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Abstract. We show that a Toda shock wave is asymptotically close to a

modulated finite gap solution in the right modulation region. We previously
derived formulas for the leading terms of the asymptotic expansion of these

shock waves in all five principal regions and conjectured that in two modula-

tion regions the next term is of order O(t−1). In the present paper we prove
this fact and investigate how resonances and eigenvalues influence the lead-

ing asymptotic behaviour. Our main contribution is the solution of the local

parametrix Riemann–Hilbert problems and a rigorous justification of the anal-
ysis. In particular, this involves the construction of a proper singular matrix

model solution.

1. Introduction

A Toda shock wave is a solution of the initial value problem for the Toda lattice
[34, 35]

ḃ(n, t) = 2(a(n, t)2 − a(n− 1, t)2),

ȧ(n, t) = a(n, t)(b(n+ 1, t)− b(n, t)),
(n, t) ∈ Z× R+,(1.1)

with a steplike initial profile

a(n, 0) → a, b(n, 0) → b, as n→ −∞,

a(n, 0) → 1

2
b(n, 0) → 0, as n→ +∞,

(1.2)

where a > 0, b ∈ R satisfy the condition

(1.3) b+ 2a < −1.

Originally the Toda shock wave was associated with symmetric initial data ([36])

(1.4) a(n, 0) = a(−n, 0) → 1

2
, b(−n, 0) = −b(n, 0) → ±b, n→ ±∞, b > 1.

Such a model is closely related to the motion of driving particles in a container
filled with gas ahead of a piston compressing the content of the container. From the
viewpoint of spectral theory, this model corresponds to two non-intersecting spectral
intervals of equal length, which are associated with left and right background Jacobi
operators with constant coefficients; the left background spectrum lies to the left.
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It is therefore natural to extend the notion of a shock wave to background spectra
of different lengths. By scaling and shifting the spectral parameter, one can always
assume that the right spectrum coincides with the interval [−1, 1].

We are interested in the long-time behavior of the solution of the Cauchy prob-
lem (1.1)–(1.3), also referred to as Toda shock problem. This problem was first
investigated for initial data (1.4) on a physical level of rigor by Bloch and Kodama
[3, 4] using the Whitham approach. Venakides, Deift and Oba showed in [36] (see
also [25]) based on the Lax–Levermore approach that in a middle region of the
half plane (n, t) ∈ Z × R+, the solution to (1.1), (1.4) is asymptotically close to a
periodic solution of period two with spectrum [−1− b, 1− b] ∪ [−1 + b, 1 + b]. The
classical inverse scattering transform was used to analyze the soliton regions [35]
and a transition region behind the leading wave front, where the train of asymp-
totic solitons was evaluated [5, 6]. The nonlinear steepest descent (NSD) method
applied to the Toda shock problem yields the most interesting results in the regime
n → ∞, t → ∞ with the ratio n/t close to a constant. It was singled out by Deift
as an outstanding open problem in [7]. In [18] three of us showed that for the
solution of (1.1)–(1.3) there are five principal regions in the (n, t) half plane with
different qualitative behavior: the left and right soliton regions, the left and right
modulation regions and the elliptic region or middle region first discussed in [36]
(see [29] for an overview).

1.1. The main asymptotic regions. The continuous spectrum of the underlying
Jacobi operator (the Lax operator for the Toda lattice)

(1.5)
H(t)y(n) = a(n− 1, t)y(n− 1) + b(n, t)y(n) + a(n, t)y(n+ 1)

= λy(n), λ ∈ C,

consists of two intervals [b− 2a, b+2a] and [−1, 1] which are the spectra of the left
and right constant background operators,

Hℓy(n) = a y(n− 1) + a y(n+ 1) + b y(n),

Hry(n) =
1

2
y(n− 1) +

1

2
y(n+ 1),

n ∈ Z.

Two parameters z and ζ are associated with the right and left background; they
are connected with the spectral parameter λ by the Joukowsky transform

(1.6) λ =
1

2

(
z + z−1

)
= b+ a

(
ζ + ζ−1

)
, |z| ≤ 1, |ζ| ≤ 1.

In the NSD approach, the behavior of the solution essentially depends on the lo-
cation of the stationary phase points, that is, the nodal points of the level lines
where the real part of the phase function vanishes. In our case both the right phase
function

(1.7) Φ(z, ξ) =
z − z−1

2
+ ξ log z, ξ :=

n

t
,

and the left phase function

(1.8) Φℓ(z, ξ) = a(ζ−1 − ζ)− ξ log ζ,

take part in this characterization. Two soliton regions corresponding to the do-
mains of n and t for which n

t > ξcr or n
t < ξcr,1 are naturally identified, where
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the solution to (1.1)–(1.3) is asymptotically close as t → ∞ to the respective con-
stant background solution plus a finite number of solitons generated by the discrete
spectrum (if any). The right leading wave front 1

(1.9) ξcr =

√
(2a− b)2 − 1

log(2a− b+
√
(2a− b)2 − 1)

corresponds to the case when the level line ReΦ(z, ξ) = 0 crosses the real line at

the point z = b − 2a +
√
(2a− b)2 − 1 (the image under the Joukowsky map z(λ)

of the left endpoint b− 2a of the left spectrum). The left wave front

(1.10) ξcr,1 =

√
(1− b)2 − 4a2

log(2a)− log
(
1− b+

√
(1− b)2 − 4a2

)
is the value where the stationary phase point of the left phase Φℓ coincides with the
right endpoint of the right spectrum, z = 1. The region ξcr,1 <

n
t < ξcr consists of

three sectors with different type of quasi-periodic behavior of the solution. These
sectors are divided by rays corresponding to the critical values ξ′cr,1 and ξ′cr of
the parameter ξ such that ξcr,1 < ξ′cr,1 < ξ′cr < ξcr. In the modulation regions
ξcr,1 < n

t < ξ′cr,1 and ξ′cr < n
t < ξcr, the main terms of the expansion of the

solution (with respect to large t) are modulated elliptic waves ([18]). In the middle
region ξ′cr,1 <

n
t < ξ′cr, the solution is asymptotically close to a finite gap (two

band) solution of the Toda equation if the discrete spectrum is absent in the gap
(b+ 2a,−1).

1.2. Modulated elliptic waves. A finite gap solution of the Toda equation is
completely characterized by the geometry of its continuous spectrum and by the
initial Dirichlet divisor on the hyperelliptic Riemann surface associated with the
spectrum. In the shock problem we deal with spectra consisting of two bands and
one initial Dirichlet eigenvalue in the gap between the bands. The sign necessary
to lift this eigenvalue to the Riemann surface is the sign of the respective half-axis,
where the corresponding eigenvector is supported.

Let us first discuss the region ξ ∈ [ξ′cr, ξcr). For any such ξ consider a point
γ(ξ) ∈ (b− 2a, b+2a] which moves monotonically and continuously with respect to
ξ covering the interval (b − 2a, b + 2a], with γ(ξ′cr) = b + 2a. Associated with the
set

(1.11) σ(ξ) := [b− 2a, γ(ξ)] ∪ [−1, 1]

is the two-sheeted Riemann surface M(ξ). The upper sheet of M(ξ) is treated as
the complex plane of the spectral parameter λ with cuts along σ(ξ). Let Ω(λ, ξ)
and ω(λ, ξ) be the normalized Abel integrals of the second and the third kind on
the upper sheet of M(ξ), with zero a-periods along the gap (γ(ξ),−1). The linear
combination g(λ, ξ) = Ω(λ, ξ) + ξω(λ, ξ) is then another Abel integral with zero

a-period. The nominator of the function ∂g(λ,ξ)
∂λ has two real zeros ν(ξ) and µ(ξ)

with at least one zero in the gap, say µ(ξ) ∈ (γ(ξ),−1). Moreover, for λ → ∞ the
function g(λ, ξ) has the same asymptotic behavior as the phase function Φ(z(λ), ξ)
up to a constant term. These properties hold for any choice of γ(ξ). The peculiarity

1Everywhere in this subsection we take positive values of square roots.
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of our choice for γ(ξ) when ξ ∈ [ξ′cr, ξcr) is that we require the second zero ν(ξ) of
g(λ, ξ) to match with γ(ξ), that is,

(1.12)
∂

∂λ
(Ω(λ, ξ) + ξ ω(λ, ξ)) =

(λ− µ(ξ))
√
λ− γ(ξ)√

(λ− b+ 2a)(λ2 − 1)
.

Such a point γ(ξ) is unique for every ξ, and γ(ξ) satisfies the same continuity
and monotonicity properties as described above; it defines the moving edge of the
Whitham zone (cf. [4]). From this construction it follows that

ξ′cr = −2a−
∫ −1

b+2a
λ Q(λ)dλ∫ −1

b+2a
Q(λ)dλ

, Q(λ) =

√
λ− b− 2a

(λ− b+ 2a)(λ2 − 1)

and σ(ξ′cr) = [b− 2a, b+2a]∪ [−1, 1]. In contrast to the phase function Φ(z, ξ), the
properties of g(λ, ξ) allow us to apply the lens construction for the RHP approach
to all contours whenever needed. For this reason we replace Φ(z, ξ) by g(λ, ξ),
which plays the role of the g-function ([11]) in the NSD method. Given γ(ξ), let

(1.13)
{
â
(
n, t, ξ

)
, b̂
(
n, t, ξ

)}
be the finite gap solution for the Toda lattice associated with the spectrum (1.11)
and with an initial Dirichlet eigenvalue defined via the initial scattering data for
(1.2), (1.3) by the Jacobi inversion problem. This Dirichlet eigenvalue was com-

puted in [18, Equ. (5.25)]. The functions
{
â
(
n, t, nt

)
, b̂
(
n, t, nt

)}
are then well de-

fined in the region

(1.14)
{
(n, t) ∈ Z× R+ : n

t ∈ [ξ′cr, ξcr − ε]
}
,

where ε is arbitrary small. In analogy to the KdV shock case, we call them modu-
lated elliptic waves. They are the main terms of the asymptotic expansion for the
Toda shock wave with respect to large t in the region (1.14).

The middle region n
t ∈ (ξ′cr,1, ξ

′
cr), where

ξ′cr,1 = b+ 1−
∫ −1

b+2a
λ Q1(λ)dλ∫ −1

b+2a
Q1(λ)dλ

, Q1(λ) =

√
λ+ 1

((λ− b)2 − 4a2)(λ− 1)
,

is associated with the gap (b+2a,−1), although we cannot claim that the stationary
phase point of Φ(z(λ), ξ) for such ξ is located in this gap. A suitable g-function
here is simply Ω(λ)+ ξ ω(λ), where Ω(λ) and ω(λ) are the Abel integrals as defined
above associated with the spectrum

σ(ξ′cr) = σ(ξ′cr,1) = [b− 2a, b+ 2a] ∪ [−1, 1].

The level line Re g(λ, ξ) = 0 in this case intersects the real axis at a point λ0(ξ) in-
side the gap, which moves continuously along the gap when ξ moves along (ξ′cr,1, ξ

′
cr).

The main asymptotic term for the solution of (1.1)–(1.3) is the classical two band

solution of the Toda lattice {â(n, t), b̂(n, t)} with the initial Dirichlet eigenvalue
depending on ξ if the discrete spectrum inside the gap is nonempty. The phase
summand in the theta function representation for this two band solution (cf. [34,
Equ. (9.48)]) contains information on the initial scattering data for (1.1)–(1.3), and
undergoes a shift when λ0(ξ) hits a point of the discrete spectrum. This agrees
with the effect of adding a single eigenvalue as can be done using the double com-
mutation method (cf. [21] and [34, Lem. 11.26]). For n

t = ξ′cr, the solution (1.13)

coincides with the two band solution {â(n, t), b̂(n, t)} above. The same is valid for
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the second boundary of the middle region ξ = ξ′cr,1, because the construction of the
g-function in [ξ′cr,1, ξcr,1) is the same as for the modulated elliptic waves above. It
is associated with [b− 2a, b+ 2a] ∪ [γ(ξ), 1] where γ(ξ) ∈ [−1, 1).

1.3. Main result. In [18] we derived the precise formula for the modulated finite-
gap solution (1.13) using the NSD approach for vector RHPs and more restrictive
initial data: we assumed that there are no resonances on the edges of the spectrum
of H(t) and that the discrete spectrum consists of a single point in the spectral
gap. We did not justify the asymptotic expansion for the solution of (1.1)–(1.3)
and only conjectured that the next term is of order O(t−1). The aim of the present
paper is to prove this fact by solving local parametrix problems and finishing the
conclusive analysis. We will implement a rigorous asymptotic analysis in the region

(1.15) D := {(n, t) ∈ Z× R+ : n
t ∈ Iε := [ξ′cr + ε, ξcr − ε]}

to prove

Theorem 1.1. For (n, t) ∈ D, n, t → ∞ uniformly with respect to n
t ∈ Iε, the

Toda shock wave {a(n, t), b(n, t)} given by (1.1)–(1.3) and satisfying (2.1), (2.10)
has the following asymptotic behavior:

a(n, t)2 + a(n− 1, t)2 = â
(
n, t, nt

)2
+ â
(
n− 1, t, nt

)2
+O(t−1),

b(n, t) = b̂
(
n, t, nt

)
+O(t−1),

where {â(n, t, ξ), b̂(n, t, ξ)} is the finite gap solution of the Toda lattice associated
with the spectrum [b − 2a, γ(ξ)] ∪ [−1, 1] and the initial divisor (λ(0, 0),±) which
is the only zero of the function θ(2A(z) − 1

2 − ∆
2π | 2τ) (see (2.7), (2.19), (3.23),

(3.24), (4.7)) on the Riemann surface M(ξ) with projection on the gap [γ(ξ),−1].

For the remaining two regions the asymptotic analysis can be done similarly, see
Sec. 8. However, we essentially improve the estimate on the error term in the middle
region n

t ∈ (ξ′cr,1, ξ
′
cr) in [14], where we also describe the influence of resonances

and the discrete spectrum in the gap on the asymptotic.

