Errata
G. Teschl,

Ordinary Differential Equations and Dynamical Systems
Graduate Studies in Mathematics, Vol. 140
American Mathematical Society, Providence, Rhode Island, 2012

Please send comments and corrections to Gerald.Teschl@univie.ac.at
Updated as of July 16, 2020

Errata
Changes appear in yellow. Line k^+ (resp., line k^-) denotes the kth line from the top (resp., the bottom) of a page. My thanks go to the following individuals who have contributed to this list: Theresa Dvorak, Gudrun Szewieczek, William Jagy, Jonathan Eckhardt, Sebastian Woblistin, Yu Jiang, Annemarie Luger, Johannes Wächtler, Daniel Scherl, Kristoffer Varholm, Constantino Santos, Minjae Park, Teck-Cheong Lim, Peter Elbau, Walter Schachermayer, Sebas Pedersen, Raphael Stuhlmeyer, Eric Wahlén, Lukas Peham, Jakob Holböck, Guillaume Berger, Janusz Mierczyński, Batuhan Bayır, Mark Homs Dones, Boyuan Shi, Johannes Rotheneder.

Page 6. 7+: Furthermore, $K^{j+1} \in C^k(U_j, M)$ for any

Page 19. Problem 1.26, second item: $y(x_0 + x) = y(x_0 - x)$

Page 45. 10+: $\Delta(t) = |\phi(t, t_0, y_0) - \phi(t, s_0, y_0)|$ and use . . .

Page 51. Theorem 2.13: Suppose the IVP (2.10) has a unique local solution for every $(t_0, x_0) \in U$

Page 57. 4+: Taking $m \to \infty$ we finally obtain

Page 62.

$$\exp(tJ) = \exp(\alpha tI) \exp(tN) = e^{\alpha \sum_{j=0}^{k-1} \frac{t^j}{j!} N_j}. \quad (3.18)$$
Problem 3.13: It should read $\deg(q(t)) \leq \deg(p(t)) + s$ where s is the size of the largest Jordan block corresponding to the eigenvalue β. Moreover, here is an extended hint:

(Hint: Investigate (3.48) using the following fact: $\int^t (t-s)^m p(s) e^{\beta s} \, ds = q(t)e^{\beta t}$, where $q(t)$ is a polynomial of degree $\deg(q) = \deg(p) + m$ if $\beta \neq 0$ and $\deg(q) = \deg(p) + m + 1$ if $\beta = 0$. To see this differentiate $\int^t s^k e^{\beta s} \, ds$ with respect to β.)

Page 84. Line before (3.98): Let $X(t)$ be the identity matrix with the first column replaced by $\phi_1(t)$,

Example:

$$(e^{t^2} \ddot{c}(t) + 4te^{t^2} \dot{c}(t) + (2 + 4t^2)e^{t^2} c(t)) - 2t(e^{t^2} \ddot{c}(t) + 2te^{t^2} c(t)) - 2e^{t^2} c(t)$$

Problem 3.34: Consider the equation $\ddot{x} + q_0(t)x = 0$.

Problem 3.37: $y'(t) + e^{-Q(t)}y^2 + e^{Q(t)}q_0(t) = 0$.

Problem 3.38: $\dot{y} + e^{-Q(t)}y^2 + e^{Q(t)}q_0(t) = 0$.

Page 100. Paragraph after the proof of Theorem 3.23: ... is constant. To this end recall that Corollary 3.5 tells us when the system corresponding to $B(t) = 0$ is stable. Moreover, ...

Page 101. Theorem 3.26:

$$\left| x(t) \right| \leq Ce^{-(\alpha-b_0)C} |x_0|, \quad |x_0| < \frac{\delta}{C}, \quad t \geq 0. \quad (3.168)$$

Page 106. Take

$$U = \langle (A - \alpha)^{n-1} u, \ldots, (A - \alpha)u, u \rangle, \quad (3.191)$$

Page 117. Lemma 4.4: In this case we have $\alpha = -\lim_{z \to 0} z p(z)$ and the radius of convergence for the Laurent series of $p(z)$ equals the radius of the largest ball on which $h(z)$ is analytic and nonzero.

