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Abstract. We show that for a one-dimensional Schrödinger operator with a
potential, whose (j + 1)’th moment is integrable, the j’th derivative of the

scattering matrix is in the Wiener algebra of functions with integrable Fourier

transforms. We use this result to improve the known dispersive estimates
with integrable time decay for the one-dimensional Schrödinger equation in

the resonant case.

1. Introduction

This paper is concerned with the one-dimensional Schrödinger equation

iψ̇(x, t) = Hψ(x, t), H = − d2

dx2
+ V (x), (x, t) ∈ R2, (1.1)

with a real-valued potential V contained in one of the spaces L1
σ = L1

σ(R), σ ∈ R,
associated with the norms

‖ψ‖Lpσ =

{(∫
R(1 + |x|)pσ|ψ(x)|pdx

)1/p
, 1 ≤ p <∞,

supx∈R(1 + |x|)σ|ψ(x)|, p =∞.

We recall (e.g., [15] or [16, Sect. 9.7]) that for V ∈ L1
1 the operator H has a

purely absolutely continuous spectrum on [0,∞) and a finite number of eigenvalues
in (−∞, 0). Associated with the absolutely continuous spectrum is the scattering
matrix

S(k) =

(
T (k) R−(k)
R+(k) T (k)

)
,

which maps incoming to outgoing states at a given energy ω = k2 ≥ 0. Here T is
the transmission coefficient and R± are the reflection coefficients with respect to
right and left incident. At the edge of the continuous spectrum k = 0 the scattering
matrix generically looks like

S(0) =

(
0 −1
−1 0

)
.

More precisely, this happens when the zero energy is non-resonant, that is, if the
equation Hf0 = 0 has no bounded (distributional) solution. In the resonant situa-
tion the behavior of the scattering matrix is more delicate. For V ∈ L1

1 it is already
nontrivial to establish continuity of the scattering matrix at k = 0 (for V ∈ L1
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l’Hospital’s rule suffices). This question arose around 1985 in an attempt to clarify
whether the low-energy asymptotics of the scattering matrix, obtained for V ∈ L1

2

in [6], are valid for V ∈ L1
1. The problem was solved independently by Guseinov

[12] and Klaus [13] (for a refined version see [1] and [9, Theorem 2.1]). It also
plays an important role in semiclassical analysis, see [5] and the references therein.
Furthermore, if V ∈ L1

j+1 with j > 0, then, away from 0, one can take derivatives
of the scattering matrix up to order j, and in the non-resonant case it is again easy
to see that they are continuous at k = 0. This clearly raises the question about
continuity at k = 0 of the j’th derivative in the resonant case. We will establish
this as one of our main results in Theorem 2.2. This result is new even for the first
derivative. We remark, that if V decays exponentially, then S(k) is analytic in a
neighborhood of k = 0, and the full Taylor expansion can be obtained [2, 3].

It is important to emphasize that this question is not only of interest in scattering
theory, but also plays a role in solving the Korteweg–de Vries equation via the
inverse scattering transform (see e.g., [11], where continuity of higher derivatives is
needed), and in deriving dispersive estimates for (1.1). The latter case has attracted
considerable interest (e.g. [9, 10] and the references therein) due to its importance
for proving asymptotic stability of solitons for the associated nonlinear evolution
equations (see e.g. [4, 14]).

As an application of our results, we will establish the following dispersive decay
estimate with integrable time decay in the resonant case:

Theorem 1.1. Suppose V ∈ L1
3(R) and suppose there is a bounded solution f0 of

Hf0 = 0 satisfying the normalization limx→∞(|f0(x)|2 + |f0(−x)|2) = 2. Denote by
P0 : L1

2 → L∞−2 the operator given by the kernel [P0](x, y) = f0(x)f0(y). By Pac we

denote the projector onto the absolutely continuous subspace of H. Then e−itHPac
extends to a bounded operator L1

2 → L∞−2 satisfying the following decay estimate:

‖e−itHPac − (4πit)−
1
2P0‖L1

2→L∞−2
= O(t−3/2), t→∞. (1.2)

This theorem is an improvement of an earlier result by Goldberg [10], who es-
tablished it for V ∈ L1

4(R). If there is no resonance (i.e. no bounded solution) this
result (with P0 = 0) was shown for V ∈ L1

2(R) in [9, Theorem 1.2]. For extensions
to discrete one-dimensional Schrödinger equations (Jacobi operators) see [7], [8].