1.4. Remarks on the method of proof.

• As in [18] we deal with vector statements of RHPs. They are more natural in the
Toda case than matrix statements, because the matrix statements are ill-posed
for certain values of n and t in the class of invertible matrices with L2-integrable
singularities. This fact for Toda can be established similarly as for the KdV shock
wave in [19]. The vector statement requires additional symmetries to be posed
on the contours, jump matrices and on the solution itself to guarantee uniqueness
of the solution.

• In [18] the RHP was stated in terms of the spectral variable λ, that is, on the two-
sheeted Riemann surface with sheets glued along the cuts [b−2a, b+2a]∪ [−1, 1].
In the present paper we use the standard approach via the Joukowsky map z(λ)
in (1.6): the upper sheet of the Riemann surface is identified with the inner
part of the circle |z| < 1 without the cut [z(b − 2a), z(b + 2a)], and the lower
sheet with |z| > 1 without [(z(b + 2a))−1, (z(b − 2a))−1]. Here z(λ) denotes the
image of λ under the Joukowsky transform mapping the λ- plane into the unit
circle. We formulate the initial RHP and reformulate all transformations leading
to the model RHP in terms of z, taking into account the discrete spectrum and
resonances, which produce singularities in the jump matrix and require a more
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sophisticated analysis and additional proofs of the uniqueness results. We also
solve the vector model problem independently, and derive the asymptotics using
the new, more convenient formula (2.13).

• To prove the asymptotics within the framework of the NSD, the traditional ap-
proach first requires to solve the matrix analog of the model RHP, then to find
matrix solutions of the local parametrix RHPs, and finally to derive the singu-
lar integral equation for the error vector and to estimate its norm. But with
this approach one fails to obtain uniform estimates in n and t for both KdV
and Toda due to the singular behavior of the matrix model solution ([19]). An
alternative approach was proposed in [33] for KdV: instead of constructing a ma-
trix model solution, it evaluates the smallness of the difference between initial
and model vector solutions as solutions of the associated singular integral equa-
tions with slightly different kernels. But this approach does not seem to work
for Toda, because we have less control on the behavior of the vector solutions
m(λ) = (m1(λ),m2(λ)) of the initial and model RHPs at infinity. Indeed, for
KdV one knows that m(λ) → (1, 1) as λ → ∞, but for Toda we only know that
m1(λ)m2(λ) → 1, which is not sufficient to apply the technique of [33].

In [30, 31] a singular matrix model solution is proposed for the KdV shock
case, which has a pole at λ = 0, but the respective error vector does not have
pole-like singularities. We use this idea to construct the matrix model solution for
Toda shock. It has simple poles at the edges of the right background spectrum,
but the error vector does not (see Theorem 5.5).

• To show that the expansion with respect to z of the product of components of
the initial RHP solution is asymptotically close to the expansion for the model
RHP solution, we have to prove that the error vector ν(z) (cf. (6.16), (6.14)) is
asymptotically close to the vector (1, 1) as z → 0 up to a term O(t−1). To achieve
this, we carry out all conjugations and deformations related to NSD by strictly
respecting the symmetry2 m(z) = m(z−1)σ1 and normalization m1(0)m2(0) = 1
for all subsequent RHPs. To preserve ν(z−1) = ν(z)σ1 for the error vector, in
the respective singular integral equation we have to use a special matrix Cauchy
kernel with entries that have zeros at z = 0 and z = ∞ (cf. [27], Equ. (B.8)).

1.5. Visualisation. In Figure 1 the numerical solution corresponding to the pure
step initial data a(n, 0) = 1

2 , b(n, 0) = 0 as n ≥ 0 and a(n, 0) = 1, b(n, 0) = −4
as n < 0 is plotted at time t0 = 799 for n = −5000, . . . , 5000. We can clearly
distinguish the left and right regions corresponding to the modulated elliptic waves
and the middle region, where the quasi-periodic finite gap solution is associated
with the full spectrum [−6,−2]∪ [−1, 1]. Another phenomenon is nicely visualized
in an area as for example A.

Indeed, recall that quasi-periodicity or pure periodicity of the finite gap solution
with spectrum [c, d] ∪ [−1, 1] with (c < d < −1) depends on the ratio r of the
frequencies of its quasi-momentum ω(λ), associated with this spectrum,

r =
ω(1)− ω(−1)

ω(d)− ω(c)
.

If r = p
q ∈ Q, where p

q is an irreducible fraction, then the finite gap solution is

periodic with period p+ q (for d− c = 2 we get a solution of period 2).

2Here σ1 is the first Pauli matrix.
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Figure 1. Solutions a(n, t0), b(n, t0) at t0 = 799 for σ(Hℓ) = [−6,−2]

and σ(Hr) = [−1, 1]. The critical values (times t) are plotted as ver-

tical lines, ξcrt0 = 1907.65, ξ′crt0 = −604.39, ξ′cr,1t0 = −1002.66, and

ξcr,1t0 = −2336.92.

Now, if ω(λ, ξ) is the quasi-momentum associated with [b− 2a, γ(ξ)]∪ [−1, 1] or
[b− 2a, b+ 2a] ∪ [γ(ξ), 1] and

r(ξ) =
ω(1, ξ)− ω(−1, ξ)

ω(γ(ξ), ξ)− ω(b− 2a, ξ)
or r(ξ) =

ω(1, ξ)− ω(γ(ξ), ξ)

ω(b+ 2a, ξ)− ω(b− 2a, ξ)

is rational, then for such a point ξ the solution is periodic. Recall that if r(ξ1)
is non rational, then the functions a(n, t0, ξ1) and b(n, t0, ξ1), t0 = 799, take the
values in a vicinity of any point between their maximum and minimum. Of course,
the set of those ξ which correspond to the periodic solutions is everywhere dense
in R. If the period is quite large, there is no visual difference between periodic
and almost-periodic (non-periodic) solutions. But small periods are observable.
We see that the middle part of area A corresponds to a modulated wave near ξ0
such that γ(ξ0) = −4, where the solution is of period 2. It corresponds to equal
lengths of two spectral bands. Note that the solution here appears to consist of two
solid lines because due to scaling, the points n and n + 2 are visually glued. By
perturbation theory arguments, in a small vicinity of ξ0 = n0

t0
, the modulated wave

a(n, t0, ξ), b(n, t0, ξ) differs little from the periodic function a(n, t0, ξ0), b(n, t0, ξ0).
This explains the appearance of the solution in area A. In the middle of areas B
the solutions are of periods 3 and 6 respectively, and this effect is also observable.
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2. Statement of the Riemann–Hilbert problem

In this section we cover some basic facts of the inverse scattering transform and
fix notation. For a detailed account of scattering theory for Jacobi operators with
steplike backgrounds see [15, 16, 17], with zero background see [34, Chapter 10].

Under the assumption that the coefficients of the initial data (1.2) tend to the
background constants sufficiently fast3, the spectrum of the Jacobi operator H(t)
consists of an absolutely continuous part of multiplicity one,

σac(H) = [b− 2a, b+ 2a] ∪ [−1, 1],

plus a finite simple pure point part,

{λj : j = 1, . . . , N} ⊂ R \ σac(H).

To simplify further considerations we assume that the initial data (1.2) decay to
their backgrounds exponentially fast

(2.1)

∞∑
n=1

eρn
(
|a(−n, 0)− a|+ |b(−n, 0)− b|+ |a(n, 0)− 1

2 |+ |b(n, 0)|
)
<∞,

where ρ > 0 is a positive number. The operatorH(t) is self-adjoint and the diagonal
elements of its Green’s function G(λ, n,m, t) (that is, the kernel of the resolvent
operator (H(t)− λI)−1) have the following expansion as λ→ ∞ ([34, Sec. 6.1])
(2.2)

G(λ, n, n, t) = − 1

λ

(
1 +

b(n, t)

λ
+
a(n, t)2 + a(n− 1, t)2 + b(n, t)2

λ2
+O(λ−3)

)
.

As mentioned in the introduction, instead of the spectral parameter λ we use its
Joukowsky transformation,

z(λ) = λ−
√
λ2 − 1,

which maps the two sides of the cut along the interval [−1, 1] to the unit circle
T = {z : |z| = 1}. The map z 7→ λ is one-to-one between the closed domains
clos(Q) and clos(C \ σac(H(t))), where4

Q := {z : |z| < 1} \ [q1, q],
The points q1 = z(b + 2a) and q = z(b − 2a) correspond to the edges of σ(Hℓ)
and z = −1 and z = 1 correspond to the edges of σ(Hr). The eigenvalues λj are
mapped to zj ∈ ((−1, 0) ∪ (0, 1)) \ [q1, q], for j = 1, . . . , N ; we denote them by

σd = {zj , j = 1, ..., N}.
In addition to z we also use the Joukowsky transformation ζ = ζ(λ) associated with
the left background and given by (1.6).

Recall that the Jacobi equation (1.5) has two Jost solutions ψ(z, n, t), ψℓ(z, n, t)
for each z ∈ Q with asymptotic behavior

lim
n→∞

z−nψ(z, n, t) = 1, |z| ≤ 1; lim
n→−∞

ζnψℓ(z, n, t) = 1, |ζ| ≤ 1.

As functions of z they have slightly different properties on Q. Indeed, since
ζnψℓ(z, n, t) is in fact an analytic function of ζ as |ζ| < 1, this function has com-
plex conjugated values on the sides of the cut along [q1, q], which we denote as

3For example, with finite first moments of perturbation.
4We define the closure by adding the upper and lower sides of the cuts as distinct points to

the boundary.
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[q1, q] ± i0. It has equal real values at z, z−1 ∈ T. The function ψ(z, n, t) has
complex conjugated values at conjugated points of T, but

ψ(z − i0, n, t) = ψ(z + i0, n, t) ∈ R, for z ∈ [q1, q].

Recall that ψℓ(z, n, 0) admits a representation via the transformation operator

ψℓ(z, n, 0) =

n∑
−∞

K(n,m)ζ−m, |ζ| ≤ 1.

Under condition (2.1) in the domain 1 ≤ |ζ| < eρ there exists an analytic function
which is an extension of ψℓ,

(2.3) ψ̆ℓ(z, n) :=

n∑
−∞

K(n,m)ζm, ψ̆ℓ(z ± i0, n) = ψℓ(z ± i0, n, 0), z ∈ [q1, q].

The Jost solutions of (1.5) are connected by the scattering relation

(2.4) T (z, t)ψℓ(z, n, t) = ψ(z, n, t) +R(z, t)ψ(z, n, t), |z| = 1,

where R(z, t) and T (z, t) are the right reflection and transmission coefficients. Their
time evolution is given by

R(z, t) = R(z)e(z−z−1)t, z ∈ T, |T (z, t)|2 = |T (z)|2e(z−z−1)t, z ∈ [q1, q],

where R(z) = R(z, 0), T (z) = T (z, 0). The right norming constants

γj(t) =

(∑
n∈Z

ψ2(zj , n, t)

)−2

corresponding to zj ∈ σd evolve as γj(t) = γje
(zj−z−1

j )t, γj = γj(0) > 0. Let

W (z, t) = a(n− 1, t)(ψℓ(z, n− 1, t)ψ(z, n, t)− ψℓ(z, n, t)ψ(z, n− 1, t))

be the Wronskian of the Jost solutions and define W (z) :=W (z, 0).
Resonant points. The point q̃ ∈ {−1, 1, q, q1} is called a resonant point if

W (q̃) = 0. If W (q̃) ̸= 0, then q̃ is non-resonant. Note that W (q̃, t) = 0 iff
W (q̃) = 0, that is, the property of being resonant (or not) is preserved with t.

Under a much weaker decaying condition than (2.1), namely a finite first moment
of perturbation

(2.5)

∞∑
n=1

n
(
|a(−n, 0)− a|+ |b(−n, 0)− b|+ |a(n, 0)− 1

2 |+ |b(n, 0)|
)
<∞,

the set of the associated right initial scattering data

(2.6) {R(z), z ∈ T;χ(z), z ∈ [q1, q]; (zj , γj), zj ∈ σd},
where

(2.7) χ(z) = −2a
ζ(z − i0)− ζ−1(z − i0)

z − z−1
|T (z)|2, z ∈ [q1, q],

defines the solution of the Cauchy problem (1.1)–(1.3) uniquely. For each t this
solution also has finite first moments of perturbations ([16]). The scattering data
(2.6) satisfy the following properties ([8, 15]):

• The function R(z) is continuous on T and R(z−1) = R(z) = R−1(z) for z ∈ T.
If z = −1 is non-resonant, then R(−1) = −1, and if z = −1 is resonant, then
R(−1) = 1.
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• The function T (z) can be restored uniquely for z ∈ Q from the data (2.6); it is
meromorphic with simple poles at zj .

• The function χ(z) is continuous for z ∈ (q1, q) and vanishes at q̃ ∈ {q, q1} with

(2.8) χ(z) = C(z − q̃)1/2, z → q̃ ∈ {q, q1},

if q̃ is a non-resonant point. If q̃ is a resonant point, then

(2.9) χ(z) = C(z − q̃)−1/2(1 + o(1)), z → q̃ ∈ {q, q1}.

To apply the nonlinear steepest descent approach in the most general situation
which assumes resonances, we choose the number ρ > 0 in (2.1) small such that

(2.10) ρ > − log |q|

in order to have the inclusion [q1, q] ⊂ {z : e−ρ < |z| < 1}. Under condition (2.1)
the scattering data have additional properties:

• The function R(z) admits an analytic continuation to {z : e−ρ < |z| < 1} \ [q1, q]
with simple poles at the points of the discrete spectrum located in this domain.

• The function χ(z) has an analytic continuation X(z) in a vicinity of [q1, q] with

χ(z) = i|χ(z)| = X(z − i0), z ∈ [q1, q],

where

(2.11) X(z) = −a(ζ − ζ−1)(z − z−1)

2W (z)W (ψ̆ℓ, ψ)(z)
.

Here ψ̆ℓ(z, n) is defined by (2.3) and W (ψ̆ℓ, ψ)(z) is the Wronskian of ψ̆ℓ(z, n, 0)
and ψ(z, n, 0).

