b+ c2, etc., (2.7)
g0 = −c1,
g1 = −2a2 − c2,
g2 = −2a2(b+ + b) + c1(−2a2)− c3, etc.

Here {c`}`∈N denote undetermined summation constants which naturally arise when
solving (2.4)–(2.6).

Subsequently, it will also be useful to work with the corresponding homogeneous
coefficients f̂j and ĝj , defined by vanishing of the constants ck, k ∈ N,

f̂0 = 1, f̂` = f`
∣∣
ck=0, k=1,...,`

, ` ∈ N,

ĝ0 = 0, ĝ` = g`
∣∣
ck=0, k=1,...,`+1

, ` ∈ N0.
(2.8)

Hence,

f` =
∑̀
k=0

c`−kf̂k, g` =
∑̀
k=1

c`−kĝk − c`+1, ` ∈ N0, (2.9)

introducing
c0 = 1. (2.10)

Next we define difference expressions P2p+2 of order 2p+ 2 by

P2p+2 = −Lp+1 +
p∑
`=0

(
g` + 2af`S+

)
Lp−` + fp+1, p ∈ N0. (2.11)
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Introducing the corresponding homogeneous difference expressions P̂2p+2 defined
by

P̂2`+2 = P2`+2

∣∣
ck=0, k=1,...,`

, ` ∈ N0, (2.12)

one finds

P2p+2 =
p∑
`=0

cp−`P̂2`+2. (2.13)

Using the recursion relations (2.4)–(2.6), the commutator of P2p+2 and L can be
explicitly computed and one obtains

[P2p+2, L] =− a
(
g+
p + gp + f+

p+1 + fp+1 − 2b+f+
p

)
S+

+ 2
(
− b(gp + fp+1) + a2f+

p − (a−)2f−p + b2fp
)

− a−
(
gp + g−p + fp+1 + f−p+1 − 2bfp

)
S−, p ∈ N0. (2.14)

In particular, (L,P2p+2) represents the celebrated Lax pair of the Toda hierarchy.
Varying p ∈ N0, the stationary Toda hierarchy is then defined in terms of the
vanishing of the commutator of P2p+2 and L in (2.14), that is,

[P2p+2, L] = s-Tlp(a, b) = 0, p ∈ N0. (2.15)

Thus one finds

gp + g−p + fp+1 + f−p+1 − 2bfp = 0, (2.16)

−b(gp + fp+1) + a2f+
p − (a−)2f−g + b2fp = 0. (2.17)

Using (2.5) with j = p one concludes that (2.16) reduces to

fp+1 = f−p+1, (2.18)

that is, fp+1 is a lattice constant. Similarly, one infers by subtracting b times (2.16)
from twice (2.17) and using (2.6) with j = p, that gp+1 is a lattice constant as well,
that is,

gp+1 = g−p+1. (2.19)

Equations (2.18) and (2.19) give rise to the stationary Toda hierarchy, which is
introduced as follows

s-Tlp(a, b) =
(
f+
p+1 − fp+1

gp+1 − g−p+1

)
= 0, p ∈ N0. (2.20)

Explicitly,

s-Tl0(a, b) =
(

b+ − b
2
(
(a−)2 − a2

)) = 0,

s-Tl1(a, b) =
(

(a+)2 − (a−)2 + (b+)2 − b2
2(a−)2(b+ b−)− 2a2(b+ + b)

)
(2.21)

+ c1

(
b+ − b

2
(
(a−)2 − a2

)) = 0, etc.,

represent the first few equations of the stationary Toda hierarchy. By definition,
the set of solutions of (2.20), with p ranging in N0 and c` ∈ C, ` ∈ N, represents
the class of algebro-geometric Toda solutions.

In the following we will frequently assume that a, b satisfy the pth stationary
Toda system. By this we mean it satisfies one of the pth stationary Toda equations
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after a particular choice of summation constants c` ∈ C, ` = 1, . . . , p, p ∈ N, has
been made.

In accordance with our notation introduced in (2.8) and (2.12), the corresponding
homogeneous stationary Toda equations are defined by

s-T̂lp(a, b) = s-Tlp(a, b)
∣∣
c`=0, `=1,...,p

= 0, p ∈ N0. (2.22)

Next, we introduce polynomials Fp and Gp+1 of degree p and p+ 1, with respect
to the spectral parameter z ∈ C by

Fp(z) =
p∑
`=0

fp−`z
` =

p∑
`=0

cp−`F̂`(z), (2.23)

Gp+1(z) = −zp+1 +
p∑
`=0

gp−`z
` + fp+1 =

p+1∑
`=1

cp+1−`Ĝ`(z) (2.24)

with F̂` and Ĝ` denoting the corresponding homogeneous polynomials defined by

F̂0(z) = F0(z) = 1,

F̂`(z) = F`(z)
∣∣
ck=0, k=1,...,`

=
∑̀
k=0

f̂`−kz
k, ` ∈ N0, (2.25)

Ĝ0(z) = G0(z)
∣∣
c1=0

= 0, Ĝ1(z) = G1(z) = −z − b,

Ĝ`+1(z) = G`+1(z)
∣∣
ck=0, k=1,...,`

= −z`+1 +
∑̀
k=0

ĝ`−kz
k + f̂`+1, ` ∈ N. (2.26)

Explicitly, one obtains

F0 = 1,
F1 = z + b+ c1,

F2 = z2 + bz + a2 + (a−)2 + b2 + c1(z + b) + c2, etc., (2.27)
G1 = −z + b,

G2 = −z2 + (a−)2 − a2 + b2 + c1(−z + b), etc.

Next, we study the restriction of the difference expression P2p+2 to the two-
dimensional kernel (i.e., the formal null space in an algebraic sense as opposed to
the functional analytic one) of (L− z). More precisely, let

ker(L− z) = {ψ : Z→ C ∪ {∞} | (L− z)ψ = 0}. (2.28)

Then (2.11) implies

P2p+2 |ker(L−z)=
(
2aFp(z)S+ +Gp+1(z)

)∣∣
ker(L−z). (2.29)

Therefore, the Lax relation (2.15) becomes

2(z − b+)F+
p − 2(z − b)Fp +G+

p+1 −G
−
p+1 = 0, (2.30)

2a2F+
p − 2(a−)2F−p + (z − b)(Gp+1 −G−p+1) = 0. (2.31)

Additional manipulations yield

2(z − b)Fp +Gp+1 +G−p+1 = 0, (2.32)

(z − b)2Fp + (z − b)Gp+1 + a2F+
p − (a−)2F−p = 0. (2.33)
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Indeed, adding Gp+1 − Gp+1 to the left-hand side of (2.30) (neglecting a trivial
summation constant) yields (2.32) and inserting (2.30) into (2.31) then implies
(2.33). Varying p ∈ N0, equations (2.32), (2.33) provide an alternative description
of the stationary Toda hierarchy.

Combining equations (2.31) and (2.32) one concludes that the quantity

R2p+2(z) = Gp+1(z, n)2 − 4a(n)2Fp(z, n)F+
p (z, n) (2.34)

is a lattice constant, and hence depends on z only. Thus, one can write

R2p+2(z) =
2p+1∏
m=0

(z − Em), {Em}2p+1
m=0 ⊂ C. (2.35)

One can decouple (2.32) and (2.33) to obtain separate equations for Fp and Gp+1.
For instance, computing Gp+1 from (2.33) and inserting the result into (2.32) yields
the following linear difference equation for Fp

(z − b)2(z − b−)Fp − (z − b−)2(z − b)F−p +
(
(a−)2F−p − a2F+

p

)
(z − b−)

+
(
(a−−)2F−−p − (a−)2Fp

)
(z − b) = 0. (2.36)

Similarly, insertion of (2.33) into (2.34) permits one to eliminate Gp+1 and results
in the following nonlinear difference equation for Fp,

(z − b)4F 2
p − 2a2(z − b)2FpF

+
p − 2(a−)2(z − b)2FpF

−
p + a4(F+

p )2

+ (a−)4(F−p )2 − 2a2(a−)2F+
p F
−
p = (z − b)2R2p+2(z). (2.37)

On the other hand, computing Fp in terms of Gp+1 and G+
p+1 using (2.32) and

inserting the result into (2.33) yields the following linear difference equation for
Gp+1

a2(z − b−)(G+
p+1 +Gp+1)− (a−)2(z − b+)(G−p+1 +G−−p+1)

+ (z − b−)(z − b)(z − b+)(G−p+1 −Gp+1) = 0. (2.38)

Finally, inserting the result for Fp into (2.34) yields the following nonlinear differ-
ence equation for Gp+1

(z − b)(z − b+)G2
p+1 − a2(G−p+1 +Gp+1)(Gp+1 +G+

p+1)

= (z − b)(z − b+)R2p+2. (2.39)

Equations (2.37) and (2.39) can be used to derive nonlinear recursion relations for
the homogeneous coefficients f̂` and ĝ` (i.e., the ones satisfying (2.8) in the case of
vanishing summation constants) as proved in Theorem C.1 in Appendix C. This
has interesting applications to the asymptotic expansion of the Green’s function of
L with respect to the spectral parameter. In addition, as proven in Theorem C.1,
(2.37) leads to an explicit determination of the summation constants c1, . . . , cp in

s-Tlp(a, b) = 0, p ∈ N0, (2.40)

in terms of the zeros E0, . . . , E2p+1 of the associated polynomial R2p+2 in (2.35).
In fact, one can prove (cf. Theorem C.1) that

ck = ck(E), k = 1, . . . , p, (2.41)
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where

ck(E) = −
k∑

j0,...,j2p+1=0
j0+···+j2p+1=k

(2j0)! · · · (2j2p+1)!
22k(j0!)2 · · · (j2p+1!)2(2j0 − 1) · · · (2j2p+1 − 1)

Ej00 · · ·E
j2p+1
2p+1 ,

k = 1, . . . , p, (2.42)

are symmetric functions of E = (E0, . . . , E2p+1).
We emphasize that the result (2.29) is valid independently of whether or not

P2p+2 and L commute. However, the fact that the two difference expressions P2p+2

and L commute implies the existence of an algebraic relationship between them.
This gives rise to the Burchnall–Chaundy polynomial for the Toda hierarchy first
discussed in the discrete context by Năıman [28], [29].

Theorem 2.2. Assume Hypothesis 2.1, fix p ∈ N0 and suppose that P2p+2 and L
commute, [P2p+2, L] = 0, or equivalently, assume that s-Tlp(a, b) = 0. Then L and
P2p+2 satisfy an algebraic relationship of the type (cf. (2.35))

Fp(L,P2p+2) = P 2
2p+2 −R2p+2(L) = 0,

R2p+2(z) =
2p+1∏
m=0

(z − Em), z ∈ C.
(2.43)

The expression Fp(L,P2p+2) is called the Burchnall–Chaundy polynomial of the
Lax pair (L,P2p+2) and it will be used in Section 3 to introduce the underlying
hyperelliptic curve associated with the stationary Toda system s-Tlp(a, b) = 0 (cf.
(3.1)).

Next we turn to the time-dependent Toda hierarchy. For that purpose the func-
tions a and b are now considered as functions of both the lattice point and time.
For each equation in the hierarchy, that is, for each p, we introduce a deforma-
tion (time) parameter tp ∈ R in a, b, replacing a(n), b(n) by a(n, tp), b(n, tp). The
second-order difference expression L (cf. (2.2)) now reads

L(tp) = a( · , tp)S+ + a−( · , tp)S− + b( · , tp). (2.44)

The quantities {f`}`∈N0 , {g`}`∈N0 , and P2p+2, p ∈ N0 are still defined by (2.4)–(2.6)
and (2.11), respectively. The time-dependent Toda hierarchy is then obtained by
imposing the Lax commutator equations

Ltp(tp)− [P2p+2(tp), L(tp)] = 0, tp ∈ R, (2.45)

varying p ∈ N0. Relation (2.45) implies(
atp + a(g+

p + gp + f+
p+1 + fp+1 − 2b+f+

p )
)
S+

−
(
−btp + 2

(
− b(gp + fp+1) + a2f+

p − (a−)2f−p + b2fp
))

(2.46)

+
(
atp + a(g+

p + gp + f+
p+1 + fp+1 − 2b+f+

p )
)−
S− = 0.

Applying the same method we used to derive (2.18) and (2.19) one concludes

0 = Ltp − [P2p+2, L]

=
(
atp − a(f+

p+1 − fp+1)
)
S+ −

(
−btp − gp+1 + g−p+1

)
+
(
atp − a(f+

p+1 − fp+1)
)−
S−. (2.47)
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Varying p ∈ N0, the collection of evolution equations

Tlp(a, b) =
(
atp − a(f+

p+1 − fp+1)
btp + gp+1 − g−p+1

)
= 0, (n, tp) ∈ Z× R, p ∈ N0 (2.48)

then defines the time-dependent Toda hierarchy. Explicitly,

Tl0(a, b) =
(

at0 − a(b+ − b)
bt0 − 2

(
a2 − (a−)2

)) = 0,

Tl1(a, b) =
(
at1 − a

(
(a+)2 − (a−)2 + (b+)2 − b2

)
bt1 + 2(a−)2(b+ b−)− 2a2(b+ + b)

)
(2.49)

+ c1

(
−a(b+ − b)
−2
(
a2 − (a−)2

)) = 0, etc.,

represent the first few equations of the time-dependent Toda hierarchy. The system
of equations, Tl0(a, b) = 0, is of course the Toda system.

The corresponding homogeneous Toda equations obtained by taking all summa-
tion constants equal to zero, c` = 0, ` = 1, . . . , p, are then denoted by

T̂lp(a, b) = Tlp(a, b)
∣∣
c`=0, `=1,...,p

. (2.50)

Restricting the Lax relation (2.45) to the kernel ker(L− z) one finds that

0 =
(
Ltp − [P2p+2, L]

)∣∣
ker(L−z) =

(
Ltp + (L− z)P2p+2

)∣∣
ker(L−z) (2.51)

=
(
a
(atp
a
−
a−tp
a−

+ 2(z − b+)F+
p − 2(z − b)Fp +G+

p+1 −G
−
p+1

)
S+

+
(
btp + (z − b)

a−tp
a−

+ 2(a−)2F−p − 2a2F+
p

+ (z − b)(G−p+1 −Gp+1)
))∣∣∣∣

ker(L−z)
. (2.52)

Hence one obtains

atp
a
−
a−tp
a−

= −2(z − b+)F+
p + 2(z − b)Fp +G−p+1 −G

+
p+1, (2.53)

btp = −(z − b)
a−tp
a−
− 2(a−)2F−p + 2a2F+

p − (z − b)(G−p+1 −Gp+1). (2.54)

Further manipulations then yield,

atp = −a
(
2(z − b+)F+

p +G+
p+1 +Gp+1

)
, (2.55)

btp = 2
(
(z − b)2Fp + (z − b)Gp+1 + a2F+

p − (a−)2F−p
)
. (2.56)

Indeed, (2.55) follows by adding Gp+1−Gp+1 to (2.53) (neglecting a trivial summa-
tion constant), and an insertion of (2.55) into (2.54) implies (2.56). Varying p ∈ N0,
equations (2.55) and (2.56) provide an alternative description of the time-dependent
Toda hierarchy.

Remark 2.3. From (2.4)–(2.6) and (2.23), (2.24) one concludes that the coeffi-
cient a enters quadratically in Fp and Gp+1, and hence the Toda hierarchy (2.48)
(respectively (2.20)) is invariant under the substitution

a→ aε = {ε(n)a(n)}n∈Z, ε(n) ∈ {1,−1}, n ∈ Z. (2.57)
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We conclude this section by pointing out an alternative construction of the Toda
hierarchy using a zero-curvature approach instead of Lax pairs (L,P2p+2). To this
end one defines the 2× 2 matrices

U(z) =
(

0 1
−a−/a (z − b)/a

)
, (2.58)

Vp+1(z) =
(

G−p+1(z) 2a−F−p (z)
−2a−Fp(z) 2(z − b)Fp(z) +Gp+1(z)

)
, p ∈ N0. (2.59)

Then the stationary part of this section can equivalently be based on the zero-
curvature equation

0 = UVp+1 − V +
p+1U (2.60)

=
2
a


0 0

a−
(
(z − b+)F+

p − (z − b)Fp a2F+
p − (a−)2F−p

+2−1(G+
p+1 −G

−
p+1)

)
+2−1(z − b)(Gp+1 −G+

p+1)
+(z − b)2Fp − (z − b+)(z − b)F+

p

 .