Page 120. Proof of Theorem 4.5: An argument that $h_2(z)$ has the same radius of convergence is missing:

If there is a second solution of the form $u_2(z) = z^{\alpha_2} h_2(z)$ the same argument can be used for $h_2(z)$. Otherwise one has to use (4.56) below in place of (4.39).
It is also possible to use \(u_2(z) = c(z)u_1(z) \) with
\[
c'(z) = z^{-2\alpha_1 - p_0} h_1(z)^{-2} \exp \left(-\int^z \tilde{p}(z) \right) = u_1(z)^{-2} \exp \left(-\int^z p(z) \right),
\]
where \(\tilde{p}(z) = p(z) - \frac{p_0}{z} \) is the analytic part of \(p(z) \) near 0. However the primitive \(c(z) \) might have logarithmic terms at a zero \(z_0 \) of \(u_1(z) \). A computation shows
\[
c'(z) = \exp \left(-\int z_0 p(z) \right) \left(\frac{1}{u'_1(z_0)^2} + \frac{u''_1(z_0) + p(z_0)u'_1(z_0)}{z - z_0} + \ldots \right)
\]
and since \(u''_1(z_0) + p(z_0)u'_1(z_0) = 0 \) we conclude that \(c \) has a first order pole at \(z_0 \) which will be removed by \(u_1(z) \).

Alternatively, note that the present theorem will also follow as a special case of Theorem 4.13.

Page 126. Problem 4.5: \(\Gamma(z) = \frac{(-1)^n}{n!} + O(1) \).

Page 126. Problem 4.8:
\[
h_j = \frac{1}{2} \sum_{k=0}^{j-1} p_{j-k} h_k,
\]

Page 126. Problem 4.10: For (i) you can use that \(\Gamma(z) \) has no zeros and hence \(\Gamma(z)^{-1} \) is an entire function.

Page 126. Problem 4.11 (iii): \(J_{\nu+1}(z) - J_{\nu-1}(z) = 2J'_\nu(z) \)

Page 145. Problem 5.3: We have \(x \in [0,1] \) and there is only one boundary condition \(u(t,1) = 0 \).

Page 145. Problem 5.5:
\[
m \frac{d^2}{dt^2} u(t, n) = k(u(t,n + 1) - u(t,n)) k(u(t, n - 1) - u(t, n)),
\]

Page 154.
\[
y(x) = y(x_0)c(z, x, x_0) + \frac{p(x_0)g'(x_0)}{s(z, x, x_0)} - \int_{x_0}^x s(z, x, t) g(t) r(t) dt. \quad (5.50)
\]
\[
s(z, x, x_0) = \frac{u(x_0)v(x) + u(x_0)v(x)}{W(u, v)}. \quad (5.51)
\]

Page 155. Problem 5.13:
\[
Q(y) = \frac{q(x(y))}{r(x(y))} - \frac{(p(x(y))r(x(y)))^{1/4}}{r(x(y))} \left(p(x(y))r(x(y))^{1/4} \right)'.
\]
Page 162.

\[
\min_{x \in [a,b]} \frac{q(x)}{r(x)} \leq E_0.
\] (5.77)

Page 166. Problem 5.22: with \(f^{(2j)}(0) = f^{(2j)}(1) = 0 \) for \(0 \leq j \leq k \).

Page 168. In fact, \(\theta_b(\lambda, x) \) as defined in (5.89) is the Prüfer angle for \(-u_b(\lambda, x) \), but this will be of no importance for our purpose.

