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Abstract. For general Sturm-Liouville operators with separated boundary
conditions, we prove the following: If E1,2 ∈ R and if u1,2 solve the differential

equation Huj = Ejuj , j = 1, 2 and respectively satisfy the boundary condition

on the left/right, then the dimension of the spectral projection P(E1,E2)(H)
of H equals the number of zeros of the Wronskian of u1 and u2.

1. Introduction

For over a hundred and fifty years, oscillation theorems for second-order differen-
tial equations have fascinated mathematicians. Originating with Sturm’s celebrated
memoir [20], extended in a variety of ways by Bôcher [2] and others, a large body
of material has been accumulated since then (thorough treatments can be found,
e.g., in [4],[13],[18],[19], and the references therein). In this paper we’ll add a new
wrinkle to oscillation theory by showing that zeros of Wronskians can be used to
count eigenvalues in situations where a naive use of oscillation theory would give
∞−∞.

To set the stage, we’ll consider operators on L2((a, b); r dx) with a < b in [−∞,∞]
of the form

(τu)(x) = r(x)−1[−(p(x)u′(x))′ + q(x)u(x)],

where

r, p−1, q ∈ L1
loc((a, b); dx) are real-valued and r, p > 0 a.e. on (a, b). (1.1)

We’ll use τ to describe the formal differentiation expression and H the operator
given by τ with separated boundary conditions at a and/or b.

If a (resp. b) is finite and q, p−1, r are in addition integrable near a (resp. b), we’ll
say a (resp. b) is a regular end point. We’ll say τ respectively H is regular if both
a and b are regular. As is usual, ([6], Section XIII.2; [15], Section 17; [22], Chapter
3), we consider the local domain

Dloc = {u ∈ ACloc((a, b)) | pu′ ∈ ACloc((a, b)), τu ∈ L2
loc((a, b); r dx)}, (1.2)

where ACloc((a, b)) is the set of integrals of L1
loc((a, b); dx)-functions (i.e., the set of

locally absolutely continuous functions) on (a, b). General ODE theory shows that
for any E ∈ C, x0 ∈ (a, b), and (α, β) ∈ C2, there is a unique u ∈ Dloc such that
−(pu′)′ + qu− Eru = 0 for a.e. x ∈ (a, b) and (u(x0), (pu′)(x0)) = (α, β).

The maximal and minimal operators are defined by taking

D(Tmax) = {u ∈ L2((a, b); r dx) ∩Dloc | τu ∈ L2((a, b); r dx)},
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with
Tmaxu = τu. (1.3)

Tmin is the operator closure of Tmax � Dloc ∩ {u has compact support in (a, b)}.
Then Tmin is symmetric and T ∗min = Tmax.

According to the Weyl theory of self-adjoint extensions ([6], Section XIII.6; [15],
Section 18; [17], Appendix to X.1; [21], Section 8.4; [22], Chapters 4 and 5), the
deficiency indices of Tmin are (0, 0) or (1, 1) or (2, 2) depending on whether it is
limit point at both, one or neither end point. Moreover, the self-adjoint extensions
can be described in terms of Wronskians ([6], Section XIII.2; [15], Sections 17 and
18; [21], Section 8.4; [22], Chapter 3). Define

W (u1, u2)(x) = u1(x)(pu′2)(x)− (pu′1)(x)u2(x). (1.4)

Then if Tmin is limit point at both ends, Tmin = Tmax = H. If Tmin is limit point
at b but not at a, for H any self-adjoint extension of Tmin, if ϕ− is any function in
D(H)\D(Tmin), then

D(H) = {u ∈ D(Tmax) |W (u, ϕ−)(x)→ 0 as x ↓ a}.
Finally, if u1 is limit circle at both ends, the operators H with separated boundary
conditions are those for which we can find ϕ± ∈ D(H), ϕ+ ≡ 0 near a, ϕ− ≡ 0
near b, and ϕ± ∈ D(H)\D(Tmin). In that case,

D(H) = {u ∈ D(Tmax) |W (u, ϕ−)(x)→ 0 as x ↓ a, W (u, ϕ+)(x)→ 0 as x ↑ b}.
Of course, if H is regular, we can just specify the boundary conditions by taking
values at a, b since by regularity any u ∈ D(Tmax) has u, pu′ continuous on [a, b]
(cf. (A.4)). It follows from this analysis that

Proposition 1.1. If u1,2 ∈ D(H), then W (u1, u2)(x)→ 0 as x→ a or b.

We’ll call such operators SL operators (for Sturm-Liouville, but SL includes
separated boundary conditions (if necessary)).

It will be convenient to write `− = a, `+ = b.
Throughout this paper we will denote by ψ±(z, x) ∈ Dloc solutions of τψ = zψ

so that ψ±(z, . ) is L2(·; r dx) at `± and ψ±(z, . ) satisfies the appropriate boundary
condition at `± in the sense that for any u ∈ D(H), lim

x→`±
W (ψ±(z), u)(x) = 0. If

ψ±(z, . ) exist, they are unique up to constant multiples. In particular, ψ±(z, . )
exist for z not in the essential spectrum of H and we can assume them to be
holomorphic with respect to z in C\spec(H) and real for z ∈ R. One can choose

ψ±(z, x) = ((H − z)−1χ(c,d))(x) for x>d<c , a < c < d < b

and uniquely continue ψ±(z, x) for x<d>c . Here (H − z)−1 denotes the resolvent of H
and χΩ the characteristic function of the set Ω ⊆ R. Clearly we can include a finite
number of isolated eigenvalues in the domain of holomorphy of ψ± by removing the
corresponding poles. Moreover, to simplify notations, all solutions u of τu = Eu
are understood to be not identically vanishing and solutions associated with real
values of the spectral parameter E are assumed to be real-valued in this paper.
Thus if E is real and in the resolvent set for H or an isolated eigenvalue, we are
guaranteed there are solutions that obey the boundary conditions at a or b. It
can happen if E is in the essential spectrum that such solutions do not exist or it
may happen that they do. In Theorems 1.3, 1.4 below, we’ll explicitly assume such
solutions exist for the energies of interest. If these energies are not in the essential
spectrum, that is automatically fulfilled.

With these preliminaries out of the way, we can describe a theorem Hartman
proves in [10] which gives an eigenvalue count in some cases where oscillation theory
would naively give ∞−∞ (see Weidmann [22], Chapter 14 for some results when
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τ is limit circle at b). In fact, we have slightly generalized the theorem in order
to include, for instance, certain singular cases like radial Schrödinger operators on
(0,∞) with potentials singular near 0 (we shall give a proof in Section 7).

Theorem 1.2. Let H be an SL operator on (a, b) which is non-oscillatory at E2

near a and limit point at b and suppose E1 < E2. Let u1 (resp. u2) be ψ−(E1)
(resp. ψ−(E2)). Let N(c), c ∈ (a, b) denote the number of zeros of u1 in (a, c)
minus the number of zeros of u2 in (a, c). Let PΩ(H) be the spectral projection of
H corresponding to the Borel set Ω ⊆ R. Then, if τ is oscillatory at E2 near b,

dim RanP(E1,E2)(H) = lim
c↑b

N(c), (1.5a)

and if τ is non-oscillatory at E2 near b,

dim RanP[E1,E2)(H) = lim
c↑b

N(c). (1.5b)

Theorem 1.2 is a bit more general than Hartman’s result in [10] (see also [9],
[11]) since we assume H to be non-oscillatory at E2 near a while Hartman assumes
H to be regular at a. If τ is oscillatory at E2 near b (i.e., u2 has infinitely many
zeros near b), N(c) is not constant for large c but instead varies between N0 and
N0 + 1. This result leaves several questions open: What happens if H is limit circle
at b or in the case where H is not regular at either end (e.g., the important case
of the real line (a, b) = (−∞,∞))? Moreover, it isn’t clear when c is so large that
lim
c↑b

N(c) has been reached. It would be better if we could actually count something

analogous to the zero count in ordinary oscillation theory. Our goal in this paper
is to prove such theorems.