Thus, one obtains (2.30) from the (2, 1)-entry in (2.60). Insertion of (2.30) into the
(2, 2)-entry of (2.60) then yields (2.31). Thus, one also obtains (2.32) and hence
the (2, 2)-entry of Vp+1 in (2.59) simplifies to

Vp+1,2,2(z) = −G−p+1(z) (2.61)

in the stationary case. Since det(U(z, n)) = a−(n)/a(n) 6= 0, n ∈ Z, the zero-
curvature equation (2.60) yields that det(Vp+1(z, n)) is a lattice constant (i.e., in-
dependent of n ∈ Z). The Burchnall–Chaundy polynomial Fp(y, z) (cf. (2.43) and
especially, the hyperelliptic curve (3.1)) is then obtained from the characteristic
equation of Vp+1(z) by

det(yI2 − Vp+1(z, n))

= y2 + det(Vp+1(z, n))

= y2 −G−p−1(z, n)2 + 4a−(n)2F−p (z, n)Fp(z, n)

= y2 −R2p+2(z) = 0, (2.62)

using (2.61). (Here I2 denotes the identity matrix in C2.) Similarly, the time-
dependent part (2.44)–(2.56) can equivalently be developed from the zero-curvature
equation

0 = Utp + UVp+1 − V +
p+1U (2.63)

=
1
a


0 0

a−((atp/a)− (a−tp/a
−)) −btp − (z − b)(atp/a)

+a−
(
2(z − b+)F+

p − 2(z − b)Fp +2a2F+
p − 2(a−)2F−p

+(G+
p+1 −G

−
p+1)

)
+(z − b)(Gp+1 −G+

p+1)
+2(z − b)2Fp − 2(z − b+)(z − b)F+

p

 .

The (2, 1)-entry in (2.63) yields (2.53), and inserting (2.53) into the (2, 2)-entry of
(2.63) yields (2.54) and hence also the basic equations defining the time-dependent
Toda hierarchy in (2.55), (2.56).
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3. Properties of Stationary Algebro-Geometric Solutions
of the Toda Hierarchy

In this section we present a quick review of properties of algebro-geometric so-
lutions of the stationary Toda hierarchy. Since this material is standard we omit
all proofs and just refer to [6] (cf. also [14, Sect. 1.3], [32, Chs. 8, 9]) for detailed
presentations and an extensive list of references to the literature.

For the notation employed in connection with elementary concepts in algebraic
geometry (more precisely, the theory of compact Riemann surfaces), we refer to
Appendix A.

Returning to Theorem 2.2, we note that (2.43) naturally leads to the hyperelliptic
curve Kp of genus p ∈ N0, where

Kp : Fp(z, y) = y2 −R2p+2(z) = 0,

R2p+2(z) =
2p+1∏
m=0

(z − Em), {Em}2p+1
m=0 ⊂ C.

(3.1)

Throughout this section we make the following assumption:

Hypothesis 3.1. Suppose that

a, b ∈ CZ and a(n) 6= 0 for all n ∈ Z. (3.2)

In addition, assume that the hyperelliptic curve Kp in (3.1) has a nonsingular affine
part, that is, suppose that

Em 6= Em′ for m 6= m′, m,m′ = 0, . . . , 2p+ 1. (3.3)

The curve Kp is compactified by joining two points P∞± , P∞+ 6= P∞− , at infinity.
For notational simplicity, the resulting curve is still denoted by Kp. Points P on
Kp\{P∞+ , P∞−} are represented as pairs P = (z, y), where y( · ) is the meromorphic
function on Kp satisfying Fp(z, y) = 0. The complex structure on Kp is then defined
in the usual way, see Appendix A. Hence, Kp becomes a two-sheeted hyperelliptic
Riemann surface of genus p ∈ N0 in a standard manner.

We also emphasize that by fixing the curve Kp (i.e., by fixing E0, . . . , E2p+1),
the summation constants c1, . . . , cp in the corresponding stationary s-Tlp equation
are uniquely determined as is clear from (2.41) and (2.42), which establish the
summation constants ck as symmetric functions of E0, . . . , E2p+1.

For notational simplicity we will usually tacitly assume that p ∈ N. The trivial
case p = 0, which leads to a(n)2 = (E1 −E0)2/16, b(n) = (E0 +E1)/2, n ∈ Z, is of
no interest to us in this paper.

In the following, the zeros2 of the polynomial Fp( · , n) (cf. (2.23)) will play a
special role. We denote them by {µj(n)}pj=1 and write

Fp(z, n) =
p∏
j=1

(z − µj(n)). (3.4)

The next step is crucial; it permits us to “lift” the zeros µj of Fp from C to the
curve Kp. From (2.34) and (3.4) one infers

R2p+2(z)−Gp+1(z)2 = 0, z ∈ {µj , µ+
k }j,k=1,...,p. (3.5)

2If a, b ∈ `∞(Z), these zeros are the Dirichlet eigenvalues of a bounded operator on `2(Z)
associated with the difference expression L and a Dirichlet boundary condition at n ∈ Z.
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We now introduce {µ̂j(n)}j=1,...,p ⊂ Kp by

µ̂j(n) = (µj(n),−Gp+1(µj(n), n)) ∈ Kp, j = 1, ..., p, n ∈ Z. (3.6)

Next, we recall equation (2.34) and define the fundamental meromorphic function
φ( · , n) on Kp by

φ(P, n) =
y −Gp+1(z, n)
2a(n)Fp(z, n)

(3.7)

=
−2a(n)Fp(z, n+ 1)
y +Gp+1(z, n)

, (3.8)

P = (z, y) ∈ Kp, n ∈ Z,

with divisor (φ( · , n)) of φ( · , n) given by(
φ( · , n)

)
= DP∞+ µ̂(n+1) −DP∞− µ̂(n), (3.9)

using (3.4) and (3.6). Here we abbreviated

µ̂ = {µ̂1, . . . , µ̂p} ∈ Symp(Kp) (3.10)

(cf. the notation introduced in Appendix A). We note that several µj(n) may be
equal for a given lattice point n ∈ Z. Moreover, since −Gp+1(µj(n), n) takes on the
same value for all coinciding zeros µj(n), no finite special divisors Dµ̂(n) can ever
arise in φ (cf. also Lemma 3.4).

The stationary Baker–Akhiezer function ψ( · , n, n0) on Kp \ {P∞±} is then de-
fined in terms of φ( · , n) by

ψ(P, n, n0) =


∏n−1
m=n0

φ(P,m) for n ≥ n0 + 1,
1 for n = n0,∏n0−1
m=n φ(P,m)−1 for n ≤ n0 − 1,

(3.11)

P ∈ Kp \ {P∞±}, (n, n0) ∈ Z2,

with divisor
(
ψ( · , n, n0)

)
of ψ(P, n, n0) given by(

ψ( · , n, n0)
)

= Dµ̂(n) −Dµ̂(n0) + (n− n0)(DP∞+
−DP∞− ). (3.12)

For future purposes we also introduce the following Baker–Akhiezer vector,

Ψ(P, n, n0) =
(
ψ−(P, n, n0)
ψ(P, n, n0)

)
, P ∈ Kp \ {P∞±}, (n, n0) ∈ Z2. (3.13)

Basic properties of φ, ψ, and Ψ are summarized in the following result. We
abbreviate by

W (f, g) = a(fg+ − f+g) (3.14)

the Wronskian of two complex-valued sequences f and g, and denote P ∗ = (z,−y)
for P = (z, y) ∈ Kp.

Lemma 3.2. Assume Hypothesis 3.1 and suppose that a, b satisfy the pth stationary
Toda system (2.20). Moreover, let P = (z, y) ∈ Kp\{P∞±} and (n, n0) ∈ Z2. Then
φ satisfies the Riccati-type equation

aφ(P ) + a−φ−(P )−1 = z − b, (3.15)
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as well as

φ(P )φ(P ∗) =
F+
p (z)
Fp(z)

, (3.16)

φ(P ) + φ(P ∗) = −Gp+1(z)
aFp(z)

, (3.17)

φ(P )− φ(P ∗) =
y(P )
aFp(z)

. (3.18)

Moreover, ψ and Ψ satisfy(
L− z(P )

)
ψ(P ) = 0,

(
P2p+2 − y(P )

)
ψ(P ) = 0, (3.19)

Ψ+(P ) = U(z)Ψ(P ), yΨ(P ) = Vp+1Ψ(P ), (3.20)

ψ(P, n, n0)ψ(P ∗, n, n0) =
Fp(z, n)
Fp(z, n0)

, (3.21)

a(n)
(
ψ(P, n, n0)ψ(P ∗, n+ 1, n0) + ψ(P ∗, n, n0)ψ(P, n+ 1, n0)

)
= −Gp+1(z, n)

Fp(z, n0)
, (3.22)

W (ψ(P, · , n0), ψ(P ∗, · , n0)) = − y(P )
Fp(z, n0)

. (3.23)

Combining the polynomial recursion approach with (3.4) readily yields trace
formulas for the Toda invariants, which are expressions of a and b in terms of the
zeros µj of Fp. We introduce the abbreviation,

b(k)(n) =
1
2

2p+1∑
m=0

Ekm −
p∑
j=1

µkj (n), k ∈ N. (3.24)

Lemma 3.3. Assume Hypothesis 3.1 and suppose that a, b satisfy the pth stationary
Toda system (2.20). Then,

b(n) =
1
2

2p+1∑
m=0

Em −
p∑
j=1

µj(n), n ∈ Z. (3.25)

In addition, if for all n ∈ Z, µj(n) 6= µk(n) for j 6= k, j, k = 1, . . . , p, then,

a(n)2 =
1
2

p∑
j=1

y(µ̂j(n))
p∏
k=1
k 6=j

(µj(n)−µk(n))−1 +
1
4
(
b(2)(n)− b(n)2

)
, n ∈ Z. (3.26)

The case where some of the µj coincide in (3.26) requires a more elaborate
argument that will be presented in Section 4.

Since nonspecial Dirichlet divisors Dµ̂ and the linearization property of the Abel
map when applied to Dµ̂ will play a fundamental role later on, we also recall the
following facts.

Lemma 3.4. Assume Hypothesis 3.1 and suppose that a, b satisfy the pth stationary
Toda system (2.20). Let Dµ̂, µ̂ = {µ̂1, . . . , µ̂p} ∈ Symp(Kp), be the Dirichlet divisor
of degree p associated with a, b defined according to (3.6), that is,

µ̂j(n) =
(
µj(n),−Gp+1(µj(n), n)

)
∈ Kp, j = 1, . . . , p, n ∈ Z. (3.27)
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Then Dµ̂(n) is nonspecial for all n ∈ Z. Moreover, the Abel map linearizes the
auxiliary divisor Dµ̂ in the sense that

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0))− (n− n0)AP∞− (P∞+), (3.28)

where Q0 ∈ Kp is a given base point.
If in addition, a, b ∈ `∞(Z), then there exists a constant Cµ > 0 such that

|µj(n)| ≤ Cµ, j = 1, . . . , p, n ∈ Z. (3.29)

Remark 3.5. We note that by construction, the divisors Dµ̂(n), n ∈ Z, as intro-
duced in (3.6) are all finite and hence nonspecial by Lemma 3.4. On the other hand,
as we will see in the next Section 4, given a nonspecial divisor Dµ̂(n0), the solution
Dµ̂(n) of equation (3.28) may cease to be a finite divisor at some n ∈ Z.

4. An Algorithm for Solving the Inverse Algebro-Geometric
Spectral Problem for (Non-self-adjoint) Jacobi Operators

The aim of this section is to derive an algorithm that enables one to construct
algebro-geometric solutions for the stationary Toda hierarchy for complex-valued
initial data. Equivalently, we offer a solution of the inverse algebro-geometric spec-
tral problem for general (non-self-adjoint) Jacobi operators, starting with initial
divisors in general complex position.

Up to the end of Section 3 the material was standard (see [6] and [14, Sect. 1.3],
[32, Chs. 8, 9] for details) and based on the assumption that a, b ∈ CZ satisfy the
pth stationary Toda system (2.20). Now we embark on the corresponding inverse
problem consisting of constructing a solution of (2.20) given certain initial data.
More precisely, we seek to construct solutions a, b ∈ CZ satisfying the pth stationary
Toda system (2.20) starting from a properly restricted set M0 of finite nonspecial
Dirichlet divisor initial data Dµ̂(n0) at some fixed n0 ∈ Z,

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈ M0, M0 ⊂ Symp(Kp),
µ̂j(n0) =

(
µj(n0),−Gp+1(µj(n0), n0)

)
, j = 1, . . . , p.

(4.1)

Of course we would like to ensure that the sequences obtained via our algorithm
do not blow up. To investigate when this happens, we study the image of our
divisors under the Abel map. The key ingredient in our analysis will be (3.28)
which yields a linear discrete dynamical system on the Jacobi variety J(Kp). In
particular, we will be led to investigate solutions Dµ̂ of the discrete initial value
problem

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0))− (n− n0)AP∞− (P∞+),

µ̂(n0) = {µ̂1(n0), . . . , µ̂p(n0)} ∈ Symp(Kp),
(4.2)

where Q0 ∈ Kp is a given base point. Eventually, we will be interested in solutions
Dµ̂ of (4.2) with initial data Dµ̂(n0) satisfying (4.1) and M0 to be specified as in
(the proof of) Lemma 4.2.

Before proceeding to develop the stationary Toda algorithm, we briefly analyze
the dynamics of (4.2).

Lemma 4.1. Let Dµ̂(n) be defined via (4.2) for some divisor Dµ̂(n0) ∈ Symp(Kp).
(i) If Dµ̂(n) is finite and nonspecial and Dµ̂(n+1) is infinite, then Dµ̂(n+1) contains
P∞+ but not P∞− .
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(ii) If Dµ̂(n) is nonspecial and Dµ̂(n+1) is special, then Dµ̂(n) contains P∞+ at least
twice.
Items (i) and (ii) hold if n+ 1 is replaced by n− 1 and P∞+ by P∞− .

Proof. (i) Suppose one point in Dµ̂(n+1) equals P∞− and denote the remaining ones
by Dµ̃(n+1). Then (4.2) tells us αQ0

(Dµ̃(n+1))+AQ0
(P∞+) = αQ0

(Dµ̂(n)). Since we
assumed Dµ̂(n) to be nonspecial, we have Dµ̂(n) = Dµ̃(n+1) + DP∞+

contradicting
finiteness of Dµ̂(n).
(ii) We choose Q0 to be a branch point of Kp such that AQ0

(P ∗) = −AQ0
(P ).

In particular, if Dµ̂(n+1) is special, then it contains a pair of points (Q,Q∗) whose
contribution will cancel under the Abel map, that is, αQ0

(Dµ̂(n+1)) = αQ0
(Dν̂(n+1))

for some Dν̂(n+1) ∈ Symp−2(Kp). But invoking (4.2) shows that αQ0
(Dµ̂(n)) =

αQ0
(Dν̂(n+1)) + 2AQ0

(P∞+). As Dµ̂(n) was assumed nonspecial, this shows that
Dµ̂(n) = Dν̂(n+1) + 2DP∞+

, as claimed. �

This yields the following behavior of Dµ̂(n) if we start with some nonspecial
finite initial divisor Dµ̂(n0): As n increases, Dµ̂(n) stays nonspecial as long as it
remains finite. If it becomes infinite, then it is still nonspecial and contains P∞+

at least once (but not P∞−). Further increasing n, all instances of P∞+ will be
rendered into P∞− step by step, until we have again a nonspecial divisor that has
the same number of P∞− as the first infinite one had P∞+ . Generically, we expect
the subsequent divisor to be finite and nonspecial again.

Next we show that most initial divisors are nice in the sense that their iterates
stay away from P∞± . Since we want to show that this set is of full measure, it will
be convenient for us to identify Symp(Kp) with the Jacobi variety J(Kp) via the
Abel map and take the Haar measure on J(Kp). Of course, the Abel map is only
injective when restricted to the set of nonspecial divisors, but these are the only
ones we are interested in.

Lemma 4.2. The set M0 ⊂ Symp(Kp) of initial divisors Dµ̂(n0) for which Dµ̂(n),
defined via (4.2), is finite and hence nonspecial for all n ∈ Z, forms a dense set of
full measure in the set Symp(Kp) of nonnegative divisors of degree p.

