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Abstract. We investigate soliton solutions of the Toda hierarchy on a quasi-

periodic finite-gap background by means of the double commutation method
and the inverse scattering transform. In particular, we compute the phase shift

caused by a soliton on a quasi-periodic finite-gap background. Furthermore,

we consider short-range perturbations via scattering theory. We give a full
description of the effect of the double commutation method on the scattering

data and establish the inverse scattering transform in this setting.

1. Introduction

Solitons on a (quasi-)periodic background have a long tradition and are used
to model localized excitements on a phonon, lattice, or magnetic field background
(see, e.g., [5], [11], [13], [15], [16], [17], [18] and the references therein). Of course
periodic solutions, as well as solitons travelling on a periodic background, are well
understood. Nevertheless there are still several open questions.

One of them is the stability of (quasi-)periodic solutions. For the constant so-
lution it is a classical result, that a small initial perturbation asymptotically splits
in a number of stable solitons. For a (quasi-)periodic background this cannot be
the case. In fact, associated with every soliton there is a phase shift (which will
be explicitly computed in Section 4) and the phase shifts of all solitons will not
add up to zero in general. Hence there must be something which makes up for this
phase shift. Moreover, even if no solitons are present, the asymptotic limit is not
the (quasi-)periodic background! A precise description of the asymptotic limit in
terms of Abelian integrals on the underlying Riemann surface is given in [9] (see
[10] for a proof). In particular, the asymptotic limit can be split into parts, one
which stems from the discrete spectrum (solitons) and one which stems from the
continuous spectrum.

The soliton part can be understood by adding/removing the solitons using a
Darboux-type transformation, that is, commutation methods for the underlying
Jacobi operators. Hence the purpose of the present paper is to complement [10] and
provide a detailed description of the double commutation method when applied to a
short-range perturbation of a quasi-periodic finite-gap solution of the Toda lattice.
In particular, we are interested in the effect of one double commutation step on the
scattering data.
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After introducing the Toda hierarchy in Section 2 and recalling some necessary
facts on algebro-geometric quasi-periodic finite-gap solutions in Section 3 we briefly
review the single and double commutation methods in Section 4 and compute the
phase shift (in the Jacobian variety) caused by inserting one eigenvalue for both
methods. In Section 5 we review direct scattering theory for Jacobi operators
with different (quasi-)periodic asymptotics in the same isospectral class. As our
main result we give a complete description of the effect of the double commutation
method on the scattering data. In addition, we provide some detailed asymptotic
formulas for the Jost functions ψ±(z, n) (which are normalized as n→ ±∞) at the
other side, that is, as n→ ∓∞. Our final Section 6 establishes the inverse scattering
transform for this setting. Our main results here are the time dependence of both
the scattering data and the kernel of the Gelfand-Levitan-Marchenko equation.

2. The Toda hierarchy

In this section we introduce the Toda hierarchy using the standard Lax formalism
([12]). We first review some basic facts from [1] (see also [21]).

We will only consider bounded solutions and hence require

Hypothesis H.2.1. Suppose a(t), b(t) satisfy

a(t) ∈ `∞(Z,R), b(t) ∈ `∞(Z,R), a(n, t) 6= 0, (n, t) ∈ Z× R,

and let t 7→ (a(t), b(t)) be differentiable in `∞(Z)⊕ `∞(Z).

Associated with a(t), b(t) is a Jacobi operator

(2.1) H(t) : `2(Z)→ `2(Z), f 7→ τ(t)f,

where

(2.2) τ(t)f(n) = a(n, t)f(n+ 1) + a(n− 1, t)f(n− 1) + b(n, t)f(n)

and `2(Z) denotes the Hilbert space of square summable (complex-valued) sequences
over Z. Moreover, choose constants c0 = 1, cj , 1 ≤ j ≤ r, cr+1 = 0, set

gj(n, t) =
j∑
`=0

cj−`〈δn, H(t)`δn〉,

hj(n, t) = 2a(n, t)
j∑
`=0

cj−`〈δn+1, H(t)`δn〉+ cj+1,(2.3)

and consider the Lax operator

(2.4) P2r+2(t) = −H(t)r+1 +
r∑
j=0

(2a(t)gj(t)S+ − hj(t))H(t)r−j + gr+1(t),

where S±f(n) = f(n± 1). Restricting to the two-dimensional nullspace Ker(τ(t)−
z), z ∈ C, of τ(t)− z, we have the following representation of P2r+2(t)

(2.5) P2r+2(t)
∣∣∣
Ker(τ(t)−z)

= 2a(t)Gr(z, t)S+ −Hr+1(z, t),
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where Gr(z, n, t) and Hr+1(z, n, t) are monic polynomials in z of the type

Gr(z, n, t) =
r∑
j=0

zjgr−j(n, t),

Hr+1(z, n, t) = zr+1 +
r∑
j=0

zjhr−j(n, t)− gr+1(n, t).(2.6)

A straightforward computation shows that the Lax equation

(2.7)
d

dt
H(t)− [P2r+2(t), H(t)] = 0, t ∈ R,

is equivalent to

TLr(a(t), b(t))1 = ȧ(t)− a(t)
(
g+
r+1(t)− gr+1(t)

)
= 0,

TLr(a(t), b(t))2 = ḃ(t)−
(
hr+1(t)− h−r+1(t)

)
= 0,(2.8)

where the dot denotes a derivative with respect to t and f±(n) = f(n±1). Varying
r ∈ N0 yields the Toda hierarchy TLr(a, b) = (TLr(a, b)1,TLr(a, b)2) = 0. We will
always consider r as a fixed, but arbitrary, value.