The key is to look at zeros of the Wronskian. That zeros of the Wronskian
are related to oscillation theory is indicated by an old paper of Leighton [14], who
noted that if uj , pu

′
j ∈ ACloc((a, b)), j = 1, 2 and u1 and u2 have a non-vanishing

Wronskian W (u1, u2) in (a, b), then their zeros must intertwine each other. (In
fact, pu′1 must have opposite signs at consecutive zeros of u1, so by non-vanishing
of W , u2 must have opposite signs at consecutive zeros of u1 as well. Interchanging
the role of u1 and u2 yields strict interlacing of their zeros.) Moreover, let E1 < E2

and τuj = Ejuj , j = 1, 2. Ifx0, x1 are two consecutive zeros of u1, then the number
of zeros of u2 inside (x0, x1) is equal to the number of zeros of the Wronskian
W (u1, u2) plus one (cf. Theorem 7.4). Hence the Wronskian comes with a built-
in renormalization counting the additional zeros of u2 in comparison to u1. In
particular, this avoids taking limits of the type (1.5a).

We’ll let W0(u1, u2) be the number of zeros of the Wronskian in the open interval
(a, b) not counting multiplicities of zeros. Given E1 < E2, we let N0(E1, E2) =
dim RanP(E1,E2)(H) be the dimension of the spectral projection P(E1,E2)(H) of H.
Our main results are the following two theorems:

Theorem 1.3. Suppose E1 < E2. Let u1 = ψ−(E1) and u2 = ψ+(E2). Then

W0(u1, u2) = N0(E1, E2).

Theorem 1.4. Suppose E1 < E2. Let u1 = ψ−(E1) and u2 = ψ−(E2). Then
either

W0(u1, u2) = N0(E1, E2) (1.6)

or

W0(u1, u2) = N0(E1, E2)− 1. (1.7)

If either N0 = 0 or H is limit point at b, then (1.6) holds.
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We’ll see that if b is a regular point and E2 > e > E1 with e an eigenvalue and
|E2 − E1| is small, then (1.7) holds rather than (1.6). We’ll also see that if u1,2

are arbitrary solutions of τuj = Ejuj , j = 1, 2, then, in general, |W0 − N0| ≤ 2
(this means that if one of the quantities is infinite, the other is as well) and any of
0,±1,±2 can occur for W0 −N0. Especially, if either E1 or E2 is in the interior of
the essential spectrum of H (or dim RanP(E1,E2)(H) = ∞), then W0(u1, u2) = ∞
for any u1 and u2 satisfying τuj = Ejuj , j = 1, 2 (cf. Theorem 7.3).

Zeros of the Wronskians have two properties that are critical to these results:
First, zeros are precisely points where the Prüfer angles for u1 and u2 are equal
(modπ). Second, if ψ− ∈ Dloc and ψ+ ∈ Dloc satisfy the boundary conditions at
a, b, respectively, and W (ψ−, ψ+)(x0) = 0 and if (ψ+(x0), (pψ′+)(x0)) 6= (0, 0), then
there is a γ such that

η(x) =

{
ψ−(x), x ≤ x0

γψ+(x), x ≥ x0

satisfies η ∈ D(H) and

Hη(x) =

{
(τψ−)(x), x ≤ x0

γ(τψ+)(x), x ≥ x0.

We’ll explore these properties further in Propositions 3.1 and 3.2.
Section 2 provides a short proof of the ordinary oscillation theorem in the regular

case following the method in Courant-Hilbert ([5], page 454). Even though this
result is well-known (see, e.g., [1], Theorem 8.4.5 and [22], Theorem 14.10 which
describes the singular case as well) we include it here since our overall strategy in
this paper is patterned after this proof: A variational argument will show N0 ≥W0

in Section 6 and a comparison-type argument in Sections 4 and 5 will prove N0 ≤
W0. Explicitly, in Section 5 we’ll show

Theorem 1.5. Let E1 < E2. If u1 = ψ−(E1) and either u2 = ψ+(E2) or τu2 =
E2u2 and H is limit point at b, then

W0(u1, u2) ≥ dim RanP(E1,E2)(H).

In Section 6, we’ll prove that

Theorem 1.6. Let E1 < E2. Let either u1 = ψ+(E1) or u1 = ψ−(E1) and either
u2 = ψ+(E2) or u2 = ψ−(E2). Then

W0(u1, u2) ≤ dim RanP(E1,E2)(H). (1.8)

Remark. Of course, by reflecting about a point c ∈ (a, b), Theorems 1.3–1.5 hold
for u1 = ψ+(E1) and u2 = ψ−(E2) (and either N0 = 0 or H is limit point at a in the
corresponding analog of Theorem 1.4 yields (1.6) and similarly, τu2 = E2u2 and H
is limit point at a yields the conclusion in the corresponding analog of Theorem 1.5).

In Section 7, we provide a number of comments, examples, and extensions in-
cluding:

Theorem 1.7. Let E1,2 ∈ R, E1 6= E2, τuj = Ejuj, j = 1, 2, τv2 = E2v2. Then
|W0(u1, u2)−W0(u1, v2)| ≤ 1.

In addition, Theorem 7.5 addresses the problem of finite versus infinite total
number of eigenvalues in essential spectral gaps of H.

It is easy to see that Theorems 1.5, 1.6, and 1.7 imply Theorems 1.3 and 1.4.
Some facts on quadratic forms are collected in the appendix.
Our interest in this subject originated in attempts to provide a general construc-

tion of isospectral potentials for one-dimensional Schrödinger operators (see [8])
following previous work by Finkel, Isaacson, and Trubowitz [7] (see also [3]) in the
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case of periodic potentials. In fact, in the special case of periodic Schrödinger op-
erators Hp, the non-vanishing of W (u1, u2)(x) for Floquet solutions u1 = ψε1(E1),
u2 = ψε2(E2), ε1,2 ∈ {+,−} of Hp, for E1 and E2 in the same spectral gap of Hp,
is proven in [7].

2. Oscillation Theory

For background, we recall the following:

Theorem 2.1 ([22], Theorem 14.10). Let H be an SL operator which is bounded
from below. If e1 < · · · < en < · · · are its eigenvalues below the essential spec-
trum and ψ1, . . . , ψn, . . . its eigenfunctions, then ψn has n − 1 zeros in (a, b). All
eigenvalues of H are simple.

Remark. (i) Those used to thinking of the Dirichlet boundary condition case need
to be warned that it is not in general true that if E is not an eigenvalue of H, then
the number of zeros, Z, of ψ±(E) is the number, N(E), of eigenvalues less than E.
In general, all one can say is N = Z or N = Z + 1.

(ii) In the special case where τ is regular at a and b, any associated SL operator
H is well-known to be bounded from below with compact resolvent (see, e.g., [1],
Theorem 8.4.5; [22], Theorem 13.2). Thus Theorem 2.1 applies to the regular case
(to be used in our proof of Proposition 4.1).

The first part of the proposition below is a simple integration by parts and the
second follows from the first.

Proposition 2.2. Let E1 ≤ E2 and τuj = Ejuj, j = 1, 2. Then for a < c < d < b,

W (u1, u2)(d)−W (u1, u2)(c) = (E1 − E2)

d∫
c

u1(x)u2(x)r(x) dx.

In particular, W (u1, u2) ∈ ACloc((a, b)) and

dW (u1, u2)

dx
(x) = (E1 − E2)r(x)u1(x)u2(x) a.e.

If the problem is regular at a (resp. b), we can take c (resp. d) equal to a (resp. b).
In the general case we can take the limit c ↓ a (resp. d ↑ b) in (2.2) if u1 and u2

are L2(·; r dx) near a (resp. b).