Proof. Let M∞ be the set of divisors in Symp(Kp) for which (at least) one point
is equal to P∞+ . The image αQ0

(M∞) of M∞ is given by

αQ0
(M∞) = AQ0

(P∞+) + αQ0
(Symp−1(Kp)) ⊂ J(Kp). (4.3)

Since the (complex) dimension of Symp−1(Kp) is p−1, its image must be of measure
zero by Sard’s theorem (see, e.g., [1, Sect. 3.6]). Similarly, let Msp be the set of
special divisors, then its image is given by

αQ0
(Msp) = αQ0

(Symp−2(Kp)), (4.4)

assuming Q0 to be a branch point. In particular, we conclude that αQ0
(Msp) ⊂

αQ0
(M∞) and thus αQ0

(Msing) = αQ0
(M∞) has measure zero, where

Msing =M∞ ∪Msp. (4.5)

Hence, ⋃
n∈Z

(
αQ0

(Msing) + nAP∞−
(P∞+)

)
(4.6)
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is of measure zero as well. But this last set contains all initial divisors which will
hit P∞+ or become special at some n. We denote by M0 the inverse image of the
complement of the set (4.6) under the Abel map,

M0 = α−1
Q0

(
Symp(Kp)

∖ ⋃
n∈Z

(
αQ0

(Msing) + nAP∞−
(P∞+)

))
. (4.7)

Since M0 is of full measure, it is automatically dense in Symp(Kp). �

We briefly illustrate some aspects of this analysis in the special case p = 1 (i.e.,
the case where (3.1) represents an elliptic Riemann surface) in more detail.

Example 4.3. The case p = 1.
In this case we have

F1(z, n) = z − µ1(n),

G2(z, n) = R4(µ̂1(n))1/2 + (z − b(n))F1(z, n), (4.8)

R4(z) =
3∏

m=0

(z − Em),

and hence a straightforward calculation shows that

G2(z, n)2 −R4(z) = 4a(n)2(z − µ1(n))(z − µ1(n+ 1))

= (z − µ1(n))(4a(n)2z − 4a(n)2b(n) + Ẽ),
(4.9)

where

Ẽ =
1
8

(E0 + E1 − E2 − E3)(E0 − E1 + E2 − E3)(E0 − E1 − E2 + E3). (4.10)

Solving for µ1(n+ 1), one obtains

µ1(n+ 1) = b(n)− Ẽ

4a(n)2
. (4.11)

This shows that µ1(n0 + 1) → ∞, in fact, µ1(n0 + 1) = O(a(n0)−2) as a(n0) →
0 during an appropriate deformation of the parameters Em, m = 0, . . . , 3. In
particular, as a(n0)→ 0, one thus infers b(n0 + 1)→∞ during such a deformation
since

b(n) =
1
2

3∑
m=0

Em − µ1(n), n ∈ Z, (4.12)

specializing to p = 1 in the trace formula (3.25). Next, we illustrate the set M∞
in the case p = 1. (We recall that Msp = ∅ and hence Msing =M∞ if p = 1.) By
(4.2) one infers

AP∞+
(µ̂1(n)) = AP∞+

(µ̂1(n0)) + (n− n0)AP∞+
(P∞−), n, n0 ∈ Z. (4.13)

We note that µ̂1 ∈M∞ is equivalent to

there is an n ∈ Z such that µ̂1(n) = P∞+ (or P∞−). (4.14)

By (4.13), relation (4.14) is equivalent to

AP∞+
(µ̂1(n0)) +AP∞+

(P∞−) Z = 0 (mod L1). (4.15)

Thus, Dµ̂1(n0) ∈M0 ⊂ K1 if and only if

AP∞+
(µ̂1(n0)) +AP∞+

(P∞−) Z 6= 0 (mod L1) (4.16)
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or equivalently, if and only if

AP∞− (µ̂1(n0)) +AP∞− (P∞+) Z 6= 0 (mod L1). (4.17)

Next, we describe the stationary Toda algorithm. Since this is a somewhat
lengthy affair, we will break it up into several steps.

The Stationary (Complex) Toda Algorithm:
We prescribe the following data:

(i) The set

{Em}2p+1
m=0 ⊂ C, Em 6= Em′ for m 6= m′, m,m′ = 0, . . . , 2p+ 1 (4.18)

for some fixed p ∈ N. Given {Em}2p+1
m=0 , we introduce the function R2p+2 and the

hyperelliptic curve Kp (with nonsingular affine part) as in (3.1).
(ii) The nonspecial divisor

Dµ̂(n0) ∈ Symp(Kp), (4.19)

where µ̂(n0) is of the form

µ̂(n0) = {µ̂1(n0), . . . , µ̂1(n0)︸ ︷︷ ︸
p1(n0) times

, . . . , µ̂q(n0), . . . , µ̂q(n0)︸ ︷︷ ︸
pq(n0)(n0) times

} (4.20)

with

µ̂k(n0) = (µk(n0), y(µ̂k(n0))), µk(n0) 6= µk′(n0) for k 6= k′, k, k′ = 1, . . . , q(n0),
(4.21)

and

pk(n0) ∈ N, k = 1, . . . , q(n0),
q(n0)∑
k=1

pk(n0) = p. (4.22)

With {Em}2p+1
m=0 andDµ̂(n0) prescribed, we next introduce the following quantities

(for z ∈ C):

Fp(z, n0) =
q(n0)∏
k=1

(z − µk(n0))pk(n0), (4.23)

Tp−1(z, n0) = −Fp(z, n0)
q(n0)∑
k=1

pk(n0)−1∑
`=0

(
d`y(P )/dζ`

)∣∣
P=(ζ,η)=µ̂k(n0)

`!(pk(n0)− `− 1)!
(4.24)

×

(
dpk(n0)−`−1

dζpk(n0)−`−1

(
(z − ζ)−1

q(n0)∏
k′=1, k′ 6=k

(ζ − µk′(n0))−pk′ (n0)

))∣∣∣∣∣
ζ=µk(n0)

,

b(n0) =
1
2

2p+1∑
m=0

Em −
q(n0)∑
k=1

pk(n0)µk(n0), (4.25)

Gp+1(z, n0) = −(z − b(n0))Fp(z, n0) + Tp−1(z, n0). (4.26)

Here the sign of y in (4.24) is chosen according to (4.21).
Next we record a series of facts:

(I) By construction (cf. Lemma B.1),
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T
(`)
p−1(µk(n0), n0) = −d

`y(P )
dζ`

∣∣∣∣
P=(ζ,η)=µ̂k(n0)

= G
(`)
p+1(µk(n0), n0),

` = 0, . . . , pk(n0)− 1, k = 1, . . . , q(n0),
(4.27)

(here the superscript (`) denotes ` derivatives w.r.t. z) and hence

µ̂k(n0) = (µk(n0),−Gp+1(µk(n0), n0)), k = 1, . . . , q(n0). (4.28)

(II) Since Dµ̂(n0) is nonspecial by hypothesis, one concludes that

pk(n0) ≥ 2 implies R2p+2(µk(n0)) 6= 0, k = 1, . . . , q(n0). (4.29)

(III) By (I) and (II) one computes

d`
(
Gp+1(z, n0)2

)
dz`

∣∣∣∣
z=µk(n0)

=
d`R2p+2(z)

dz`

∣∣∣∣
z=µk(n0)

,

z ∈ C, ` = 0, . . . , pk(n0)− 1, k = 1, . . . , q(n0).
(4.30)

(IV) By (4.26) and (4.30) one infers that Fp divides R2p+2 −G2
p+1.

(V) By (4.25) and (4.26) one verifies that

R2p+2(z)−Gp+1(z, n0)2 =
z→∞

O(z2p). (4.31)

By (IV) and (4.31) we may write

R2p+2(z)−Gp+1(z, n0)2 = Fp(z, n0)F̌p−r(z, n0 + 1), z ∈ C, (4.32)

for some r ∈ {0, . . . , p}, where the polynomial F̌p−r has degree p−r. If in fact F̌0 =
0, then R2p+2(z) = Gp+1(z, n0)2 would yield double zeros of R2p+2, contradicting
our basic hypothesis (4.18). Thus we conclude that in the case r = p, F̌0 cannot
vanish identically and hence we may break up (4.32) in the following manner

φ̌(P, n0) =
y −Gp+1(z, n0)

Fp(z, n0)
=
F̌p−r(z, n0 + 1)
y +Gp+1(z, n0)

, P = (z, y) ∈ Kp. (4.33)

Next we decompose

F̌p−r(z, n0 + 1) = Č

p−r∏
j=1

(z − µj(n0 + 1)), z ∈ C, (4.34)

where Č ∈ C\{0} and {µj(n0 +1)}p−rj=1 ⊂ C (if r = p we follow the usual convention
and replace the product in (4.34) by 1). By inspection of the local zeros and poles
as well as the behavior near P∞± of the function φ̌( · , n0), its divisor,

(
φ̌( · , n0)

)
, is

given by (
φ̌( · , n0)

)
= DP∞+ µ̂(n0+1) −DP∞− µ̂(n0), (4.35)

where

µ̂(n0 + 1) = {µ̂1(n0 + 1), . . . , µ̂p−r(n0 + 1), P∞+ , . . . , P∞+︸ ︷︷ ︸
r times

}. (4.36)

In particular,

Dµ̂(n0+1) is a finite divisor if and only if r = 0. (4.37)

We note that
αQ0

(Dµ̂(n0+1)) = αQ0
(Dµ̂(n0))−AP∞− (P∞+), (4.38)
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in accordance with (4.2).
(VI) Assuming that (4.31) is precisely of order z2p as z → ∞, that is, assuming
r = 0 in (4.32), we rewrite (4.32) in the more appropriate manner

R2p+2(z)−Gp+1(z, n0)2 = −4a(n0)2Fp(z, n0)Fp(z, n0 + 1), z ∈ C, (4.39)

where we introduced the coefficient a(n0)2 to make Fp( · , n0+1) a monic polynomial
of degree p. (We will later discuss conditions which indeed guarantee that r = 0,
cf. (4.37) and the discussion in step (XI) below.) By construction, Fp( · , n0 + 1) is
then of the type

Fp(z, n0 + 1) =
q(n0+1)∏
k=1

(z − µk(n0 + 1))pk(n0+1),

q(n0+1)∑
k=1

pk(n0 + 1) = p,

µk(n0 + 1) 6= µk′(n0 + 1) for k 6= k′, k, k′ = 1, . . . , q(n0 + 1), z ∈ C,

(4.40)

and we define

µ̂k(n0 + 1) = (µk(n0 + 1), Gp+1(µk(n0 + 1), n0)), k = 1, . . . , q(n0 + 1). (4.41)

Moreover, we introduce the divisor

Dµ̂(n0+1) ∈ Symp(Kp) (4.42)

by

µ̂(n0 + 1) = {µ̂1(n0 + 1), . . . , µ̂p(n0 + 1)}
= {µ̂1(n0 + 1), . . . , µ̂1(n0 + 1)︸ ︷︷ ︸

p1(n0+1) times

, . . . , µ̂q(n0+1), . . . , µ̂q(n0+1)︸ ︷︷ ︸
pq(n0+1)(n0+1) times

}. (4.43)

In particular, because of the definition (4.41), Dµ̂(n0+1) is nonspecial and hence

pk(n0 + 1) ≥ 2 implies R2p+2(µk(n0 + 1)) 6= 0, k = 1, . . . , q(n0 + 1). (4.44)

Again we note that

αQ0
(Dµ̂(n0+1)) = αQ0

(Dµ̂(n0))−AP∞− (P∞+), (4.45)

in accordance with (4.2).
(VII) Introducing

b(n0 + 1) =
1
2

2p+1∑
m=0

Em −
q(n0+1)∑
k=1

pk(n0 + 1)µk(n0 + 1), (4.46)

and interpolating Gp+1( · , n0) with Fp( · , n0 + 1) rather than Fp( · , n0) yields

Gp+1(z, n0) = −(z − b(n0 + 1))Fp(z, n0 + 1)− Tp−1(z, n0 + 1), z ∈ C, (4.47)

where

Tp−1(z, n0 + 1) = Fp(z, n0 + 1)

×
q(n0+1)∑
k=1

pk(n0+1)−1∑
`=0

(
d`y(P )/dζ`

)∣∣
P=(ζ,η)=µ̂k(n0+1)

`!(pk(n0 + 1)− `− 1)!
(4.48)

×

(
dpk(n0+1)−`−1

dζpk(n0+1)−`−1

(
(z − ζ)−1

q(n0+1)∏
k′=1, k′ 6=k

(ζ − µk′(n0 + 1))−pk′ (n0+1)

))∣∣∣∣∣
ζ=µk(n0+1)

.
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Here the sign of y in (4.48) is chosen in accordance with (4.41), that is,

µ̂k(n0 + 1) = (µk(n0 + 1), y(µ̂k(n0 + 1)))

= (µk(n0 + 1), Gp+1(µk(n0 + 1), n0)), k = 1, . . . , q(n0 + 1). (4.49)

(VIII) An explicit computation of a(n0)2 then yields

a(n0)2 =
1
2

q(n0)∑
k=1

(
dpk(n0)−1y(P )/dζpk(n0)−1

)∣∣
P=(ζ,η)=µ̂k(n0)

(pk(n0)− 1)!

×
q(n0)∏

k′=1, k′ 6=k

(µk(n0)− µk′(n0))−pk(n0) +
1
4
(
b(2)(n0)− b(n0)2

)
. (4.50)

Here and in the following we abbreviate

b(2)(n) =
1
2

2p+1∑
m=0

E2
m −

q(n)∑
k=1

pk(n)µk(n)2 (4.51)

for an appropriate range of n ∈ N.
The result (4.50) is obtained as follows: One starts from the identity (4.39),

inserts the expressions (4.23) and (4.26) for Fp( · , n0) and Gp+1( · , n0), respectively,
then inserts the explicit form (4.24) of Tp−1( · , n0), and finally collects all terms
of order z2p as z → ∞. An entirely elementary but fairly tedious calculation then
produces (4.50).

In the special case q(n0) = p, pk(n0) = 1, k = 1, . . . , p, (4.50) and (4.51) reduce
to (3.26) and (3.24) (for k = 2).
(IX) Introducing

Gp+1(z, n0 + 1) = −(z − b(n0 + 1))Fp(z, n0 + 1) + Tp−1(z, n0 + 1) (4.52)

one then obtains

Gp+1(z, n0 + 1) = −Gp+1(z, n0)− 2(z − b(n0 + 1))Fp(z, n0 + 1). (4.53)

(X) At this point one can iterate the procedure step by step to construct Fp( · , n),
Gp+1( · , n), Tp−1( · , n), a(n), b(n), µk(n), k = 1, . . . , q(n), etc., for n ∈ [n0,∞)∩Z,
subject to the following assumption (cf. (4.37)) at each step:

Dµ̂(n+1) is a finite divisor (and hence a(n) 6= 0) for all n ∈ [n0,∞) ∩ Z. (4.54)

The formalism is symmetric with respect to n0 and can equally well be developed
for n ∈ (−∞, n0] ∩ Z subject to the analogous assumption

Dµ̂(n−1) is a finite divisor (and hence a(n) 6= 0) for all n ∈ (−∞, n0] ∩ Z. (4.55)

Indeed, one first interpolates Gp+1( · , n0 − 1) with the help of Fp( · , n0), then with
Fp( · , n0 − 1), etc.

Moreover, we once again remark for consistency reasons that

αQ0
(Dµ̂(n)) = αQ0

(Dµ̂(n0))− (n− n0)AP∞− (P∞+), n ∈ Z, (4.56)

in agreement with our starting point (4.2).
(XI) Choosing the initial data Dµ̂(n0) such that

Dµ̂(n0) ∈M0, (4.57)

where M0 ⊂ Symp(Kp) is the set of finite divisors introduced in Lemma 4.2, then
guarantees that assumptions (4.54) and (4.55) are satisfied for all n ∈ Z.
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(XII) Performing these iterations for all n ∈ Z, one then arrives at the following
set of equations for Fp and Gp+1 after the following elementary manipulations:
Utilizing

G2
p+1 − 4a2FpF

+
p = R2p+2 = (G−p+1)2 − 4(a−)2F−p Fp, (4.58)

and inserting
G+
p+1 = −Gp+1 − 2(z − b+)F+

p (4.59)
into

G2
p+1 − (G−p+1)2 − 4a2FpF

+
p + 4(a−)2F−p Fp = 0 (4.60)

then yields
2a2F+

p − 2(a−)2F−p + (z − b)(Gp+1 −G−p+1) = 0. (4.61)

Subtracting (4.59) from its shifted version Gp+1 = −G−p+1 − 2(z − b)Fp then also
yields

2(z − b+)F+
p − 2(z − b)Fp +G+

p+1 −G
−
p+1 = 0. (4.62)

As discussed in Section 2, (4.61) and (4.62) are equivalent to the stationary Lax
and zero-curvature equations (2.15) and (2.60). At this stage we have verified the
basic hypotheses of Section 3 (i.e., (3.2) and the assumption that a, b satisfy the
pth stationary Toda system (2.20)) and hence all results of Section 3 apply.