Treating the values n and t as parameters, we define a vector-valued function
m(z) = (m1(z, n, t),m2(z, n, t)) on Q by

(2.12) m(z, n, t) =
(
T (z, t)ψℓ(z, n, t)z

n, ψ(z, n, t)z−n
)
.

The first component m1(z) is a meromorphic function in Q with poles at zj . It has
continuous limits as z approaches the boundary of Q except (possibly) at q and q1,
where a square root singularity may appear in the case of resonance. The second
component of this vector is a holomorphic function in Q with continuous limits to
the boundary. Both functions have finite positive limits as z → 0 (cf. [18]). For our
purpose it will be sufficient to control the product of the components.

Lemma 2.1. For z → 0,

m1(z, n, t)m2(z, n, t) = 1 + 2zb(n, t)

+ 4z2
(
a(n− 1, t)2 + a(n, t)2 + b(n, t)2 − 1

2

)
+O(z3).(2.13)

Proof. The Jost solutions ψ and ψℓ can be considered as the Weil solution of H(t),
and therefore the Green’s function (2.2) considered as a function of z can be rep-
resented as

G(λ(z), n, n, t) =
ψ(z, n, t)ψℓ(z, n, t)

W (z, t)
.

Recall that

T (z, t) =
z − z−1

2W (z, t)
,
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that is,

(2.14) m1(z, n, t)m2(z, n, t) =
z − z−1

2
G(λ(z), n, n, t).

Taking into account that 1
λ = 2z

1+z2 and z−z−1

2 = −
√
λ2 − 1, we obtain (2.13). □

Let Q∗ := {z : |z| > 1} \ [q−1, q−1
1 ] be the image of the domain Q under the map

z 7→ z−1. We extend m to Q∗ by m(z−1) = m(z)σ1, where σ1 = ( 0 1
1 0 ) is the first

Pauli matrix. With this extension, the second component m2(z) is a meromorphic
function on Q∗ with poles at z−1

j , zj ∈ σd, andm1(z) is holomorphic. Being defined

now on C \ Σ, where

(2.15) Σ = T ∪ [q, q1] ∪ [q−1
1 , q−1],

the function m(z) can have jumps along Σ. For convenience, from here on we
encode the orientation of the contours in R as follows: assume −∞ ≤ c < d ≤ ∞,
then we write [d, c] for the interval [c, d] with orientation right-to-left. In particular,
the contours [q, q1], and [q−1

1 , q−1] in (2.15) are oriented right-to-left, and the unit
circle T is oriented counterclockwise.

Throughout this paper, the plus (+) and minus (−) sides of a contour correspond
to the left and right sides according to its orientation, that is, the + side of an
oriented contour lies to the left as one traverses the contour in the direction of
its orientation. And m±(z) denote the boundary values of m(z) as z tends to the
contour from the ± side. Using this notation implicitly assumes that the limit exists
(in the sense that m(z) extends to a continuous function on the boundary except
probably at a finite number of points). In this paper, all contours are symmetric
with respect to the map z 7→ z−1, i.e. they contain with each point z also z−1.
The symmetric part of the contour will be denoted by the same letter, the image
of a contour L ⊂ {z : |z| < 1} is denoted by L∗. Given the orientation on L,
the orientation on the starred contour L∗ can be chosen in two ways. For the
convenience of tracking this orientation we use the following formal notation. If
the points z−1 and z simultaneously move in the positive direction of L and L∗, we
encode this as L∗ ↑ ↑ L. If z−1 moves in the negative direction while z moves in the
positive direction, we use the notation L∗ ↓ ↑ L. In particular, [q−1

1 , q−1] ↓ ↑ [q, q1].
The following symmetry should be preserved for the jump matrix of any vector RHP
and for its solution.

Symmetry condition. Let Σ̂ be a symmetric oriented contour and L ∪ L∗ ⊂
(C\T) be any symmetric part. The jump matrix v(z) of the vector problem m+(z) =
m−(z)v(z), z ∈ Σ, satisfies

v(z) = σ1(v(z
−1))−1σ1, z ∈ L ∪ L∗, for L∗ ↓ ↑ L,

v(z) = σ1v(z
−1)σ1, z ∈ L ∪ L∗, for L∗ ↑ ↑ L.

If T ⊂ Σ then v(z) = σ1(v(z
−1))−1σ1, z ∈ T. Moreover,

(2.16) m(z) = m(z−1)σ1, z ∈ C \ Σ̂.

To preserve the symmetry condition we will always choose symmetric deformations
of the contours. Moreover, we will only use conjugations by diagonal matrices which
respect the symmetry condition, as outlined in the next lemma.
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Lemma 2.2 (Conjugation, [26]). Let m be the solution on C of the RH problem

m+(z) = m−(z)v(z), z ∈ Σ̂, which satisfies the symmetry condition. Let d : C\Σ̃ →
C be a sectionally analytic function with jump on a symmetric contour Σ̃ ⊂ Σ̂. Set

(2.17) m̃(z) = m(z)

(
d(z)−1 0

0 d(z)

)
= m(z)[d(z)]−σ3 , σ3 =

(
1 0
0 −1

)
.

If d satisfies

d(z−1) = d(z)−1, z ∈ C \ Σ,
then (2.17) respects the symmetry condition. The jump matrix of m̃+ = m̃−ṽ is
given by

ṽ =


(

v11 v12d
2

v21d
−2 v22

)
, z ∈ Σ̂ \ Σ,(

d−
d+
v11 v12d+d−

v21d
−1
+ d−1

−
d+

d−
v22

)
, z ∈ Σ.

The symmetry constraints described above will allow us to shorten notations and
computations on starred parts of the contours. Indeed, if we know that d(z) has a
jump on L ∪ L∗, with d+(z) = d−(z)s(z) on L, then the property d(z−1) = d−1(z)
used in a vicinity of L gives a complete information about the jump on L∗. The
same is true for the jump matrices.

In C \ (−∞, 0] introduce the phase function

Φ(z) := Φ(z, ξ) =
1

2

(
z − z−1

)
+ ξ log z, ξ :=

n

t
,

which is odd with respect to z → z−1, that is, Φ(z−1) = −Φ(z). Note that

e2tΦ(z) = z2net(z−z−1) is well defined in C\{0}. The vector function (2.12) extended
to Q∗ by symmetry (2.16) solves the following RHP (cf. [8, 27, 19]):

RH problem 1 (Initial meromorphic RHP statement). Find a vector-valued func-
tion m : C \ Σ → C1×2 which is meromorphic in Q ∪ Q∗ and continuous up to Σ
except at possibly the points q, q1, q

−1, q−1
1 . It has simple poles at z±1

j , j = 1, . . . , N ,
and satisfies:

• the jump condition m+(z) = m−(z)v(z), where

v(z) =



(
0 −R(z)e−2tΦ(z)

R(z)e2tΦ(z) 1

)
, z ∈ T,(

1 0
χ(z)e2tΦ(z) 1

)
, z ∈ [q, q1],

σ1(v(z
−1))−1σ1, z ∈ [q−1

1 , q−1];

• the residue conditions

Resz=zj m(z) = lim
z→zj

m(z)

(
0 0

−zjγje2tΦ(zj) 0

)
, j = 1, . . . , N,

Resz=z−1
j
m(z) = lim

z→z−1
j

m(z)

(
0 z−1

j γje
2tΦ(zj)

0 0

)
, j = 1, . . . , N ;

• the symmetry condition m(z−1) = m(z)σ1.
• the normalization condition m1(0) ·m2(0) = 1 and m1(0) > 0.
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• the resonant/non-resonant condition: If χ(z) satisfies (2.8) at q̃ then m(z) has
finite limits m(q̃±1) ∈ R1×2 as z → q̃±1, q̃ ∈ {q, q1}. If (2.9) is fulfilled then

(2.18)
m(z) =

(
C1

(z − q̃)1/2
, C2

)
(1 + o(1)), C1C2 ̸= 0, or

m(z) = (C1, C2(z − q̃))(1 + o(1)), z → q̃, C1C2 ̸= 0.

At q̃−1 the analog of (2.18) holds by symmetry (2.16).

Lemma 2.3. Suppose that the initial data of the Cauchy problem (1.1)–(1.3) satisfy
(2.5) and let (2.6) be the associated initial right scattering data. Then the vector
function m(z) = m(z, n, t) defined by (2.12), (2.16) is the unique solution of RHP 1.

The proof of uniqueness is completely analogous to the KdV shock case [19].
The behavior of solutions of such RHPs is determined mostly by the behavior

of the real part of the phase function Φ(z, ξ) which depends on the value of the
parameter ξ = n

t . The signature table of ReΦ(z, ξ) for the region (1.15) is depicted
in Fig. 2. One part of the eigenvalues in Q lies in the set ReΦ(z) > 0 (namely

T∗
j TkT∗

k

ReΦ < 0

ReΦ < 0ReΦ > 0

T

qq1 z0

0

q−1
1q−1

z−1
0

Figure 2. Signature table for ReΦ(z, ξ) for ξ ∈ (ξ′cr, ξcr).

zj ∈ (0, q)), while the remaining eigenvalues belong to the domain ReΦ(z) < 0
(zk ∈ (−1, q1) ∪ (0, 1)). As outlined in [8, 26], one can redefine5 m(z) on Q by
conjugating it with an invertible bounded matrix-function such that the residue
conditions at zj ∈ σd are replaced by jump conditions along non-intersecting small
circles around points of σd. The respective jump matrices will be exponentially
close as t → ∞ to the unit matrix for all further transformations of RHP 1. By
this transformation, the main contour Σ is not changed and the structure of the
jump matrices there remains qualitatively the same as in RHP 1 with respect to
decay/oscillation in t and symmetry.

Indeed, let ϵ > 0 be sufficiently small such that the circles Tj = {z : |z−zj | = ϵ},
zj ∈ σd, do not intersect, do not contain the origin, and lie away from T ∪ [q, q1]
(the precise value of ϵ will be chosen later). Denote their images under the map
z 7→ z−1 by T∗

j . We orient Tj and T∗
j counterclockwise, that is, T∗

j ↑ ↑ Tj . Note

5An associated transformation on Q∗ follows immediately from the symmetry condition.
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that the curves T∗
j are not circles, but they surround z−1

j with minimal distance

from the curve to z−1
j given by ϵ

zj(zj−ϵ) . Introduce the Blaschke product

(2.19) Π(z) =
∏

zj∈(q,0)

|zj |
z − z−1

j

z − zj
,

and note that Π(z−1) = Π−1(z), Π(0) > 0. Set Dj
ϵ = {z : |z− zj | < ϵ, zj ∈ σd} and

A(z) =



(
1

z−zj

zjγje
2tΦ(zj)

0 1

)
, z ∈ Dj

ϵ , zj ∈ (q, 0),(
1 0

zjγje
2tΦ(zj)

z−zj
1

)
, z ∈ Dj

ϵ , zj ∈ (−1, q1) ∪ (0, 1).

Let m(z) be the solution of RHP 1 and define mini(z) = mini(z, n, t) as

(2.20) mini(z) =


m(z)A(z)[Π(z)]−σ3 , z ∈ Dj

ϵ , zj ∈ σd

m(z)[Π(z)]−σ3 , z ∈ Q \
⋃

zj∈σd
Dj

ϵ ,

mini(z−1)σ1, z ∈ Q∗.

This vector function is the unique solution of the following RHP (cf. [27]):

RH problem 2 (Holomorphic RHP for ξ′cr ≤ ξ ≤ ξcr). Find a holomorphic vector

function away from Σ ∪
⋃N

j=1(Tj ∪ T∗
j ) that satisfies

• the jump condition mini
+ (z) = mini

− (z)vini(z), where

vini(z) =



(
0 −Π2(z)R(z)

e2tΦ(z)

R(z)e2tΦ(z)

Π2(z) 1

)
, z ∈ T,(

1 0
Π−2(z)χ(z)e2tΦ(z) 1

)
, z ∈ [q, q1],(

1
(z−zj)Π

2(z)

zjγje
2tΦ(zj)

0 1

)
, z ∈ Tj , zj ∈ (q, 0),(

1 0
zjγje

2tΦ(zj)

(z−zj)Π2(z) 1

)
, z ∈ Tj , zj ∈ σd \ (q, 0),

σ1v
ini(z−1)σ1, z ∈

⋃N
j=1 T∗

j ,

σ1(v
ini(z−1))−1σ1 z ∈ [q−1

1 , q−1];

• mini(z−1) = mini(z)σ1;
• mini

1 (0) ·mini
2 (0) = 1, mini

1 (0) > 0.
• The resonant/non-resonant condition of RHP 1 holds for mini(z) too.

To summarize, for all values of ξ ∈ [ξ′cr, ξcr] we performed a one-to-one transfor-
mation and replaced the meromorphic RHP by the holomorphic RHP,

[m(z, n, t); RH problem 1] 7−→ [mini(z, n, t); RH problem 2].

In the next section we list some results established in [18]. We represent them in
terms of the variable z and modify them to take the resonances and the additional
discrete spectrum into account.
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3. Reduction to the model RH problem

Let ξ ∈ [ξ′cr, ξcr). Before we describe the transformations applicable in (1.15) to
obtain the model problem for this region, let us recall the g-function mechanism. For
shock waves, the g-function proved its efficiency for several completely integrable
equations (cf. [24, 13]). In our case, the z-analog of the g-function constructed in
[18] looks as follows. Set

(3.1) Q(z) =

√
z − y

z − q

z − y−1

z − q−1
, z ∈ C \

(
[q, y] ∪ [y−1, q−1]

)
,

where y is a point6 which can be computed implicitly from the condition

(3.2)

∫ y

−1

P (s)Q(s)
ds

s
= 0,

with

(3.3) P (s) := s+ s−1 + 2ξ +
1

2

(
y + y−1 − q − q−1

)
.