Page 169.

\[
\#_{(-\infty, \lambda]}(L) = \left\lceil \frac{\alpha - \theta_b(\lambda, a)}{\pi} \right\rceil - 1,
\] (5.91)

Moreover, note that we also have:

\[
\#_{(-\infty, \lambda]}(L) = \left\lfloor \frac{\alpha - \theta_b(\lambda, a)}{\pi} \right\rfloor + 1,
\]

Page 172. Replace “As in the case of Theorem 5.18 one proves” by ”As an immediate consequence of Lemma 5.16 we obtain”

Page 174. Problem 5.29: suppose \(0 \leq \alpha_2 < \alpha_1 < \pi \) and show

Page 175. Problem 5.30:

\[
W'(u_0, u_1) = \left(q_1 - \lambda_1 p_1 - q_0 + \lambda_0 p_0 \right) u_0 u_1 + \left(\frac{1}{p_0} - \frac{1}{p_1} \right) p_0 u_0' p_1 u_1'.
\] (5.111)

Page 175. Problem 5.31:

\[
u'(x) = a \left(\frac{\cos(x + b)}{x^{1/2}} + \frac{-3/4 - \nu^2}{2x^{3/2}} \sin(x + b) + O(x^{-5/2}) \right).
\]

Page 183. Problem 5.33:

\[
G_\pm(z, x, y) = \frac{W(z)^{-1}}{1 + \rho_+ (z)} \begin{cases} u_+(z, x)u_-(z, y) \pm \rho_+ (z)u_-(z, x)u_+(z, y), & y < x, \\ u_-(z, y)u_+ (z, x) \pm \rho_+ (z)u_+ (z, y)u_-(z, x), & y > x, \end{cases}
\]

with \(W(z) = W(u_+(z), u_-(z)) \).

Page 184. Problem 5.35: (iii) \(c(z, \ell) = \psi'(z, \ell) \).

Page 205.

\[
\text{sign}(x_1) \int_{x_0}^x \frac{d\xi}{\sqrt{2(E - U(\xi))}} = t, \quad E = \frac{\psi_0^2}{2} + U(x_0).
\] (6.47)
Page 207. Problem 6.24:
\[
\frac{\partial}{\partial t} u(t,x) + \frac{\partial^3}{\partial x^3} u(t,x) + 6u(t,x) \frac{\partial}{\partial x} u(t,x) = 0
\]

Page 208. Problem 6.25 should be changed according to:
Show that if \(\{(\dot{x},x) \in M | E(\dot{x},x) = E_0 \} \) is compact and contains no fixed point, then it corresponds to a periodic orbit. Conclude that all solutions are periodic if \(\lim_{|x| \to \infty} U(x) = +\infty \) and \(U \) has a unique minimum.

Page 213. Proof of Theorem 7.4: Exchange the definitions of \(Q_3 \) and \(Q_4 \).

Page 214. Problem 7.4: The trajectory enters \(Q_3 \) and satisfies \(x(t) < x_0 \) in \(Q_3 \) since \(\ldots \) where \(y(t) \) decreases, implying \(x(t) \geq x_1 = \frac{1+\mu}{\lambda} \) when \(\ldots \). If \(y_2 \geq y_0 \), that is, if
\[
\lambda \mu^2 ((\mu \lambda)^2 - 1)(x_0 - \frac{1+\mu}{1+\mu \lambda}) > 0, \tag{1}
\]

Page 222. The proof of Lemma 7.13 only shows that \(\omega_\sigma(x) \) contains a regular periodic orbit. However, the claim follows from Lemma 7.14 if \(\omega_\sigma(x) \) is connected. Moreover, connectedness follows from compactness as in the proof of Lemma 6.6. In particular, the connectedness assumption in Theorem 7.16 is superfluous.

Page 225. First equation in the example:
\[
f(x,y) = \left(-\eta E(x,y)^2 y - U'(x) \right),
\]

Page 231. Sentence before (8.9): Moreover, for any positively invariant neighborhood \(U \subseteq W^+(\Lambda) \) we have

Page 233. Problem 8.2: Let \(V_R = \{x \in M | L(x) \leq R \} \) be a relatively compact set.