2. Low energy scattering

In this section we establish some properties of the scattering data for our operator
H with V ∈ L1

j+1, j ≥ 0. To this end we introduce the Banach algebra A of Fourier
transforms of integrable functions:

A =

{
f(k) : f(k) =

∫
R

eikpf̂(p)dp, f̂(·) ∈ L1(R)

}
(2.1)

with the norm ‖f‖A = ‖f̂‖L1 , plus the corresponding unital Banach algebra A1:

A1 =

{
f(k) : f(k) = c+

∫
R

eikpĝ(p)dp, ĝ(·) ∈ L1(R), c ∈ C
}

(2.2)

with the norm ‖f‖A1
= |c|+‖ĝ‖L1 . We also use the fact, which is known as Wiener’s

lemma [17], that if f ∈ A1 \ A and f(k) 6= 0 for all k ∈ R then f−1(k) ∈ A1.



ZERO ENERGY SCATTERING FOR SCHRÖDINGER OPERATORS AND APPLICATIONS 3

First we recall a few facts from scattering theory [6], [15]. If V ∈ L1
1, there exist

Jost solutions f±(x, k) of Hf = k2f , k ∈ C+, which asymptotically behave like
f±(x, k) ∼ e±ikx as x→ ±∞. These solutions are given by

f±(x, k) = e±ikxh±(x, k), h±(x, k) = 1±
∫ ±∞

0

B±(x, y)e±2ikydy, (2.3)

where B±(x, y) are real-valued and satisfy (see [6, §2] or [15, §3.1])

|B±(x, y)| ≤ eγ±(x)η±(x+ y), (2.4)

| ∂
∂x
B±(x, y)± V (x+ y)| ≤ 2eγ±(x)η±(x+ y)η±(x), (2.5)

with

γ±(x) =

∫ ±∞
x

(y − x)|V (y)|dy, η±(x) = ±
∫ ±∞
x

|V (y)|dy. (2.6)

Since η± ∈ L1(R±), we conclude that

h±(x, ·)− 1, h′±(x, ·) ∈ A, ∀x ∈ R. (2.7)

Here and throughout the rest of this paper a prime will always denote a derivative
with respect to the spatial variable x. As an immediate consequence of the estimates
(2.4) and (2.5) we have the following strengthening of (2.7):

Lemma 2.1. Let V ∈ L1
j+1. Then ∂l

∂kl
(h±(x, k)− 1), ∂l

∂kl
h′±(x, k) are contained in

A for 0 ≤ l ≤ j. Moreover, for ±x ≥ 0, the A-norms of these expressions do not
depend on x.

The fact that f±(x,−k) also solve Hf = k2f for k ∈ R leads to the scattering
relations

T (k)f±(x, k) = R∓(k)f∓(x, k) + f∓(x,−k), (2.8)

where the transmission coefficient T and the reflection coefficients R± can be ex-
pressed in terms of Wronskians. To this end we denote by

W (f(x), g(x)) = f(x)g′(x)− f ′(x)g(x)

the usual Wronskian and set

W (k) = W (f−(x, k), f+(x, k)), W±(k) = W (f∓(x, k), f±(x,−k)).

Then

T (k) =
2ik

W (k)
, R±(k) = ∓W±(k)

W (k)
. (2.9)

The transmission and reflection coefficients are elements of the Wiener algebra,
which was established in [9, Theorem 2.1]. Here we extend this result to the deriva-
tives of the scattering data.

Theorem 2.2. If V ∈ L1
j+1, then dl

dkl
(T (k) − 1) ∈ A and dl

dkl
R±(k) ∈ A for

0 ≤ l ≤ j.

Proof. We only focus on the resonant case, since the other case is straightforward.
First of all, we abbreviate h±(k) = h±(0, k), h′±(k) = h′±(0, k). Then (2.3) leads

us to

W (k) = 2ikh+(k)h−(k) + h−(k)h′+(k)− h′−(k)h+(k), (2.10)

W±(k) = h∓(k)h′±(−k)− h±(−k)h′∓(k). (2.11)
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Following [9] we introduce

Φ±(k) = h±(k)h′±(0)− h′±(k)h±(0), (2.12)

K±(x, y) = ±
∫ ±∞
y

B±(x, z)dz, D±(x, y) = ±
∫ ±∞
y

∂

∂x
B±(x, z)dz, (2.13)

where B±(x, y) are given by (2.3). Again K±(0, y) is denoted by K±(y) and similar
for D±(y). In [9, Theorem 2.1], the following equation for Φ±(k) was obtained:

Φ±(k) = 2ikΨ±(k), Ψ±(k) =

∫ ±∞
0

H±(y)e±2ikydy, (2.14)

where

H±(x) = D±(x)h±(0)−K±(x)h′±(0), ±x ≥ 0. (2.15)

Moreover, H± satisfies an estimate similar to (2.4), as we will show in Lemma 2.3
below. As a consequence, Ψ± and its derivatives up to order j will be in the Wiener
algebra.