Corollary 2.3. Let E1 < E2 and τuj = Ejuj, j = 1, 2. Suppose at each end of
[c, d], a < c < d < b either W (u1, u2) = 0 or u1 = 0. If lim

x↓a
W (u1, u2)(x) = 0

(resp. lim
x↑b

W (u1, u2)(x) = 0), we also consider c = a (resp. d = b). Then u2 must

vanish at least once in (c, d).

Proof. By decreasing d to the first zero of u1 in (c, d] (and perhaps flipping signs),
we can suppose u1 > 0 on (c, d). If u2 has no zeros in (c, d), we can suppose u2 > 0
on (c, d) again by perhaps flipping signs. At each end point, W (u1, u2) vanishes
or else u1 = 0, u2 > 0, and u′1(c) > 0 (or u′1(d) < 0). Thus, W (u1, u2)(c) ≤ 0,
W (u1, u2)(d) ≥ 0. Since the right side of (2.2) is negative, this is inconsistent with
(2.2). �

Proof of Theorem 2.1. We first prove that ψn has at least n−1 zeros and then that
if ψn has m zeros, then (−∞, en] has at least (m+1) eigenvalues. If ψn has m zeros
at x1, x2, . . . , xm and we let x0 = a, xm+1 = b, then by Corollary 2.3, ψn+1 must
have at least one zero in each of (x0, x1), (x1, x2), . . . , (xm, xm+1), that is, ψn+1 has
at least m+ 1 zeros. It follows by induction that ψn has at least n− 1 zeros.
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On the other hand, if an eigenfunction ψn has m zeros, define for j = 0, . . . ,m,
x0 = a, xm+1 = b,

ηj(x) =

{
ψn(x), xj ≤ x ≤ xj+1

0, otherwise
, 0 ≤ j ≤ m.

Then ηj is absolutely continuous with pη′j piecewise continuous so ηj is in the

form domain of H (see (A.6)) and 〈|H|1/2ηj , sgn(H)|H|1/2ηj〉r = en ‖ηj‖2,r (where
〈 · , · 〉r and ‖ · ‖2,r denote the scalar product and norm in L2((a, b); r dx). Thus if

η =
m∑
j=0

cjηj , then 〈|H|1/2η, sgn(H)|H|1/2η〉r = en ‖η‖2,r. It follows by the spectral

theorem that there are at least m+1 eigenvalues in (−∞, en]. Since H has separated
boundary conditions, its point spectrum is simple. �

The second part of the proof of Theorem 2.1 also shows:

Corollary 2.4. Let H be an SL operator bounded from below. If ψ+(E, . ) (resp.
ψ−(E, . )) has m zeros, then there are at least m eigenvalues below E. In particular,
E below the spectrum of H implies that ψ±(E, . ) have no zeros.

3. Zeros of the Wronskian

Here we’ll present the two aspects of zeros of the Wronskian which are critical
for the two halves of our proofs (i.e., for showing N0 ≥ W0 and that N0 ≤ W0).
First, the vanishing of the Wronskian lets us patch solutions together:

Proposition 3.1. Suppose that ψ+,j , ψ− ∈ Dloc and that ψ+,j and τψ+,j, j = 1, 2
are in L2((c, b); r dx) and that ψ− and τψ− are in L2((a, c); r dx) for all c ∈ (a, b).
Suppose, in addition, that ψ+,j, j = 1, 2 satisfy the boundary condition defining H
at b (i.e., W (u, ψ+,j)(c) → 0 as c ↑ b for all u ∈ D(H)) and similarly, that ψ−
satisfies the boundary condition at a. Then

(i) If W (ψ+,1, ψ+,2)(c) = 0 and (ψ+,2(c), (pψ′+,2)(c)) 6= (0, 0), then there exists
a γ such that

η = χ[c,b)(ψ+,1 − γψ+,2) ∈ D(H)

and
Hη = χ[c,b)(τψ+,1 − γτψ+,2). (3.1)

(ii) If W (ψ+,1, ψ−)(c) = 0 and (ψ−(c), (pψ′−)(c)) 6= (0, 0), then there is a γ such
that

η = γχ(a,c]ψ− + χ(c,b)ψ+,1 ∈ D(H)

and
Hη = γχ(a,c]τψ− + χ(c,b)τψ+,1. (3.2)

Proof. Clearly, η and the right-hand-sides of (3.1)/(3.2) lie in L2((a, b); r dx) and
satisfy the boundary condition at a and b, so it suffices to prove that η and pη′ are
locally absolutely continuous on (a, b).

In case (i), if ψ+,2(c) 6= 0, take γ = −ψ+,1(c)/ψ+,2(c) and otherwise (i.e., if
ψ+,2(c) = 0) take γ = −(pψ′+,1)(c)/(pψ′+,2)(c). In either case, η and pη′ are con-
tinuous at c. Case (ii) is similar. �

The second aspect connects zeros of the Wronskian to Prüfer variables ρu, θu
(for u, pu′ continuous) defined by

u(x) = ρu(x) sin(θu(x)), (pu′)(x) = ρu(x) cos(θu(x)).

If (u(x), (pu′)(x)) is never (0, 0), then ρu can be chosen positive and θu is uniquely
determined once a value of θu(x0) is chosen subject to the requirement θu continuous
in x.
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Notice that

W (u1, u2)(x) = ρu1(x)ρu2(x) sin(θu1(x)− θu2(x)).

Thus,

Proposition 3.2. Suppose (uj , pu
′
j), j = 1, 2 are never (0, 0). Then W (u1, u2)(x0)

is zero if and only if θu1
(x0) ≡ θu2

(x0) (modπ).

In linking Prüfer variables to rotation numbers, an important role is played by
the observation that because of

u(x) =

x∫
x0

ρu(t) cos(θu(t))

p(t)
dt,

θu(x0) ≡ 0 (modπ) implies [θu(x)−θu(x0)]
/

(x−x0) > 0 for 0 < |x−x0| sufficiently
small and hence for all 0 < |x− x0| if (u, pu′) 6= (0, 0). (In fact, suppose x1 6= x0 is
the closest x such that θu(x1) = θu(x0) then apply the local result at x1 to obtain
a contradiction.) We summarize:

Proposition 3.3. If (u, pu′) 6= (0, 0) then θu(x0) ≡ 0 (modπ) implies

[θu(x)− θu(x0)]
/

(x− x0) > 0

for x 6= x0. In particular, if θu(c) ∈ [0, π) and u has n zeros in (c, d), then
θu(d− ε) ∈ (nπ, (n+ 1)π) for sufficiently small ε > 0.

In exactly the same way, we have

Proposition 3.4. Let E1 < E2 and assume that u1,2 solve τuj = Ejuj, j = 1, 2.
Let ∆(x) = θu2

(x)−θu1
(x). Then ∆(x0) ≡ 0 (modπ) implies (∆(x)−∆(x0))/(x−

x0) > 0 for 0 < |x− x0|.

Proof. If ∆(x0) ≡ 0 (mod 2π) and θu2
(x0) 6≡ 0 (modπ), then sin(θu2

(x0)) sin(θu1
(x0)) >

0 so u1(x0)u2(x0) > 0 for 0 < |x − x0| sufficiently small, and thus by (2.2),
dW
dx (x0) > 0 for a.e. x near x0 and so ∆(x) is increasing. The same holds for

∆(x0) ≡ π (mod 2π) and θu2
(x0) 6≡ 0 (modπ).

If ∆(x0) ≡ 0 (mod 2π) and θu1
(x0) ≡ θu2

(x0) ≡ 0 (modπ), then (pu′1)(x0)(pu′2)(x0) >
0 and so since u(x0) = v(x0) = 0, we see that it is still true that dW

dx (x) > 0 a.e. for
0 < |x− x0| sufficiently small. �

Remark. (i) Suppose r, p are continuous on (a, b). If θu1(x0) ≡ 0 (modπ) then
θu1

(x) − θu1
(x0) = c0(x − x0) + o(x − x0) with c0 > 0. If ∆(x0) ≡ 0 (modπ) and

θu1
(x0) 6≡ 0 (modπ), then ∆(x) − ∆(x0) = c1(x − x0) + o(x − x0) with c1 > 0.