We recall that the Lax equation (2.7) implies existence of a unitary propagator
Ur(t, s) such that the family of operators H(t), t ∈ R, are unitarily equivalent,
H(t) = Ur(t, s)H(s)Ur(s, t). This also implies the basic existence and uniqueness
theorem for the Toda hierarchy (see, e.g., [20], [19], or [21, Section 12.2]).

Theorem 2.2. Suppose (a0, b0) ∈ M = `∞(Z) ⊕ `∞(Z). Then there exists a
unique integral curve t 7→ (a(t), b(t)) in C∞(R,M) of the Toda hierarchy, that is,
TLr(a(t), b(t)) = 0, such that (a(0), b(0)) = (a0, b0).

Finally, we recall the following result from [3] (compare also [20]), which says that
solutions which are asymptotically close to a background solution at the initial time
stay close for all time.

Lemma 2.3. Suppose a(n, t), b(n, t) and ā(n, t), b̄(n, t) are two arbitrary bounded
solutions of the Toda hierarchy satisfying (2.9) for one t0 ∈ R, then (2.9) holds for
all t ∈ R, that is,

(2.9)
∑
n∈Z

w(n)
(
|a(n, t)− ā(n, t)|+ |b(n, t)− b̄(n, t)|

)
<∞,

where w(n) ≥ 1 is some weight with supn(|w(n+1)
w(n) |+ |

w(n)
w(n+1) |) <∞.

3. Quasi-periodic finite-gap solutions

As a preparation for our next section we first need to recall some facts on quasi-
periodic finite-gap solutions (again see [1] or [21]).

Let M be the Riemann surface associated with the following function

(3.1) R
1/2
2g+2(z) = −

2g+1∏
j=0

√
z − Ej , E0 < E1 < · · · < E2g+1,

where g ∈ N and √. is the standard root with branch cut along (−∞, 0). M is a
compact, hyperelliptic Riemann surface of genus g. A point on M is denoted by
p = (z,±R1/2

2g+2(z)) = (z,±), z ∈ C, or p = ∞±, and the projection onto C ∪ {∞}
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by π(p) = z. The sets Π± = {(z,±R1/2
2g+2(z)) | z ∈ C\

⋃g
j=0[E2j , E2j+1]} ⊂ M are

called upper, lower sheet, respectively.
Now pick g numbers (the Dirichlet eigenvalues)

(3.2) (µ̂j)
g
j=1 = (µj , σj)

g
j=1

whose projections lie in the spectral gaps, that is, µj ∈ [E2j−1, E2j ]. Associated
with these numbers is the divisor Dµ̂ which is one at the points µ̂j and zero else.
Using this divisor we introduce

z(p, n, t) = Âp0(p)− α̂p0(Dµ̂)− nÂ∞−(∞+) + tUs − Ξ̂p0 ∈ Cg,
z(n, t) = z(∞+, n, t),(3.3)

where Ξp0 is the vector of Riemann constants, Us the b-periods of the Abelian
differential Ωs defined below, and Ap0 (αp0) is Abel’s map (for divisors). The
hat indicates that we regard it as a (single-valued) map from M̂ (the fundamental
polygon associated with M) to Cg. We recall that the function θ(z(p, n, t)) has
precisely g zeros µ̂j(n, t) (with µ̂j(0, 0) = µ̂j), where θ(z) is the Riemann theta
function of M.

Taking a stationary solution of TLg with constants cj , 1 ≤ j ≤ g, as initial con-
dition for another equation T̂Ls with constants ĉj , 1 ≤ j ≤ s, in the Toda hierarchy
(2.8) one obtains the quasi-periodic finite gap solutions of the Toda hierarchy given
by (see [21, Sections 13.1, 13.2])

aq(n, t)2 = ã2 θ(z(n+ 1, t))θ(z(n− 1, t))
θ(z(n, t))2

,

bq(n, t) = b̃+
g∑
j=1

cj(g)
∂

∂wj
ln
( θ(w + z(n, t))
θ(w + z(n− 1, t))

)∣∣∣
w=0

.(3.4)

The constants ã, b̃, cj(g) depend only on the Riemann surface (see [21, Section 9.2]).
Introduce

φq(p, n, t) = C(n, t)
θ(z(p, n+ 1, t))
θ(z(p, n, t))

exp
(∫ p

p0

ω∞+,∞−

)
,

ψq(p, n, t) = C(n, 0, t)
θ(z(p, n, t))
θ(z(p, 0, 0))

exp
(
n

∫ p

p0

ω∞+,∞− + t

∫ p

p0

Ωs
)
,(3.5)

where C(n, t), C(n, 0, t) are real-valued,

(3.6) C(n, t)2 =
θ(z(n− 1, t))
θ(z(n+ 1, t))

, C(n, 0, t)2 =
θ(z(0, 0))θ(z(−1, 0))
θ(z(n, t))θ(z(n− 1, t))

,

and the sign of C(n, t) is opposite to that of aq(n, t). ω∞+,∞− is the Abelian
differential of the third kind with poles at∞+ respectively∞− and Ωs is an Abelian
differential of the second kind with poles at ∞+ respectively ∞− whose Laurent
expansion is given by the coefficients (j + 1)ĉs−j associated with T̂Ls (see [21,
Sections 13.1, 13.2]). Then

τq(t)ψq(p, n, t) = π(p)ψq(p, n, t),
d

dt
ψq(p, n, t) = 2aq(n, t)Ĝs(p, n, t)ψq(p, n+ 1, t)− Ĥs+1(p, n, t)ψq(p, n, t)

= P̂q,2s+2(t)ψq(p, n, t),(3.7)
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where we use the hat to distinguish the quantities associated with T̂Ls from those
associated with TLg.