Finally, we briefly summarize these considerations:

Theorem 4.4. Suppose the set {Em}2p+1
m=0 ⊂ C satisfies Em 6= Em′ for m 6= m′,

m,m′ = 0, . . . , 2p+ 1, and introduce the function R2p+2 and the hyperelliptic curve
Kp as in (3.1). Choose a nonspecial divisor Dµ̂(n0) ∈ M0, where M0 ⊂ Symp(Kp)
is the set of finite divisors introduced in Lemma 4.2. Then the stationary (complex)
Toda algorithm as outlined in steps (I )–(XII ) produces solutions a, b of the pth
stationary Toda system,

s-Tlp(a, b) =
(
f+
p+1 − fp+1

gp+1 − g−p+1

)
= 0, p ∈ N0, (4.63)

satisfying (3.2) and

a(n)2 =
1
2

q(n)∑
k=1

(
dpk(n)−1y(P )/dζpk(n)−1

)∣∣
P=(ζ,η)=µ̂k(n)

(pk(n)− 1)!

×
q(n)∏

k′=1, k′ 6=k

(µk(n)− µk′(n))−pk(n) +
1
4
(
b(2)(n)− b(n)2

)
, (4.64)

b(n) =
1
2

2p+1∑
m=0

Em −
q(n)∑
k=1

pk(n)µk(n), n ∈ Z. (4.65)

Moreover, Lemmas 3.2–3.4 apply.

Remark 4.5. Suppose that the hypotheses of the previous theorem are satisfied and
that a(n0), b(n0), b(n0+1), Fp(z, n0), Fp(z, n0+1), Gp+1(z, n0), and Gp+1(z, n0+1)
have already been computed using steps (I )–(IX ). Then, alternatively, one can use

(a−)2F−p = a2F+
p + 2−1(z − b)(Gp+1 −G+

p+1) + (z − b)2Fp

− (z − b+)(z − b)F+
p , (4.66)

G− = 2((z − b+)F+
p − (z − b)Fp) +G+

p+1 (4.67)
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(derived from (2.60)) to compute a(n), b(n), Fp(z, n), Gp+1(z, n) for n < n0 and

a+F++ = aFp − 2−1(z − b)(G+
p+1 −Gp+1), (4.68)

G++ = G− 2((z − b++)F++
p − (z − b+)F+

p ) (4.69)

to compute a(n− 1), b(n), Fp(z, n), Gp+1(z, n) for n > n0 + 1.

Theta function representations of a and b can now be derived in complete analogy
to the self-adjoint case. Since the final results are formally the same as in the self-
adjoint case we just refer, for instance, to [6], [7], [9], [10], [14, Sect. 1.3], [18], [19],
[20], [21] (cf. also the appendix written in [8]), [25], [30, Appendix, Sect. 9], [32,
Sect. 9.2], [33, Sect. 4.5].

The stationary (complex) Toda algorithm as outlined in steps (I )–(XII ), start-
ing from a nonspecial divisor Dµ̂(n0) ∈ M0, represents a solution of the inverse
algebro-geometric spectral problem for generally non-self-adjoint Jacobi operators.
While we do not assume periodicity (or even quasi-periodicity), let alone real-
valuedness of the coefficients of the underlying Jacobi operator, once can view this
algorithm a continuation of the inverse periodic spectral problem started around
1975 (in the self-adjoint context) by Kac and van Moerbeke [15], [16] and Flaschka
[12], continued in the seminal papers by van Moerbeke [24], Date and Tanaka [7],
and Dubrovin, Matveev, and Novikov [10], and further developed by Krichever [18],
McKean [23], van Moerbeke and Mumford [25], Mumford [26], and others, in part
in the more general quasi-periodic algebro-geometric case.

We note that in general (i.e., unless one is, e.g., in the special periodic or self-
adjoint case), Dµ̂(n) will get arbitrarily close to P∞+ since straight motions on the
torus are generically dense (see e.g. [2, Sect. 51] or [17, Sects. 1.4, 1.5]). Thus,
no uniform bound on the sequences a(n), b(n) exists as n varies in Z. In particu-
lar, these complex-valued algebro-geometric solutions of some of the equations of
the stationary Toda hierarchy, generally, will not be quasi-periodic (cf. the usual
definition of quasi-periodic functions, e.g., in [31, p. 31]) with respect to n. For
the special case of complex-valued and quasi-periodic Jacobi matrices where all
quasi-periods are real-valued, we refer to [4] (cf. also [3]).

5. Properties of Algebro-Geometric Solutions
of the Time-Dependent Toda Hierarchy

In this section we present a quick review of properties of algebro-geometric so-
lutions of the time-dependent Toda hierarchy. Since this material is standard we
omit all proofs and just refer to [6] (cf. also [14, Sect. 1.4], [32, Chs. 12, 13]) for
detailed presentations and an extensive list references to the literature.

For most of this section we will make the following assumption:

Hypothesis 5.1. (i) Suppose that a, b satisfy

a( · , t), b( · , t) ∈ CZ, t ∈ R, a(n, · ), b(n, · ) ∈ C1(R), n ∈ Z,
a(n, t) 6= 0, (n, t) ∈ Z× R.

(5.1)

(ii) Assume that the hyperelliptic curve Kp, p ∈ N0, satisfies (3.1) and (3.3).

In order to briefly analyze algebro-geometric solutions of the time-dependent
Toda hierarchy we proceed as follows. Given p ∈ N0, consider a complex-valued
solution a(0), b(0) of the pth stationary Toda system s-Tlp(a, b) = 0, associated with
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Kp and a given set of summation constants {c`}`=1,...,p ⊂ C. Next, let r ∈ N0; we
intend to consider solutions a = a(tr), b = b(tr) of the rth Toda flow Tlr(a, b) =
0 with a(t0,r) = a(0), b(t0,r) = b(0) for some t0,r ∈ R. To emphasize that the
summation constants in the definitions of the stationary and the time-dependent
Toda equations are independent of each other, we indicate this by adding a tilde
on all the time-dependent quantities. Hence we shall employ the notation P̃2r+2,
Ṽr+1, F̃r, G̃r+1, f̃s, g̃s, c̃s, in order to distinguish them from P2p+2, Vp+1, Fp, Gp+1,
f`, g`, c`, in the following. In addition, we will follow a more elaborate notation
inspired by Hirota’s τ -function approach and indicate the individual rth Tl flow
by a separate time variable tr ∈ R. More precisely, we will review properties of
solutions a, b of the time-dependent algebro-geometric initial value problem

T̃lr(a, b) =
(
atr − a

(
f̃+
p+1(a, b)− f̃p+1(a, b)

)
btr + g̃p+1(a, b)− g̃−p+1(a, b)

)
= 0,

(a, b)
∣∣
tr=t0,r

=
(
a(0), b(0)

)
,

(5.2)

s-Tlp
(
a(0), b(0)

)
=
(
−a
(
f+

p+1

(
p(0), q(0)

)
− fp+1

(
p(0), q(0)

))
gp+1

(
a(0), b(0)

)
− g−p+1

(
a(0), b(0)

) )
= 0 (5.3)

for some t0,r ∈ R, p, r ∈ N0, where a = a(n, tr), b = b(n, tr) satisfy (5.1) and a fixed
curve Kp is associated with the stationary solutions a(0), b(0) in (5.3). In terms of
Lax pairs this amounts to solving

d

dtr
L(tr)− [P̃2r+2(tr), L(tr)] = 0, tr ∈ R, (5.4)

[P2p+2(t0,r), L(t0,r)] = 0. (5.5)

Anticipating that the Toda flows are isospectral deformations of L(t0,r), we are
going a step further replacing (5.5) by

[P2p+2(tr), L(tr)] = 0, tr ∈ R. (5.6)

This then implies

P2p+2(tr)2 = R2p+2(L(tr)) =
2p+1∏
m=0

(L(tr)− Em), tr ∈ R. (5.7)

Actually, instead of working with (5.4), (5.5), and (5.6), one can equivalently take
the zero-curvature equations (2.63) as one’s point of departure, that is, one can also
start from

Utr + UṼr+1 − Ṽ +
r+1U = 0, (5.8)

UVp+1 − V +
p+1U = 0, (5.9)

where (cf. (2.23), (2.24), (2.58), (2.59))

U(z) =
(

0 1
−a−/a (z − b)/a

)
,

Vp+1(z) =
(

G−p+1(z) 2a−F−p (z)
−2a−Fp(z) 2(z − b)Fp +Gp+1(z)

)
, (5.10)

Ṽr+1(z) =
(

G̃−r+1(z) 2a−F̃−r (z)
−2a−F̃r(z) 2(z − b)F̃r(z) + G̃r+1(z)

)
,
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and

Fp(z) =
p∑
`=0

fp−`z
` =

p∏
j=1

(z − µj), f0 = 1, (5.11)

Gp+1(z) = −zp+1 +
p∑
`=0

gp−`z
` + fp+1, g0 = −c1, (5.12)

F̃r(z) =
r∑
s=0

f̃r−sz
s, f̃0 = 1, (5.13)

G̃r+1(z) = −zr+1 +
r∑
s=0

g̃r−sz
s + f̃r+1, g̃0 = −c̃1, (5.14)

for fixed p, r ∈ N0. Here f`, f̃s, g`, and g̃s, ` = 0, . . . , p, s = 0, . . . , r, are defined
as in (2.4)–(2.6) with appropriate sets of summation constants c`, ` ∈ N, and c̃k,
k ∈ N. Explicitly, (5.8) and (5.9) are equivalent to (cf. (2.55), (2.56), (2.32), (2.33))

atr = −a
(
2(z − b+)F̃+

r + G̃+
r+1 + G̃r+1

)
, (5.15)

btr = 2
(
(z − b)2F̃r + (z − b)G̃r+1 + a2F̃+

r − (a−)2F̃−r
)
, (5.16)

0 = 2(z − b+)F+
p +G+

p+1 +Gp+1, (5.17)

0 = (z − b)2Fp + (z − b)Gp+1 + a2F+
p − (a−)2F−p , (5.18)

respectively. In particular, (2.34) holds in the present tr-dependent setting, that is,

G2
p+1 − 4a2FpF

+
p = R2p+2. (5.19)

As in (3.6) one introduces

µ̂j(n, tr) = (µj(n, tr),−Gp+1(µj(n, tr), n, tr)) ∈ Kp, j = 1, . . . , p, (n, tr) ∈ Z× R,
(5.20)

µ̂+
j (n, tr) = (µ+

j (n, tr), Gp+1(µ+
j (n, tr), n, tr)) ∈ Kp, j = 1, . . . , p, (n, tr) ∈ Z× R,

(5.21)

and notes that the regularity assumptions (5.1) on a, b imply continuity of µj with
respect to tr ∈ R (away from collisions of zeros, µj are of course C∞).

In analogy to (3.7), (3.8), one defines the meromorphic function φ( · , n, tr) on
Kp,

φ(P, n, tr) =
y −Gp+1(z, n, tr)

2a(n, tr)Fp(z, n, tr)
(5.22)

=
−2a(n, tr)Fp(z, n+ 1, tr)

y +Gp+1(z, n, tr)
, (5.23)

P (z, y) ∈ Kp, (n, tr) ∈ Z× R,

with divisor (φ( · , n, tr)) of φ( · , n, tr) given by

(φ( · , n, tr)) = DP∞+ µ̂(n+1,tr) −DP∞− µ̂(n,tr), (5.24)

using (5.11) and (5.20).
The time-dependent Baker–Akhiezer function ψ(P, n, n0, tr, t0,r), meromorphic

on Kp \ {P∞+ , P∞−}, is then defined in terms of φ by

ψ(P, n, n0, tr, t0,r)
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= exp

(∫ tr

t0,r

ds
(
2a(n0, s)F̃r(z, n0, s)φ(P, n0, s) + G̃r+1(z, n0, s)

))

×


∏n−1
m=n0

φ(P,m, tr) for n ≥ n0 + 1,
1 for n = n0,∏n0−1
m=n φ(P,m, tr)−1 for n ≤ n0 − 1,

(5.25)

P ∈ Kp \ {P∞±}, (n, n0, tr, t0,r) ∈ Z2 × R2.

For subsequent purposes we also introduce the following Baker–Akhiezer vector,

Ψ(P, n, n0, tr, t0,r) =
(
ψ−(P, n, n0, tr, t0,r)
ψ(P, n, n0, tr, t0,r)

)
,

P ∈ Kp \ {P∞±}, (n, n0, tr, t0,r) ∈ Z2 × R2.

(5.26)

Basic properties of φ, ψ, and Ψ are summarized in the following lemma.

Lemma 5.2. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)–(5.18).
In addition, let P = (z, y) ∈ Kp \ {P∞±}, (n, n0, tr, t0,r) ∈ Z2 × R2, and r ∈ N0.
Then φ satisfies

aφ(P ) + a−(φ−(P ))−1 = z − b, (5.27)

φtr (P ) = −2a
(
F̃r(z)φ(P )2 + F̃+

r (z)
)

+ 2(z − b+)F̃+
r (z)φ(P )

+
(
G̃+
r+1(z)− G̃r+1(z)

)
φ(P ), (5.28)

φ(P )φ(P ∗) =
F+
p (z)
Fp(z)

, (5.29)

φ(P )− φ(P ∗) =
y(P )
aFp(z)

, (5.30)

φ(P ) + φ(P ∗) = −Gp+1(z)
aFp(z)

. (5.31)

Moreover, ψ and Ψ satisfy

(L− z(P ))ψ(P ) = 0, (P2p+2 − y(P ))ψ(P ) = 0, (5.32)

ψtr (P ) = P̃2r+2ψ(P ) (5.33)

= 2aF̃r(z)ψ+(P ) + G̃r+1(z)ψ(P ), (5.34)

Ψ+(P ) = U(z)Ψ(P ), yΨ(P ) = Vp+1Ψ(P ), (5.35)

Ψtr (P ) = Ṽr+1(z)Ψ(P ), (5.36)

ψ(P, n, n0, tr, t0,r)ψ(P ∗, n, n0, tr, t0,r) =
Fp(z, n, tr)
Fp(z, n0, t0,r)

, (5.37)

a(n, tr)
(
ψ(P, n, n0, tr, t0,r)ψ(P ∗, n+ 1, n0, tr, t0,r)

+ ψ(P ∗, n, n0, tr, t0,r)ψ(P, n+ 1, n0, tr, t0,r)
)

= −Gp+1(z, n, tr)
Fp(z, n0, t0,r)

, (5.38)

W (ψ(P, · , n0, tr, t0,r), ψ(P ∗, · , n0, tr, t0,r)) = − y(P )
Fp(z, n0, t0,r)

. (5.39)

In complete analogy to the case of stationary trace formulas one obtains trace
formulas in the time-dependent setting (cf. the abbreviation (3.24)).
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Lemma 5.3. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)–(5.16).
Then,

b =
1
2

2p+1∑
m=0

Em −
p∑
j=1

µj . (5.40)

In addition, if for all (n, tr) ∈ Z×R, µj(n, tr) 6= µk(n, tr) for j 6= k, j, k = 1, . . . , p,
then,

a2 =
1
2

p∑
j=1

y(µ̂j)
p∏
k=1
k 6=j

(µj − µk)−1 +
1
4
(
b(2) − b2

)
. (5.41)

For completeness we next mention the Dubrovin equations for the time variation
of the Dirichlet eigenvalues of the Toda lattice.

Lemma 5.4. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)–(5.16).
In addition, assume that the zeros µj(n, tr), j = 1, . . . , p, of Fp( · , n, tr) remain
distinct for all (n, tr) ∈ Z× R. Then,

d

dtr
µj(n, tr) = −2F̃r(µj(n, tr), n, tr)

y(µ̂j(n, tr))∏p
`=1
` 6=j

(µj(n, tr)− µ`(n, tr))
,

j = 1, . . . , p, (n, tr) ∈ Z× R.

(5.42)

When attempting to solve the Dubrovin system (5.42), it must be augmented
with appropriate divisors Dµ̂(n0,t0,r) ∈ SympKp as initial conditions.

For the tr-dependence of Fp and Gp+1 one obtains the following result.