If θu1
(x0) ≡ 0 ≡ ∆(x0) (modπ), then ∆(x) − ∆(x0) = c2(x − x0)3 + o(x − x0)3)

with c2 > 0. Either way, ∆ increases through x0. (In fact, c0 = p(x0)−1, c1 =
(E2 − E1)r(x0) sin2(θu1

(x0)) and c2 = 1
3r(x0)p(x0)−2(E2 − E1)).

(ii) In other words, Propositions 3.3 and 3.4 say that the integer parts of θu/π
and ∆u,v/π are increasing with respect to x ∈ (a, b) (even though θu and ∆u,v

themselves are not necessarily monotone in x).
(iii) Let E ∈ [E1, E2] and assume [E1, E2] to be outside the essential spectrum

of H. Then, for x ∈ (a, b) fixed,

dθψ±
dE

(E, x) = −

`±∫
x

ψ±(E, t)2 dt

ρψ±(E, x)
(3.3)



8 F. GESZTESY, B. SIMON, AND G. TESCHL

proves that ∓θψ±(E, x) is strictly increasing with respect to E. In fact, from Propo-
sition 2.2 one infers

W (ψ±(E), ψ±(Ẽ))(x) = (Ẽ − E)

`±∫
x

ψ±(E, t)ψ±(Ẽ, t) dt

and using this to evaluate the limit lim
Ẽ→E

W (ψ±(E), (ψ±(E)−ψ±(Ẽ))/(E− Ẽ))(x),

one obtains

W (ψ±(E),
dψ±
dE

(E))(x) =

`±∫
x

ψ±(E, t)2 dt.

Inserting Prüfer variables completes the proof of (3.3).

4. The Hare and the Tortoise (N0 ≤W0 in the Regular Case)

Our goal in this section is to prove Theorem 1.5 in the regular case with opposite
boundary conditions, that is,

Proposition 4.1. Let H be a regular SL operator and suppose E1 < E2. Then

W0(ψ−(E1), ψ+(E2)) ≥ N0(E1, E2). (4.1)

The proof will use Prüfer angles. As a warm-up, let us prove equality in the
case that H has u(a) = u(b) = 0 boundary conditions and that E1,2 are not
eigenvalues. Let θψ±(E, x) be the Prüfer angles for ψ±(E, x), normalized such that
θψ±(E, a) ∈ [0, π). Since ψ−(E1) satisfies the boundary condition at a, θψ−(E1, a) =
0 and since E2 is not an eigenvalue, θψ+

(E2, a) > 0. If there are m eigenvalues
below E1 and n0 + m below E2, then, by standard oscillation theory (essentially
Proposition 3.3), θψ−(E1, b) ∈ (mπ, (m+ 1)π) and θψ+

(E2, b) = (n0 +m+ 1)π. Let
Γ±(E, x) ≡ θψ±(E, x) (modπ), that is, Γ±(E, x) ∈ [0, π) and Γ± − θψ± ∈ Zπ.

Borrow a leaf from Aesop. Think of Γ−(E1) as a tortoise and Γ+(E2) as a hare
racing on a track of size π with 0 as the start and π as the finish. Every time either
runs through the finish, it starts all over. Neither has to run only in the forward
direction (i.e., θψ± may not be monotone w.r.t. x) but they can’t run in the wrong
direction back through the start (i.e., Proposition 3.3 holds).

What makes Γ+(E2) the hare to Γ−(E1)’s tortoise is that Γ+(E2) can only
overtake Γ−(E1), not the other way around (i.e., Proposition 3.4 holds). Since
Γ−(E1, a) = 0 and Γ+(E2, a) > 0, the hare starts out ahead of the tortoise. Since
Γ−(E1, c) < π but Γ+(E1, c)↗ π as c↗ b, the hare also ends up ahead (unlike in
Aesop!).

Clearly, the number of times the hare crosses the finish line is the sum of the
number of times the tortoise does, plus the number of times the hare “laps,” that
is, passes the tortoise. Thus,

n0 +m = m+W0(ψ−(E1), ψ+(E2))

so W0(ψ−(E1), ψ+(E2)) = n0 in the Dirichlet case.
This picture also explains why it can happen that

W0(ψ−(E1), ψ−(E2)) = n0 − 1.

For in this case, θψ−(E1, a) = θψ−(E2, a) = 0. The hare and tortoise start out
together, so for x = a+ ε, the hare is slightly ahead. If at b, Γ−(E1, b) > Γ−(E2, b),
then the tortoise à la Aesop wins the races; thus the hare has lapped the tortoise
one time too few, that is,

n0 +m− 1 = m+W0(ψ−(E1), ψ−(E2))
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and so

W0 = n0 − 1. (4.2)

Suppose E1 < e < E2 with e an eigenvalue. As E2 ↘ e, Γ−(E2, b) ↘ 0 as
E1 ↗ e, Γ−(E1, b)↗ π. Thus for E2−E1 sufficiently small, Γ−(E2, b) < Γ−(E1, b)
and (4.2) holds.

Now we turn to the proof of Proposition 4.1 in the general case (assuming H to
be a regular SL operator for the rest of this section).

Lemma 4.2. Let u1,2 be eigenfunctions of H with eigenvalues E1 < E2. Let ` be
the number of eigenvalues of H in (E1, E2). Then W (u1, u2)(x) has exactly ` zeros
in (a, b).

Proof. Suppose u1 is the kth eigenfunction. By Theorem 2.1, u1 has k−1 zeros and
u2 has k+` zeros in (a, b). Moreover, Γ−(E1, a) = Γ+(E2, a), Γ−(E1, b) = Γ+(E2, b)
so Γ−(E1, a + ε) < Γ+(E2, a + ε), Γ+(E2, b − ε) < Γ−(E1, b − ε). So the hare
starts slightly ahead and ends slightly behind and so it laps one less time than the
difference of the number of zeros, that is, W0(u1, u2) = (`+ 1)− 1 = `. �

Lemma 4.3. Let E1 ≤ E2 be eigenvalues of H and suppose [E1, E2] has ` eigen-
values. Then for ε ≥ 0 sufficiently small, W0(ψ−(E1 − ε), ψ+(E2 + ε)) = `.

Remark. Since (E1, E2) has `−2 eigenvalues, Lemma 4.2 says that W (ψ−(E1), ψ+(E2))(x)
has `− 2 zeros in (a, b) and clearly it has zeros at a and b. Essentially, Lemma 4.3
says that replacing E1 by E1 − ε and E2 by E2 + ε moves the zeros at a, b inside
(a, b) to give `− 2 + 2 = ` zeros.

Proof. Suppose first E1 < E2. Compare the tortoises associated to ψ−(E1 − ε)
and ψ−(E1). The first starts out at x = a in the same position as the second
(i.e., Γ−(E1 − ε, a) = Γ−(E1, a)), which means it must end slightly behind, that is,
Γ−(E1 − ε, b) < Γ−(E1, b). Similarly, since the faster hare for energy E2 + ε ends
up where the hare of energy E2 does (i.e, Γ+(E2 + ε, b) = Γ+(E2, b)), it must start
out slightly farther back, that is, Γ+(E2 + ε, a) < Γ+(E2, a). Thus W (ψ−(E1 −
ε), ψ+(E2 + ε))(x) picks up two zeros over the ` − 2 that W (ψ−(E1), ψ+(E2))(x)
has.

If E2 = E1 ≡ E, the Γ+ for ψ+(E + ε) starts out slightly behind the one for
ψ+(E) and ends up slightly ahead of the Γ− for ψ−(E − ε), and so there has to be
one crossing, that is, W0(ψ−(E − ε), ψ+(E + ε)) = 1. �

Lemma 4.4. If E3 < E4 < E and u is any solution of τu = Eu, then

W0(ψ−(E3), u) ≥W0(ψ−(E4), u). (4.3)

Similarly, if E3 > E4 > E and u is any solution of τu = Eu, then (4.3) holds.