Page 235. Replace the last sentence by: Using the Routh–Hurwitz criterion one can show that the two new fixed points are asymptotically stable for \(1 < r < \frac{\sigma(3+b+\sigma)}{\sigma-\sigma b-1} \) if \(1 + b < \sigma \) and \(1 < r \) if \(1 + b \geq \sigma \). For the classical values \(\sigma = 10, b = 8/3 \) this gives \(1 < r < 470/19 = 24.74 \).

Page 240.
\[
\frac{d}{dt} \begin{pmatrix} p \\ q \end{pmatrix} = \nabla_x H(p,q), \tag{8.46}
\]

Page 242. Problem 8.12 should be changed to:
The Lagrangian of a relativistic particle in an external force field is given by
\[
L(v,q) = -mc^2 \sqrt{1 - \frac{v^2}{c^2}} - U(q),
\]
where c is the speed of light, m the (rest) mass of the particle, and U the potential of the force field. Derive the equation of motions from Hamilton’s principle. Derive the corresponding Hamilton equations.

\[H(p, q) = \frac{1}{2} (p M^{-1} p + q W q) \]

(8.77)

Page 246. Line before equation (8.78). Then the symplectic transform $(P, Q) = (V^T M^{-1/2} p, V^T M^{-1/2} q)$ (Problem 8.15) gives the decoupled system

\[H(p, q) = \sum_{j=1}^n \frac{p_j^2}{2m} + \sum_{j=0}^n U_0(q_{j+1} - q_j), \quad q_0 = q_{n+1} = 0, \]

(8.81)

Page 246. In order to better explain what Problem 8.18 is about the text between ”If we assume that the particles … of the Jacobian matrix of the potential.” should be replaced by:

If we assume that the particles are coupled by springs, the potential would be $U_0(x) = \frac{k}{2} x^2$, where $k > 0$ is the so called spring constant, and we have a harmonic oscillator with

$$M = m I, \quad W = k \begin{pmatrix} 2 & -1 \\ -1 & 2 \\ & \ddots & \ddots & \ddots \\ & & \ddots & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

The motion is decomposed into n modes corresponding to the eigenvectors of W, which are given by

$$v^j = \sqrt{\frac{2}{n+1}} \begin{pmatrix} \sin(\eta_j) \\ \sin(2\eta_j) \\ \vdots \\ \sin(n\eta_j) \end{pmatrix}, \quad \eta_j = \frac{\pi j}{n+1}.$$

The corresponding eigenvalues are $m\omega_j^2$, where $\omega_j^2 = \frac{2k}{m}(1 - \cos(\eta_j)) = \frac{4k}{m} \sin^2 \left(\frac{\eta_j}{2} \right)$. Consequently the j’th mode corresponds to the initial condition $(p(0), q(0)) = (0, v^j)$ and is given by

$$q^j(t) = \cos(\omega_j t)v^j, \quad p^j(t) = -m\omega_j \sin(\omega_j t)v^j.$$

The energy of the j’th mode is $H(p^j, q^j) = \frac{m\omega_j^2}{2}$.

Page 247. Problem 8.16: Ignore the hint.
The requirement \(x \in U(x_0) \) could be made part of the definition of \(M^{\pm, \alpha} \). Then the intersection with \(U(x_0) \) can be dropped at various later points.