Next, a straightforward computation (cf. [9]) shows

W (k)

2ik
= h−(k)h+(k) +


h+(k)
h−(0) Ψ−(k)− h−(k)

h+(0) Ψ+(k), h+(0)h−(0) 6= 0,
h′+(k)

h′−(0) Ψ−(k)− h′−(k)

h′+(0) Ψ+(k), h+(0) = h−(0) = 0,

and since W (k)
2ik = T (k)−1 6= 0 for all k ∈ R, and T (k)→ 1 as k →∞, we conclude

that dl

dkl
(T (k)− 1) ∈ A for 0 ≤ l ≤ j. Analogously,

W±(k)

2ik
=


h±(−k)
h∓(0) Ψ∓(k)− h∓(k)

h±(0) Ψ±(−k), h+(0)h−(0) 6= 0,
h′±(−k)

h′∓(0) Ψ∓(k)− h′∓(k)

h′±(0) Ψ±(−k), h+(0) = h−(0) = 0,

and hence R±(k) = ∓W±(k)
2ik T (k) has the claimed properties. �

To complete the proof of Theorem 2.2 we need the following result, which is an
extension of [9, Lemma 2.2]:

Lemma 2.3. Let H±(x) be given by (2.15). For V ∈ L1
1 the folowing estimate is

valid:

|H±(x)| ≤ Ĉη±(x), ±x ≥ 0, (2.16)

with some constant Ĉ > 0 and η±(x) given by (2.6). Moreover, for Ψ±(k) defined
by (2.14) and for V ∈ L1

j+1 we have

dl

dkl
Ψ±(k) ∈ A, 0 ≤ l ≤ j.

Proof. It suffices to prove the estimate for H±. The Marchenko equation (§3.5 in
[15]) states that the kernels B±(x, y) solve the equations

F±(x+ y) +B±(x, y)±
∫ ±∞

0

B±(x, t)F±(x+ y + z)dz = 0, (2.17)

where the functions F±(x) are absolutely continuous with xF ′±(x) ∈ L1(R±) and

|F±(x)| ≤ Cη±(x), ±x ≥ 0, (2.18)
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with η± from (2.6). Now the calculations in [9, Lemma 2.2] lead to the following
integral equation for H±(x):

H±(x)∓
∫ ±∞

0

H±(y)F±(x+ y)dy = G±(x), (2.19)

G±(x) = h±(0)
(∫ ±∞

0

B±(0, y)F±(x+ y)dy ± F±(x)
)
.

The estimates (2.4) and (2.18) imply

|G±(x)| ≤ C̃η±(x), ±x ≥ 0. (2.20)

Now, for a given potential V fix N > 0 such that

D(N) := max
±

(
±C

∫ ±∞
±N

η±(y)dy

)
∈ (0, 1),

where C is given by (2.18). Then we can rewrite (2.19) in the form

H±(x)∓
∫ ±∞
±N

H±(y)F±(x+ y)dy = G±(x,N), (2.21)

G±(x,N) = G±(x)±
∫ ±N

0

H±(y)F±(x+ y)dy.

From (2.13) and the estimates (2.4)–(2.5) we deduce H± ∈ L∞(R±) ∩ C(R). We
also have

|G±(x,N)| ≤ C(N)η±(x) (2.22)

by the boundedness of H±, the estimate (2.20), and monotonicity of η±(x). Ap-
plying to (2.21) the method of successive approximations we get

|H±(x)| ≤ C(N)η±(x)

∞∑
n=0

(
±C

∫ ±∞
±N

η±(y)dy

)n
≤ Ĉ(N)η±(x),

with Ĉ(N) = C(N)(1 − D(N))−1. This implies (2.16). The rest follows from
(2.14). �

For later use we note that in the resonant case the Jost solutions are dependent
at k = 0. If we define γ via

f+(x, 0) = γf−(x, 0), (2.23)

then a straightforward calculation using the scattering relations (2.8) as well as
|T (k)|2 + |R±(k)|2 = 1 shows

T (0) =
2γ

1 + γ2
, R±(0) = ±1− γ2

1 + γ2
. (2.24)

In particular, all three quantities are real-valued since f∓(x, 0) ∈ R and hence
γ ∈ R.