As is shown in [18], equation (3.2) has the unique solution y = y(ξ) ∈ (q1, q) for any
ξ ∈ [ξ′cr, ξcr). The function y(ξ) is continuous and monotonous, with y(ξ′cr) = q1
and y(ξcr) = q. Moreover, y(ξ) is differentiable with respect to ξ ∈ (ξ′cr, ξcr) (cf.
[18, App.]). For any y, the function (3.1) satisfies Q2(z−1) = Q2(z) which implies
evenness, Q(z−1) = Q(z), because Q(1−1) = Q(1). With the chosen orientation on
[q, y] ∪ [y−1, q−1] we denote Q+(z) = Q(z − i0). From the evenness of Q outside
of [q, y] ∪ [y−1, q−1] we obtain oddness of Q+, Q+(s) = −Q+(s

−1) for s ∈ [q, y] ∪
[y−1, q−1]. Note that we choose the square root in (3.1) such that Q(z) > 0 for
z ∈ (q,+∞). Introduce the g-function by

(3.4) g(z) = g(z, ξ) =
1

2

∫ z

1

P (s)Q(s)
ds

s
, z ∈ C \ (−∞, 1).

Lemma 3.1. The function g(z) satisfies the following properties:

(a) g(z) is single valued on C \ [q−1, q], moreover,

(3.5) g(z−1) = −g(z) for z ∈ C \ [q−1, q];

(b) Re g(z) = 0 for z ∈ [q, y] ∪ [y−1, q−1] ∪ {z : |z| = 1};
(c) g(q) = g(q−1) = 0;
(d) g−(z) = −g+(z) for z ∈ [q, y] ∪ [y−1, q−1];
(e) Φ(z)− g(z) = K(ξ) +O(z) as z → 0, where K(ξ) ∈ R;
(f) g+(z)− g−(z) = 2iB for z ∈ [y, y−1], where

(3.6) B := −i

∫ y

q

P (s)Q+(s)
ds

s
∈ R+.

In particular, g±(y) = g±(y
−1) = ±iB.

Proof. (a)–(c) Since Q(z−1) = Q(z) and P (z−1) = P (z) for z ∈ C \ [q−1, q], then
choosing a contour from 1 to z which does not have common points with the interval
[q−1, q], we obtain (3.5) by the simple change of variables s→ s−1. Condition (3.2)

6The point γ(ξ) in the introduction is connected with y = y(ξ) by γ = y+y−1

2
. In the present

paper we use the notation λy instead of γ (see Remark 3.2).
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implies g±(y) = g±(y
−1). Since the integrand P (s)Q±(s)s

−1 is purely imaginary
for s ∈ [q, y] ∪ [y−1, q−1], we have

(3.7) Re g(q) = Re g±(y) = Re g±(y
−1) = Re g±(q

−1).

Oddness of Q+(s) also implies Im g(q) = Im g±(q
−1) = 0. Together with (3.7) and

the oddness of g this yields g+(q
−1) = g−(q

−1) = g(q) = 0. Moreover, for |s| = 1
we have Q2(s) = Q2(s) ∈ R+, and therefore ImQ(s)P (s) = 0. Since ds

s ∈ iR,
this implies Re g(z) = 0 for |z| = 1, items (b)–(c) are thus proved. They imply
that g(z) does not have a jump along (−∞, q−1), and this shows (a). Note that
these properties improve [18, Lemma 3.2] (see, e.g. [18, Equ. (3.25)]). The above
considerations imply an additional property,

Re g±(−1) = 0.

Items (e)–(f) are z-analogs of [18, Equ. (3.21) and (3.24)], and can be obtained by
a simple change of variable (λ,+) 7→ z. The constant B = B(ξ) in (f) is the same
as [18, Equ. (3.21)]. □

Remark 3.2. The point y(ξ) defines the edge λy = 1
2 (y+y

−1) of the Whitham zone
for the Toda shock case. The point y(ξ) coincides with the stationary phase point
z0(ξ) for Φ(z, ξ) at ξ = ξcr, that is, z0(ξcr) = q. One can see that y(ξ′cr) ̸= z0(ξ

′
cr).

However, as it was shown in [18], there are proper g-functions in the whole diapason
ξ ∈ (ξcr, ξcr,1), and the respective Whitham point y1(ξ) for ξ → ξcr,1 will end at
z0,ℓ(ξcr,1) = 1, where z0,ℓ(ξ) is the stationary phase point for the left phase function
Φℓ(z, ξ) in (1.8) connected with the left initial scattering data.

The signature table for the real part of g is depicted in Fig. 3. The points y and
y−1 are nodal points for the curves Re g(z) = 0. This signature table allows us to

T∗
j TkT∗

k

Re g < 0 Re g < 0Re g > 0

T

qq1 z0

0

q−1
1q−1

y−1

z−1
0

y

Figure 3. Signature table of Re g(z, ξ) for ξ ∈ (ξ′cr, ξcr).

choose the radius ϵ of the circles Tj so small that for Φj(z) := Φ(zj)−Φ(z) + g(z)
we will have

(3.8) signReΦj(z) = signReΦ(zj) for all zj ∈ σd and z ∈ Tj .

The radius ϵ should also satisfy

8ϵ < min{min
j ̸=k

|zj − zk|; min
j

|zj + 1|; min
j

|zj − 1|; min
j

|zj − q|; min
j

|zj − q1|}.
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Moreover, since we intend to justify the asymptotics uniformly in the regions (1.14)
or (1.15) for arbitrary small but fixed positive ε, we also assume that

4ϵ < |y(ξcr − ε)− q|,(3.9)

4ϵ < |y(ξ′cr + ε)− q1|.(3.10)

With such a value of ϵ chosen, we next perform three transformations which lead
to a model problem. The transformations are analogous to those in [18], modified
by additional deformations to wipe out the non-L2 singularities of the jump matrix
in case of resonances at q or q1.

Step 1: On T one can factorize vini using Schur complements

vini =

(
1 −Π2Re−2tΦ

0 1

)(
1 0

Π−2Re2tΦ 1

)
.

Let ξ ∈ Iε, where Iε is defined by (1.15). Let y = y(ξ) and let r, q1 < r < y, be a
point in a small vicinity of y as depicted in Fig. 4 with

(3.11)
ϵ

2
≤ |r− y| ≤ ϵ.

Introduce a closed contour Cr oriented counterclockwise, which starts at r and
encloses the interval [q1, r] passing through the point q1 − ϵ. Denote the domain
inside this contour by Ωr (with [q1, r] excluded). Let Ωϵ be an open annulus between

T∗
j T∗

k

Cϵ C∗
ϵ

ΩϵΩ∗
ϵ

CrC∗
r

ΩrΩ∗
r

qq1

0rr−1

Figure 4. Contour deformation of Step 1.

the circles T and Cϵ = {z : |z| = 1 − ϵ} oriented counterclockwise, with Ω∗
r and

Ω∗
ϵ the images of these domains under the map z 7→ z−1. According to (2.1)

the reflection coefficient R(z) can be continued as a meromorphic function in the
domain {z : 1 > |z| > e−ρ}, which covers the interval [q1, y(ξcr−ε)] by (2.10). Thus
R(z) is a holomorphic function in Ωϵ ∪ Ωr, because these domains do not contain
points of the discrete spectrum by our choice of ϵ. We extend R(z) to Ω∗

ϵ ∪ Ω∗
r by

R(z) = R(z−1). Redefine mini by

(3.12) m(1)(z) = mini(z)



(
1 0

−Π−2(z)R(z)e2tΦ(z) 1

)
, z ∈ Ωr ∪ Ωϵ,(

1 −Π−2(z)R(z−1)e−2tΦ(z)

0 1

)
, z ∈ Ω∗

r ∪ Ω∗
ϵ ,

I, else,

and orient Cr and C∗
r counterclockwise. Then the jump along T disappears as well as

the jump along [r, q1], since the Plücker identity implies that R−(z)−R+(z)+χ(z) =
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0 for z ∈ [r, q1] (compare [13, Lemma 3.2]). Moreover, since the continuation of R(z)
is in agreement with the scattering relation (2.4) and (2.12) is the unique solution
of RHP 1, it is straightforward to check that m(1)(z) given by (2.20), (3.12) does
not have singularities at q1 and q−1

1 both in the resonant and non-resonant case.

In summary, m(1)(z) satisfies

RH problem 3. 7

• m
(1)
+ (z, n, t) = m

(1)
− (z, n, t)v(1)(z, n, t), where

v(1)(z) =



(
1 0

Π−2(z)χ(z)e2tΦ(z) 1

)
, z ∈ [q, r],(

1 0
Π−2(z)R(z)e2tΦ(z) 1

)
, z ∈ Cϵ ∪ Cr,

σ1v
(1)(z−1)σ1, z ∈ C∗

r ∪ C∗
ϵ ,

σ1(v
(1)(z−1))−1σ1, z ∈ [r−1, q−1],

vini(z), z ∈
⋃

j(Tj ∪ T∗
j );

• m(1)(z−1) = m(1)(z)σ1;

• m
(1)
1 (0) ·m(1)

2 (0) = 1, m
(1)
1 (0) > 0;

• The resonant/non-resonant condition of RHP 1 holds for m(1)(z) only at q, q−1.

Step 2: The jump matrix on [q, r] ∩ {z : ReΦ(z) > 0} contains off-diagonal
elements which are exponentially increasing in time. One can get rid of this expo-
nential growth by replacing the phase function with the g-function, which is purely
imaginary on [q, y] and has negative real part on [y, r]. For z ∈ C set

m(2)(z) = m(1)(z)e−t(Φ(z)−g(z))σ3 = m(1)(z)

(
e−t(Φ(z)−g(z)) 0

0 et(Φ(z)−g(z))

)
.

Then Lemma 3.1 and (3.6) imply that m(2)(z) is the unique holomorphic solution
of the following problem:

RH problem 4.

• m
(2)
+ (z, n, t) = m

(2)
− (z, n, t)v(2)(z, n, t), where

v(2)(z) =



(
et(g+−g−) 0
Π−2χ e−t(g+−g−)

)
, z ∈ [q, y],(

e2itB 0
Π−2χe2tRe g e−2itB

)
, z ∈ [y, r],(

e2itB 0
0 e−2itB

)
, z ∈ [r, r−1],

σ1(v
(2)(z−1))−1σ1, z ∈ [r−1, q−1],

e−t(Φ−g)σ3v(1)et(Φ−g)σ3 , z ∈ Γ,

and

(3.13) Γ := Cr ∪ C∗
r ∪ Cϵ ∪ C∗

ϵ ∪
N⋃
j=1

(
Tj ∪ T∗

j

)
;

7From here on we (mostly) state RHPs only in terms of their conditions.
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• m(2)(z−1) = m(2)(z)σ1;

• m
(2)
1 (0) ·m(2)

2 (0) = 1, m
(2)
1 (0) > 0.

• The vector m(2)(z) does not have singularities at q1 and q−1
1 . It has bounded

values at r and r−1. Its behavior at q and q−1 is the same as for m(z) in (2.18).

Remark 3.3. Our choice of y, r and ϵ in (3.8)–(3.9), (3.11) guarantees that

(3.14) v(2)(z) = I+O(e−c(ε)t), for z ∈ Γ, as t→ ∞,

uniformly for ξ ∈ Iε.

Step 3: The last step involves the lense mechanism to remove the oscillating
terms (with respect to t) in the jump matrix on [q, y] ∪ [y−1, q−1]. To this end
introduce the function

Ω(z, s) =
1

2s

s+ z

s− z
,

which can be considered as the Cauchy kernel for symmetric contours, because
Ω(z, s) = 1

z−s (1 + o(1)) as z → s, and

Ω(z, s−1)d(s−1) = Ω(z−1, s)ds.

This property implies that for any ”good” function f(s) such that f(s−1) = f(s)
and

(3.15)

∫ q

−1

f(s)
ds

s
=

∫ q

−1

f(s)Ω(0, s)ds = 0,

the function

(3.16) p(z) =
1

2πi

∫ q−1

q

Ω(z, s)f(s)ds,

solves the jump problem

p+(z) = p−(z) + f(z), z ∈ [q, q−1],(3.17)

p(z−1) = −p(z), z ∈ C \ [q−1, q](3.18)

p(z) = O(z), z → 0.(3.19)

By ”good” function we mean a function f ∈ C1((q−1, y−1)∪ (y−1, y)∪ (y, q)) which
has the following behavior in the node points:

f(s) =
C(κ)√
s− κ

(1 + o(1)), s→ κ ∈ {q−1, y−1, y, q}, C(κ) ̸= 0.

Then (cf. [32])

p(z) =
C1(κ)√
z − κ

(1 + o(1)), z → κ ∈ {q−1, y−1, y, q}, C1(κ) ̸= 0.

Set

(3.20) S(z) =
√

(z − q)(z − y)(z − y−1)(z − q−1)

z2
, z ∈ C \ ([q, y] ∪ [y−1, q−1]).

This function satisfies the following symmetries: S(z−1) = S(z) for z /∈ [q, y] ∪
[y−1, q−1] and S−(z) = S+(z

−1) = −S+(z) for z ∈ [q, y] ∪ [y−1, q−1]. Define

(3.21) F(z) := eS(z)p(z), z ∈ C \ [q, q−1].
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Lemma 3.4. The function F(z) is holomorphic in C \ [q, q−1] and satisfies the
property F(z−1) = F−1(z). It has bounded limits on the sides of the contour
[q, q−1] and solves the jump problem

F+(z)F−(z) = ef(z)S+(z), z ∈ [q, y] ∪ [y−1, q−1];

F+(z) = F−(z)e
f(z)S(z), z ∈ [y, y−1].