The two branches ψq,±(z, n, t) = ψq(p, n, t), p = (z,±), of the Baker-Akhiezer
function are linearly independent away from the branch points and their Wronskian
is given by

Wq(ψq,−(z), ψq,+(z)) =
R

1/2
2g+2(z)∏g

j=1(z − µj)
.

Here Wq(f, g) = aq(n)(f(n)g(n+1)−f(n+1)g(n)) is the usual modified Wronskian.
It is well known that the spectrum of Hq(t) is time independent and consists of

g + 1 bands

(3.8) σ(Hq) =
g⋃
j=0

[E2j , E2j+1].

For further information and proofs we refer to [21, Chapter 9].
Finally, let us renormalize the Baker-Akhiezer function

(3.9) ψ̃q(p, n, t) =
ψq(p, n, t)
ψq(p, 0, t)

such that ψ̃q(p, 0, t) = 1 and let us define αs(p, t) via

(3.10) exp
(
αs(p, t)

)
= ψq(p, 0, t) = C(0, 0, t)

θ(z(p, 0, t))
θ(z(p, 0, 0))

exp
(
t

∫ p

p0

Ωs
)
.

4. Commutation methods and N-soliton solutions

In this section we investigate commutation methods when applied to a quasi-
periodic finite-gap background solution. In particular, we compute the phase shift
(in the Jacobian variety) introduced by the solitons. This can be found for the
case of one-dimensional Schrödinger operators in [7] (see also [6] for the elliptic
case). The case of Jacobi operators seems to be missing and hence we provide the
corresponding results to fill this gap. We want to be rather brief and refer to [8] or
[21, Ch. 11] for further details in this connection. Since the time t does not play a
role in this section, we will just omit it.

We start by inserting an eigenvalue using the single commutation method. Let
Hq be a quasi-periodic finite-gap operator and let ψq,±(z, n) be the branches of the
Baker-Akhiezer function which are square summable near ±∞. Fix λ1 < inf σ(Hq),
σ ∈ [−1, 1], define

(4.1) uq,σ(λ1, n) =
1 + σ

2
ψq,+(λ1, n) +

1− σ
2

ψq,−(λ1, n),

and let Hq,σ be the (self-adjoint) commuted operator associated with

(4.2) (τq,σf)(n) = aq,σ(n)f(n+ 1) + aq,σ(n− 1)f(n− 1) + bq,σ(n)f(n),
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where (see [21, Sect. 11.2])

aq,σ(n) = −
√
aq(n)aq(n+ 1)uq,σ(λ1, n)uq,σ(λ1, n+ 2)

uq,σ(λ1, n+ 1)
,

bq,σ(n) = λ1 − aq(n)
(

uq,σ(λ1, n)
uq,σ(λ1, n+ 1)

+
uq,σ(λ1, n+ 1)
uq,σ(λ1, n)

)
= bq(n) + ∂∗

aq(n)uq,σ(λ1, n)
uq,σ(λ1, n+ 1)

.(4.3)

Hq − λ1 and Hq,σ − λ1 restricted to the orthogonal complements of their corre-
sponding one-dimensional null-spaces are unitarily equivalent and hence

σac(Hq,σ) = σac(Hq), σsc(Hq,σ) = σsc(Hq) = ∅,

σpp(Hq,σ) =
{
{λ1}, σ ∈ (−1, 1)
∅, σ ∈ {−1, 1} .

Lemma 4.1. Let Hq be a quasi-periodic finite-gap operator associated with the
Dirichlet divisor Dµ̂ and let Hq,σ, −1 < σ < 1, be the commuted operator associated
with (4.2). Then we have

(4.4) aq,σ(n) ∼ aq,±1(n), bq,σ(n) ∼ bq,±1(n) as n→ ±∞,

where Hq,±1 are the quasi-periodic finite-gap operators associated with the Dirichlet
divisors Dµ̂±1

defined via

(4.5) αp0(Dµ̂±1
) = αp0(Dµ̂)−Ap0(p1)−Ap0(∞+), p1 = (λ1,±).

Proof. That Hq,±1 is associated with the divisor Dµ̂±1
is shown in [21, Sect. 11.4]

and the asymptotics follow since uq,σ(λ1, n) ∼ 1±σ
2 uq,±1(λ1, n) as n→ ∓∞. �

Similarly, one obtains the following result for the double commutation method. Let
λ1 ∈ R\σess(Hq), define (see [21, Sect. 11.6, (2.30)])

cq,γ(λ1, n) =
1
γ

+
n∑

j=−∞
ψq,−(λ1, j)2 =

1
γ

+Wq,n(ψq,−(λ1), ψ̇q,−(λ1))

=
1
γ

+ aq(n)ψq,−(λ1, n)2φ̇q,−(λ1, n), γ 6= 0,(4.6)

and let Hq,γ be the doubly commuted operator associated with

aq,γ(n) = aq(n)

√
cq,γ(λ1, n− 1)cq,γ(λ1, n+ 1)

cq,γ(λ1, n)
,

bq,γ(n) = bq(n)− ∂∗ aq(n)ψq,−(λ1, n)ψq,−(λ1, n+ 1)
cq,γ(λ1, n)

.(4.7)

Then

Lemma 4.2. Let Hq be a quasi-periodic finite-gap operator associated with the
Dirichlet divisor Dµ̂ and let Hq,γ , 0 < γ < ∞, be the doubly commuted operator
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associated with (4.7). Then we have

aq,γ(n) =
{

aq(n)(1 +O(w(λ1)2n)) as n→ −∞
aq,∞(n)(1 +O(w(λ1)−2n)) as n→ +∞ ,

bq,γ(n) =
{

bq(n)(1 +O(w(λ1)2n)) as n→ −∞
bq,∞(n)(1 +O(w(λ1)−2n)) as n→ +∞ ,(4.8)

where w(z) = exp(
∫ (z,+)

p0
ω∞+,∞−) is the quasi-momentum map and Hq,∞ is the

quasi-periodic finite-gap operator associated with the Dirichlet divisor Dµ̂∞ defined
via

(4.9) αp0(Dµ̂
λ1

) = αp0(Dµ̂) + 2Ap0(λ̂1), λ̂1 = (λ1,+).