Proof. In the first case, think of u as defining a hare and ψ−(Ej), j = 3, 4 as
defining tortoises. The E3 and E4 tortoises start out at the same place and the E3

tortoise runs “faster” in that it is always ahead after the start. Clearly, the hare
will pass the slower tortoise at least as often as the faster one.

In the second case, there are two hares (defined by ψ−(Ej), j = 3, 4), which start
out at the same place, and one tortoise (defined by u) and it is clear the faster hare
(given by ψ−(E3)) has to pass the tortoise at least as often as the slower one. �

Lemma 4.5. Lemma 4.4 remains true if every ψ− is replaced by a ψ+.

Proof. Reflect at some point c ∈ (a, b) implying an interchange of ψ+ and ψ−. �
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Proof of Proposition 4.1. If N0 = 0, there is nothing to prove. If N0 ≥ 1, let
spec(H) ∩ (E1, E2) = {em}m∈M and let es ≤ e` be the smallest and largest of the
em’s. Thus, N0 is the number of eigenvalues in [es, e`] and so

N0 = W0(ψ−(es − ε), ψ+(e` + ε))

by Lemma 4.3. By Lemma 4.4,

W0(ψ−(es − ε), ψ+(e` + ε)) ≤W0(ψ−(E1), ψ+(e` + ε))

and then by Lemma 4.5, this is no larger than W0(ψ−(E1), ψ+(E2)). �

5. Strong Limits (N0 ≤W0 in the General Case)

Using the approach of Weidmann ([22], Chapter 14) to control some limits, we
prove Theorem 1.5 in this section. Fix functions u1, u2 ∈ Dloc. Pick cn ↓ a, dn ↑ b.
Define H̃n on L2((cn, dn); r dx) by imposing the following boundary conditions on

η ∈ D(H̃n)
W (u1, η)(cn) = 0 = W (u2, η)(dn). (5.1)

On L2((a, b); r dx) = L2((a, cn); r dx) ⊕ L2((cn, dn); r dx) ⊕ L2((dn, b); r dx) take

Hn = αI⊕ H̃n ⊕ αI with α a fixed real constant. Then Weidmann proves:

Lemma 5.1. Suppose that either H is limit point at a or that u1 is an ψ−(E, x)
for some E and similarly, that either H is limit point at b or u2 is an ψ+(E′, x)
for some E′. Then Hn converges to H in strong resolvent sense as n→∞.

The idea of Weidmann’s proof is that it suffices to find a core D0 of H such that
for every η ∈ D0 there exists an n0 ∈ N with η ∈ D0 for n ≥ n0 and Hnη → Hη as
n tends to infinity (see [21], Theorem 9.16(i)). If H is limit point at both ends, take
η ∈ D0 ≡ {u ∈ Dloc | supp(u) compact in (a, b)}. Otherwise, pick ũ1, ũ2 ∈ D(H)
with ũ2 = u2 near b and ũ2 = 0 near a and with ũ1 = u1 near a and ũ1 = 0 near b.
Then pick η ∈ D0 + span[ũ1, ũ2] which one can show is a core for H ([22], Chapter
14).

Secondly we note:

Lemma 5.2. Let An → A in strong resolvent sense as n→∞. Then

dim RanP(E1,E2)(A) ≤ lim
n→∞

dim RanP(E1,E2)(An).

Proof. Fix m ≤ dim RanP(E1,E2)(A) with m <∞. We’ll prove m ≤ RHS of (5.2).
Suppose first that (E1, E2) aren’t eigenvalues of A. Then by Theorem VIII.24
of [16], P(E1,E2)(An) → P(E1,E2)(A) strongly as n → ∞. Picking orthonormal
ϕ1, . . . , ϕm in RanP(E1,E2)(A), we see that

lim
n→∞

Tr(P(E1,E2)(An)) ≥ lim
n→∞

∑
j

〈ϕj , P(E1,E2)(An)ϕj〉r = m

as required.
If E1,2 are arbitrary, we can always find a δ > 0 such that E1 + δ, E2− δ are not

eigenvalues of A and such that dim RanP(E1+δ,E2−δ)(A) ≥ m. Thus,

lim
n→∞

dim RanP(E1,E2)(An) ≥ lim
n→∞

dim RanP(E1+δ,E2−δ)(An) ≥ m. �

�

Proof of Theorem 1.5. Let cn ↓ a, dn ↑ b and Hn be as in Lemma 5.1 with α /∈
[E1, E2]. Proposition 4.1 impliesW0(u1, u2) ≥ dim RanP(E1,E2)(H̃n) = dim RanP(E1,E2)(Hn)
since α /∈ [E1, E2]. Thus by Lemmas 5.1 and 5.2,

W0(u1, u2) ≥ dim RanP(E1,E2)(H)

as was to be proven. �
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6. A Variational Argument (N0 ≥W0)

In this section, we’ll prove Theorem 1.6. Let E1 < E2. Suppose first that
u1 = ψ−(E1) and u2 = ψ+(E2). Let x1, . . . , xm be zeros of W (u1, u2)(x). We’ll
prove that dimP(E1,E2)(H) ≥ m. If W0(u1, u2) = m, this proves (1.8). If W0 =∞,
we can take m arbitrarily large, and again (1.8) holds. Define

ηj(x) =

{
u1(x), x ≤ xj
γju2(x), x ≥ xj

, 1 ≤ j ≤ m,

where γj is defined such that ηj ∈ D(H) by Proposition 3.1. Let

η̃j(x) =

{
u1(x), x ≤ xj
−γju2(x), x > xj

, 1 ≤ j ≤ m.

If E2 is an eigenvalue of H, we define in addition η0 = u2 = −η̃0, x0 = a and if E1

is an eigenvalue of H, ηm+1 = u1 = η̃m+1, xm+1 = b.

Lemma 6.1. 〈ηj , ηk〉r = 〈η̃j , η̃k〉r for all j, k where 〈 · , · 〉r is the L2((a, b); r dx)
inner product.

Proof. Let j < k. This just says that
xk∫
xj

u1(x)u2(x)r(x) dx = 0. But by (2.2),

this integral is (E1−E2)−1[W (u1, u2)(xk)−W (u1, u2)(xj)] = 0 since W (u1, u2)( · )
vanishes at x` respectively in the limit (if x` = a, b) by Proposition 1.1. �

Notice that by (3.2),(
H − E2 + E1

2

)
ηj =

(
E1 − E2

2

)
η̃j . (6.1)

This result and Lemma 6.1 imply

Lemma 6.2. If η is in the span of the ηj, then∥∥∥∥(H − E2 + E1

2

)
η

∥∥∥∥
2,r

=
|E2 − E1|

2
‖η‖2,r.

Thus, dim RanP[E1,E2](H) ≥ dim(span({ηj})). But u1 and u2 are independent
on each interval (since their Wronskian is non-constant) and so the ηj are linearly
independent. This proves Theorem 1.6 in the ψ−(E1), ψ+(E2) case.

The case u1 = ψ−(E1), u2 = ψ−(E2) is similar. We define

ηj(x) =

{
u1(x)− γju2(x), x ≤ xj
0, x ≥ xj

, 1 ≤ j ≤ m

and

η̃j(x) =

{
u1(x) + γju2(x), x ≤ xj
0, x > xj

, 1 ≤ j ≤ m.

If E2 is an eigenvalue of H, we define in addition η0 = u2 = −η̃0, x0 = b and if
E1 is an eigenvalue of H, ηm+1 = u1 = η̃m+1, xm+1 = b. Again, ηj ’s are linearly
independent by considering their supports. To prove the analog of Lemma 6.1, we
need

xj∫
a

u1(x)u2(x)r(x) dx = 0, 1 ≤ j ≤ m.