Proof. The proof is immediate from (3.17)–(3.20), the properties of S and the
Sokhotski-Plemelj theorem. □

Let now f(z) be defined as

(3.22) f(s) :=


log(Π−2(s)|χ(s)V2

+(s)|)
S+(s) , s ∈ [q, y],

i(∆−πℓV
2 )

S(s) , s ∈ [y,−1],

f(s−1), s ∈ [−1, q−1],

where

(3.23) ∆ = −i

∫ y

q

log(Π−2(s)|χ(s)V2
+(z)|)

S+(s)

ds

s

(∫ −1

y

ds

sS(s)

)−1

+
πℓV
2

∈ R,

and

(3.24)

V(z) :=
(

z−q−1

z−q

)1/4
, ℓV = 1, if χ(z) satisfies (2.8) at q;

V(z) :=
(

z−q
z−q−1

)1/4
, ℓV = −1, if χ(z) satisfies (2.9) at q;

with V(0) > 0. We observe that V(z−1) = V−1(z) for z /∈ [q, y] ∪ [y−1, q−1] and

V+(z) = V−(z)e
i
πℓV
2 , V+(z)V−(z) = |V+(z)|2, z ∈ [q, q−1].

It is straightforward to see that f(z) satisfies (3.15), and is a ”good” function. In
addition, f(s) ∈ iR, therefore if p(z) is its Cauchy type integral (3.16), then

lim
z→0

p(z)F(z) > 0.

The above considerations imply for F (z) defined by

(3.25) F (z) = F(z)V−1(z), z ∈ C \ [q, q−1],

the following properties.

Lemma 3.5. The function F (z) satisfies

(a) F+(z)F−(z) = Π−2(z)|χ(z)| for z ∈ [q, y];
(b) F+(z)F−(z) = Π−2(z)|χ(z)|−1 for z ∈ [y−1, q−1];
(c) F+(z) = F−(z)e

i∆ for z ∈ [y, y−1];
(d) F (z−1) = F−1(z) for z ∈ C \ [q, q−1];
(e) F (0) > 0;
(f) If χ(z) satisfies (2.8) at q±1 then F (z) = C(z−q±1)±1/4(1+o(1)) as z → q±1.
(g) If χ(z) satisfies (2.9) at q±1 then F (z) = C(z−q±1)∓1/4(1+o(1)) as z → q±1.

Set

GF (z) =

(
F−1(z) −Π2(z)F (z)

X(z) e−2tg(z)

0 F (z)

)
,
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where the function X(z) is well defined by (2.11) in a vicinity of [q, y] and satisfies
the property X±(z) = ±i|χ(z)| for z ∈ [q, y]. Recalling that g+(z) = −g−(z) for
z ∈ [q, y], we observe that v(2)(z) can be factorized by

v(2)(z) = GF
−(z)

(
0 i
i 0

)
GF

+(z)
−1, z ∈ [q, y].

In the domain of existence of X(z) introduce a subdomain Ω as depicted in Fig. 5
with Ω∗ = {z : z−1 ∈ Ω}. These domains and their boundaries C and C∗ should not

TkT∗
k TjT∗

j

q−1 y−1 r−1 q−1
1 −1 q1 r y q 0

Ω CΩ∗

C∗
CrC∗

r

Figure 5. Contour deformation of Step 3.

contain or intersect Tj and T∗
j and should be situated inside the regions Re g > 0

and Re g < 0, respectively. We add C and C∗ (both oriented counterclockwise) to
the contour Γ and denote

(3.26) Ξ := C ∪ C∗ ∪ Cr ∪ C∗
r ∪ Cϵ ∪ C∗

ϵ ∪
N⋃
j=1

(
Tj ∪ T∗

j

)
.

Define m(3)(z) by

(3.27) m(3)(z) =


m(2)(z)GF (z), z ∈ Ω,

m(3)(z−1)σ1, z ∈ Ω∗,

m(2)(z)(F (z))−σ3 , z ∈ C \ (Ω ∪ Ω∗).

Theorem 3.6. For ξ ∈ Iε, RH problem 2 is equivalent to the following RH problem:
to find a vector function holomorphic in C\(Ξ∪[q, q−1]) which has continuous limits
on the sides of the contour Ξ ∪ [q, q−1] except for the points q, q−1 and satisfies

• the jump condition m
(3)
+ (z, n, t) = m

(3)
− (z, n, t)v(3)(z, n, t), where

(3.28) v(3)(z) =



iσ1, z ∈ [q, y],(
e2itB−i∆ 0

χ(z)e2t(g+(z)+g−(z))

Π2(z)F+(z)F−(z) e−2itB+i∆

)
, z ∈ [y, r],(

e2itB−i∆ 0

0 e−2itB+i∆

)
, z ∈ [r,−1],



22 I. EGOROVA, J. MICHOR, A. PRYIMAK, AND G. TESCHL

(3.29) v(3)(z) =



(
1 Π2(z)F 2(z)

X(z) e−2tg(z)

0 1

)
, z ∈ C,

σ1v
(3)(z−1)σ1, z ∈ C∗,

σ1(v
(3)(z−1))−1σ1, z ∈ [−1, q−1],

[F (z)]−σ3v(2)(z)[F (z)]σ3 , z ∈ −;

• the symmetry condition m(3)(z−1) = m(3)(z)σ1;

• the normalization condition m
(3)
1 (0) ·m(3)

2 (0) = 1, m
(3)
1 (0) > 0.

• At the points {q, q−1, y, y−1, r, r−1} of discontinuity of the jump matrix, m(3)(z)
has the following behavior: it has at most a fourth root singularity

m(3)(z) = O(z − κ)−1/4, as z → κ ∈ {q, q−1}, and(3.30)

m(3)(z) = O(1), as z → κ ∈ {r, r−1, y, y−1}.

Here B and ∆ are defined by (3.6) and (3.23), g(z) by (3.4), and F (z) by (3.20),
(3.16), (3.25). For large z, m(3)(z) and the solutionm(z) of the initial RH problem 1
are connected via

(3.31) m(3)(z) = m(z)
[
Π(z)F (z)et(Φ(z)−g(z))

]−σ3

.

Proof. The jump condition is immediate from Lemmas 3.5, 3.1, which imply

(3.32)
F−(z)

F+(z)
et(g+(z)−g−(z)) = e2itB−i∆, z ∈ [y, y−1].

The claim to be discussed in more detail is (3.30). Transformation (3.27) implies
that in a vicinity of q,

m(3)(z) =
(
F−1(z)m

(2)
1 (z), −Π2(z)F (z)

X(z) m
(2)
1 (z)e−2tg(z) + F (z)m

(2)
2 (z)

)
.

In the non-resonant case (2.8) we have three possibilities for m, and therefore for
m(2), which include possible zeros of the Jost solutions,

(i) m(2)(q) = (C1, C2)
(ii) m(2)(z) = (C1(z − q)1/2, C2)(1 + o(1))
(iii) m(2)(z) = (C1, C2(z − q))(1 + o(1)), where C1C2 ̸= 0.

The symmetry condition implies the respective behavior at q−1. In the resonant
case (2.9) we have (2.18). By use of (f) and (g) of Lemma 3.5 we obtain (3.30). □

In summary, we have transformed the initial RH problem [mini(z, n, t); RHP 2]
by Steps 1-3 to an equivalent RH problem [m(3)(z, n, t); Theorem 3.6] with jump
matrix v(3) of the form v(3) = vmod + verr, where

(3.33) vmod =



iσ1, z ∈ [q, y],

−iσ1, z ∈ [y−1, q−1],(
e2itB−i∆ 0

0 e−2itB+i∆

)
, z ∈ [y, y−1],

I, z ∈ Ξ.

The matrix vmod on [q, q−1] is the jump matrix of an explicitly solvable RHP and
its solution will yield the principal term of the long-time asymptotic expansion of
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the solution for the initial value problem (1.1)–(1.3), (2.1). We will solve this model
RHP in the next section. Note that the jump matrix v(3) on the contour Ξ∪[r, r−1] is
exponentially close to the identity matrix as t→ ∞ except for small neighborhoods
of the critical (parametrix) points y, y−1. To estimate the error term one has to
rescale the equivalent RHP in neighborhoods of the parametrix points and solve
the respective local problems, which can be analyzed and controlled individually.
This will be done in Section 6.

4. Solution of the vector model RH problem

We have to solve the following jump problem

Model RH problem. Find a holomorphic vector function in C\ [q−1, q] satisfying

• the jump condition mmod
+ (z) = mmod

− (z)vmod(z) with vmod(z) given by (3.33);

• mmod(z−1) = mmod(z)σ1;
• mmod

1 (0) ·mmod
2 (0) = 1, mmod

1 (0) > 0;
• The vector mmod(z) has continuous limits as z approaches the jump contour
except for q and q−1 and the points of discontinuity of the jump matrix, y, y−1,
where the forth-root singularities are admissible.

Uniqueness of the solution to this problem is proved in [18].
Consider the two-sheeted Riemann surface X associated with the function

R(z) =
√

(z − q)(z − y)(z − y−1)(z − q−1)

such that R(1) ∈ R+ and R(−1) ∈ R−. The sheets of X are glued along the cuts
[q−1, y−1] and [y, q]. Points on X are denoted by (z,±). We first choose a canonical
homology basis of cycles {a, b} on X, see Fig. 6. The b cycle surrounds the interval
[y, q] counterclockwise on the upper sheet and the a cycle passes from y to y−1 on
the upper sheet and back from y−1 to y on the lower sheet.

q−1 y−1 y q
a b

Figure 6. Homology basis on X. Solid curves lie on upper sheet,
dotted curve lies on lower sheet.

Consider the normalized holomorphic Abel differential

ζ =
dz

ΓR(z)
, Γ =

∫
a

dz

R(z)
= 2

∫ y−1

y

dz

R(z)
> 0,

then
∫
a
ζ = 1 and τ = τ(ξ) =

∫
b
ζ ∈ iR+. From here on we work on the upper

sheet of X and identify it with the domain C \ ([q−1, y−1] ∪ [y, q]). On C \ [q−1, q]
introduce the Abel map A(z) =

∫ z

q
ζ. Its properties are determined by those of

R(z), that is, we will take into account that

dz

R(z)
= − d(z−1)

R(z−1)
, z ∈ C \ ([q−1, y−1] ∪ [y, q]);
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(4.1)
ds

R−(s)
=

d(s−1)

R−(s−1)
, s ∈ [y−1, q−1] ∪ [q, y], R−(z) = R(z + i0).

Lemma 4.1. The Abel map A(z) satisfies

A(z−1) = −A(z) + 1

2
, A(q−1) =

1

2
, A(y) =

τ

2
(mod τ),(4.2)

A±(−1) =
1

4
∓ τ

2
, A(1) =

1

4
, A(0) =

1

2
−A(∞),(4.3)

A+(z) = −A−(z), z ∈ [q, y],(4.4)

A+(z) = A−(z)− τ, z ∈ [y, y−1],(4.5)

A+(z) = −A−(z) + 1, z ∈ [y−1, q−1].(4.6)

Associated with X is the Riemann theta function

(4.7) θ(z) = θ(z | τ) =
∑
k∈Z

exp
(
πik2τ + 2πikz

)
.

It satisfies θ(−z) = θ(z) and θ(z + l + kτ) = exp(−2πikz − πik2τ)θ(z) for l, k ∈ Z.

Lemma 4.2. [Vector solution of the model RHP] On C \ [q, q−1] define

δ(z) =
θ
(
A(z)− 1

2 + tB
2π − ∆

4π

)
θ
(
A(z) + tB

2π − ∆
4π

)
θ
(
A(z)− 1

2

)
θ
(
A(z)

)(4.8)

and

(4.9) H(z) = 4

√
(y − z)(y−1 − z)

(q − z)(q−1 − z)
.

Then the vector function

(4.10) mmod(z) =
(
δ(z), δ(z−1)

) H(z)√
δ(0)δ(∞)

is the unique solution of the model RH problem. Moreover,

(4.11) δ(z) =
θ
(
2A(z)− 1

2 + tB
π − ∆

2π | 2τ
)

θ
(
2A(z)− 1

2 | 2τ
) .

Proof. Using the formula θ(v | τ)θ(v− 1
2 | τ) = θ(2v− 1

2 | 2τ)θ( 12 | 2τ) (cf. [12]) we
can rewrite δ(z) as a quotient of two theta functions with double period 2τ as it is
written in (4.11). Applying Lemma 4.1 to (4.8) and using that

H(z−1) = H(z), z ∈ C \ [q, y] ∪ [y−1, q−1]; H(0) = 1;

H+(z) = iH−(z), z ∈ [q, y]; H+(z) = −iH−(z), z ∈ [y−1, q−1];

it is straightforward to check that mmod (4.10) satisfies the jump (3.33) as far as
the symmetry and normalization conditions. In fact, (4.9)–(4.10) are the z-analog
of [18, Equ. (5.22)], where the vector model problem solution (4.10) was computed
on the Riemann surface M(ξ) of the function

(4.12) R1/2(λ) = −
√
(λ2 − 1)(λ− λq)(λ− λy)

with λq = b− 2a = 1
2 (q + q−1) and λy = 1

2 (y + y−1). □
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Recall that B = B(ξ) depends on n and t. By [18, Lem. 5.3],

2itB = −nΛ− tU,

where Λ and U are the b-periods of the normalized Abel differentials Ω0 and
ω∞+,∞− of the second and third kind on M(ξ) (cf. [34, Ch. 9]). They do not corre-

spond to the respective Abel differentials8 on X, but due to (4.1) the constants Λ
and U can easily be expressed in terms of the variable z. In particular,

Λ = 2

∫ q

y

(s− h)(s− h−1)

W−(s)

ds

s
,

where λh = h+h−1

2 is the zero of ω∞+,∞− . Note that Λ is connected with the Abel
map A(z) by (cf. [34])

A(∞) = A(0)− Λ

4πi
.

Remark 4.3. Observe that by (4.3),

δ±(−1) =
θ
(
− 1

4 ∓ τ
2 + tB

2π − ∆
4π

)
θ
(
1
4 ∓ τ

2 + tB
2π − ∆

4π

)
θ
(
− 1

4 ∓ τ
2

)
θ
(
1
4 ∓ τ

2

) .

This implies that mmod
± (−1) = (0, 0) if 2tB −∆ = π + 2πk, k ∈ Z. As it is shown

in [19], for those pairs of n and t which satisfy

nΛ + tU = i(2k + 1)π, k ∈ Z,
a bounded and invertible matrix solution of the model jump problem (3.33) with
integrable isolated singularities on the jump contour [y, y−1] does not exist.