Proof. Since the double commutation method can be obtained via two single com-
mutation steps (see [21, Sect. 11.5]), the result is a consequence of our previous
lemma. The asymptotics follow from (4.7) and (3.5). �

Clearly, if we add k eigenvalues λ1, . . . , λk, then the asymptotics at +∞ are given
by the quasi periodic operator associated with the Dirichlet divisor

(4.10) αp0(Dµ̂
λ1,...,λk

) = αp0(Dµ̂) + 2
k∑
j=1

Ap0(λ̂j), λ̂j = (λj ,+).

In particular, by choosing at least one eigenvalue in each gap, we can attain any
prescribed asymptotics in the given isospectral class by Lemma 9.1 in [21].

Remark 4.3. If aq(n, t), bq(n, t) is a quasi-periodic solution of the Toda hierarchy
and ψq(p, n, t) is the corresponding time dependent Baker-Akhiezer function, then
aq,γ(n, t), bq,γ(n, t) is a solution of the Toda hierarchy which is centered at

(4.11) 2α(λ1)(n− v(λ1)t) + ln(γ) = 0,

where

(4.12) α(λ1) = Re
∫ (λ1,−)

p0

ω∞+,∞− , v(λ1) = − 1
α(λ1)

Re
∫ (λ1,−)

p0

Ωs.

5. Scattering theory

In this section we review scattering theory for Jacobi operators with steplike
quasi-periodic finite-gap background in the same isospectral class following [4]. Our
only new result in this section will be a full description of the effect of the double
commutation method on the scattering data in Lemma 5.5.

More precisely, we will take two quasi-periodic finite-gap operators H±q associ-
ated with the sequences a±q , b±q in the same isospectral class,

(5.1) σ(H+
q ) = σ(H−q ) ≡ Σ =

g⋃
j=0

[E2j , E2j+1],

but with possibly different Dirichlet data {µ̂±j }
g
j=1. We will add ± as a superscript

to all data introduced in Section 3 to distinguish between the corresponding data
of H+

q and H−q . To avoid excessive sub/superscripts we abbreviate

(5.2) ψ±q (z, n) = ψ±q,±(z, n) and ψ̄±q (z, n) = ψ±q,∓(z, n),
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that is, ψ±q (z, n) is the solution of H±q decaying near ±∞ and ψ̄±q (z, n) is the
solution of H±q decaying near ∓∞. Note that for λ ∈ Σ we have ψ̄±q (λ, n) =

ψ±q (λ, n).
Let a(n), b(n) be sequences satisfying

(5.3)
±∞∑
n=0

|n|
(
|a(n)− a±q (n)|+ |b(n)− b±q (n)|

)
<∞

and denote the corresponding operator by H.

Theorem 5.1. Assume (5.3). Then there exist solutions ψ±(z, .), z ∈ C, of τψ =
zψ satisfying

(5.4) lim
n→±∞

|w(z)∓n(ψ±(z, n)− ψ±q (z, n))| = 0,

where w(z) = exp(
∫ (z,+)

p0
ω∞+,∞−) is the quasi-momentum map.

Theorem 5.2. Assume (5.3). Then we have σess(H) = Σ, the point spectrum of H
is finite and confined to the spectral gaps of H±q , that is, σp(H) = {ρj}qj=1 ⊂ R\Σ.
Furthermore, the essential spectrum of H is purely absolutely continuous.

Using the fact that ψ±q (p, n) form an orthonormal basis for L2(∂Π+, dω
±), where

(5.5) dω± =

∏g
j=1(π − µ±j )

R
1/2
2g+2

dπ,

we can define

(5.6) K±(n,m) = 2Re
∫

Σ

ψ±(λ, n)ψ±q (λ,m)dω±

implying

(5.7) ψ±(z, n) =
±∞∑
m=n

K±(n,m)ψ±q (z,m).

Next we define the coefficients of the scattering matrix via the scattering relations

(5.8) ψ∓(λ, n) = α±(λ)ψ±(λ, n) + β±(λ)ψ±(λ, n), λ ∈ Σ,

where

α±(λ) =
W (ψ±(λ), ψ∓(λ))
W (ψ±(λ), ψ±(λ))

=

∏g
j=1(λ− µ±j )

R
1/2
2g+2(λ)

W (ψ−(λ), ψ+(λ)),(5.9)

β±(λ) =
W (ψ∓(λ), ψ±(λ))
W (ψ±(λ), ψ±(λ))

= ∓
∏g
j=1(z − µ±j )

R
1/2
2g+2(z)

W (ψ∓(λ), ψ±(λ)),

and Wn(f, g) = a(n)(f(n)g(n+ 1)− f(n+ 1)g(n)) denotes the Wronskian. Trans-
mission T±(λ) and reflection R±(λ) coefficients are then defined by

(5.10) T±(λ) = α−1
± (λ), R±(λ) =

β±(λ)
α±(λ)

=
W (ψ∓(λ), ψ±(λ))
W (ψ±(λ), ψ∓(λ))

.