But by (2.2), this integral is

lim
c↓a

(E1 − E2)−1[W (u1, u2)(xj)−W (u1, u2)(c)].
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By hypothesis, W (u1, u2)(xj) = 0 and since u1 and u2 satisfy the boundary condi-
tion at a, W (u1, u2)(c) → 0 as c ↓ a by Proposition 1.1. The cases u1 = ψ+(E1),
u2 = ψ±(E2) can be obtained by reflection.

7. Extensions, Comments, and Examples

The following includes Theorem 1.7:

Theorem 7.1. Let E1 6= E2. Let τuj = Ejuj, j = 1, 2, τv2 = E2v2 with u2 linearly
independent of v2. Then the zeros of W (u1, u2) interlace the zeros of W (u1, v2) and
vice versa (in the sense that there is exactly one zero of one function in between
two zeros of the other). In particular, |W0(u1, u2)−W0(u1, v2)| ≤ 1.

Proof. We’ll suppose E1 < E2. A similar argument works if E2 < E1. In the
language of Section 4, Γu1

represents the tortoise and Γu2
,Γv2 are two hares. Since

W (u2, v2) is a non-zero constant, one hare always stays ahead of the other. It
follows that if the hare Γu1

crosses the tortoise Γu2
at x1 and x2, x1 < x2, the hare

Γv2 must cross it at some point in (x1, x2). �

By applying this theorem twice, we conclude

Theorem 7.2. Let E1 6= E2. Let u1, u2, v1, v2 be the linearly independent functions
with τuj = Ejuj and τvj = Ejvj. Then

|W0(u1, u2)−W0(v1, v2)| ≤ 2.

Theorem 7.3. If dim RanP(E1,E2)(H) =∞, then W0(u1, u2) =∞ for any u1 and
u2 satisfying τuj = Ejuj, j = 1, 2.

Proof. Firstly, if W0(u1, u2) = ∞ for one pair u1,2 this is true for any pair by
Theorem 7.2. Secondly, pick u1,2 such that the operator Hn of Lemma 5.1 converges

to H in strong resolvent sense as n → ∞. Hence by Theorem 1.3 (applied to H̃n

defined before Lemma 5.1) and Lemma 5.2 the number of zeros of the Wronskian
in (cn, dn) must go to infinity as n→∞. �

Example 1. Let us take p = r = 1, q = 0 with [a, b] = [0, 1] and Neumann boundary
conditions u′(0) = u′(1) = 0. Let E1 = −k2

1, E2 = k2
2, and u1(x) = ψ−(E1, x),

u2(x) = ψ−(E2, x). Then u1(x) = cosh(k1x), u2(x) = cos(k2x), and

W (u1, u2)(x) = −k2 cosh(k1x) sin(k2x)− k1 sinh(k1x) cos(k2x)

has no zero in [0, 1] if 0 < k1, 0 < k2 <
π
2 . Thus, while N0 = 1, W0 = 0 so we

see that W0 = N0 − 1, that is, (1.7) in Theorem 1.4 can happen if the boundary
conditions hold on the same side (note that the problem is limit circle at b = 1 as it
must be, given Theorem 1.4). This result is not surprising since W (u1, u2) contains
no information about the boundary condition at b.

Example 2. Again p = r = 1, q = 0. Take [a, b] = [−1, 1]. Consider the two sets
of boundary conditions

(B1) u(±1) = 0,

(B2) u(±1) = ±u′(±1),

with corresponding operators H1 and H2. The lowest eigenvalue of H1 is 1
4π

2. H2

has 0 as an eigenvalue with eigenvector ϕ(x) = x. H2 has the lowest eigenvalue
at α where α satisfies

√
−α tanh

√
−α = 1 (i.e., α ∼ −1.44). Let E1 = −2,

E2 = 0.5, and −u′′j = Ejuj, −v′′j = Ejvj, j = 1, 2, with u2(1) = v1(−1) = 0 and
v2(1) − v′2(1) = u1(0) + u′1(0) = 0. Since H2 has two eigenvalues in (E1, E2) and
H1 has none, we see by Theorem 1.3 that W0(v1, u2) = 0, W0(u1, v2) = 2, and thus
any of 0,±1,±2 can occur in Theorem 7.2.
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Theorem 7.4. Let E1 < E2. Let τuj = Ejuj, j = 1, 2. If a < x0 < x1 < b are
zeros of u1 or of W (u1, u2)( . ), then the number of zeros of u2 inside (x0, x1) equals
the number of zeros of W (u1, u2)( . ) inside (x0, x1) plus the number of zeros of u1

inside (x0, x1) plus one.

Proof. Let Γu1 be the tortoise and Γu2 the hare. Γu2 starts out ahead or equal and
the number of times Γu2 laps (inside (x0, x1)) is equal to W0(u1, u2). Since Γu2

ends up slightly ahead (i.e., Γu2
(E2, b − ε) > Γu1

(E1, b − ε)), the number of zeros
of u2 equals the number of laps plus the number of zeros of u1 plus one. �

The following result is of special interest in connection with the problem of
whether the total number of eigenvalues of H in one of its essential spectral gaps
is finite or infinite. In particular, the energies E1, E2 in Theorem 7.5 below may lie
in the essential spectrum of H. For this purpose we consider an auxiliary Dirichlet
operator HD

x0
, x0 ∈ (a, b) associated with H. HD

x0
is obtained by taking the direct

sum of the restrictions HD
x0,± of H to (a, x0), respectively (x0, b), with a Dirichlet

boundary condition at x0. We emphasize that the Dirichlet boundary conditions
can be replaced by boundary conditions of the type limε↓0[u′(x0±ε)+βu(x0±ε)] = 0,
β ∈ R.

Theorem 7.5. Let E1 < E2. Let τuj = Ejuj, τsj = Ejsj, and sj(Ej , x0) = 0,
j = 1, 2. Then we have

(i) dim RanP(E1,E2)(H) <∞ if and only if W0(u1, u2) <∞.

(ii) dim RanP(E1,E2)(H)−1 ≤ dim RanP(E1,E2)(H
D
x0

) ≤ dim RanP(E1,E2)(H)+
2.

(iii) W0(s1, s2)− 1 ≤ dim RanP(E1,E2)(H
D
x0

) ≤W0(s1, s2) + 1.

Proof. Items (ii), (iii), and Theorem 7.2 imply (i). (ii) is clear if the essential
spectrum of H and (E1, E2) are not disjoint. Otherwise, if the essential spectrum of
H and (E1, E2) are disjoint, a standard rank-one perturbation argument, combined
with the strict monotonicity of the Green’s function G(E, x0, x0) of H with respect
to E in essential spectral gaps of H, applies. For (iii) it suffices to prove

W0,±(s1, s2) ≤ dim RanP(E1,E2)(H
D
x0,±) ≤W0,±(s1, s2) + 1,

where W0,±(s1, s2) abbreviates the number of zeros of the Wronskian W (s1, s2)
inside (x0, b), respectively (a, x0). But this is immediate from Theorems 1.5 and
1.6. �

Next we want to see how Theorem 1.2 (and hence Hartman’s theorem [10])
follows from Theorem 1.4. We start by assuming τ to be oscillatory at E2 near
b. By Theorem 1.4, W0(u1, u2) = N0 since H in Theorem 1.2 is assumed to be
limit point at b, so we need only show that W0(u1, u2) = lim

c↑b
N(c) in order to

prove (1.5a). Suppose first that W0(u1, u2) = m < ∞. Since τ is non-oscillatory
at E2 near a we can pick x0 such that u2 and W (u1, u2) have no zeros in (a, x0].
Hence we can assume without loss of generality that θu1

(x0) = θ0 ∈ (0, π) and
θu2(x0) ∈ (θ0, π). Let xm be the last zero of W (u1, u2)(x) (set m = 0 and skip
equation (7.1) if there are no zeros). At xm,

θu2
(xm) = θu1

(xm) +mπ (7.1)

and then

Γu2
(xm + ε) > Γu1

(xm + ε). (7.2)

Let Nuj
(x) be the number of zeros of uj , j = 1, 2 in (a, x). By (7.1) and Proposi-

tion 3.3,

Nu2(xm) = Nu1(xm) +m.
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As x increases, (7.2) says that the next zero is of u2 and then since W has no
zeros, zeros of u1 and u2 must alternate. So for c > xm, N(c) ≡ Nu2

(c) − Nu1
(c)

alternates between m and m+1 and since τ is assumed to be oscillatory at E2 near
b, we immediately get lim

c↑b
N(c) = m.