Lemma 5.5. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15)–(5.16).
In addition, let (z, n, tr) ∈ C× Z× R. Then,

Fp,tr = 2
(
FpG̃r+1 −Gp+1F̃r

)
, (5.43)

Gp+1,tr = 4a2
(
FpF̃

+
r − F+

p F̃r
)
. (5.44)

In particular, (5.43) and (5.44) are equivalent to

Vp+1,tr = [Ṽr+1, Vp+1]. (5.45)

It will be shown in Section 6 that Lemma 5.5 in conjunction with the fundamental
identity (5.19) yields a first-order system of differential equations for f`, g`, ` =
1, . . . , p, that serves as a pertinent substitute for the Dubrovin equations (5.42)
even (in fact, especially) when some of the µj coincide.

As in the case of trace formulas, also Lemma 3.4 on nonspecial Dirichlet divisors
Dµ̂ and the linearization property of the Abel map when applied to Dµ̂ extends
to the present time-dependent setting. For the latter fact we need to introduce a
particular differential of the second kind, Ω̃(2)

r , defined as follows. Let ω(2)
P∞± ,q

be the
normalized Abelian differential of the second kind (i.e., with vanishing a-periods)
with a single pole at P∞± of the form

ω
(2)
P∞± ,q

=
(
ζ−2−q +O(1)

)
dζ near P∞± , q ∈ N0. (5.46)

Given the summation constants c̃1, . . . , c̃r in F̃r (cf. (5.13)), we then define

Ω̃(2)
r =

r∑
q=0

(q + 1)c̃r−q
(
ω

(2)
P∞+ ,q

− ω(2)
P∞− ,q

)
, c̃0 = 1. (5.47)
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Since the differentials ω(2)
P∞± ,q

were supposed to be normalized we have∫
aj

Ω̃(2)
r = 0, j = 1, . . . , p. (5.48)

Moreover, writing

ωj =
( ∞∑
m=0

dj,m(P∞±)ζm
)
dζ = ±

( ∞∑
m=0

dj,m(P∞+)ζm
)
dζ near P∞± , (5.49)

relation (A.20) yields for the vector of b-periods Ũ
(2)

r of Ω̃(2)
r ,

Ũ
(2)

r =
(
Ũ

(2)
r,1 , . . . , Ũ

(2)
r,p

)
, (5.50)

Ũ
(2)
r,j =

1
2πi

∫
bj

Ω̃(2)
r = 2

r∑
q=0

c̃r−qdj,q(P∞+), j = 1, . . . , p. (5.51)

The time-dependent analog of Lemma 3.4 then reads as follows.

Lemma 5.6. Assume Hypothesis 5.1 and suppose that a, b satisfy (5.15), (5.16).
Let Dµ̂, µ̂ = {µ̂1, . . . , µ̂p} ∈ Symp(Kp), be the Dirichlet divisor of degree p associated
with a, b and φ defined according to (5.20), that is,

µ̂j(n, tr) = (µj(n, tr),−Gp+1(µj(n, tr), n, tr)) ∈ Kp, j = 1, . . . , p, (n, tr) ∈ Z×R.
(5.52)

Then Dµ̂(n,tr) is nonspecial for all (n, tr) ∈ Z×R. Moreover, the Abel map linearizes
the auxiliary divisor Dµ̂ in the sense that

αQ0
(Dµ̂(n,tr)) = αQ0

(Dµ̂(n0,t0,r))− (n− n0)AP∞− (P∞+)− (tr − t0,r)Ũ
(2)

r , (5.53)

where Q0 ∈ Kp is a given base point and Ũ
(2)

r is the vector of b-periods of the
differential of the second kind Ω̃(2)

r introduced in (5.51).
In addition, if a, b ∈ L∞(Z× R), then there exists a constant Cµ > 0 such that

|µj(n, tr)| ≤ Cµ, j = 1, . . . , p, (n, tr) ∈ Z× R. (5.54)

Proof. We will prove that

ψ(P, n, n0, tr, t0,r) =C(n, tr)
θ(z(P, n, tr))
θ(z(P, n0, t0,r))

(5.55)

× exp

(
(n− n0)

∫ P

Q0

ω
(3)
P∞+ ,P∞−

+ (tr − t0,r)
∫ P

Q0

Ω̃(2)
r

)
,

where
z(P, n, tr) = AQ0

(P )− αQ0
(Dµ̂(n,tr)) + ΞQ0

. (5.56)

By Lemma 13.4 of [32] it suffices to show that the essential singularities at P∞±
are equal. That is, by (5.25) we need to show that

ψ(P, n0, n0, tr, t0,r)

= exp

(∫ tr

t0,r

ds
(
2a(n0, s)F̃r(z, n0, tr)φ(P, n0, t0,r) + G̃r+1(z, n0, s)

))
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= exp

(
±(tr − t0,r)

r∑
k=0

cr−kζ
−k−1 +O(1)

)
for P near P∞± . (5.57)

Using (5.22) and (5.43) one obtains

ψ(P, n0, n0, tr, t0,r) =
(
Fp(z, n0, tr)
Fp(z, n0, t0,r)

)1/2

exp

(
y

∫ tr

t0,r

ds
F̃r(z, n0, s)
Fp(z, n0, s)

)
(5.58)

and the desired asymptotics follow from Theorem C.1, which tells us that
y

Fp(z, n0, s)
F̂k(z, n0, s) = ±ζ−k−1 +O(1) for P near P∞± , (5.59)

together with (2.23). �

Again the analog of Remark 3.5 applies in the present time-dependent context.

6. The Algebro-Geometric Toda Hierarchy Initial Value Problem

In this section we consider the algebro-geometric Toda hierarchy initial value
problem (5.2), (5.3) with complex-valued initial data. For a generic set of initial
data we will prove unique solvability of the initial value problem globally in time.

While it is natural in the special self-adjoint case to base the solution of the
algebro-geometric initial value problem on the Dubrovin equations (5.42) (and the
trace formula (5.40) for b and formula (5.41) for a2), this strategy meets with
difficulties in the non-self-adjoint case as Dirichlet eigenvalues µ̂j may now collide
on Kp and hence the denominator of (5.42) can blow up. Hence, we will develop
an alternative strategy based on the use of elementary symmetric functions of the
variables {µj}j=1,...,p in this section, which can accommodate collisions of µ̂j . In
short, our strategy will be as follows:

(i) Replace the first-order autonomous Dubrovin system (5.42) of differential
equations in tr for the Dirichlet eigenvalues µj(n, tr), j = 1, . . . , p, augmented by
appropriate initial conditions, by the first-order autonomous system (6.27), (6.28)
for the coefficients fj , j = 1, . . . , p, gj , j = 1, . . . , p− 1, and gp + fp+1 with respect
to tr. (We note that fj , j = 1, . . . , p, are symmetric functions of µ1, . . . , µp.)
Solve this first-order autonomous system in some time interval (t0,r − T0, t0,r + T0)
under appropriate initial conditions at (n0, t0,r) derived from an initial (nonspecial)
Dirichlet divisor Dµ̂(n0,t0,r).

(ii) Use the stationary algorithm derived in Section 4 to extend the solution of
step (i) from {n0} × (t0,r − T0, t0,r + T0) to Z × (t0,r − T0, t0,r + T0) (cf. Lemma
6.2).

(iii) Prove consistency of this approach, that is, show that the discrete algo-
rithm of Section 4 is compatible with the time-dependent Lax and zero-curvature
equations in the sense that first solving the autonomous system (6.27), (6.28) and
then applying the discrete algorithm, or first applying the discrete algorithm and
then solving the autonomous system (6.27), (6.28) yields the same result whenever
the same endpoint (n, tr) is reached (cf. the discussion following Lemma 6.2 and
the subsequent Lemma 6.3 and Theorem 6.4).

(iv) Prove that there is a dense set of initial conditions of full measure for which
this strategy yields global solutions of the algebro-geometric Toda hierarchy initial
value problem (cf. Lemma 6.5 and Theorem 6.6).
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To set up this formalism we need some preparations. From the outset we make
the following assumption.

Hypothesis 6.1. Suppose that

a, b ∈ CZ and a(n) 6= 0 for all n ∈ Z, (6.1)

and assume that a, b satisfy the pth stationary Toda system (2.20). In addition,
suppose that the affine part of the hyperelliptic curve Kp in (3.1) is nonsingular.

Assuming Hypothesis 6.1, we consider the polynomials Fp, Gp+1, F̃r, and G̃r+1

given by (5.11)–(5.14) for fixed p, r ∈ N0. Here f`, f̃s, g`, and g̃s, ` = 0, . . . , p, s =
0, . . . , r, are defined as in (2.4)–(2.6) with appropriate sets of summation constants.

Our aim will be to find an autonomous first-order system of ordinary differential
equations with respect to tr of f` and g` rather than µj . Indeed, we will take the
coupled system of differential equations (5.43), (5.44), properly rewritten next, as
our point of departure. In order to turn (5.43), (5.44) into a system of first-order
ordinary differential equations for f` and g`, we first need to eliminate f+

` , f̃s, g̃s,
and f̃+

s in terms of f` and g` as follows.
Using (2.9), (2.23), (2.25), and Theorem C.1 one infers

F̃r(z) =
r∑
s=0

f̃r−sz
s =

r∑
s=0

c̃r−sF̂s(z), (6.2)

F̂`(z) =
∑̀
k=0

f̂`−kz
k, f̂0 = 1, f̂` =

`∧p∑
k=0

ĉ`−k(E)fk, ` ∈ N0, (6.3)

where m ∧ n = min{m,n} and ĉ`(E) has been introduced in (C.4). Hence one
obtains

f̃0 = 1, f̃s = F1,s(f1, . . . , fp), s = 1, . . . , r, (6.4)

where F1,s, s = 1, . . . , r, are polynomials in p variables.
Next, using (2.9), (2.24), (2.26), and Theorem C.1 one concludes

G̃r+1(z) = −zr+1 +
r∑
s=0

g̃r−sz
s + f̃r+1 =

r+1∑
s=1

c̃r+1−sĜs(z), (6.5)

Ĝ0(z) = G0(z)
∣∣
c1=0

= 0, Ĝ1(z) = G1(z) = −z − b,

Ĝ`+1(z) = G`+1(z)
∣∣
ck=0, k=1,...,`

= −z`+1 +
∑̀
k=0

ĝ`−kz
k + f̂`+1, ` ∈ N, (6.6)

ĝ0 = 0, ĝ` =
`∧p∑
k=0

ĉ`−k(E)(gk + fp+1δp,k)− ĉ`+1(E), ` ∈ N.

Hence one concludes

g̃0 = −c̃1, g̃s = F2,s(f1, . . . , fp, g1, . . . , gp−1, (gp + fp+1)), s = 1, . . . , r, (6.7)

where F2,s, s = 1, . . . , r, are polynomials in 2p variables. We also recall (cf. (2.18))
that fp+1 is a lattice constant, that is,

fp+1 = f−p+1. (6.8)



30 F. GESZTESY, H. HOLDEN, AND G. TESCHL

Next we invoke the fundamental identity (2.34) in the form

− 4a2F+
p =

R2p+2 −G2
p+1

Fp
. (6.9)

While (6.9) at this point only holds in the stationary context, we will use it later
on also in the tr-dependent context and verify after the time-dependent solutions
of (5.2), (5.3) have been obtained that (6.9) indeed is valid for all (n, tr) ∈ Z× R.
A comparison of powers of z in (6.9) then yields

4a2f+
0 = −2g1 − 2c2,

4a2f+
` = F3,`(f1, . . . , fp, g1, . . . , gp−1, (gp + fp+1)), ` = 1, . . . , p,

(6.10)

where F3,`, ` = 1, . . . , p, are polynomials in 2p variables.
Finally, combining (6.2), (6.3), (6.9), and (6.10), one obtains

4a2f̃+
0 = −2g1 − 2c2,

4a2f̃+
s = F4,s(f1, . . . , fp, g1, . . . , gp−1, (gp + fp+1)), s = 1, . . . , r,

(6.11)

where F4,s, s = 1, . . . , 3, are polynomials in 2p variables.
We emphasize that also the Dubrovin equations (5.42) require an analogous

rewriting of F̃r in terms of (symmetric functions of) µj in order to represent a
first-order system of differential equations for µj , j = 1, . . . , p.

Next, we make the transition to the algebro-geometric initial value problem
(5.2), (5.3). We introduce a deformation (time) parameter tr ∈ R in a = a(tr)
and b = b(tr) and hence obtain tr-dependent quantities f` = f`(tr), g` = g`(tr),
Fp(z) = Fp(z, tr), Gp+1(z) = Gp+1(z, tr), etc. At a fixed initial time t0,r ∈ R we
require that

(a, b)|tr=t0,r
=
(
a(0), b(0)

)
, (6.12)

where a(0) = a( · , t0,r), b(0) = b( · , t0,r) satisfy the pth stationary Toda equation
(2.20) as in (6.1)–(6.11). As discussed in Section 4, in order to guarantee that
the stationary solutions (6.12) can be constructed for all n ∈ Z one starts from a
particular divisor

Dµ̂(n0,t0,r) ∈M0, (6.13)

where µ̂(n0, t0,r) is of the form

µ̂(n0, t0,r) (6.14)

= {µ̂1(n0, t0,r), . . . , µ̂1(n0, t0,r)︸ ︷︷ ︸
p1(n0,t0,r) times

, . . . , µ̂q(n0,t0,r)(n0, t0,r), . . . , µ̂q(n0,t0,r)(n0, t0,r)︸ ︷︷ ︸
pq(n0,t0,r)(n0,t0,r) times

}

with

µ̂k(n0, t0,r) = (µk(n0, t0,r), y(µ̂k(n0, t0,r))),

µk(n0, t0,r) 6= µk′(n0, t0,r) for k 6= k′, k, k′ = 1, . . . , q(n0, t0,r),
(6.15)

and

pk(n0, t0,r) ∈ N, k = 1, . . . , q(n0, t0,r),
q(n0,t0,r)∑
k=1

pk(n0, t0,r) = p. (6.16)



THE TODA HIERARCHY INITIAL VALUE PROBLEM 31

Next we recall

Fp(z, n0, t0,r) =
p∑
`=0

fp−`(n0, t0,r)z` =
q(n0,t0,r)∏
k=1

(z − µk(n0, t0,r))pk(n0,t0,r),

(6.17)

Tp−1(z, n0, t0,r) = −Fp(z, n0, t0,r)

×
q(n0,t0,r)∑
k=1

pk(n0,t0,r)−1∑
`=0

(
d`y(P )/dζ`

)∣∣
P=(ζ,η)=µ̂k(n0,t0,r)

`!(pk(n0, t0,r)− `− 1)!

×

(
dpk(n0,t0,r)−`−1

dζpk(n0,t0,r)−`−1

(
(z − ζ)−1 (6.18)

×
q(n0,t0,r)∏
k′=1, k′ 6=k

(ζ − µk′(n0, t0,r))−pk′ (n0,t0,r)

))∣∣∣∣∣
ζ=µk(n0,t0,r)

,

b(n0, t0,r) =
1
2

2p+1∑
m=0

Em −
q(n0,t0,r)∑
k=1

pk(n0, t0,r)µk(n0, t0,r), (6.19)

Gp+1(z, n0, t0,r) = −zp+1 +
p∑
`=0

gp−`(n0, t0,r)z` + fp+1(t0,r),

= −(z − b(n0, t0,r))Fp(z, n0, t0,r) + Tp−1(z, n0, t0,r). (6.20)

Here the sign of y in (6.18) is chosen as usual by

µ̂k(n0, t0,r) = (µk(n0, t0,r),−Gp+1(µk(n0, t0,r), n0, t0,r)), k = 1, . . . , q(n0, t0,r).
(6.21)

By (6.17) one concludes that (6.14) uniquely determines Fp(z, n0, t0,r) and hence

f1(n0, t0,r), . . . , fp(n0, t0,r). (6.22)

By (6.18)–(6.22) one concludes that also Gp+1(z, n0, t0,r) and hence

g1(n0, t0,r), . . . , gp−1(n0, t0,r), gp(n0, t0,r) + fp+1(t0,r) (6.23)

are uniquely determined by the initial divisor Dµ̂(n0,t0,r) in (6.13).
Summing up the discussion in (6.2)–(6.23), we can transform the differential

equations

Fp,tr (z, n0, tr) = 2
(
Fp(z, n0, tr)G̃r+1(z, n0, tr)

−Gp+1(z, n0, tr)F̃r(z, n0, tr)
)
, (6.24)

Gp+1,tr (z, n0, tr) = 4a(n0, tr)2
(
Fp(z, n0, tr)F̃+

r (z, n0, tr)

− F+
p (z, n0, tr)F̃r(z, n0, tr)

)
(6.25)

subject to the constraint

− 4a2F+
p (z, n0, tr) =

R2p+2(z)−Gp+1(z, n0, tr)2

Fp(z, n0, tr)
, (6.26)

and associated with an initial divisor Dµ̂(n0,t0,r) in (6.13) into the following au-
tonomous first-order system of ordinary differential equations (for fixed n = n0),

fj,tr = Fj(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1), j = 1, . . . , p,
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gj,tr = Gj(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1), j = 1, . . . , p− 1, (6.27)

(gp + fp+1)tr = Gp(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1)

with initial condition

fj(n0, t0,r), j = 1, . . . , p,

gj(n0, t0,r), j = 1, . . . , p− 1, (6.28)

gp(n0, t0,r) + fp+1(t0,r),

where Fj , Gj , j = 1, . . . , p, are polynomials in 2p variables. As just discussed, the
initial conditions (6.28) are uniquely determined by the initial divisor Dµ̂(n0,t0,r) in
(6.13).