The norming constants γ±,j corresponding to ρj ∈ σp(H) are given by

(5.11) γ−1
±,j =

∑
n∈Z
|ψ±(ρj , n)|2, 1 ≤ j ≤ q.
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Note that γ±,j = 0 if ρj coincides with a pole µ̂±` ∈ Π± of ψ±(z, .). To avoid
this, one could remove the poles by introducing ψ̂±(z, .) as we did in [4]. Since
this normalization cancels out in the Gel’fand-Levitan-Marchenko equation and
unnecessarily complicates the formulas below, we will allow zero norming constants.

Moreover, ψ±(ρj , .) = c±j ψ∓(ρj , .) with c+j c
−
j = 1.

Lemma 5.3. The coefficients T±(λ), R±(λ) are bounded for λ ∈ Σ, continuous for
λ ∈ Σ except at possibly the band edges Ej, and fulfill

T+(λ)T−(λ) + |R±(λ)|2 = 1, λ ∈ Σ,(5.12)

T±(λ)R±(λ) + T±(λ)R∓(λ) = 0, λ ∈ Σ.(5.13)

In particular,

(5.14) |T±(λ)|2
g∏
j=1

λ− µ±j
λ− µ∓j

+ |R±(λ)|2 = 1,

and hence |R±(λ)|2 ≤ 1 with equality only possibly at the band edges {Ej}. The
transmission coefficients T±(λ) have a meromorphic continuation to C\Σ with sim-
ple poles at µ±j if µ̂±j ∈ Π∓ and simple poles at ρj,

(5.15) (ResρjT±(λ))2 = γ+,jγ−,j
R2g+2(ρj)∏g
l=1(ρj − µ±l )2

.

In addition, T±(z) ∈ R as z ∈ R\Σ and

(5.16) T±(∞) =
−1∏

n=−∞

a(n)
a−q (n)

∞∏
n=0

a(n)
a+
q (n)

.

The sets

(5.17) S±(H) = {R±(λ), λ ∈ Σ; (ρj , γ±,j), 1 ≤ j ≤ q}

are called left/right scattering data for H.

Theorem 5.4. The kernel K±(n,m) of the transformation operator satisfies the
Gel’fand-Levitan-Marchenko equation

(5.18) K±(n,m) +
±∞∑
l=n

K±(n, l)F±(l,m) =
δ(n,m)
K±(n, n)

, ±m ≥ ±n,

where

F±(m,n) = 2Re
∫

Σ

R±(λ)ψ±q (λ,m)ψ±q (λ, n)dω± +
q∑
j=1

γ±,jψ
±
q (ρj , n)ψ±q (ρj ,m).

(5.19)

Note that the apparent poles µ±` cancel with the zeros of dω± and γ±,j at these
points.

The operator H can be uniquely reconstructed from S±(H) by solving the Gel’fand-
Levitan-Marchenko equation. We refer to [4] for further details.

Finally, we come to our principal new result in this section and investigate the
connection with the double commutation method. The scattering data of the op-
erators H, Hγ are related as follows.
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Lemma 5.5. Let H be a given Jacobi operator satisfying (5.3) and choose ρq+1 ∈
R\σ(H), γ > 0. Then the doubly commuted operator Hγ , γ > 0, defined via
ψ−(ρq+1) as in Section 4, satisfies

(5.20) aγ(n) ∼
{

a−q (n) as n→ −∞
a∞q (n) as n→ +∞ , bγ(n) ∼

{
b−q (n) as n→ −∞
b∞q (n) as n→ +∞ ,

such that (5.3) still holds, where H∞q is associated with Dirichlet data given by

(5.21) αp0(Dµ∞) = αp0(Dµ+) + 2Ap0(ρ̂q+1).

It has the scattering data

R−,γ(λ) = R−(λ),(5.22)

R+,γ(λ) =
θ(z∞(λ̂, 0))

θ(z+(λ̂, 0))

θ(z+(λ̂∗, 0))

θ(z∞(λ̂∗, 0))
B(λ, ρq+1)2R+(λ),(5.23)

T+,γ(z) = C
θ(z+(ẑ∗, 0))
θ(z∞(ẑ∗, 0))

B(z, ρq+1)T+(z),(5.24)

T−,γ(z) =
1
C

θ(z∞(ẑ, 0))
θ(z+(ẑ, 0))

B(z, ρq+1)T−(z),(5.25)

where

(5.26) B(z, ρ) = exp
(
−
∫ (ρ,+)

E(ρ)

ωẑẑ∗

)
is the Blaschke factor and λ̂ = (λ,+), ẑ = (z,+). The constant C is given by

(5.27) C =

√
θ(z∞(∞+, 0))θ(z∞(∞−, 0))
θ(z+(∞+, 0))θ(z+(∞−, 0))

> 0.

The norming constants γ−,j corresponding to ρj ∈ σp(H), j = 1, . . . , q, (cf. (5.11))
remain unchanged except for an additional eigenvalue ρq+1 with norming constant
γ−,q+1 = γ. The norming constants γ+,j,γ , j = 1, . . . , q, are given by

(5.28) γ+,j,γ =
1
C2

(
θ(z∞(ρ̂j , 0))
θ(z+(ρ̂j , 0))

)2

B(ρj , ρq+1)2γ+,j , ρ̂j = (ρj ,+),

and the additional norming constant γ+,q+1,γ reads
(5.29)

γ+,q+1,γ = C2

∏g
j=1(ρq+1 − µ+

j )2

γR2g+2(ρq+1)

(
θ(z+(ρ̂∗q+1, 0))
θ(z∞(ρ̂∗q+1, 0))

T+(ρq+1)Resz=ρq+1B(z, ρq+1)
)2

.