To establish Theorem 1.1 we need the following generalization of Lemma 2.1:

Lemma 2.4. Let V ∈ L1
j+1 with j ≥ 1. Then ∂l

∂kl

(h±(x,k)−h±(x,0)
k

)
as well as

∂l

∂kl

(h′±(x,k)−h′±(x,0)

k

)
are contained in A for 0 ≤ l ≤ j − 1. Moreover, for ±x ≥ 0

the A-norms of these expressions do not depend on x.



6 I. EGOROVA, M. HOLZLEITNER, AND G. TESCHL

Proof. Using (2.3) and Fubini, a little calculation shows

h±(x, k)− h±(x, 0)

k
= ±2i

∫ ±∞
0

B±(x, z)

(∫ z

0

e±2ikydy

)
dz

= ±2i

∫ ±∞
0

e±2iky

(∫ ±∞
y

B±(x, z)dz

)
dy = 2i

∫ ±∞
0

K±(x, y)e±2ikydy.

Now after differentiating with respect to k the claim follows by (2.4). For the second
item we can proceed exactly in the same way. �

Similarly,

Lemma 2.5. Let V ∈ L1
j+1 with j ≥ 1. Then dl

dkl

(Ψ±(k)−Ψ±(0)
k

)
∈ A for 0 ≤ l ≤

j − 1.

Proof. This follows as in the previous lemma using the estimate for H± from
Lemma 2.3. �

Combining the last two lemmas we obtain:

Theorem 2.6. Let V ∈ L1
j+1 with j ≥ 1. Then dl

dkl

(T (k)−T (0)
k

)
and dl

dkl

(R±(k)−R±(0)
k

)
are elements of A for 0 ≤ l ≤ j − 1.

3. Dispersive decay estimates

In this section we prove the integrable dispersive decay estimate (1.2) for the
Schrödinger equation (1.1) in the resonant case. For the one-parameter group of
(1.1) the spectral theorem and Stone’s formula imply

e−itHPac =
1

2πi

∞∫
0

e−itω(R(ω + i0)−R(ω − i0)) dω, (3.1)

where R(ω) = (H − ω)−1 is the resolvent of the Schrödinger operator H, and the
limit is understood in the strong sense [16, Problem 4.3]. Given the Jost solutions,
we can express the kernel of the resolvent R(ω) for ω = k2 ± i0, k > 0, as [16,
Lemma 9.7]

[R(k2 ± i0)](x, y) = −f+(y,±k)f−(x,±k)

W (±k)
= ∓f+(y,±k)f−(x,±k)T (±k)

2ik
(3.2)

for all x ≤ y (and the positions of x, y reversed if x > y). Therefore, in the case
x ≤ y, the integral kernel of e−itHPac is given by

[e−itHPac](x, y) =
1

2π

∫ ∞
−∞

e−i(tk2−|y−x|k)h+(y, k)h−(x, k)T (k)dk, (3.3)

where the integral has to be understood as an improper integral. Another result
that we need in order to obtain our decay estimates is the following variant of the
van der Corput lemma [9, Lemma 5.4]:

Lemma 3.1. Consider the oscillatory integral I(t) =
∫ b
a

eitφ(k)f(k)dk, where φ(k)
is a real-valued function. If φ′′(k) 6= 0 in [a,b] and f ∈ A1, then we have |I(t)| ≤
C2[tmina≤k≤b |φ′′(k)|]−1/2‖f‖A1 for t ≥ 1, where C2 ≤ 28/3 is the optimal constant
from the van der Corput lemma.
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Now we come to the proof of our main Theorem 1.1. We first give an alternate
representation of our projection operator (4πit)−

1
2P0:

Lemma 3.2 ([10]). The integral kernel of (4πit)−
1
2P0, which is (per definition)

given by (4πit)−
1
2 f0(x)f0(y), can also be written in the form

1

2π

∫ ∞
−∞

e−itk2T (0)f−(x, 0)f+(y, 0)dk.

Proof. It is clear that f0(x) = c±f±(x, 0) and by our normalization c−2
− + c−2

+ = 2.

Using (2.23) we have c− = γc+ and hence c2± = 1+γ∓1

2 . Moreover, (2.24) implies

c+c−T (0) = 1, and using 1
2π

∫∞
−∞ e−itk2dk = (4πit)−

1
2 the claim follows. �

Finally we have all the ingredients needed to obtain Theorem 1.1:

Proof of Theorem 1.1. For the kernel of e−itHPac we use (3.3). Then by Lemma 3.2,

the kernel G(x, y, t) of e−itHPac − (4πit)−
1
2P0 can now be written as

G(x, y, t) =
1

2π

∫ ∞
−∞

e−itk2(ei|y−x|kh+(y, k)h−(x, k)T (k)−h+(y, 0)h−(x, 0)T (0))dk.