Theorem 9.3: there are neighborhoods \(U(x_0) \) of \(x_0 \) and \(U \) of \(0 \) and a function \(h^{+, \alpha} \in C^k(E^{+, \alpha} \cap U, E^{-, \alpha}) \) such that

\[M^{+, \alpha}(x_0) \text{ can be dropped at various later points.} \]

Theorem 9.4: there are neighborhoods \(U(x_0) \) of \(x_0 \) and \(U \) of \(0 \) and functions \(h^{\pm} \in C^k(E^{\pm} \cap U, E^0 \oplus E^\mp) \) such that

\[M^{+, \alpha}(x_0) \subseteq W^{+, \alpha}(x_0), \text{ equality might not hold even in the case of a hyperbolic fixed point. In fact, } W^{+, \alpha}(x_0) \text{ might also contain points from } M^{-, \alpha}(x_0) \text{ as the example of a homoclinic orbit shows.} \]

Theorem 9.5: Delete equation (9.22) from the statement and add the following remark after the theorem:

Note that while we always have \(M^{+, \alpha}(x_0) \subseteq W^{+, \alpha}(x_0) \cap U(x_0) \), equality might not hold even in the case of a hyperbolic fixed point. In fact, \(W^{+, \alpha}(x_0) \) might also contain points from \(M^{-, \alpha}(x_0) \) as the example of a homoclinic orbit shows.

The very last equation on the bottom of the page is only true if \(\Phi_t \) is linear. Set \(\Phi_t = e^{tA} + G_t \), where \(G_t \) is bounded, and replace this equation by

\[h_t = \Phi_t \circ \varphi \circ e^{-tA} - I = e^{tA} \circ h \circ e^{-tA} + G_t \circ \varphi \circ e^{-tA}, \]

where both terms are bounded.

\[\varphi(x) = (x_1 + x_2^2, x_2). \] (9.38)

The line before (10.19) which is zero at \(p \), positive for \(x \neq p \), whose level sets \(S_\delta = \{ x \in U(p) | L(x) \leq \delta \} \) are connected for sufficiently small \(\delta \), and such that \(x \in U(p) \) implies \(f^n(x) \in U(p) \) and

\[x(m) = \Pi(m, m_0)x_0 + \sum_{j=m_0}^{m-1} \Pi(m, j+1)g(j), \] (10.28)

\[x(m) = \Pi(m, m_0)x_0 - \sum_{j=m-1}^{m_0} \Pi(m, j+1)g(j), \quad m < m_0. \] (10.29)

Second sentence after (11.10): Change \(W^s \) to \(W^\perp \).

Third paragraph: A map \(f \) as above is called \textbf{topologically transitive} if for any given nonempty open sets \(U, V \subseteq M \) there is an \(n \in \mathbb{N} \) such that \(f^n(U) \cap V \neq \emptyset \).

Problem 11.3: The assumption that the set has no isolated points needs to be added.
Page 301. Paragraph after (3.19): Moreover, since the endpoints of the subintervals of \(\Lambda_n \) are just given by \(T_\mu - n(\{0,1\}) \), we see . . .

Page 306. Lemma 11.10: the number of periodic points of period at most \(l \) is equal to \(\text{tr}(A^l) \).

Page 308. Problem 11.10: the number of periodic orbits of period at most \(n \).

Page 311. Theorem 11.20: The Hausdorff dimension of the repeller \(\Lambda \) of the tent map \(T_\mu \) for \(\mu > 2 \) is

Page 316. Problem 11.13: It seems too difficult to give a counterexample. The problem should be ignored.

Page 333. Change \(W^s \) to \(W^+ \) and \(W^u \) to \(W^- \) in the picture and the text before the picture.

Page 337. Problem 13.3:

\[
\dot{q} = p, \quad \dot{p} = -\sin(q) + \varepsilon \sin(t).
\]

Page 339.

\[
M(t) = \int_{-\infty}^{\infty} p_0(s) \left(\delta p_0(s) + \gamma \cos(\omega(s - t)) \right) ds \\
= \frac{4\delta}{3} - \sqrt{2}\pi\gamma\omega \operatorname{sech}\left(\frac{\pi\omega}{2}\right) \sin(\omega t).
\]

Thus the perturbed Duffing equation is chaotic for \(\varepsilon \) sufficiently small provided