Proof. First we show that (5.3) still holds. Note that

aγ(n) =
{

a(n)(1 +O(w(ρq+1)2n)) as n→ −∞
a∞(n)(1 +O(w(ρq+1)−2n)) as n→ +∞ ,

bγ(n) =
{

b(n)(1 +O(w(ρq+1)2n)) as n→ −∞
b∞(n)(1 +O(w(ρq+1)−2n)) as n→ +∞ .

Hence the asymptotics near −∞ are clearly unchanged and for +∞ it suffices to
check γ =∞. By Lemma 5.7 below,

c∞(ρq+1, n+ 1)
c∞(ρq+1, n)

=
c∞(ρq+1, n+ 1)ψ+(ρq+1, n+ 1)
c∞(ρq+1, n)ψ+(ρq+1, n+ 1)

=
c+q,∞(ρq+1, n+ 1)

c+q,∞(ρq+1, n)
(1 + C(n)),
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where
∑
n∈N n|C(n)| <∞. Therefore

(5.30) a∞(n) = a(n)

√
c∞(ρq+1, n− 1)c∞(ρq+1, n+ 1)

c∞(ρq+1, n)
→ aq,∞(n)

such that
∑
n∈N n|a∞(n)− aq,∞(n)| <∞ and similarly for b∞(n).

Now we turn to the scattering data. By [21, Lemma 11.19], the Jost solutions
ψ±,γ(z, n) of Hγ are up to a constant given by
(5.31)

u±,γ(z, n) =
cγ(ρq+1, n)ψ±(z, n)− 1

z−ρq+1
ψ−(ρq+1, n)Wn−1(ψ−(ρq+1), ψ±(z))√

cγ(ρq+1, n− 1)cγ(ρq+1, n)
.

Since this constant is equal to 1 for ψ−,γ(z, n) the fact that R− is unchanged
follows from its definition and [21, (11.107)]. The transmission coefficients are
reconstructed from R−(λ) using [4, Theorem 3.6] and R+,γ(λ) follows then from

R+,γ(λ) = −T−,γ(λ)
T−,γ(λ)

R−,γ(λ).

That the norming constants γ−,j are unchanged follows from [21, Lemma 11.14].
For γ+,j,γ , j = 1, . . . , q + 1, we use (5.15)

γ+,j,γ =
∏g
l=1(ρj − µ±l )2(ResρjT±,γ(λ))2

R2g+2(ρj)γ−,j
.

�

Remark 5.6. If we choose ρ = ρj ∈ σp(H) and γ = −γ−,j, then the eigenvalue
ρj is removed from the spectrum and it is straightforward to see that an analogous
result holds.

The following result used in the previous proof is of independent interest.

Lemma 5.7. Let H be a given Jacobi operator satisfying (5.3). Then for every
z ∈ C\Σ and every k ∈ N we have

(5.32) ψ∓(z, n)ψ±(z, n+k)−α±(z)ψ±q (z, n+k)ψ̄±q (z, n) = (k+1)|w(z)|kC±(z, n),

where
∑
±n∈N n|C±(z, n)| <∞.

Similarly, one has

(5.33) c∞(z, n)ψ±(z, n+ k)− α±(z)c±q,∞(z, n)ψ±q (z, n+ k) = C̃±(z, n, k),

where
∑
±n∈N n|C̃±(z, n, k)| <∞ and c∞(z, n), c±q,∞(z, n) are defined as in (4.6).

Proof. The proof is an extension of [14, Lemma 3.4] and we will only consider the
’+’ case. First recall that the Green’s functions of H+

q and H are given by

G+
q (z, n,m) =

ψ̄+
q (z,m)ψ+

q (z, n)

Wq(ψ̄+
q (z), ψ+

q (z))
, G(z, n,m) =

ψ−(z,m)ψ+(z, n)
W (ψ−(z), ψ+(z))

, n ≥ m,

respectively. Considering matrix elements in the second resolvent identity (H −
z)−1 − (H+

q − z)−1 = (H − z)−1(H+
q −H)(H+

q − z)−1 we obtain

C+(z, n) =
|w(z)|−k

k + 1

∑
m∈Z

W (ψ−(z), ψ+(z))G(z, n,m)(H+
q −H)G+

q (z,m, n+ k)
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for z ∈ C\σ(H). Since the poles of W (ψ−(z), ψ+(z))G(z, n,m) at z ∈ σp(H) are
removable, the formula holds for all z ∈ C\Σ. Estimating the right hand side using
|G(z, n,m)| ≤ const |w(z)||n−m| and |G+

q (z, n + k,m)| ≤ const |w(z)||n+k−m| we
obtain

|C+(z, n)| ≤ C|w(z)|−k

k + 1

∑
m∈Z
|w(z)||n−m|+|n−m+k|(2|a(m)−a+

q (m)|+|b(m)−b+q (m)|).

We split the sum into three parts

|w(z)||n−m|+|n−m+k| =

 |w(z)|k|w(z)|2|n−m| m < n,
|w(z)|k n ≤ m ≤ n+ k,

|w(z)|k|w(z)|2|n−m+k| m > n+ k.

Since (5.3) holds for c(m) = 2|a(m)−a+
q (m)|+|b(m)−b+q (m)| and we have |w(z)| < 1

for z ∈ C\Σ, we can apply Lemma A.1 to verify
∑
n∈N n|C+(z, n)| <∞.