In the next section we propose a matrix model solution Mmod(z) which is in-
vertible for all n and t, but has poles at the edges of the right background (at
z = 1 and z = −1). We will establish that the determinant of this matrix does not
have singularities at these points, and therefore is a nonzero constant. Moreover,
m(3)(z)[Mmod(z)]−1 does not have singularities at these points too, and hence is a
suitable vector for the conclusive asymptotic analysis.

5. The matrix model RH problem

Let ω(p) =
∫ p

b−2a
ω∞+∞− be the Abel integral of the third kind on the Riemann

surface M(ξ) of (4.12), as introduced in [18]. Let I(ξ) be the closed contour on
M(ξ) with projection on the interval [λy,−1], which starts at λy, passes to −1 on
the upper sheet and returns on the lower sheet. Then

(5.1) ω+(p)− ω−(p) = −Λ, p ∈ I(ξ).

We associate z ∈ Q(ξ) := {z : |z| < 1} \ [q, y] with p = (λ,+) on the upper sheet of
M(ξ), and z−1, z ∈ Q(ξ), with p∗ = (λ,−) on the lower sheet. Calculating the z-
analog of (5.1) and taking into account the symmetry property ω(p) = −ω(p∗), we
obtain that eω(p) =: G(z), defined on z ∈ C \ [q−1, q] if and only if p ∈ M(ξ) \ I(ξ),
admits the representation

G(z) = exp

(∫ z

q

(s− h)(s− h−1)

R(s)

ds

s

)
, z ∈ C \ [q−1, q],

and has the following properties.

8In fact, Ω0 = ∂
∂λ

Ω(λ, ξ)dλ and ω∞+,∞− = ∂
∂λ

ω(λ, ξ)dλ from (1.12).
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• The function G(z) is holomorphic on E \ [y−1, y] and satisfies G(z−1) = G−1(z).
• Its jumps are given by

G+(z) = G−(z)e
−Λ, z ∈ [y, y−1],

G±(z) = [G∓(z
−1)]−1, z ∈ [q, y] ∪ [y−1, q−1].

• The following asymptotic expansion is valid,

(5.2) G(z) = − ã

2z

(
1 + 2b̃z +O(z2)

)
, G(z−1) = −2z

ã

(
1− 2b̃z +O(z2)

)
.

Here ã and b̃ are the coefficients of the asymptotic expansion for ω(p) as p→ ∞±
(cf. [34, Equ. (9.44)]),

eω(p) = −
(
ã

λ

)±1
(
1 +

b̃

λ
+O(λ−2)

)
.

Note that in all our considerations the values y, τ , h etc. depend on n via ξ. To
emphasize the dependence of (4.11) on n, we abbreviate
(5.3)

αn(z) := δ(z)
H(z)√
δ(0)δ(∞)

= αnH(z)
θ
(
2A(z)− 1

2 − nΛ
2πi −

tU
2πi −

∆
2π | 2τ

)
θ
(
2A(z)− 1

2 | 2τ
) ,

αn :=
θ
(
2A(∞)− 1

2 | 2τ
)√

θ
(
2A(∞)− 1

2 − nΛ
2πi −

tU
2πi −

∆
2π | 2τ

)
θ
(
2A(0)− 1

2 − nΛ
2πi −

tU
2πi −

∆
2π | 2τ

) .
We fix y, τ and h in (5.3) and consider this expression shifted to n+ 1,

αn+1(z) = αn+1H(z)
θ
(
2A(z)− 1

2 − (n+1)Λ
2πi − tU

2πi −
∆
2π | 2τ

)
θ
(
2A(z)− 1

2 | 2τ
) .

Lemma 5.1. The vector function

(5.4) m#(z) =
(
βn(z), βn(z

−1)
)
, where βn(z) := αn+1(z)G(z

−1),

solves the jump problem of the model RH problem, that is,

m#
+(z, n, t) = m#

−(z, n, t)v
mod(z), where

(5.5) vmod(z) =


iσ1, z ∈ [q, y],

−iσ1, z ∈ [y−1, q−1],(
e−nΛ−tU−i∆ 0

0 enΛ+tU+i∆

)
, z ∈ [y, y−1].

It satisfies the symmetry condition m#(z−1) = m#(z)σ1. The normalization con-

dition is not fulfilled, instead limz→0m
#
1 (z)m

#
2 (z) = 1. More precisely,

m#
1 (z) = −2z

ã
αn+1(0)

(
1 +O(z)

)
, m#

2 (z) = − ã

2z
αn+1(∞)

(
1 +O(z)

)
, as z → 0.

Introduce two functions defined on C \ ([q−1, q] ∪ {1,−1}):

(5.6)
Ψ1(z) =

1

2
mmod

1 (z) + ρ(z)m#
1 (z) =

1

2
αn(z) + ρ(z)βn(z),

Ψ2(z) =
1

2
mmod

2 (z) + ρ(z)m#
2 (z) =

1

2
αn(z

−1) + ρ(z)βn(z
−1),
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where

(5.7) ρ(z) = −ρ(z−1) =
2Kn

ã (z−1 − z)
, K−1

n = αn(0)αn+1(∞).

Lemma 5.2. (i) The matrix

(5.8) Mmod(z) =

(
Ψ1(z) Ψ2(z)

Ψ2(z
−1) Ψ1(z

−1)

)
, z ∈ C \

(
[q−1, q] ∪ {1,−1}

)
,

is a meromorphic matrix solution for the model jump problem

(5.9) Mmod
+ (z) =Mmod

− (z)vmod(z), z ∈ [q, q−1],

with vmod(z) given by (3.33) or by the equivalent matrix (5.5). It has simple
poles at z = ±1.

(ii) Mmod(z) satisfies the symmetry

(5.10) Mmod(z−1) = σ1M
mod(z)σ1.

(iii) The vector function (1, 1)Mmod(z) has removable singularities at 1,−1 and

integrable singularities at {q, q−1, y, y−1} of order O((z − κ)−
1
4 ) as z → κ ∈

{q, q−1, y, y−1}.
(iv) The determinant of Mmod(z) is constant,

(5.11) detMmod(z) = 1, z ∈ C.

Proof. Items (i) and (ii) follow from Lemmas 4.2, 5.1. To prove (iii) observe that

(5.12) Ψ2(z
−1) = mmod

1 (z)− ρ(z)m#
1 (z), Ψ1(z

−1) = mmod
2 (z)− ρ(z)m#

2 (z).

Thus,

(5.13) mmod(z) =
(
mmod

1 (z), mmod
2 (z)

)
= (1, 1)Mmod(z).

The vector function mmod(z) given by (4.8), (4.9) and (4.10), does not have sin-
gularities at z = ±1, and it has fourth root singularities at {q, q−1, y, y−1} which
proves (iii). We emphasize that (5.13) provides a connection between the unique
solution of the vector model RHP and the matrix model problem solution.

(iv) Evaluating detMmod(z) as z → 0 by use of (5.2) and (5.7) we get

(5.14) detMmod(z) = ρ(z)
(
m#

1 (z)m
mod
2 (z)−m#

2 (z)m
mod
1 (z)

)
,

that is,

detMmod(z) = −2ρ(z)αn+1(z
−1)G(z)αn(z) +O(z2),

=
2Knz

ã

(
− ã

2z

)
αn(0)αn+1(∞)(1 +O(z))

= 1 +O(z), z → 0.

By (5.9), detMmod(z) does not have jumps in C and by (5.10), it is an even function,

(5.15) detMmod(z−1) = detMmod(z).

Therefore, detMmod(∞) = 1. This function is even and bounded outside of small
vicinities of 1 and −1 and may have simple poles at ±1. The singularities at the
points {q, q−1, y, y−1} are at most of square root order, and therefore removable.
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Since the Abel map A(z) and G(z) are single valued functions in a vicinity of 1
with A(1) = 1/4 and G(1) = 1, we have

mmod
1 (1) = mmod

2 (1), m#
1 (1) = m#

2 (1).

This implies together with (5.14) the absence of a singularity at 1. Hence we have
a function holomorphic in C \ {−1} and bounded at infinity, which has at most a
simple pole at the only point z = −1 and the additional symmetry (5.15). The
only function which satisfies these properties is a constant. □

Corollary 5.3. The following equality holds,

(5.16) lim
z→0

ρ(z)m#
2 (z) = − 1

mmod
1 (0)

.

Proof. By (5.14) and (5.11)

ρ(z)
(
m#

1 (z)m
mod
2 (z)−m#

2 (z)m
mod
1 (z)

)
≡ 1.

But m#
1 (z) → 0 as z → 0. This proves (5.16). □

Let B and B∗ be small symmetric vicinities of the points y and y−1. The precise
shape of their boundaries will be chosen in the next section. In C \ (B ∪ B∗)
introduce the vector function ν(z) = m(3)(z)[Mmod(z)]−1. This function satisfies
the symmetry condition ν(z−1) = ν(z)σ1 but the normalization condition is not
identified yet. Instead, due to symmetry of ν and the properties of [Mmod(z)]−1

we have

Lemma 5.4.

(5.17) ν2(0) = ν1(∞) =
1

2

(
m

(3)
1 (0)

mmod
1 (0)

+
mmod

1 (0)

m
(3)
1 (0)

)
:= τ > 0.

Proof. From (5.6), (5.16) and the normalization mmod
2 (0) = [mmod

1 (0)]−1 > 0 we
observe that

Ψ2(0) =
1

2
mmod

2 (0)− 1

mmod
1 (0)

= − 1

2mmod
1 (0)

, Ψ1(0) =
1

2
mmod

1 (0).

Then (5.17) follows from the normalization m
(3)
2 (0) = [m

(3)
1 (0)]−1 > 0 and

ν2(0) = −Ψ2(0)m
(3)
1 (0) + Ψ1(0)[m

(3)
1 (0)]−1.

□

Lemma 5.5. The function ν(z) does not have singularities in vicinities of the
points q, q−1, 1,−1.

Proof. By (3.33) and (3.27) the vector ν(z) does not have jumps in small vicinities
of q, q−1 and 1. By (3.30), (4.9), (5.3), (5.4), (5.6), (5.8) and (5.11) we conclude
that ν(z) = O(z − q±1)−1/2, and therefore it has no singularities at q and q−1.

At z = 1, both m(3)(z) and Mmod(z) have no jumps. The same is true for
mmod(z), m#(z) and G(z), which means that the equalities

G(z−1) = G−1(z), m
(3)
1 (z) = m

(3)
2 (z−1),

mmod
1 (z) = mmod

2 (z−1), m#
1 (z) = m#

2 (z
−1),
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can be applied in a vicinity of z = 1. The differences

G(z−1)−G(z), m
(3)
1 (z)−m

(3)
1 (z−1), mmod

1 (z)−mmod
1 (z−1), m#

1 (z)−m#
1 (z

−1),

are all of order O(z − 1) as z → 1. Thus, from (5.6) and (5.12) it follows that

Ψ2(z)−Ψ1(z) = O(z − 1) + ρ(z)(m#
1 (z)−m#

1 (z
−1)) → Ψ0,

Ψ1(z
−1)−Ψ2(z

−1) = O(z − 1)− ρ(z)(m#
1 (z)−m#

1 (z
−1)) → −Ψ0,

z → 1,

where

Ψ0 = lim
z→1

Kn

ã(z−1 − z)

(
βn(z)− βn(z

−1)
)
.

On the other hand, m(3)(z) does not have a jump in a vicinity of z = 1. Therefore,

by the symmetry property, m
(3)
1 (1) = m

(3)
2 (1−1) = m

(3)
2 (1). Hence

ν(z) = m(3)(z)

(
Ψ1(z

−1) −Ψ2(z)
−Ψ2(z

−1) Ψ1(z)

)
=
(
m

(3)
1 (z)Ψ1(z

−1)−m
(3)
2 (z)Ψ2(z

−1), m
(3)
2 (z)Ψ1(z)−m

(3)
1 (z)Ψ2(z)

)
→
(
Ψ0m

(3)
1 (1)

) (
1, 1

)
, z → 1.

It remains to investigate the behavior of ν(z) near z = −1. Since m(3)(z) and
Mmod(z) have the same constant jump v3(z) = vmod(z) = e(2itB−i∆)σ3 in a vicinity
of this point, we conclude that ν(z) does not have jumps here, and therefore z = −1
is an isolated singularity, which is at most a simple pole. From the symmetry
condition it follows that both components ν1(z) and ν2(z) of ν(z) have the same
behavior, either simple poles or removable singularities. To prove that −1 is in fact
a removable singularity, it suffices to check that

f(z) = ν1(z)ν2(z)

=
(
m

(3)
1 (z)Ψ1(z

−1)−m
(3)
2 (z)Ψ2(z

−1)
)(

m
(3)
2 (z)Ψ1(z)−m

(3)
1 (z)Ψ2(z)

)
increases not faster than o((z+1)−2) from some direction. The behavior of f(z) is
determined by the summand which contains ρ2(z) (cf. (5.6) and (5.12)). Computing
this term we get

f(z) ∼ ρ2(z)
(
[m#

2 (z)]
2[m

(3)
1 (z)]2 + [m#

1 (z)]
2[m

(3)
2 (z)]2

− 2m#
1 (z)m

#
2 (z)m

(3)
1 (z)m

(3)
2 (z)

)
= ρ2(z)f̃(z).

The function f̃(z) has finite limiting values on the sides of the contour [r, r−1], and in

particular at z = −1. Using the symmetry condition we get m#
1,±(−1) = m#

2,∓(−1),

m
(3)
1,±(−1) = m

(3)
2,∓(−1), therefore

m#
1,±(−1) = m#

2,±e
∓(2itB−i∆), m

(3)
1,±(−1) = m

(3)
2,±e

∓(2itB−i∆),

that is, m#
2,±(−1)m

(3)
1,±(−1) = m#

1,±(−1)m
(3)
2,±(−1). Thus

f̃±(−1) = [m#
2,±(−1)]2[m

(3)
1,±(−1)]2 + [m#

1,±(−1)]2[m
(3)
2,±(−1)]2

− 2m#
1,±(−1)m#

2,±(−1)m
(3)
1,±(−1)m

(3)
2,±(−1) = 0.