If W0(u1, u2) = ∞, let xm be the mth zero. Then (7.1) and (7.2) still hold so
N(xm) = m. Since u2 has zeros between any pair of zeros of u1, N(x) ≥ m for any
x ≥ xm, so lim

c↑b
N(x) =∞, as required.

If τ is non-oscillatory at E2 near b, we first assume that E1,2 are not eigenvalues.
We need to show that the hare ends up further along than the tortoise. Without
loss we assume u1,2(x) > 0 for x near b and claim in addition that u1u2 is not L1

near b. If u1 < u2 or u2 < u1 eventually near b, we are done since u1u2 > u2
1

or u1u2 > u2
2 for x near b and uj /∈ L2(·; r dx) near b. In fact, by hypothesis,

uj ∈ L2(·; r dx) near a and since Ej are not eigenvalues and τ is limit point at b, uj
cannot be L2(·; r dx) near b. Otherwise we can find two points x0 and x1 close to b
such that W (u1, u2)(x0) ≥ 0 and W (u1, u2)(x1) ≤ 0, contradicting (2.2). But u1u2

not L1(·; r dx) near b together with (2.2) implies that u′2/u2 > u′1/u1 for x near b
which, by monotonicity of cot( . ), yields that the hare ends up ahead.

It remains to treat the case where E1,2 could be eigenvalues. Choose E′ <
E′′ with u(E′) (resp. u(E′′)) equal to ψ−(E′) (resp. ψ−(E′′)) the correspond-
ing wave functions. Next, choosing E′ below the spectrum of H (implying that
u(E′) has no zeros by Corollary 2.4) shows that the number of zeros of u(E′′)
equals the number of eigenvalues below E′′ (compare Corollary 2.4), that is, equals
dim RanP(−∞,E′′)(H) if E′′ is not an eigenvalue. Theorem 2.1 then covers the case
where E′′ is an eigenvalue. Applying this to E′′ = E1 and E′′ = E2 proves (1.5b)
since

dim RanP(−∞,E′′)(H)− dim RanP(−∞,E′)(H) = dim RanP[E′,E′′)(H).

Finally, we want to consider the relation to the density of states. Given an SL
operator H, let HD

(L) be the operator on [−L,L] with Dirichlet boundary conditions.

If the limit exists, we define the integrated density of states (ids), k(E), by the limit:

k(E) = lim
L→∞

(2L)−1 dim RanP(−∞,E)(H
D
(L)).

Theorem 7.6. Suppose H is such that the ids exists for all E. Let E1 < E2 and
suppose τu = E1u, τv = E2v. Let W(L) be the number of zeros of W (u1, u2) in
[−L,L]. Then

lim
L→∞

(2L)−1W(L) = k(E2)− k(E1).

Proof. By Theorem 7.2 and Theorem 1.3, |W(L) − dim RanP(E1,E2)(H
D
(L))| ≤ 2, so

the result follows from

lim
L→∞

(2L)−1 dim RanP(E1,E2)(H
D
(L)) = k(E2)− k(E1).

�
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Appendix A. Associated Quadratic Forms

The purpose of this appendix is to clarify some form domain questions which
arise due to our general conditions on the local behavior on r, p, and q in (1.1).
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We’ll consider regular SL operators and hence assume (a, b) ⊂ R to be a finite
interval with

r, p−1, q ∈ L1((a, b); dx) real-valued and r, p > 0 a.e. on (a, b). (A.1)

Next, define in L2((a, b); r dx) the following linear operators

(H0
α,βu)(x) = −r(x)−1(p(x)u′(x))′,

D(H0
α,β) = {u ∈ L2((a, b); r dx) | u, pu′ ∈ AC([a, b]), r−1(pu′)′ ∈ L2((a, b); r dx),

(pu′)(a) + αu(a) = (pu′)(b) + βu(b) = 0},
α, β ∈ R ∪ {∞}

(here α =∞ denotes a Dirichlet boundary condition u(a) = 0 and similarly at b),

Sα,βu = s u, (s u)(x) = (p(x)/r(x))1/2u′(x), α, β ∈ {0,∞},
D(Sα,β) = {u ∈ L2((a, b); r dx) | u ∈ AC([a, b]), s u ∈ L2((a, b); r dx),

u(a) = 0 if α =∞, u(b) = 0 if β =∞},
S+
α,βu = s+u, (s+u)(x) = −r(x)−1[(p(x)r(x))1/2u(x)]′, α, β ∈ {0,∞},

D(S+
α,β) = {u ∈ L2((a, b); r dx) | (pr)1/2u ∈ AC([a, b]), s+u ∈ L2((a, b); r dx),

((pr)1/2u)(a) = 0 if α = 0, ((pr)1/2u)(b) = 0 if β = 0},
and the form

R0
α,β(u, v) = 〈Sα,βu, Sα,βv〉r, D(R0

α,β) = D(Sα,β), α, β ∈ {0,∞}

(〈 . , . 〉r the scalar product in L2((a, b); r dx)).

Lemma A.1. (i) Sα,β = (S+
α,β)∗ and S+

α,β = S∗α,β for all α, β ∈ {0,∞}.
(ii) H0

α,β = S∗α,βSα,β, α, β ∈ {0,∞}.

Proof. Define

K : L2((a, b); r dx)→ D(S∞,0), K̂ : L2((a, b); r dx)→ D(S+
0,∞),

g 7→
x∫
a

g(y)r(y) dy

(p(y)r(y))1/2
, g 7→ −(pr)(x )−1/2

x∫
a

g(y)r(y) dy.

A straightforward calculation verifies (K g)(a) = 0, sK g = g and
(
(pr)1/2K̂ g

)
(a) =

0, s+K̂ g = g.
We only show S∗α,β = S+

α,β , the case (S+
α,β)∗ = Sα,β being analogous. Moreover,

since S∞,∞ ⊆ Sα,β implies S∗α,β ⊆ S∗∞,∞ we only concentrate on proving S∗∞,∞ =

S+
∞,∞, the rest following from an additional integration by parts.

An integration by parts proves S+
∞,∞ ⊆ S∗∞,∞. Conversely, let f ∈ D(S∗∞,∞)

and set g = K̂S∗∞,∞f . Then

b∫
a

(f̄ − ḡ)(S∞,∞h)r dx =

b∫
a

(S∗∞,∞f̄ − s+ḡ)hr dx = 0

for all h ∈ D(S∞,∞). Thus, Ran(S∞,∞) is a subset of the kernel of the linear

functional k 7→ 〈f − g, k〉r. But Ran(S∞,∞) = {(pr)−1/2}⊥ (since g ∈ Ran(S∞,∞)

is equivalent to (Kg)(b) = 0) and hence f = g + c(pr)−1/2 ∈ D(S+
∞,∞) for some

constant c proving S∗∞,∞ ⊆ S+
∞,∞ and hence (i).