The claim (5.33) is a consequence of (4.6) and (5.32)

c∞(z, n)ψ+(z, n+ k)2 =
n∑

j=−∞
ψ−(z, j)2ψ+(z, n+ k)2

= α+(z)2c+q,∞(z, n)ψ+
q (z, n+ k)2 + C̃±(z, n, k)ψ+

q (z, n+ k),

where C̃±(z, n, k) again can be estimated using Lemma A.1. �

6. Inverse scattering transform

Let a(n, t), b(n, t) be a solution of the Toda hierarchy satisfying

(6.1)
±∞∑
n=0

|n|
(
|a(n, t)− a±q (n, t)|+ |b(n, t)− b±q (n, t)|

)
<∞.

Note that by Lemma 2.3 it suffices to check (6.1) for one t0 ∈ R (as background
take H−q (t) and insert g eigenvalues such that the asymptotics on the other side
are given by H+

q (t)).
Jost solutions, transmission and reflection coefficients depend now on an addi-

tional parameter t ∈ R. The Jost solutions ψ±(z, n, t) are normalized such that

ψ̃±(z, n, t) = ψ̃±q (z, n, t) (1 + o(1)) as n→ ±∞,
where (c.f. (3.9))

(6.2) ψ̃±q (z, n, t) =
ψ±q (z, n, t)

ψ±q (z, 0, t)
=: exp(−α±s (z, t))ψ±q (z, n, t).

Moreover, we set

(6.3) exp(ᾱ±s (z, t)) = ψ̄±q (z, 0, t).

Note that we have exp(α±s (z, t)) = exp(ᾱ±s (z, t)) for λ ∈ Σ.
Transmission and reflection coefficients are then defined via the normalized Jost

solutions ψ̃±(z, n, t). Moreover,

(6.4) σ(H(t)) ≡ σ(H), t ∈ R.
To avoid the poles of the Baker-Akhiezer function, we will assume that none of

the eigenvalues ρj coincides with a Dirichlet eigenvalue µ±k (0, 0). This can be done
without loss of generality by shifting the initial time t0 = 0 if necessary.
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Remark 6.1. Due to this assumption there is no need to remove these poles for the
definition of γ±,j, as we did in [2], [4]. Since the Dirichlet eigenvalues rotate in their
gap, the factor needed to remove the poles would only unnecessarily complicate the
time evolution of the norming constants. Moreover, these factors would eventually
cancel in the Gel’fand-Levitan-Marchenko equation, which is the only interesting
object from the inverse spectral point of view in the first place.

Lemma 6.2. Let (a(t), b(t)) be a solution of the Toda hierarchy such that (5.3)
holds. The functions

(6.5) ψ±(z, n, t) = exp(α±s (z, t))ψ̃±(z, n, t)

satisfy

(6.6) H(t)ψ±(z, n, t) = zψ±(z, n, t),
d

dt
ψ±(z, n, t) = P̂2s+2(t)ψ±(z, n, t).

Proof. We proceed as in [3], [20, Theorem 3.2]. The Jost solutions ψ±(z, n, t)
are continuously differentiable with respect to t by the same arguments as for z
(compare [2, Theorem 4.2]) and the derivatives are equal to the derivatives of the
Baker-Akhiezer functions as n→ ±∞.

For z ∈ ρ(H), the solution u±(z, n, t) of (6.6) with initial condition ψ±(z, n, 0) ∈
`2±(Z) remains square summable near ±∞ for all t ∈ R (see [19] or [21, Lemma
12.16]), that is, u±(z, n, t) = C±(t)ψ±(z, n, t). Letting n→ ±∞ we see C±(t) = 1.
The general result for all z ∈ C now follows from continuity. �

This implies

Theorem 6.3. Let (a(t), b(t)) be a solution of the Toda hierarchy such that (5.3)
holds. The time evolution for the scattering data is given by

T±(z, t) = T±(z, 0) exp(α∓s (z, t)− ᾱ±s (z, t)),(6.7)

R±(λ, t) = R±(λ, 0) exp(α±s (λ, t)− ᾱ±s (λ, t)), λ ∈ Σ,(6.8)

γ±,j(t) = γ±,j(0) exp(2α±s (ρj , t)), 1 ≤ j ≤ q.(6.9)

Proof. Since the Wronskian of two solutions satisfying (6.6) does not depend on n
or t (see [19], [21, Lemma 12.15]), we have

T±(z, t) =
W (ψ̃±(z, t), ψ̃±(z, t))
W (ψ̃∓(z, t), ψ̃±(z, t))

=
exp(α∓s (z, t) + α±s (z, t))
exp(ᾱ±s (z, t) + α±s (z, t))

W (ψ±(z, t), ψ±(z, t))
W (ψ∓(z, t), ψ±(z, t))

= exp(α∓s (z, t)− ᾱ±s (z, t))T±(z, 0).

The result for R±(λ, t) follows similarly. The time dependence of γ±,j(t) follows
from ‖ψ±(ρj , ., t)‖ = ‖Ûs(t, 0)ψ±(ρj , ., 0)‖ = ‖ψ±(ρj , ., 0)‖. �

Corollary 6.4. The quantity T±(λ, t)T∓(λ, t) = 1 − |R±(λ, t)|2, λ ∈ Σ, does not
depend on t.