□
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Remark 5.6. The jump matrix v(3)(z) given by (3.28), (3.29) satisfies the sym-
metry

(5.18) v(3)(z) = σ1v
(3)(z−1)σ1

on the contour Ξ (cf. (3.26)), while on [q, q−1] it satisfies [v(3)(z)]−1 = σ1v
(3)(z−1)σ1.

Therefore we reverse the orientation on the part [−1, q−1] such that the property
(5.18) is satisfied on the whole jump contour of RHP 3.

6. Solution of the parametrix RH problems

In this section we solve local RHPs in vicinities of the points y, y−1, where the
error jump matrix (introduced at the end of Section 3) is not small as t→ ∞. Recall
that on the contours with y−1 as a nodal point we have (with the new orientation
on [q−1,−1] as introduced in Remark 5.6)

v(3)(z) =



iσ1, z ∈ [q−1, y−1],

e(−2itB+i∆)σ3 z ∈ [r−1,−1],(
F+(z)
F−(z)e

t(g+(z)−g−(z)) U(z)e−2tRe g(z)

0 F−(z)
F+(z) e

t(g−(z)−g+(z))

)
, z ∈ [y−1, r−1],(

1 0
e2tg(z)

U1(z)
1

)
, z ∈ C∗,

where we denoted

(6.1) U(z) = i|χ(z)|Π2(z)F+(z)F−(z), U1(z) = Π2(z)F 2(z)X(z),

and used (3.32). Respectively,

verr(z) = v(3)(z)− vmod(z) =



(
0 U(z)e−2tRe g(z)

0 0

)
, z ∈ [y−1, r−1],(

0 0
e2tg(z)

U1(z)
0

)
, z ∈ C∗,

does not vanish as t → ∞ since Re g(y−1) = 0, U(y−1)U1(y
−1) ̸= 0. The local

(parametrix) RHPs are similar to those of the KdV shock wave analysis (see e.g.
[19, Sec. 7]). Consider first the point y−1. Let B∗ = B∗(ε) be a neighborhood of
y−1 such that its boundary contains r−1 given by (3.11). To describe the boundary
of B∗, introduce a local change of variables

(6.2) w3/2(z) =
3t

2

(
g(z)− g±(y

−1)
)
, z ∈ B∗,

with the cut along the interval J = [q−1, y−1] ∩ B∗. From (3.4) and item (b) of
Lemma 3.1 we have

3

2
(g(z)− g±(y

−1)) =
3

2

z∫
y−1±i0

P (s)Q̃(s)
√
y−1 − s

ds

2s

=
2

y
P (y)Q̃(y)(z − y−1)3/2 (1 + o(1)) , z → y−1,
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with P (s) given by (3.3) and

Q̃(s) :=

√
s− y

(s− q)(s− q−1)
.

Evidently, Q̃(y) > 0. For ξ ∈ (ξ′cr, ξcr) we have (see [18]) P (s) = s+ s−1 − ζ − ζ−1,

where ζ = ζ(ξ) ∈ (−1, y). Thus, P (y−1) < 0 and T := 2y−1P (y)Q̃(y) > 0. Then

(6.3) w(z) = T 2/3t2/3 (z − y−1)(1 + o(1)), as z → y−1, (T t)2/3 > 0.

Hence w(z) is a holomorphic function in B∗.

y−1

∂B∗

J ′J

L1

L2

w

0

∂O

Figure 7. The local change of variables w(z).

Untill now we did not specify the particular shape of the boundary of B∗ and
the shape of the contour C∗ inside B∗. Treating w(z) as a conformal map, let us
think of B∗ as a pre-image of a disc O of radius T 2/3|y−1− r−1|t2/3 centered at the
origin. Then w(z) maps the interval J = [q−1, y−1] ∩ B∗ to the negative half axis
and J ′ = [y−1, r−1] to the positive half axis. We also choose the contour C∗ ∩B∗ to
be contained in the pre-image of the rays argw = ± 2πi

3 and divide it in two parts
L1 and L2, with orientation as depicted in Fig. 7. With the new orientation,

(6.4) vmod(z) =

{
iσ1 z ∈ J

e(−2itB+i∆)σ3 z ∈ J ′ .

In B∗ we introduce the function

(6.5) r(z) :=
e∓

iπ
4 e∓itB√

X(z)Π(z)F (z)
, z ∈ B∗ ∩ {z : ± Im z > 0}.

Since

(6.6) X±(z) = ∓i|χ(z)|, z ∈ J ∪ J ′,

we see that

r±(z) =
e∓itB√

|χ(z)|Π(z)F±(z)
, z ∈ J ∪ J ′.

By items (b) and (c) of Lemma 3.5, taking into account the change of direction for
the contour in (c), we get

(6.7) r+(z)r−(z) = 1, z ∈ J ; r+(z) = r−(z)e
i∆−2itB , z ∈ J ′.
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Due to (6.6),
√
X+(z)X−(z) = |χ(z)| for z ∈ J ′. By use of (6.1) and (6.2), we have

for the off-diagonal elements of verr

(6.8)

U(z)e−2tRe g(z) = i|χ(z)|Π2(z)F+(z)F−(z)e
−t(g−(z)+g+(z))

= i
e−t(g+(z)−g+(y−1))e−t(g−(z)−g−(y−1))

r+(z)r−(z)
=

i e−
4
3w

3/2(z)

r+(z)r−(z)
,

(6.9)

e2tg(z)

U1(z)
= ±i r2(z)e±2itB+2tg(z) = ±i r2(z)e2tg(z)−g±(y−1)

= ±ir2(z)e
4
3w

3/2(z), ± Im z > 0.

We redefine m(3)(z), mmod(z) and the matrix Mmod(z) inside B∗ by

m̂(3)(z) = m(3)(z)r(z)−σ3 , m̂mod(z) = mmod(z)r(z)−σ3 ,

(6.10) M̂mod(z) =Mmod(z)r(z)−σ3 , z ∈ B∗.

Using (6.4), (6.7), (6.8) and (6.9), we obtain that inside B∗

m̂
(3)
+ (z) = m̂

(3)
− (z)v̂(3)(z), M̂mod

+ (z) = M̂mod
− (z)v̂mod(z),

where
v̂mod(z) = iσ1, z ∈ J ; v̂mod(z) = I, z ∈ J ′;

v̂(3)(z) =



iσ1, z ∈ J,(
1 ie−

4
3w

3/2(z)

0 1

)
, z ∈ J ′,(

1 0

−ie4/3w
3/2(z) 1

)
, z ∈ L1,(

1 0

ie4/3w
3/2(z) 1

)
, z ∈ L2.

By (6.3) we conclude that w1/4(z) has the following jump along J ,

w
1/4
+ (z) = w

1/4
− (z)i, z ∈ J.

Recall that O = w(B∗). It is now straightforward to check that the matrix

N(w) =
1√
2

(
w1/4 w1/4

−w−1/4 w−1/4

)
, w ∈ O,

solves the jump problem

N+(w(z)) = iN−(w(z))σ1, z ∈ J.

Therefore, in B∗ we have M̂mod(z) = H(z)N(w(z)), where H(z) is a holomorphic
matrix function in B∗. Since detN(w) = det[r(z)σ3 ] = 1, we have

(6.11) detH(z) = detMmod(z) = det M̂mod(z) = 1.

According to (6.10) we get

Mmod(z) = H(z)N(w(z))r(z)σ3 , z ∈ ∂B∗.

By property (c) of Lemma 3.1, w+(z)
3/2 = −w−(z)

3/2 for z ∈ J , that is,

v̂(3)(z) = d−(z)
−σ3S d+(z)σ3 , z ∈ B∗,
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where
d(z) := d̃(w(z)), d̃(w) = e2/3w

3/2

,

and

S =


S1, z ∈ L1,
S2, z ∈ J,
S3, z ∈ L2,
S4, z ∈ J ′.

Here

S1 =

(
1 0
i 1

)
; S2 =

(
0 i
i 0

)
; S3 =

(
1 0
−i 1

)
; S4 =

(
1 i
0 1

)
.

Consider S as the jump matrix on the contour w(J ∪ J ′ ∪L1 ∪L2) in O. Let A(w)
be the matrix solution of the jump problem

A+(w) = A−(w)S, w ∈ w(J ∪ J ′ ∪ L1 ∪ L2),

satisfying the boundary condition

(6.12) A(w) = N(w)Ψ(w)d̃(w)−σ3 , w ∈ ∂O, t→ ∞,

where

(6.13) Ψ(w) = I+
C

w3/2

(
1 +O

(
w−3/2

))
, w → ∞,

is an invertible matrix, and C is a constant matrix with respect to w, t and ξ.
The solution A(w) can be expressed via Airy functions and their derivatives in a
standard manner (see, for example, [9], [2, Ch. 3], [20] or [1]). In particular, in the
sector between the contours w(J ′) and w(L1) in O we have

A(w) = A1(w) =
√
2π

(
−y′1(w) iy′2(w)
−y1(w) iy2(w)

)
,

where y1(w) = Ai(w) and y2(w) = e−
2πi
3 Ai(e−

2πi
3 w). In the sector between the

lines w(L1) and w(J) we get

A(w) = A2(w) = A1(w)S1 =
√
2π

(
y′3(w) iy′2(w)
y3(w) iy2(w)

)
,

where y3(w) = e
2πi
3 Ai(e

2πi
3 w). Here we used the standard equality y1(w)+ y2(w)+

y3(w) = 0. Changing orientation on J and L2 we obtain between w(J) and w(L2)

A(w) = A3(w) = −iA2(w)σ1,

and between the lines w(L2) and w(J
′), correspondingly,

A(w) = A4(w) = A3(w)S−1
3 .

The last conjugation with the matrix S4 will lead to matrix A1(w) again, because
S1S−1

2 S−1
3 S4 = I. Note that the constant matrix C in (6.12) is the same for all

regions,

C =
1

48

(
−1 6
−6 1

)
.

The precise formulas for Aj(w) are in fact not important for us. The matrix

Mpar(z) := H(z)A(w(z))d(z)σ3 , z ∈ B∗,

solves in B∗ the jump problem

Mpar
+ (z) =Mpar

− (z)v̂(3)(z), z ∈ J ∪ J ′ ∪ L1 ∪ L2,
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and satisfies for sufficiently large t the boundary condition

Mpar(z) = H(z)N(w(z))Ψ(w(z)) = M̂mod(z)Ψ(w(z))

=Mmod(z)r(z)−σ3Ψ(w(z)), z ∈ ∂B∗.

Note that (6.13) and (6.2) yield

detΨ(w(z)) = 1 +O(t−1), z ∈ B∗, t→ ∞,

uniformly with respect to ξ ∈ Iε. This implies with (6.11) invertibility of Mpar(z)
in B∗. In summary, we constructed a matrix with the following properties:

Lemma 6.1. The vector function

(6.14) ν(z) = m̂(3)(z)Mpar(z)−1 = m(3)(z)r(z)−σ3Mpar(z)−1, z ∈ B∗,

does not have jumps and isolated singularities in B∗, it is holomorphic there. The
function ν(z) has piecewise continuous limiting values as z approaches ∂B∗ from
inside, given by

(6.15) ν(z) = m(3)(z)r(z)−σ3Ψ(w(z))−1r(z)σ3Mmod(z)−1, z ∈ ∂B∗.

Let B := {z : z−1 ∈ B∗}. Define ν(z) in B∗ by the symmetry ν(z) = ν(z−1)σ1,
z ∈ B. With this extension, ν(z) is holomorphic in B. Let us extend the definition
of ν(z) to C \ (B∗ ∪ B) by

(6.16) ν(z) = m(3)(z)Mmod(z)−1, z ∈ C \ (B∗ ∪ B).
Theorem 5.5 implies that this function does have jumps on the contour [q,−1]∪

[q−1,−1] outside of B∗ ∪B. We label the parts of C and C∗ outside B and B∗ by CB
and C∗

B, see Fig. 5. The jumps of ν(z) on Γ∪ CB ∪ C∗
B (cf. (3.13)) are exponentially

small with respect to t → ∞. Let us compute the jump of this vector on the
boundaries ∂B and ∂B∗, which we treat as clockwise oriented contours. Since
neither m(3)(z), r(z) = r−1(z−1) nor Mmod(z) have jumps on these contours, we
obtain from (6.15) and (6.16)

m(3)(z) = ν−(z)M
mod(z)r(z)−σ3Ψ(w(z))r(z)σ3 = ν+(z)M

mod(z), z ∈ ∂B∗.

Taking into account (6.13) we find the jump

ν+(z) = ν−(z)(I+W (z)), z ∈ ∂B∗ ∪ ∂B,
where

(6.17)
W (z) =Mmod(z)r(z)−σ3

(
Ψ(w(z))− I

)
r(z)σ3Mmod(z)−1, z ∈ ∂B∗;

W (z) = σ1W (z−1)σ1, z ∈ ∂B.
The jump contour

K := Γ ∪ CB ∪ C∗
B ∪ ∂B ∪ ∂B∗,

for the RHP associated with the error vector ν(z) is depicted in Fig. 8.

Merging the results of this section with Lemmas 5.5 and 5.4 we have proven

Theorem 6.2. The vector ν(z) is a holomorphic function in the domain C\K and
bounded on the closure of this domain. On the contour K, ν(z) has the jump

(6.18) ν+(z) = ν−(z)(I+W (z)),

where W (z) is given by (6.17) on ∂B ∪ ∂B∗ and

(6.19) W (z) =Mmod
− (z)

(
v(3)(z)−I

)
Mmod

+ (z)−1, z ∈ Γ∪CB∪C∗
B = K\(∂B∪∂B∗).
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TjTkT∗
kT∗

j

q−1 y−1

r−1
q−1
1 −1 q1 r y q 1
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B
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C∗
r Cr

∂B CB

CϵC∗
ϵ

y−1 y

Figure 8. K =
⋃N

j=1(Tj ∪ T∗
j ) ∪ Cϵ ∪ C∗

ϵ ∪ Cr ∪ C∗
r ∪ CB ∪ C∗

B ∪ ∂B ∪ ∂B∗.