By inspection, we obtain D(S+
α,βSα,β) = {u ∈ D(Sα,β) | Sα,βu ∈ D(S+

α,β)} =

D(H0
α,β) since pu′ ∈ AC([a, b]) implies (p/r)1/2u′ = (pr)−1/2(pu′) ∈ L2((a, b); r dx)

and S+
α,βSα,βu = H0

α,βu. This fact together with (i) proves (ii). �
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Furthermore, we introduce the forms

Qq/r(u, v) =

b∫
a

q(x)r(x)−1 u(x) v(x)r(x) dx,

D(Qq/r) = {u ∈ L2((a, b); r dx) | (|q|/r)1/2u ∈ L2((a, b); r dx)},
and

qα,β(u, v) = β̃ u(b) v(b)− α̃ u(a) v(a), D(qα,β) = AC([a, b]),

α̃ =

{
α, α ∈ R
0, α =∞

, β̃ =

{
β, β ∈ R
0, β =∞

, α, β ∈ R ∪ {∞}.

Finally, we set

Q0
α,β = R0

α̂,β̂
+ qα,β , D(Q0

α,β) = D(Sα̂,β̂),

α̂ =

{
0, α ∈ R
∞, α =∞

, β̂ =

{
0, β ∈ R
∞, β =∞

, α, β ∈ R ∪ {∞}

and

Qα,β = Q0
α,β +Qq/r, D(Qα,β) = D(Sα̂,β̂), α, β ∈ R ∪ {∞}. (A.2)

Lemma A.2. (i) qα,β is infinitesimally form bounded with respect to Q0
0,0.

(ii) Qq/r is relatively form compact with respect to Q0
α,β, α, β ∈ R ∪ {∞}.

Proof. (i) Since for arbitrary c ∈ [a, b] and u ∈ D(S0,0),

|u(c)|2 =

∣∣∣∣u(x)2 − 2

x∫
c

u(t)u′(t) dt

∣∣∣∣ ≤ |u(x)|2 + 2

b∫
a

|u(t)u′(t)| dt,

one infers (after taking the supremum over all c ∈ [a, b], multiplying by r, and
integrating from a to b) for any ε > 0,

‖u‖2L∞((a,b);dx) ≤ ‖r‖
−1
L1((a,b);dx)‖u‖

2
2,r + 2

b∫
a

|u(t)|
(εp(t)/2)1/2

(εp(t)/2)1/2|u′(t)| dt

≤ ‖r‖−1
L1((a,b);dx)‖u‖

2
2,r +

b∫
a

(
2

ε

|u(t)|2

p(t)
+
ε

2
p(t)|u′(t)|2

)
dt. (A.3)

Since 0 < p−1 ∈ L1((a, b); dx), we can find a δ1(ε) > 0 such that
∫

I1(ε)

p(t)−1 dt ≤ ε
8

with I1(ε) = {x ∈ (a, b) | p(x) < δ1(ε)}. Thus,

b∫
a

|u(t)|2

p(t)
dt =

∫
I1(ε)

|u(t)|2

p(t)
dt+

∫
(a,b)\I1(ε)

|u(t)|2

p(t)
dt ≤ ε

8
‖u‖2L∞((a,b);dx)+

1

δ1(ε)

∫ b

a

|u(t)|2dt.

In addition, since r > 0 a.e. on (a, b), we can find a δ2(ε) > 0 such that |I2(ε)| ≤
εδ1(ε)

8 with I2(ε) = {x ∈ (a, b) | r(x) < δ2(ε)}. Thus,

b∫
a

|u(t)|2 dt =

∫
I2(ε)

|u(t)|2 dt+
∫

(a,b)\I2(ε)

|u(t)|2 dt ≤ εδ1(ε)

8
‖u‖2L∞((a,b);dx)+

1

δ2(ε)
‖u‖22,r

and one obtains from (A.3),

‖u‖2L∞((a,b);dx) ≤ 2
{
‖r‖−1

L1((a,b);dx) + 2[εδ1(ε)δ2(ε)]−1
}
‖u‖22,r + εQ0

0,0(u, u), (A.4)
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completing the proof of (i).
(ii) Let G0

α,β(z, x, y) denote the Green’s function of H0
α,β , α, β ∈ R ∪ {∞}, that

is,

((H0
α,β − z)−1u)(x) =

b∫
a

G0
α,β(z, x, y)u(y)r(y) dy, z ∈ C\R.

Then |q/r|1/2(H0
α,β − z)−1|q/r|1/2 ∈ B2(L2((a, b); r dx)) (B2( . ) the set of Hilbert-

Schmidt operators) since

‖|q/r|1/2(H0
α,β − z)−1|q/r|1/2‖22 =

b∫
a

b∫
a

|q(x)|
r(x)

|G0
α,β(z, x, y)|2 |q(y)|

r(y)
r(x)r(y) dxdy

≤M(z)

[ b∫
a

|q(x)| dx
]2

using the fact that |G0
α,β(z, . , . )| is bounded on (a, b)× (a, b). �

Thus the forms Qα,β in (A.2) are densely defined, closed, and bounded from
below ([12], Section VI.1). We denote by Hα,β the uniquely associated self-adjoint
operators bounded from below guaranteed by the KLMN theorem ([12], Theorem
VI.2.1; [17], Theorem X.17). The following theorem identifies Hα,β as the usual
regular SL operators (with separated boundary conditions).

Theorem A.3. Hα,β associated with Qα,β is given by

(Hα,βu)(x) = r(x)−1[−(p(x)u′(x))′ + q(x)u(x)],

D(Hα,β) = {u ∈ L2((a, b); r dx) | u, pu′ ∈ AC([a, b]), r−1(−(pu′)′ + qu) ∈ L2((a, b); r dx),
(pu′)(a) + αu(a) = (pu′)(b) + βu(b) = 0},

α, β ∈ R ∪ {∞}. (A.5)

Proof. It suffices to consider the Dirichlet case α = β = ∞, the other cases being

similar. Denote by Ĥ∞,∞ the operator defined in (A.5) for α = β = ∞ and by
H∞,∞ the unique operator associated with Q∞,∞. Choose u ∈ D(Q∞,∞) and

v ∈ D(Ĥ∞,∞). Then an integration by parts yields

Q∞,∞(u, v) = 〈u, Ĥ∞,∞v〉r.

Thus Ĥ∞,∞ ⊆ H∞,∞ by Corollary VI.2.4 of [12] and hence Ĥ∞,∞ = H∞,∞ since

Ĥ∞,∞ is self-adjoint. � �

Remark. It follows from the above theorem, that for arbitrary SL operators H (not
necessarily regular), elements u ∈ L2((a, b); r dx) which satisfy

u ∈ ACloc((a, b)), (p/r)1/2u′ ∈ L2
loc((a, b); r dx) (A.6)

and which are in the domain of H near a and b, are in the form domain of H.
Moreover, let u(x), v(x) be as in (A.6) and in D(H) for x ≤ c and x ≥ d, then

QH(u, v) =

∫
(a,b)\(c,d)

u(x) (τv)(x) dx+ u(d) (pv′)(d)− u(c) (pv′)(c)

+

d∫
c

[u′(x) (pv′)(x) + q(x)u(x) v(x))] dx.

(A.7)

In fact, take u as in (A.6) and in D(H) for x ≤ c and x ≥ d. Consider the operator

H̃α,β associated with τ and boundary conditions induced by u on the finite interval
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(c, d) (cf. (5.1)). Since u �(c,d)∈ D(Q̃α,β) (Q̃α,β the form of H̃α,β), we can pick a

sequence ũn in D(H̃α,β) such that ‖ũn−u�(c,d) ‖2,r → 0 and 〈(ũn− ũm), H̃α,β(ũn−
ũm)〉r → 0 (implying ‖ũn − u �(c,d) ‖L∞((a,b);dx) → 0 by (A.4) and Lemma A.2).
Extend ũn to a function un on (a, b) by patching it with u such that un ∈ D(H)
(which is possible since u and ũn satisfy the same boundary conditions at c and d).
By construction, un satisfies ‖un − u‖2,r → 0 and 〈(un − um), H(un − um)〉r → 0
and hence is in the form domain of H. This proves (A.6) and an integration by
parts then proves (A.7).
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