Another straightforward consequence is:
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Theorem 6.5. The time dependence of the kernel of the Gel’fand-Levitan-Marchenko
equation is given by

F±(m,n, t) = 2Re
∫

Σ

R±(λ, 0)ψ±q (λ,m, t)ψ±q (λ, n, t)dω±(0)

+
q∑
j=1

γ±,j(0)ψ±q (ρj ,m, t)ψ±q (ρj , n, t).

Proof. Just employ Theorem 6.3 to rewrite

F±(m,n, t) =
∫
∂Π+

R±(p, t)ψ̃±q (p,m, t)ψ̃±q (p, n, t)dω±(t)

+
q∑
j=1

γ±,j(t)ψ̃±q (ρj , n, t)ψ̃±q (ρj ,m, t),

where we also use that exp(α±s (λ, t) + ᾱ±s (λ, t)) =
∏g
j=1

λ−µ±j (0,t)

λ−µ±j (0,0)
. �

Finally we note ([19], [21, Section 14.5])

Lemma 6.6. Let (a(t), b(t)) be a solution of the Toda hierarchy such that (5.3)
holds. Choose ρ ∈ R\σ(H) and γ > 0. Then (aγ(t), bγ(t)) defined via ψ−(ρ, n, t)
using the double commutation method is again a solution of the Toda hierarchy such
that (5.3), with H+

q (t) accordingly changed, holds.

Acknowledgments. I.E. gratefully acknowledges the extraordinary hospitality
of the Faculty of Mathematics of the University of Vienna during two stays in 2006,
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Appendix A. Some estimates

In the proof of Lemma 5.7 we need the following elementary result. Consider a
sequence c ∈ `(Z) and abbreviate

(A.1) ‖c‖∞ = sup
n∈Z
|c(n)|, ‖c‖1 =

∞∑
n=0

|c(n)|, ‖c‖1,1 =
∞∑
n=1

n|c(n)|.

Lemma A.1. Suppose w is some complex number with |w| < 1 and c ∈ `(Z)
satisfies ‖c‖∞, ‖c‖1,1 <∞.

Then

‖
∞∑
m=0

c(n+m)wm‖1,1 ≤
1

1− |w|
‖c‖1,1

and

‖
∞∑
m=0

c(n−m)wm‖1,1 ≤
1

1− |w|
‖c‖1,1 +

|w|
(1− |w|)2

‖c‖1 +
|w|2

(1− |w|)3
‖c‖∞.



SOLITON SOLUTIONS OF THE TODA HIERARCHY 15

Proof. The first estimate follows from

‖
∞∑
m=0

c(n+m)wm‖1,1 =
∞∑
n=1

n
∣∣∣ ∞∑
m=0

c(n+m)wm
∣∣∣

≤
∞∑
n=0

∞∑
m=0

(n+m)|c(n+m)||w|m

=
∞∑
m=0

‖c‖1,1|w|m =
1

1− |w|
‖c‖1,1.

Similarly, the second follows from

‖
∞∑
m=0

c(n−m)wm‖1,1 =
∞∑
n=0

n
∣∣∣ ∞∑
m=0

c(n−m)wm
∣∣∣

≤
∞∑
m=0

(
m(m− 1)

2
‖c‖∞ +m‖c‖1 + ‖c‖1,1

)
|w|m.

�
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[15] J. Pe lka and J. Zagrodziński, Effective velocity of soliton in the presence of a periodic

background, Act. Phys. Poln. A 100, No.6, 871–877 (2001).
[16] J. Rubenstein, Sine-Gordon equation, J. Math. Phys. 11(1), 258–266 (1969).



16 I. EGOROVA, J. MICHOR, AND G. TESCHL

[17] H. J. Shin, Soliton on a cnoidal wave background in the coupled nonlinear Schrödinger

equation, J. Phys. A: Math. Gen. 37, 8017–8030 (2004).

[18] H. J. Shin, The dark soliton on a cnoidal wave background, J. Phys. A: Math. Gen. 38,
3307–3315 (2005).

[19] G. Teschl, On the Toda and Kac-van Moerbeke hierarchies, Math. Z. 231, 325–344

(1999).
[20] G. Teschl, Inverse scattering transform for the Toda hierarchy, Math. Nach. 202, 163–

171 (1999).

[21] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surv.
and Mon. 72, Amer. Math. Soc., Rhode Island, 2000.

[22] G. Teschl, Algebro-geometric constraints on solitons with respect to quasi-periodic back-

grounds, Bull. London Math. Soc. 39-4, 677–684 (2007).
[23] M. Toda, Theory of Nonlinear Lattices, 2nd enl. ed., Springer, Berlin, 1989.

Institute for Low Temperature Physics, 47,Lenin ave, 61164 Kharkiv, Ukraine

E-mail address: egorova@ilt.kharkov.ua

Faculty of Mathematics, Nordbergstrasse 15, 1090 Wien, Austria, and International

Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien,
Austria

E-mail address: Johanna.Michor@esi.ac.at

URL: http://www.mat.univie.ac.at/~jmichor/

Faculty of Mathematics, Nordbergstrasse 15, 1090 Wien, Austria, and International

Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien,

Austria
E-mail address: Gerald.Teschl@univie.ac.at

URL: http://www.mat.univie.ac.at/~gerald/

mailto:egorova@ilt.kharkov.ua
mailto:Johanna.Michor@esi.ac.at
http://www.mat.univie.ac.at/~jmichor/
mailto:Gerald.Teschl@univie.ac.at
http://www.mat.univie.ac.at/~gerald/

	1. Introduction
	2. The Toda hierarchy
	3. Quasi-periodic finite-gap solutions
	4. Commutation methods and N-soliton solutions
	5. Scattering theory
	6. Inverse scattering transform
	Appendix A. Some estimates
	References