Being autonomous with polynomial right-hand sides, there exists a T0 > 0, such
that the first-order initial value problem (6.27), (6.28) has a unique solution

fj = fj(n0, tr), j = 1, . . . , p,

gj = gj(n0, tr), j = 1, . . . , p− 1,

gp + fp+1 = gp(n0, tr) + fp+1(tr)

for all tr ∈ (t0,r − T0, t0,r + T0)

(6.29)

(cf., e.g., [35, Sect. III.10]). Given the solution (6.29), we next introduce the fol-
lowing quantities (where tr ∈ (t0,r − T0, t0,r + T0)):

Fp(z, n0, tr) =
p∑
`=0

fp−`(n0, tr)z` =
q(n0,tr)∏
k=1

(z − µk(n0, tr))pk(n0,tr), (6.30)

Tp−1(z, n0, tr) = −Fp(z, n0, tr)

×
q(n0,tr)∑
k=1

pk(n0,tr)−1∑
`=0

(
d`y(P )/dζ`

)∣∣
P=(ζ,η)=µ̂k(n0,tr)

`!(pk(n0, tr)− `− 1)!

×

(
dpk(n0,tr)−`−1

dζpk(n0,tr)−`−1

(
(z − ζ)−1 (6.31)

×
q(n0,tr)∏
k′=1, k′ 6=k

(ζ − µk′(n0, tr))−pk′ (n0,tr)

))∣∣∣∣∣
ζ=µk(n0,tr)

,

b(n0, tr) =
1
2

2p+1∑
m=0

Em −
q(n0,tr)∑
k=1

pk(n0, tr)µk(n0, tr), (6.32)

Gp+1(z, n0, tr) = −zp+1 +
p∑
`=0

gp−`(n0, tr)z` + fp+1(tr)

= −(z − b(n0, tr))Fp(z, n0, tr) + Tp−1(z, n0, tr). (6.33)

In particular, this leads to the divisor

Dµ̂(n0,tr) ∈ Symp(Kp) (6.34)

and the sign of y in (6.31) is chosen as usual by

µ̂k(n0, tr) = (µk(n0, tr),−Gp+1(µk(n0, tr), n0, tr)), k = 1, . . . , q(n0, tr), (6.35)
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and

µ̂(n0, tr) = {µ1(n0, tr), . . . , µ1(n0, tr)︸ ︷︷ ︸
p1(n0,tr) times

, . . . , µq(n0,tr)(n0, tr), . . . , µq(n0,tr)(n0, tr)︸ ︷︷ ︸
pq(n0,tr)(n0,tr) times

}

(6.36)
with

µk(n0, tr) 6= µk′(n0, tr) for k 6= k′, k, k′ = 1, . . . , q(n0, tr) (6.37)
and

pk(n0, tr) ∈ N, k = 1, . . . , q(n0, tr),
q(n0,tr)∑
k=1

pk(n0, tr) = p. (6.38)

By construction (cf. (6.35)), the divisor Dµ̂(n0,tr) is nonspecial for all tr ∈ (t0,r −
T0, t0,r + T0).

In exactly the same manner as in (4.27)–(4.30) one then infers that Fp( · , n0, tr)
divides R2p+2 − G2

p+1 (since tr is just a fixed additional parameter). Moreover,
arguing as in (4.31)–(4.37) we now assume that the polynomial

R2p+2(z)−Gp+1(z, n0, tr)2 =
z→∞

O(z2p) (6.39)

is precisely of maximal order 2p for all tr ∈ (t0,r − T0, t0,r + T0). One then obtains

R2p+2(z)−Gp+1(z, n0, tr)2 = −4a(n0, tr)2Fp(z, n0, tr)Fp(z, n0 + 1, tr),

(z, tr) ∈ C× (t0,r − T0, t0,r + T0),
(6.40)

where we introduced the coefficient a(n0, tr)2 to make Fp( · , n0 + 1, tr) a monic
polynomial of degree p. As in Section 4, the assumption that the polynomial
Fp( · , n0 + 1, tr) is precisely of order p is implied by the hypothesis that

Dµ̂(n0,tr) ∈M0 for all tr ∈ (t0,r − T0, t0,r + T0), (6.41)

a point we will revisit later (cf. Lemma 6.5). Given (6.40), we obtain consistency
with (6.9) for n = n0 and tr ∈ (t0,r − T0, t0,r + T0).

The explicit formula for a(n0, tr)2 then reads (for tr ∈ (t0,r − T0, t0,r + T0))

a(n0, tr)2 =
1
2

q(n0,tr)∑
k=1

(
dpk(n0,tr)−1y(P )/dζpk(n0,tr)−1

)∣∣
P=(ζ,η)=µ̂k(n0,tr)

(pk(n0, tr)− 1)!

×
q(n0,tr)∏
k′=1, k′ 6=k

(µk(n0, tr)− µk′(n0, tr))−pk(n0,tr) (6.42)

+
1
4
(
b(2)(n0, tr)− b(n0, tr)2

)
.

Here and in the following we use the abbreviation

b(2)(n, tr) =
1
2

2p+1∑
m=0

E2
m −

q(n,tr)∑
k=1

pk(n, tr)µk(n, tr)2 (6.43)

for appropriate ranges of (n, tr) ∈ N× R.
With (6.30)–(6.43) in place, we can now apply the stationary formalism as sum-

marized in Theorem 4.4, subject to the additional hypothesis (6.41), for each fixed
tr ∈ (t0,r − T0, t0,r + T0). This yields, in particular, the quantities

Fp, Gp+1, a, b, and µ̂ for (n, tr) ∈ Z× (t0,r − T0, t0,r + T0), (6.44)
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which are of the form (6.30)–(6.43), replacing the fixed n0 ∈ Z by an arbitrary
n ∈ Z. In addition, one has the following fundamental identities (cf. (4.53), (4.58),
(4.61), and (4.62)), which we summarize in the following result.

Lemma 6.2. Assume Hypothesis 6.1 and condition (6.41). Then the following
relations are valid:

R2p+2 −G2
p+1 + 4a2FpF

+
p = 0, (6.45)

2(z − b+)F+
p +G+

p+1 +Gp+1 = 0, (6.46)

2a2F+
p − 2(a−)2F−p + (z − b)(Gp+1 −G−p+1) = 0, (6.47)

2(z − b+)F+
p − 2(z − b)Fp +G+

p+1 −G
−
p+1 = 0 (6.48)

on C× Z× (t0,r − T0, t0,r + T0)

and hence the stationary part, (5.9), of the algebro-geometric initial value problem
holds,

UVp+1 − V +
p+1U = 0 on C× Z× (t0,r − T0, t0,r + T0). (6.49)

In particular, Lemmas 3.2–3.4 apply.

Lemma 6.2 now raises the following important consistency issue: On one hand,
one can solve the initial value problem (6.27), (6.28) at n = n0 in some interval
tr ∈ (t0,r−T0, t0,r+T0), and then extend the quantities Fp, Gp+1 to all C×Z×(t0,r−
T0, t0,r + T0) using the stationary algorithm summarized in Theorem 4.4 as just
recorded in Lemma 6.2. On the other hand, one can solve the initial value problem
(6.27), (6.28) at n = n1, n1 6= n0, in some interval tr ∈ (t0,r − T1, t0,r + T1) with
the initial condition obtained by applying the discrete algorithm to the quantities
Fp, Gp+1 starting at (n0, t0,r) and ending at (n1, t0,r). Consistency then requires
that the two approaches yield the same result at n = n1 for tr in some open
neighborhood of t0,r.

Equivalently, and pictorially speaking, envisage a vertical tr-axis and a horizontal
n-axis. Then, consistency demands that first solving the initial value problem
(6.27), (6.28) at n = n0 in some tr-interval around t0,r and using the stationary
algorithm to extend Fp, Gp+1 horizontally to n = n1 and the same tr-interval
around t0,r, or first applying the stationary algorithm starting at (n0, t0,r) to extend
Fp, Gp+1 horizontally to (n1, t0,r) and then solving the initial value problem (6.27),
(6.28) at n = n1 in some tr-interval around t0,r should produce the same result at
n = n1 in a sufficiently small open tr interval around t0,r.

To settle this consistency issue, we will prove the following result. To this end
we find it convenient to replace the initial value problem (6.27), (6.28) by the
original tr-dependent zero-curvature equation (5.8), Utr + UṼr+1 − Ṽ +

r+1U = 0 on
C× Z× (t0,r − T0, t0,r + T0).

Lemma 6.3. Assume Hypothesis 6.1 and condition (6.41). Moreover, suppose that
(6.24)–(6.26) hold on C× {n0} × (t0,r − T0, t0,r + T0). Then (6.24)–(6.26) hold on
C× Z× (t0,r − T0, t0,r + T0), that is,

Fp,tr (z, n, tr) = 2
(
Fp(z, n, tr)G̃r+1(z, n, tr)

−Gp+1(z, n, tr)F̃r(z, n, tr)
)
, (6.50)

Gp+1,tr (z, n, tr) = 4a(n, tr)2
(
Fp(z, n, tr)F̃+

r (z, n, tr)

− F+
p (z, n, tr)F̃r(z, n, tr)

)
, (6.51)
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R2p+2(z) = Gp+1(z, n, tr)2 − 4a(n, tr)2Fp(z, n, tr)F+
p (z, n, tr), (6.52)

(z, n, tr) ∈ C× Z× (t0,r − T0, t0,r + T0).

Moreover,

φtr (P, n, tr) = −2a(n, tr)
(
F̃r(z, n, tr)φ(P, n, tr)2 + F̃+

r (z, n, tr)
)

+ 2(z − b+(n, tr))F̃+
r (z, n, tr)φ(P, n, tr) (6.53)

+
(
G̃+
r+1(z, n, tr)− G̃r+1(z, n, tr)

)
φ(P, n, tr),

atr (n, tr) = −a(n, tr)
(
2(z − b+(n, tr))F̃+

r (z, n, tr)

+ G̃+
r+1(z, n, tr) + G̃r+1(z, n, tr)

)
, (6.54)

btr (n, tr) = 2
(
(z − b(n, tr))2F̃r(z, n, tr) + (z − b(n, tr))G̃r+1(z, n, tr)

+ a2(n, tr)F̃+
r (z, n, tr)− (a−(n, tr))2F̃−r (z, n, tr)

)
, (6.55)

(z, n, tr) ∈ C× Z× (t0,r − T0, t0,r + T0).

Proof. By Lemma 6.2 we have (5.22), (5.23), (5.27), (5.29)–(5.31), and (6.45)–(6.48)
for (n, tr) ∈ Z×(t0,r−T0, t0,r+T0) at our disposal. Differentiating (6.52) at n = n0

with respect to tr, inserting (6.50) and (6.51) at n = n0, yields

2F+
p atr + aF+

p,tr = 2a
(
Gp+1F̃

+
r − F+

p G̃r+1

)
= 2F+

p a
(
− 2(z − b+)F̃+

r − G̃+
r+1 − G̃r+1

)
+ 2a

(
F+
p G̃

+
r+1 −G

+
p+1F̃

+
r

) (6.56)

at n = n0. By inspection,

F+
p (z)G̃+

r+1(z)−G+
p+1(z)F̃+

r (z) =
|z|→∞

O(zp−1). (6.57)

This can be shown directly using formulas such as (2.23)–(2.26), (6.2), (6.3), (6.5),
and (6.6). It also follows from (5.43) and the fact that Fp is a monic polynomial of
degree p. Thus one concludes that

2F+
p atr = 2F+

p a
(
− 2(z − b+)F̃+

r − G̃+
r+1 − G̃r+1

)
(6.58)

at n = n0, and upon cancelling 2F+
p that (6.54) holds at n = n0. This and (6.56)

then also proves that (6.50) holds at n = n0 + 1.
Next, differentiating 2aFpφ = y − Gp+1 at n = n0 with respect to tr, inserting

(6.50), (6.51), and (6.54) at n = n0, and using (5.23) to replace 2aF+
p by −(y +

Gp+1)φ and (5.22) to replace (Gp+1 − y) by −2aFpφ, yields (6.53) at n = n0 upon
cancelling the factor 2aFp.

Differentiating (6.46) with respect to tr (fixing n = n0), inserting (6.46) (to
replace G+

p+1), (6.51) at n = n0, and (6.50) at n = n0 + 1 yields

0 = −2F+
p

(
b+tr − 2(z − b+)2F̃+

r + 2a2F̃r − 2(z − b+)G̃+
r+1

)
+ 4(z − b+)2F+

p F̃
+
r + 4(z − b+)Gp+1F̃

+
r + 4(a)2FpF̃

+
r +G+

p+1,tr

= −2F+
p

(
b+tr − 2(z − b+)2F̃+

r − 2(z − b+)G̃+
r+1 + 2a2F̃r − 2(a+)2F̃++

r

)
− 4(a+)2F+

p F̃
++
r + 4(z − b+)2F+

p F̃
+
r + 4(z − b+)Gp+1F̃

+
r

+ 4a2FpF̃
+
r +G+

p+1,tr

= −2F+
p

(
b+tr − 2(z − b+)2F̃+

r − 2(z − b+)G̃+
r+1 + 2a2F̃r − 2(a+)2F̃++

r

)
(6.59)

+G+
p+1,tr

− 4(a+)2F+
p F̃

++
r +

(
4a2Fp + 4(z − b+)2F+

p + 4(z − b+)Gp+1

)
F̃+
r
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at n = n0. Combining (6.46) and (6.47) at n = n0 one computes

4(a+)2F++
p = 4a2Fp + 4(z − b+)2F+

p + 4(z − b+)Gp+1 (6.60)

at n = n0. Insertion of (6.60) into (6.59) then yields

0 = −2F+
p

(
b+tr − 2(z − b+)2F̃+

r − 2(z − b+)G̃+
r+1 + 2a2F̃r − 2(a+)2F̃++

r

)
+G+

p+1,tr
− 4(a+)2F+

p F̃
++
r + 4(a+)2F++

p F̃+
r (6.61)

at n = n0. In close analogy to (6.57) one observes that

F+
p (z)F̃++

r (z)− F++
p (z)F̃+

r (z) =
|z|→∞

O(zp−1) for p ∈ N. (6.62)

Thus, since F+
p is a monic polynomial of degree p, (6.61) proves that

b+tr − 2(z − b+)2F̃+
r − 2(z − b+)G̃+

r+1 + 2a2F̃r − 2(a+)2F̃++
r = 0 (6.63)

at n = n0, upon cancelling F+
p . Thus, (6.55) holds at n = n0 + 1. Simultaneously,

this proves (6.51) at n = n0 + 1.
Iterating the arguments just presented (and performing the analogous consider-

ations for n < n0) then extends these results to all lattice points n ∈ Z and hence
proves (6.50)–(6.55) for (z, n, tr) ∈ C× Z× (t0,r − T0, t0,r + T0). �

We summarize Lemmas 6.2 and 6.3 next.

Theorem 6.4. Assume Hypothesis 6.1 and condition (6.41). Moreover, suppose
that

fj = fj(n0, tr), j = 1, . . . , p,

gj = gj(n0, tr), j = 1, . . . , p− 1,

gp + fp+1 = gp(n0, tr) + fp+1(tr)

for all tr ∈ (t0,r − T0, t0,r + T0),

(6.64)

satisfies the autonomous first-order system of ordinary differential equations (6.27)
(for fixed n = n0),

fj,tr = Fj(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1), j = 1, . . . , p,

gj,tr = Gj(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1), j = 1, . . . , p− 1, (6.65)

(gp + fp+1)tr = Gp(f1, . . . , fp, g1, . . . , gp−1, gp + fp+1)

with initial condition

fj(n0, t0,r), j = 1, . . . , p,

gj(n0, t0,r), j = 1, . . . , p− 1, (6.66)

gp(n0, t0,r) + fp+1(t0,r).