Integrating this formula by parts, we obtain

G(x, y, t) =
1

4πit

∫ ∞
−∞

e−itk2S(x, y, k)dk,

where

S(x, y, k) =
∂

∂k

(
ei|y−x|kh+(y, k)h−(x, k)T (k)− h+(y, 0)h−(x, 0)T (0)

k

)
.

Now we apply Lemma 3.1 to get the desired t−
3
2 time-decay. So in order to finish

our proof, it remains to bound the A-norm of S(x, y, k) which follows from the
lemma below. �

Lemma 3.3. Assume V ∈ L1
3. Then

‖S(x, y, ·)‖A ≤ C(|x|+ |y|)2.

Proof. We assume w.l.o.g. x ≤ y and distinguish the cases (i) x ≤ 0 ≤ y, (ii) 0 ≤ x ≤
y and (iii) x ≤ y ≤ 0. Introduce the function g(x, y, k) := T (k)h+(y, k)h−(x, k).
Then S(x, y, k) can be written as:

S(x, y, k) =
∂

∂k

(
ei(y−x)k − 1

k

)
g(x, y, k)

+
ei(y−x)k − 1

k

∂

∂k
g(x, y, k) +

∂

∂k

(
g(x, y, k)− g(x, y, 0)

k

)
.

The A-norm of ei(y−x)k−1
k is bounded by C(|x| + |y|) and that of its derivative by

C(|x|+ |y|)2. So it remains to consider the A1-norms of g(x, y, k) and ∂
∂kg(x, y, k),

and A-norm of ∂
∂kP (x, y, k), where

P (x, y, k) =
g(x, y, k)− g(x, y, 0)

k
.
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We start with case (i). Then g(x, y, k) ∈ A1 with A1-norm independent of x and y.
After applying the product rule, Lemmas 2.1 and 2.6 imply ‖ ∂∂kg(x, y, k)‖A ≤ C.
Moreover,

P (x, y, k) =
T (k)− T (0)

k
h+(y, k)h−(x, k)

+
h+(y, k)− h+(y, 0)

k
h−(x, k)T (0) +

h−(x, k)− h−(x, 0)

k
h+(y, 0)T (0).

Taking here the derivative with respect to k and invoking Lemma 2.1, Lemma 2.4,
and Lemma 2.6, we are done in this case. In the cases (ii) and (iii) we use the
scattering relations (2.8) to see that the following representations are valid:

g(x, y, k) =

h+(y, k)
(
R+(k)h+(x, k)e2ixk + h+(x,−k)

)
, 0 ≤ x ≤ y,

h−(x, k)
(
R−(k)h−(y, k)e−2iyk + h−(y,−k)

)
, x ≤ y ≤ 0.

Thus g(x, y, k) has an A1-norm independent of x and y, since for any function
f(k) ∈ A and any real s we have f(k)eiks ∈ A with the norm independent of s.
If we take the derivative with respect to k, again everything is contained in A by
Lemma 2.1 and Lemma 2.6, however we get additional terms from the derivatives of
e2ixk and e2iyk. So it follows that the A-norm of ∂

∂kg(x, y, k) is at most proportional

to |x| or |y| respectively. Finally, let us have a look at ∂
∂kP (x, y, k). We observe

that in case (ii) one can represent P as

P (x, y, k) =
h+(y, k)− h+(y, 0)

k
h+(x,−k) +

h+(x,−k)− h+(x, 0)

k
h+(y, 0)

+
R+(k)−R+(0)

k
h+(x, k)h+(y, k)e2ixk +

e2ixk − 1

k
R+(0)h+(x, k)h+(y, k)

+
h+(x, k)− h+(x, 0)

k
h+(y, k)R+(0) +

h+(y, k)− h+(y, 0)

k
h+(x, 0)R+(0).

Here again every summand is an element of A by Lemma 2.1, Lemma 2.4, and

Theorem 2.6. Since the derivative of e2ixk−1
k also occurs here, we conclude that the

A-norm of ∂
∂kP (x, y, k) is at most proportional to |x|2. From the same reasons in

the case (iii) this derivative will be proportional to |y|2. �
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Addendum

After publication of this paper we learned that Theorem 1.1 has been obtained
for V ∈ L1

4(R) by Mizutani in

• H. Mizutani, Dispersive estimates and asymptotic expansions for Schrödinger
equations in dimension one, J. Math. Soc. Japan 63 (2011), 239–261.

This paper also contains the non-resonant case (with P0 = 0) for V ∈ L1
2(R) plus

some further extensions.
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