On K, W (z) has the symmetry

(6.20) W (z−1) = σ1W (z)σ1, z ∈ K.

The vector ν(z) satisfies

(6.21) ν(z−1) = ν(z)σ1.

Moreover,

(6.22) ν−(z
−1) = ν−(z)σ1, z ∈ K.

In addition,

ν2(0) = ν1(∞) = τ > 0.

We also observe the following estimate. By definition,

min dist
(
y−1, ∂B∗) > C(ε) > 0, uniformly with respect to ξ ∈ Iε.

Respectively,

(6.23) min
z∈∂B∗

1

|g(z)− g±(y−1)|
> C1(ε) > 0, uniformly with respect to ξ ∈ Iε.

Moreover, the matrix functions Mmod(z), [Mmod(z)]−1, r(z), r−1(z) are bounded
uniformly with respect to z ∈ B ∪ B∗ and ξ ∈ Iε. From (6.13), (6.5) and (6.17) we
conclude that

(6.24) sup
ξ∈Iε

sup
z∈∂B∪∂B∗

∥W (z)∥ ≤ C2(ε)

t
.

On the other hand, (6.23), (6.19), (3.29) and (3.14) imply

(6.25) sup
ξ∈Iε

sup
z∈K\(∂B∪∂B∗)

∥W (z)∥ ≤ O
(
e−C3(ε)t)

)
.

7. Completion of the asymptotic analysis

The aim of this section is to establish that the solution m(3)(z) is well approxi-
mated bymmod(z) =

(
1 1

)
Mmod(z) as z → 0. We follow the well-known approach

via singular integral equations (see e.g., [10], [22], [23, Ch. 4], [28]). A peculiarity
of this approach applied to the Toda equation is generated by the type of normal-
ization condition of the vector RHP and the symmetry condition. In particular, if
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we want to preserve the symmetry condition (6.21) in the Cauchy-type formula for
ν(z), we should use a matrix Cauchy kernel (cf. [27, Equ. (B.8)],

Ω̂(s, z) =

( 1
s−z 0

0 1
s−z − 1

s

)
ds, s ∈ K, z /∈ K.

Since ([27, Equ. (B.9)])

Ω̂(s, z−1) = σ1Ω̂(s
−1, z)σ1,

this implies with (6.22) and (6.20) the symmetry∫
K
ν−(s)W (s)Ω̂(s, z) =

∫
K
ν−(s)W (s)Ω̂(s, z−1)σ1.

Note that the 1, 1-entry of the Cauchy kernel Ω̂(s, z) has zero at z = ∞ while the
2, 2-entry has zero at z = 0. From (6.18) and (5.17) it follows that

ν(z) =
(
ν1(∞), ν2(0)

)
+

1

2πi

∫
K
ν−(s)W (s)Ω̂(s, z)

= τ
(
1, 1

)
+

1

2πi

∫
K
ν−(s)W (s)Ω̂(s, z).

Let C denote the Cauchy operator associated with K,

(Ch)(z) =
1

2πi

∫
K
h(s)Ω̂(s, z), s ∈ C \ K,

where h =
(
h1, h2

)
∈ L2(K) and satisfies the symmetry h(s) = h(s−1)σ1. Let

(C+h)(z) and (C−h)(z) be the non-tangential limiting values of (Ch)(z) from the
left and right sides of K, respectively. As usual, we introduce the operator CW :
L2(K) ∩ L∞(K) → L2(K) by CWh = C−(hW ). By virtue of (6.24) and (6.25) we
obtain

∥CW ∥ = ∥CW ∥L2(K)→L2(K) ≤ C∥W∥L∞(K) = O
(1
t

)
as well as

∥(I− CW )−1∥ = ∥(I− CW )−1∥L2(K)→L2(K) ≤
1

1−O(t−1)

for sufficiently large t. Consequently, for t≫ 1, on K we define a vector function

µ(s) = (τ, τ) + (I− CW )−1CW

(
(τ, τ)

)
(s),

with τ given by (5.17). Then

∥µ(s)− (τ, τ)∥L2(K) ≤ ∥(I− CW )−1∥∥C−∥∥W∥L∞(K)

= O(t−1).(7.1)

With the help of µ, the vector function ν(z) can be represented as

ν(z) = (τ, τ) +
1

2πi

∫
K
µ(s)W (s)Ω̂(s, z),

and by virtue of (7.1), (6.24) and (6.25) we obtain as z → 0

(7.2) ν(z) = (τ, τ) +
1

2πi

∫
K
(τ, τ)W (s)

(
s−1 + zs−2 0

0 zs−2

)
ds+ E(z).

Here E(z) is a holomorphic vector function in a vicinity of z = 0 with

∥E(z)∥ ≤ ∥W∥L2(K)∥µ(s)− (τ, τ)∥L2(K)(1 +O(z)) = O(t−2)(1 +O(z)),
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and O(z) is uniformly bounded for ξ ∈ Iε. From (7.2) and (5.13) we get

(7.3) m(3)(z) = ν(z)Mmod(z) = τmmod(z) + τO(t−1)E1(z),

where E1(z) is a holomorphic vector function in a vicinity of z = 0, uniformly
bounded with respect to ξ ∈ Iϵ. The normalization conditions for m(3) and mmod

imply that τ2(1 +O(t−1)) = 1, that is,

τ = 1 +O(t−1).

Together with (7.3), (4.9)–(4.10) and (3.31) this implies

Theorem 7.1. The following representation holds for t→ ∞ and n→ ∞
(7.4)

m1(z)m2(z) = H2(z)
δ(z)δ(z−1)

δ(0)δ(∞)
+ β1(ξ, t) + β2(ξ, t)z + β2(ξ, t)O(z2), z → 0,

where |βj(ξ, t)| ≤ C(ε)
t uniformly with respect to ξ ∈ Iε.

Our next aim is to clarify the properties of the function

(7.5) Y(z) :=
δ(z)δ(z−1)

δ(0)δ(∞)
.

To simplify notations denote tB
2π − ∆

4π =: x ∈ R. Then by (4.8),

Y(z) =
θ
(
A(z)− 1

2 + x
)
θ
(
A(z) + x

)
θ
(
A(z−1)− 1

2 + x
)
θ
(
A(z−1) + x)

δ(0)δ(∞) θ
(
A(z)− 1

2

)
θ
(
A(z)

)
θ
(
A(z−1)− 1

2

)
θ
(
A(z−1)

) .

Since x ∈ R, the properties of the Abel integral A(z) listed in Lemma 4.1 imply
that θ

(
A(z)− 1

2 +x
)
θ
(
A(z)+x

)
has a simple zero at (µ(x),±) on one of the sheets

of the Riemann surface X with projection µ(x) ∈ [y−1, y], and a zero (µ−1(x),∓)
on the other sheet. The function θ

(
A(z−1) − 1

2 + x
)
θ
(
A(z−1) + x) has zeros at

(µ(x),∓), (µ−1(x),±). The denominator of Y(z) has double zeros (as points on the
Riemann surface) at y and y−1. Since y and y−1 are the branching points on X,
then these zeros are simple in the variable z on the complex plane. We observe that
Y(z), being considered as a function in the domain C \ [q−1, q] identified with the
upper sheet of X, does not have jumps on [q−1, q] and tends to 1 as z → ∞. Hence
Y(z) is a rational function with simple poles at y and y−1 and simple zeros at µ(x)
and µ−1(x). Therefore,

Y(z) =
(z − µ(x))(z − µ−1(x))

(z − y)(z − y−1)
,

and

(7.6)

mmod
1 (z)mmod

2 (z) = H2(z)Y(z) =
(z − µ(x))(z − µ−1(x))√

(z − q)(z − q−1)(z − y)(z − y−1)

=
z + z−1 − µ(x)− µ−1(x)√

(z + z−1 − q − q−1)(z + z−1 − y − y−1)
=

λ− λ(n, t)√
(λ− (b− 2a))(λ− λy)

,

where λ(n, t) = µ(x)+µ−1(x)
2 ∈ [λy,−1]. We emphasize that µ(x) = µ(x(n, t))

depends on n and t via

x = x(n, t) = −nΛ

4πi
− tU

4πi
− ∆

4π
.

In particular, µ(x(0, 0)) = µ(− ∆
4π ).
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Let Ψ(n, t, p, ξ), p ∈ M(ξ), be the Baker–Akhiezer function of a finite gap Toda

lattice solution {â(n, t, ξ), b̂(n, t, ξ)} associated with the spectrum on the set [b −
2a, λy]∪ [−1, 1] and with initial divisor point (λ(0, 0),±), where we choose sign + if

µ(− ∆
4π ) ∈ [−1, y] and sign − if µ(− ∆

4π ) ∈ [y−1,−1]. Here we took into account that
the set {z : |z| < 1} \ [y, q] is in one-to-one correspondence with the upper sheet of
M(ξ) (cf. Section 5). Then (cf. [34])

Ψ(n, t, p, ξ)Ψ(n, t, p∗, ξ) =
λ− λ(n, t)

λ− λ(0, 0)
,

where λ(n, t) is the projection of the zero divisor for Ψ. Equation (4.11) and
our considerations above justify this claim. In particular, according to the trace
formulas we have

b̂(n, t, ξ) =
1

2
(b− 2a+ λy(ξ)− 2λ(n, t)) ,

â(n, t, ξ)2 + â(n− 1, t, ξ)2 =

1

4

(
2 + (b− 2a)2 + λy(ξ)

2 − 2λ(n, t)2 − 1

2
(b− 2a+ λy(ξ)− 2λ(n, t))

2

)
.

The operator Ĥ(t) = Ĥ(t, ξ) associated with these coefficients is reflectionless (since
it is finite gap) and has the following Green’s function (cf. [34])

Ĝ(λ, n, n, t) = − λ− λ(n, t)√
(λ2 − 1)(λ− (b− 2a))(λ− λy)

= −m
mod
1 (z)mmod

2 (z)√
λ2 − 1

.

Combining (2.2), (2.13), (2.14), (7.4), (7.5) and (7.6) we arrive at Theorem 1.1,
where we switched back to the notation γ(ξ) instead of λy.

8. Discussions

In this section we briefly discuss how to derive and justify the asymptotics in
the left region I1,ε := [ξcr,1 + ε, ξ′cr,1 − ε]. A justification of the asymptotics in the
middle region (ξ′cr,1, ξ

′
cr) which takes into account the presence of resonances and

the discrete spectrum in the gap (b+ 2a,−1) is given in [14].
First of all, if left and right background spectra are of equal length, that is,

in case a = 1, there is no need for an independent extensive study. Indeed, for
arbitrary a > 0 let us consider the Toda lattice associated with the functions

ă(n, t) =
1

2a
a
(
− n− 1, t

2a

)
, b̆(n, t) =

1

2a

(
b− b

(
− n, t

2a

))
,

where {a(n, t), b(n, t)} is the solution of (1.1)–(1.3), (2.1). It is straightforward to

check that {ă(n, t), b̆(n, t)} satisfy (1.1) associated with the initial profile

ă(n, 0) → 1

2a
, b̆(n, 0) → b

2a
, as n→ −∞,

â(n, 0) → 1

2
, b̂(n, 0) → 0, as n→ +∞.

If a = 1, the region (ξ′cr, ξcr) for {ă(n, t), b̆(n, t)} coincides with (ξ′cr,1, ξcr,1) for
{a(n, t), b(n, t)}, and therefore we can simply apply the results of Theorem 1.1.
This approach is applicable for arbitrary a when b− 2a > 1, that is, for rarefaction
waves. Unfortunately, for the shock waves and a ̸= 1 we are not able to match
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these regions. Moreover, even if they would match, this approach would still require
cumbersome computations. Indeed, applying the asymptotics from Theorem 1.1 to

a(m, t̆) = 2aă(n, t), b(m, t̆) = b− 2ab̆(n+ 1, t), t̆ =
t

2a
, m = −n− 1,

one has to take into account the new time and space variables and recompute b
and τ periods in theta functions, as far as the initial Dirichlet eigenvalues.

As we see from the above considerations, the form of the g-function in I1,ε is
dictated by the spectrum [b− 2a, b+2a]∪ [γ(ξ), 1], where γ(ξ) ∈ [−1, 1]. Therefore
on the z-plane the images of this point will belong to T \ {−1, 1}. Denote them by
z0 and z0. It is clear that the piece-wise constant jump matrix for the respective
model problem will appear on the union of the real interval and the arc,

[q, q−1] ∪ {z ∈ T : Re z < Re z0}.

A construction of the vector and matrix model solutions in theta functions for such
a contour in terms of z is quite bulky and not transparent for further analysis. For
this reason it is more convenient to study the asymptotics for ξ ∈ I1,ε using the
other vector RHP stated with respect to the left scattering data Rℓ(ζ, t), Tℓ(ζ, t)
on the ζ-plane (cf. (1.6)). The left phase function (1.8) is used and replaced by a
suitable g-function; the structure of the jump matrices and the further analysis is
completely analogous to the one given in this paper. It allows us to conclude that
the error term in this region is described in terms of Airy functions and is of order
O(t−1). The error term in the middle region is of order O(e−C(ε)t), [14].

Our last remark concerns condition (2.1). The value of ρ given by (2.10) can be
significantly reduced up to any ρ > 0 if the point q1 is non-resonant, because in the
non-resonant case we do not need to apply the lens mechanism around the domains
Ωr and Ω∗

r . It was used to remove a possible singularity of m at q1. Moreover,
the condition ρ > − log |q1| is sufficient to remove the singularity. Condition (2.10)
was chosen to achieve less cumbersome formulas for the jump matrices. Note that
condition (3.10) is only essential in the resonant case, and one can expect that the
asymptotics in Theorem 1.1 hold in the region (1.14) if q1 is non-resonant.
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