Then Fp and Gp+1 as constructed in (6.2)–(6.44) on C× Z× (t0,r − T0, t0,r + T0)
satisfy the zero-curvature equations (5.8), (5.9), and (5.45),

Utr + UṼr+1 − Ṽ +
r+1U = 0, (6.67)

UVp+1 − V +
p+1U = 0, (6.68)

Vp+1,tr − [Ṽr+1, Vp+1] = 0 (6.69)

on C× Z× (t0,r − T0, t0,r + T0),
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with U , Vp+1, and Ṽr+1 given by (5.10). In particular, a, b satisfy the algebro-
geometric initial value problem (5.2), (5.3) on Z× (t0,r − T0, t0,r + T0),

T̃lr(a, b) =
(
atr − a

(
f̃+
p+1(a, b)− f̃p+1(a, b)

)
btr + g̃p+1(a, b)− g̃−p+1(a, b)

)
= 0,

(a, b)
∣∣
tr=t0,r

=
(
a(0), b(0)

)
,

(6.70)

s-Tlp
(
a(0), b(0)

)
=
(
−a
(
f+

p+1

(
p(0), q(0)

)
− fp+1

(
p(0), q(0)

))
gp+1

(
a(0), b(0)

)
− g−p+1

(
a(0), b(0)

) )
= 0, (6.71)

and are given by

a(n, tr)2 =
1
2

q(n,tr)∑
k=1

(
dpk(n,tr)−1y(P )/dζpk(n,tr)−1

)∣∣
P=(ζ,η)=µ̂k(n,tr)

(pk(n, tr)− 1)!

×
q(n,tr)∏

k′=1, k′ 6=k

(µk(n, tr)− µk′(n, tr))−pk(n,tr) (6.72)

+
1
4
(
b(2)(n, tr)− b(n, tr)2

)
,

b(n, tr) =
1
2

2p+1∑
m=0

Em −
q(n,tr)∑
k=1

pk(n, tr)µk(n, tr), (6.73)

(z, n, tr) ∈ Z× (t0,r − T0, t0,r + T0).

Moreover, Lemmas 3.2–3.4 and 5.2–5.6 apply.

As in the stationary case, the theta function representations of a and b in the
time-dependent context can be derived in complete analogy to the self-adjoint case.
Since the final results are formally the same as in the self-adjoint case we again
just refer, for instance, to [6], [7], [9], [10], [14, Sect. 1.4], [18] (cf. also the appendix
written in [8]), [25], [30, Appendix, Sect. 9], [32, Sect. 13.2], [33, Sect. 4.6], [34, Ch.
28].

As in Lemma 4.2 we now show that also in the time-dependent case, most initial
divisors are nice in the sense that the corresponding divisor trajectory stays away
from P∞± for all (n, tr) ∈ Z× R.

Lemma 6.5. The set M1 of initial divisors Dµ̂(n0,t0,r) for which Dµ̂(n,tr), defined
via (5.53), is nonspecial and finite for all (n, tr) ∈ Z×R, forms a dense set of full
measure in the set Symp(Kp) of nonnegative divisors of degree p.

Proof. Let Msing be as introduced in the proof of Lemma 4.2. Then⋃
tr∈R

(
αQ0

(Msing) + trŨ
(2)

r

)
=
⋃
tr∈R

(
AQ0

(P∞+) + αQ0
(Symp−1(Kp)) + trŨ

(2)

r

)
(6.74)

∪
⋃
tr∈R

(
AQ0

(P∞−) + αQ0
(Symp−1(Kp)) + trŨ

(2)

r

)
is of measure zero as well, since it is contained in the image of R × Symp−1(Kp)
which misses one real dimension in comparison to the 2p real dimensions of J(Kp).
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But then ⋃
(n,tr)∈Z×R

(
αQ0

(Msing) + nAP∞−
(P∞+) + trŨ

(2)

r

)
(6.75)

is also of measure zero. Applying α−1
Q0

to the complement of the set in (6.75) then
yields a setM1 of full measure in Symp(Kp). In particular,M1 is necessarily dense
in Symp(Kp). �

Theorem 6.6. Let Dµ̂(n0,t0,r) ∈ M1 be an initial divisor as in Lemma 6.5. Then
the sequences a, b constructed from µ̂(n0, t0,r) as described in Theorem 6.4 satisfy
Hypothesis 5.1. In particular, the solution a, b of the algebro-geometric initial value
problem (6.70), (6.71) is global in (n, tr) ∈ Z× R.

Proof. Starting with Dµ̂(n0,t0,r) ∈ M1, the procedure outlined in this section and
summarized in Theorem 6.4 leads to Dµ̂(n,tr) for all (n, tr) ∈ Z×(t0,r−T0, t0,r+T0)
such that (5.53) holds. But if a, b should blow up, then Dµ̂(n,tr) must hit P∞+ or
P∞− , which is impossible by our choice of initial condition. �

Note, however, that in general (i.e., unless one is, e.g., in the special periodic or
self-adjoint case), Dµ̂(n,tr) will get arbitrarily close to P∞+ since straight motions
on the torus are generically dense (see e.g. [2, Sect. 51] or [17, Sects. 1.4, 1.5]) and
hence no uniform bound on the sequences a(n, tr), b(n, tr) exists as (n, tr) vary in
Z×R. In particular, these complex-valued algebro-geometric solutions of the Toda
hierarchy initial value problem, in general, will not be quasi-periodic (cf. the usual
definition of quasi-periodic functions, e.g., in [31, p. 31]) with respect to n or tr.

Appendix A. Hyperelliptic Curves of the Toda-Type

We provide a brief summary of some of the fundamental notations needed from
the theory of hyperelliptic Riemann surfaces. More details can be found in some of
the standard textbooks [11] and [27] as well as in monographs and surveys dedicated
to integrable systems such as [5, Ch. 2], [8], [13, App. A, B], [32, App. A].

Fix p ∈ N. We intend to describe the hyperelliptic Riemann surface Kp of genus
p of the Toda-type curve (2.43), associated with the polynomial

Fp(z, y) = y2 −R2p+2(z) = 0,

R2p+2(z) =
2p+1∏
m=0

(z − Em), {Em}2p+1
m=0 ⊂ C.

(A.1)

To simplify the discussion we will assume that the affine part of Kp is nonsingular,
that is, we assume that

Em 6= Em′ for m 6= m′, m,m′ = 0, . . . , 2p+ 1 (A.2)

throughout this appendix. Next we introduce an appropriate set of (nonintersect-
ing) cuts Cj joining Em(j) and Em′(j), j = 1, . . . , p+ 1, and denote

C =
p+1⋃
j=1

Cj , Cj ∩ Ck = ∅, j 6= k. (A.3)

Define the cut plane
Π = C \ C, (A.4)
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and introduce the holomorphic function

R2p+2( · )1/2 : Π→ C, z 7→
( 2p+1∏
m=0

(z − Em)
)1/2

(A.5)

on Π with an appropriate choice of the square root branch in (A.5). Next we define
the set

Mp = {(z, σR2p+2(z)1/2) | z ∈ C, σ ∈ {1,−1}} ∪ {P∞+ , P∞−} (A.6)

by extending R2p+2( · )1/2 to C. The hyperelliptic curve Kp is then the setMp with
its natural complex structure obtained upon gluing the two sheets ofMp crosswise
along the cuts. Moreover, we introduce the set of branch points

B(Kp) = {(Em, 0)}2p+1
m=0 . (A.7)

Points P ∈ Kp \ {P∞±} are denoted by

P = (z, σR2p+2(z)1/2) = (z, y), (A.8)

where y(·) denotes the meromorphic function on Kp satisfying Fp(z, y) = y2 −
R2p+2(z) = 0 and

y(P ) =
ζ→0
∓
(

1− 1
2

( 2p+1∑
m=0

Em

)
ζ +O(ζ2)

)
ζ−p−1 as P → P∞± , ζ = 1/z. (A.9)

In addition, we introduce the holomorphic sheet exchange map (involution)

∗ : Kp → Kp, P = (z, y) 7→ P ∗ = (z,−y), P∞± 7→ P ∗∞± = P∞∓ (A.10)

and the two meromorphic projection maps

π̃ : Kp → C ∪ {∞}, P = (z, y) 7→ z, P∞± 7→ ∞ (A.11)

and
y : Kp → C ∪ {∞}, P = (z, y) 7→ y, P∞± 7→ ∞. (A.12)

Thus the map π̃ has a pole of order 1 at P∞± and y has a pole of order p + 1 at
P∞± . Moreover,

π̃(P ∗) = π̃(P ), y(P ∗) = −y(P ), P ∈ Kp. (A.13)

As a result, Kp is a two-sheeted branched covering of the Riemann sphere CP1

(∼= C ∪ {∞}) branched at the 2p + 4 points {(Em, 0)}2p+1
m=0 , P∞± . Kp is compact

since π̃ is open and CP1 is compact. Therefore, the compact hyperelliptic Riemann
surface resulting in this manner has topological genus p.

Next we introduce the upper and lower sheets Π± by

Π± = {(z,±R2p+2(z)1/2) ∈Mp | z ∈ Π} (A.14)

and the associated charts

ζ± : Π± → Π, P 7→ z. (A.15)

Let {aj , bj}pj=1 be a homology basis for Kp with intersection matrix of the cycles
satisfying

aj ◦ bk = δj,k, aj ◦ ak = 0, bj ◦ bk = 0, j, k = 1, . . . , p. (A.16)
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Associated with the homology basis {aj , bj}pj=1 we also recall the canonical dis-
section of Kp along its cycles yielding the simply connected interior K̂p of the
fundamental polygon ∂K̂p given by

∂K̂p = a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · a−1
p b−1

p . (A.17)

Let M(Kn) and M1(Kn) denote the set of meromorphic functions (0-forms)
and meromorphic differentials (1-forms) on Kn. The residue of a meromorphic
differential ν ∈M1(Kn) at a point Q ∈ Kn is defined by

resQ(ν) =
1

2πi

∫
γQ

ν, (A.18)

where γQ is a counterclockwise oriented smooth simple closed contour encircling Q
but no other pole of ν. Holomorphic differentials are also called Abelian differentials
of the first kind. Abelian differentials of the second kind ω(2) ∈ M1(Kn) are
characterized by the property that all their residues vanish. They will usually be
normalized by demanding that all their a-periods vanish, that is,∫

aj

ω(2) = 0, j = 1, . . . , p. (A.19)

If ω(2)
P1,n

is a differential of the second kind on Kn whose only pole is P1 ∈ K̂n with
principal part ζ−n−2 dζ, n ∈ N0 near P1 and ωj =

(∑∞
m=0 dj,m(P1)ζm

)
dζ near P1,

then
1

2πi

∫
bj

ω
(2)
P1,m

=
dj,m(P1)
m+ 1

, m = 0, 1, . . . (A.20)

Using local charts one infers that dz/y is a holomorphic differential on Kp with
zeros of order p− 1 at P∞± and hence

ηj =
zj−1dz

y
, j = 1, . . . , p, (A.21)

form a basis for the space of holomorphic differentials on Kp. Introducing the
invertible matrix C in Cp

C =
(
Cj,k

)
j,k=1,...,p

, Cj,k =
∫
ak

ηj , (A.22)

c(k) = (c1(k), . . . , cp(k)), cj(k) =
(
C−1

)
j,k
, j, k = 1, . . . , p, (A.23)

the normalized differentials ωj for j = 1, . . . , p,

ωj =
p∑
`=1

cj(`)η`,
∫
ak

ωj = δj,k, j, k = 1, . . . , p, (A.24)

form a canonical basis for the space of holomorphic differentials on Kp.
In the chart (UP∞± , ζP∞± ) induced by 1/π̃ near P∞± one infers,

ω = (ω1, . . . , ωp) = ∓
p∑
j=1

c(j)ζp−jdζ(∏2p+1
m=0 (1− ζEm)

)1/2 (A.25)

= ±
(
c(p) + ζ

(
1
2
c(p)

2p+1∑
m=0

Em + c(p− 1)
)

+O(ζ2)
)
dζ as P → P∞± ,

ζ = 1/z.
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The matrix τ =
(
τj,`
)p
j,`=1

in Cp×p of b-periods defined by

τj,` =
∫
bj

ω`, j, ` = 1, . . . , p, (A.26)

satisfies
Im(τ) > 0 and τj,` = τ`,j , j, ` = 1, . . . , p. (A.27)

Associated with the matrix τ one introduces the period lattice

Lp = {z ∈ Cp | z = m+ nτ, m, n ∈ Zp} (A.28)

and the Riemann theta function associated with Kn and the given homology basis
{aj , bj}j=1,...,n,

θ(z) =
∑
n∈Zn

exp
(
2πi(n, z) + πi(n, nτ)

)
, z ∈ Cn, (A.29)

where (u, v) = u v> =
∑n
j=1 uj vj denotes the scalar product in Cn. It has the

fundamental properties

θ(z1, . . . , zj−1,−zj , zj+1, . . . , zn) = θ(z), (A.30)

θ(z +m+ nτ) = exp
(
− 2πi(n, z)− πi(n, nτ)

)
θ(z), m, n ∈ Zn. (A.31)

Next, fixing a base point Q0 ∈ Kp \ {P∞±}, one denotes by J(Kp) = Cp/Lp the
Jacobi variety of Kp, and defines the Abel map AQ0

by

AQ0
: Kn → J(Kp), AQ0

(P ) =
(∫ P

Q0

ω1, . . . ,

∫ P

Q0

ωp

)
(mod Lp), P ∈ Kp.

(A.32)
Similarly, one introduces

αQ0
: Div(Kp)→ J(Kp), D 7→ αQ0

(D) =
∑
P∈Kp

D(P )AQ0
(P ), (A.33)

where Div(Kp) denotes the set of divisors on Kp. Here a map D : Kp → Z is called
a divisor on Kp if D(P ) 6= 0 for only finitely many P ∈ Kp. (In the main body of
this paper we will choose Q0 to be one of the branch points, i.e., Q0 ∈ B(Kp), and
for simplicity we will always choose the same path of integration from Q0 to P in
all Abelian integrals.)

In connection with divisors on Kp we will employ the following (additive) nota-
tion,

DQ0Q = DQ0 +DQ, DQ = DQ1 + · · ·+DQm
, (A.34)

Q = {Q1, . . . , Qm} ∈ SymmKp, Q0 ∈ Kp, m ∈ N,
where for any Q ∈ Kp,

DQ : Kp → N0, P 7→ DQ(P ) =

{
1 for P = Q,

0 for P ∈ Kp \ {Q},
(A.35)

and SymmKp denotes the mth symmetric product of Kp. In particular, SymmKp
can be identified with the set of nonnegative divisors 0 ≤ D ∈ Div(Kp) of degreem ∈
N. A divisor DQ = DQ1 + · · ·+DQm

will be called finite if Qk ∈ Kp \ {P∞+ , P∞−},
k = 1, . . . ,m.

For f ∈ M(Kp) \ {0}, ω ∈ M1(Kp) \ {0} the divisors of f and ω are denoted
by (f) and (ω), respectively. Two divisors D, E ∈ Div(Kp) are called equivalent,



42 F. GESZTESY, H. HOLDEN, AND G. TESCHL

denoted by D ∼ E , if and only if D − E = (f) for some f ∈ M(Kp) \ {0}. The
divisor class [D] of D is then given by [D] = {E ∈ Div(Kp) | E ∼ D}. We recall that

deg((f)) = 0, deg((ω)) = 2(p− 1), f ∈M(Kp) \ {0}, ω ∈M1(Kp) \ {0},
(A.36)

where the degree deg(D) of D is given by deg(D) =
∑
P∈Kp

D(P ). It is customary
to call (f) (respectively, (ω)) a principal (respectively, canonical) divisor.

Introducing the complex linear spaces

L(D) = {f ∈M(Kp) | f = 0 or (f) ≥ D}, r(D) = dimC L(D), (A.37)

L1(D) = {ω ∈M1(Kp) | ω = 0 or (ω) ≥ D}, i(D) = dimC L1(D) (A.38)

(with i(D) the index of specialty of D), one infers that deg(D), r(D), and i(D) only
depend on the divisor class [D] of D. Moreover, we recall the following fundamental
facts.

Theorem A.1. Let D ∈ Div(Kp), ω ∈M1(Kp) \ {0}. Then,

i(D) = r(D − (ω)), p ∈ N0. (A.39)

The Riemann-Roch theorem reads

r(−D) = deg(D) + i(D)− p+ 1, n ∈ N0. (A.40)

By Abel’s theorem, D ∈ Div(Kp), p ∈ N, is principal if and only if

deg(D) = 0 and αQ0
(D) = 0. (A.41)

Finally, assume p ∈ N. Then αQ0
: Div(Kp) → J(Kp) is surjective (Jacobi’s

inversion theorem).

Theorem A.2. Let DQ ∈ SympKp, Q = {Q1, . . . , Qp}. Then,

1 ≤ i(DQ) = s (A.42)

if and only if there are s pairs of the type {P, P ∗} ⊆ {Q1, . . . , Qp} (this includes,
of course, branch points for which P = P ∗). Obviously, one has s ≤ p/2.

Next, we denote by ΞQ0
= (ΞQ0,1 , . . . ,ΞQ0,p) the vector of Riemann constants,

ΞQ0,j
=

1
2

(1 + τj,j)−
p∑
`=1
6̀=j

∫
a`

ω`(P )
∫ P

Q0

ωj , j = 1, . . . , p. (A.43)

Theorem A.3. Let Q = {Q1, . . . , Qp} ∈ SympKp and assume DQ to be nonspecial,
that is, i(DQ) = 0. Then,

θ
(
ΞQ0
−AQ0

(P ) + αQ0(DQ)
)

= 0 if and only if P ∈ {Q1, . . . , Qp}. (A.44)

Appendix B. Some Interpolation Formulas

In this appendix we recall a useful interpolation formula which goes beyond the
standard Lagrange interpolation formula for polynomials in the sense that the zeros
of the interpolating polynomial need not be distinct.
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Lemma B.1. Let p ∈ N and Sp−1 be a polynomial of degree p− 1. In addition, let
Fp be a monic polynomial of degree p of the form

Fp(z) =
q∏

k=1

(z − µk)pk , pj ∈ N, µj ∈ C, j = 1, . . . , q,
q∑

k=1

pk = p. (B.1)

Then,

Sp−1(z) = Fp(z)
q∑

k=1

pk−1∑
`=0

S
(`)
p−1(µk)

`!(pk − `− 1)!
(B.2)

×

(
dpk−`−1

dζpk−`−1

(
(z − ζ)−1

q∏
k′=1, k′ 6=k

(ζ − µk′)−pk′

))∣∣∣∣∣
ζ=µk

, z ∈ C.

In particular, Sp−1 is uniquely determined by prescribing the p values

Sp−1(µk), S′p−1(µk), . . . , S(pk−1)
p−1 (µk), k = 1, . . . , q, (B.3)

at the given points µ1. . . . , µq.
Conversely, prescribing the p complex numbers

α
(0)
k , α

(1)
k , . . . , α

(pk−1)
k , k = 1, . . . , q, (B.4)

there exists a unique polynomial Tp−1 of degree p− 1,

Tp−1(z) = Fp(z)
q∑

k=1

pk−1∑
`=0

α
(`)
k

`!(pk − `− 1)!
(B.5)

×

(
dpk−`−1

dζpk−`−1

(
(z − ζ)−1

q∏
k′=1, k′ 6=k

(ζ − µk′)−pk′

))∣∣∣∣∣
ζ=µk

, z ∈ C,

such that

Tp−1(µk) = α
(0)
k , T ′p−1(µk) = α

(1)
k , . . . , T

(pk−1)
p−1 (µk) = α

(pk−1)
k , k = 1, . . . , q.

(B.6)

Proof. Our starting point for proving (B.2) is the following formula derived, for
instance, by Markushevich [22, Part 2, Sect. 2.11, p. 68],

Sp−1(z) =
1

2πi

∮
Γ

dζ Sp−1(ζ)
Fp(ζ)

Fp(ζ)− Fp(z)
ζ − z

, z ∈ C, (B.7)

where Γ is a simple, smooth, counterclockwise oriented curve encircling µ1, . . . , µq
strictly in its interior. Since the integrand in (B.7) is analytic at the point ζ = z,
we may, without loss of generality, assume that Γ does not encircle z. With this
assumption one obtains

1
2πi

∮
Γ

dζ Sp−1(ζ)
ζ − z

= 0 (B.8)

and hence deforming Γ into sufficiently small counterclockwise oriented circles Γk
with center at µk, k = 1, . . . , q, such that no µk′ , k′ 6= k, is encircled by Γk, one
obtains

Sp−1(z) = −Fp(z)
2πi

∮
Γ

dζ Sp−1(ζ)
Fp(ζ)(ζ − z)

= −Fp(z)
2πi

q∑
k=1

∮
Γk

dζ Sp−1(ζ)
Fp(ζ)(ζ − z)
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= −Fp(z)
2πi

q∑
k=1

p−1∑
`=0

S
(`)
p−1(µk)
`!

∮
Γk

dζ (ζ − µk)`

Fp(ζ)(ζ − z)

= −Fp(z)
2πi

q∑
k=1

p−1∑
`=0

S
(`)
p−1(µk)
`!

∮
Γk

dζ (ζ − µk)`

(ζ − z)
∏q
k′=1(ζ − µk′)pk′

= −Fp(z)
2πi

q∑
k=1

p−1∑
`=0

S
(`)
p−1(µk)
`!

∮
Γk

dζ (ζ − µk)`−pk

(ζ − z)
∏q

k′=1
k′ 6=k

(ζ − µk′)pk′

= −Fp(z)
2πi

q∑
k=1

pk−1∑
`=0

S
(`)
p−1(µk)
`!

∮
Γk

dζ (ζ − µk)`−pk

(ζ − z)
∏q

k′=1
k′ 6=k

(ζ − µk′)pk′
, (B.9)

where we used ∮
Γk

dζ (ζ − µk)`−pkf(ζ) = 0 for ` ≥ pk, ` ∈ N, (B.10)

for any function f analytic in a neighborhood of the disk Dk with boundary Γk,
k = 1, . . . , q, to arrive at the last line of (B.9). An application of Cauchy’s formula
for derivatives of analytic functions to (B.9) then yields

Sp−1(z) = −Fp(z)
q∑

k=1

pk−1∑
`=0

S
(`)
p−1(µk)
`!

× 1
2πi

∮
Γk

dζ
1

(ζ − µk)(pk−`−1)+1

1
(ζ − z)

∏q
k′=1, k′ 6=k(ζ − µk′)pk′

= Fp(z)
q∑

k=1

pk−1∑
`=0

S
(`)
p−1(µk)

`!(pk − `− 1)!

×

(
dpk−`−1

dζpk−`−1

(
1

(z − ζ)
∏q
k′=1, k′ 6=k(ζ − µk′)pk′

))∣∣∣∣∣
ζ=µk

, z ∈ C,

(B.11)

and hence (B.2). Conversely, a linear algebraic argument shows that any polynomial
Tp−1 of degree p− 1 is uniquely determined by data of the type

Tp−1(µk), T ′p−1(µk), . . . , T (pk−1)
p−1 (µk), k = 1, . . . , q. (B.12)

Uniqueness of the representation (B.2) then proves (B.5). �

We briefly mention two special cases of (B.2). First, assume the generic case
where all zeros of Fp are distinct, that is,

q = p, pk = 1, µk 6= µk′ for k 6= k′, k, k′ = 1, . . . , p. (B.13)

In this case (B.2) reduces to the classical Lagrange interpolation formula

Sp−1(z) = Fp(z)
p∑
k=1

Sp−1(µk)
((dFp(ζ)/dζ)|ζ=µk

)(z − µk)
, z ∈ C. (B.14)

Second, we consider the other extreme case where all zeros of Fp coincide, that is,

q = 1, p1 = p, Fp(z) = (z − µ1)p, z ∈ C. (B.15)
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In this case (B.2) reduces of course to the Taylor expansion of Sp−1 around z = µ1,

Sp−1(z) =
p−1∑
`=0

S
(`)
p−1(µ1)
`!

(z − µ1)`, z ∈ C. (B.16)

Appendix C. Asymptotic Spectral Parameter Expansions and
Nonlinear Recursion Relations

In this appendix we discuss asymptotic spectral parameter expansions for Fp/y
and Gp+1/y as well as nonlinear recursion relations for the corresponding homoge-
neous coefficients f̂` and ĝ` and analogous quantities fundamental to the polynomial
recursion formalism for the Toda hierarchy.

We start by recalling the following elementary results (which are consequences
of the binomial expansion). Let

{Em}m=0,...,2p+1 ⊂ C for some p ∈ N0 (C.1)

and η ∈ C such that |η| < min{|E0|−1, . . . , |E2p+1|−1}.
Then ( 2p+1∏

m=0

(
1− Emη

))−1/2

=
∞∑
k=0

ĉk(E)ηk, (C.2)

where

ĉ0(E) = 1,

ĉk(E) =
k∑

j0,...,j2p+1=0
j0+···+j2p+1=k

(2j0)! · · · (2j2p+1)!
22k(j0!)2 · · · (j2p+1!)2

Ej00 · · ·E
j2p+1
2p+1 , k ∈ N. (C.3)

The first few coefficients explicitly read

ĉ0(E) = 1, ĉ1(E) =
1
2

2p+1∑
m=0

Em,

ĉ2(E) =
1
4

2p+1∑
m1,m2=0
m1<m2

Em1Em2 +
3
8

2p+1∑
m=0

E2
m, etc. (C.4)

Similarly, ( 2p+1∏
m=0

(
1− Emη

))1/2

=
∞∑
k=0

ck(E)ηk, (C.5)

where

c0(E) = 1,

ck(E) =
k∑

j0,...,j2p+1=0
j0+···+j2p+1=k

(2j0)! · · · (2j2p+1)!Ej00 · · ·E
j2p+1
2p+1

22k(j0!)2 · · · (j2p+1!)2(2j0 − 1) · · · (2j2p+1 − 1)
, k ∈ N. (C.6)

The first few coefficients are given explicitly by

c0(E) = 1, c1(E) = −1
2

2p+1∑
m=0

Em,
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c2(E) =
1
4

2p+1∑
m1,m2=0
m1<m2

Em1Em2 −
1
8

2p+1∑
m=0

E2
m, etc. (C.7)

Theorem C.1. Assume (2.1), s-Tlp(a, b) = 0, and suppose P = (z, y) ∈ Kp \
{P∞+ , P∞−}. Then Fp/y and Gp+1/y have the following convergent expansions as
P → P∞± ,

Fp(z)
y

= ∓
∞∑
`=0

f̂`ζ
`+1,

Gp+1(z)
y

= ∓
∞∑

`=−1

ĝ`ζ
`+1, (C.8)

where ζ = 1/z is the local coordinate near P∞± and f̂` and ĝ` are the homogeneous
versions of the coefficients f` and g` introduced in (2.8). In particular, f̂` and ĝ`
can be computed from the nonlinear recursion relations

f̂0 = 1, f̂1 = −b, f̂2 = a2 + (a−)2 + b2,

f̂`+2 = −1
2

`+1∑
k=1

f̂`+2−kf̂k − 2b
`+1∑
k=0

f̂`+1−kf̂k

+
∑̀
k=0

(
− 3b2f̂`−kf̂k + a2f̂+

`−kf̂k + (a−)2f̂`−kf̂
−
k

)
+
`−1∑
k=0

(
− 2b3f̂`−1−kf̂k + 2a2bf̂+

`−1−kf̂k + 2(a−)2bf̂`−1−kf̂
−
k

)
+
`−2∑
k=0

(
a2b2f̂+

`−2−kf̂k + (a−)2b2f̂`−2−kf̂
−
k + a2(a−)2f̂+

`−2−kf̂
−
k

− 1
2
a4f̂+

`−2−kf̂
+
k −

1
2

(a−)4f̂−`−2−kf̂
−
k

)
, ` ∈ N, (C.9)

and

ĝ−1 = −1, ĝ0 = 0, ĝ1 = −2a2,

ĝ`+1 =
1
2

∑̀
k=−1

(b+ b+)ĝ`−1−kĝk +
1
2

∑̀
k=0

ĝ`−kĝk (C.10)

+
1
2

`−1∑
k=−1

(
bb+ĝ`−2−kĝk − a2(ĝ−`−2−k + ĝ`−2−k)(ĝk + ĝ+

k )
)
, ` ∈ N.

Moreover, one infers for the Em-dependent summation constants c`, ` = 0, . . . , p+1,
in Fp and Gp+1 that

c` = c`(E), ` = 0, . . . , p+ 1 (C.11)
and3

f` =
∑̀
k=0

c`−k(E)f̂k, ` = 0, . . . , p, (C.12)

g` + fp+1δp,` =
∑̀
k=0

c`−k(E)ĝk − c`+1(E), ` = 0, . . . , p, (C.13)

3m ∧ n = min{m, n}.
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f̂` =
`∧p∑
k=0

ĉ`−k(E)fk, ` ∈ N0, (C.14)

ĝ` =
`∧p∑
k=0

ĉ`−k(E)(gk + fp+1δp,k)− ĉ`+1(E), ` ∈ N0. (C.15)

Proof. Dividing Fp and Gp+1 by R1/2
2p+2 (temporarily fixing the branch of R1/2

2p+2 as
zp+1 near infinity) one obtains

Fp(z)
R2p+2(z)1/2

=
|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( p∑

`=0

f`z
−`−1

)
=
∞∑
`=0

f̌`z
−`−1, (C.16)

Gp+1(z)
R2p+2(z)1/2

=
|z|→∞

( ∞∑
k=0

ĉk(E)z−k
)( p+1∑

`=0

g̃`z
−`
)

= z−1
∞∑

`=−1

ǧ`z
−` (C.17)

for some coefficients f̌` and ǧ` to be determined next. Here we have temporarily
introduced the notation

Gp+1(z) = −zp+1 +
p∑
`=0

gp−`z
` + fp+1 =

p+1∑
`=0

g̃p−`z
`. (C.18)

Dividing (2.37) and (2.39) by R2p+2 and inserting expansions (C.16) and (C.17)
into the resulting equations then yield the nonlinear recursion relations (C.9) and
(C.10) (with f̂` and ĝ` replaced by f̌` and ǧ`, respectively). More precisely, one
first obtains |f̌0| = |ǧ−1| = 1 and upon choosing the signs of f̌0 and ǧ−1 such that
f̌0 = f̂0 = 1 and ǧ−1 = −1 one obtains (C.9) and (C.10). Next, dividing (2.31) and
(2.32) by R1/2

2p+2, inserting the expansions (C.16) and (C.17), and comparing powers
of z−` as z → ∞, one infers that f̌` and ǧ` satisfy the linear recursion relations
(2.4)–(2.6). Hence one concludes that

f̌` = f`, ǧ` = g`, ` ∈ N0 (C.19)

for certain values of the summation constants c`. To show that f̌` = f̂`, ǧ` = ĝ`,
and hence all c`, ` ∈ N, vanish, we recall the notion of degree as used in the proof
of Lemma 5.4, which serves as an efficient tool to distinguish between homogeneous
and nonhomogeneous quantities. To this end we employ the notation

f (r) = S(r)f, f = {f(n)}n∈Z ⊂ C, S(r) =

{
(S+)r, r ≥ 0,
(S−)−r, r < 0,

r ∈ Z, (C.20)

and introduce
deg(a(r)) = deg(b(r)) = 1, r ∈ Z. (C.21)

This results in
deg(f̂`) = `, deg(ĝ`) = `+ 1, ` ∈ N. (C.22)

using induction in the linear recursion relations (2.4)–(2.6). Similarly, the nonlinear
recursion relations (C.9) and (C.10) yield inductively that

deg(f̌`) = `, deg(ǧ`) = `+ 1, ` ∈ N. (C.23)

Hence one concludes that

f̌` = f̂`, ǧ` = ĝ`, ` ∈ N0. (C.24)
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A comparison of coefficients in (C.16) proves (C.14). Similarly, we use (C.17) to
establish (C.15). Next, multiplying (C.2) and (C.5), a comparison of coefficients of
ηk yields

k∑
`=0

ĉk−`(E)c`(E) = δk,0, k ∈ N0. (C.25)

Thus, one computes∑̀
m=0

c`−m(E)f̂m =
∑̀
m=0

m∑
k=0

c`−m(E)ĉm−k(E)fk =
∑̀
k=0

∑̀
p=k

c`−p(E)ĉp−k(E)fk

=
∑̀
k=0

( `−k∑
m=0

c`−k−m(E)ĉm(E)
)
fk = f`, ` = 0, . . . , p, (C.26)

applying (C.25). Hence one obtains (C.12) and thus (C.11) (cf. (2.9)). The corre-
sponding proof of (C.13) is similar to that of f`. �
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