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SPECTRAL THEORY FOR JACOBI OPERATORS

Gerald Teschl
Professor Fritz Gesztesy, Dissertation Supervisor

ABSTRACT

The present thesis discusses various aspects of spectral theory for Jacobi operators.
The first chapter reviews Weyl-Titchmarsh theory for these operators and provides

the necessary background for the following chapters.
In the second chapter we provide a comprehensive treatment of oscillation the-

ory for Jacobi operators with separated boundary conditions. Moreover, we present
a reformulation of oscillation theory in terms of Wronskians of solutions, thereby
extending the range of applicability for this theory. Furthermore, these results are
applied to establish the finiteness of the number of eigenvalues in essential spectral
gaps of perturbed periodic Jacobi operators.

In the third chapter we offer two methods of inserting eigenvalues into spectral
gaps of a given background Jacobi operator: The single commutation method which
introduces eigenvalues into the lowest spectral gap of a given semi-bounded back-
ground Jacobi operator and the double commutation method which inserts eigen-
values into arbitrary spectral gaps. Moreover, we prove unitary equivalence of the
commuted operators, restricted to the orthogonal complement of the eigenspace cor-
responding to the newly inserted eigenvalues, with the original background operator.
Finally, we show how to iterate the above methods. Concrete applications include
an explicit realization of the isospectral torus for algebro-geometric finite-gap Jacobi
operators and the N -soliton solutions of the Toda and Kac-van Moerbeke lattice
equations with respect to arbitrary background solutions.
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Chapter 1

Weyl-Titchmarsh Theory for
Jacobi Operators

1.1 General Background

First of all we need to fix some notation. For I ⊆ Z we denote by `(I) the set of C-
valued sequences {f(n)}n∈I . For M,N ∈ Z∪{±∞} we abbreviate `(M,N) = `({n ∈
Z|M < n < N}) (sometimes we will also write `(N,−∞) instead of `(−∞, N)). `2(I)
is the Hilbert space of all square summable sequences with scalar product and norm
defined as

〈f, g〉 =
∑
n∈I

f(n)g(n), ‖f‖ =
√
〈f, f〉, f, g ∈ `2(I). (1.1)

Furthermore, `0(I) denotes the set of sequences with only finitely-many values being
nonzero, `1(I) the set of summable sequences, `∞(I) the set of bounded sequences,
and `2±(Z) denotes the set of sequences in `(Z) which are `2 near ±∞. For brevity
we focus in the following on the case I = Z.

To set the stage, we shall consider operators on `2(Z) associated with the difference
expression

(τf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1)− b(n)f(n), (1.2)

where a, b ∈ `(Z) satisfy the following hypothesis.

Hypothesis H. 1.1 Suppose a, b ∈ `(Z) satisfy

a(n) ∈ R\{0}, b(n) ∈ R, n ∈ Z. (1.3)

If τ is limit point (l.p.) at both ±∞ (cf., e.g., [3], [5]) then τ gives rise to a unique
self-adjoint operator H when defined maximally. Otherwise we need to fix a boundary
condition at each endpoint where τ is limit circle (l.c.). Throughout this thesis we
denote by u±(z, .), z ∈ C nontrivial solutions of τu = zu which satisfy the boundary
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condition at ±∞ (if any) and u±(z, .) ∈ `2±(Z), respectively. u±(z, .) might not exist
for z ∈ R (cf. Lemma 1.3) but if it exists it is unique up to a constant multiple.

Picking z0 ∈ C\R we can characterize H by

H : D(H) → `2(Z)
f 7→ τf

, (1.4)

where the domain of H is explicitly given by

D(H) = {f ∈ `2(Z)| τf ∈ `2(Z), limn→+∞Wn(u+(z0), f) = 0,
limn→−∞Wn(u−(z0), f) = 0}

(1.5)

and
Wn(f, g) = a(n)

(
f(n)g(n+ 1)− f(n+ 1)g(n)

)
(1.6)

denotes the (modified) Wronskian. By σ(.), σp(.), and σess(.) we denote the spectrum,
point spectrum (i.e., the set of eigenvalues), and essential spectrum of an operator,
respectively.

A simple calculation yields Green’s formula for f, g ∈ `(Z)

n∑
j=m

(
f(τg)− gτf

)
(j) = Wn(f, g)−Wm−1(f, g). (1.7)

A glance at (1.7) shows that the modified Wronskian of two solutions of

τu = zu (1.8)

is constant and nonzero if and only if they are linearly independent. If we choose
f = u(z), g = u(z) in (1.7), where u(z) is a solution of (1.8) with z ∈ C\R, we obtain

[u(z)]n = [u(z)]m−1 −
n∑

j=m

|u(z, j)|2, (1.9)

where [.]n denotes the Weyl bracket

[u(z)]n =
Wn(u(z), u(z))

2iIm(z)
= a(n)

Im(u(z, n)u(z, n+ 1))

Im(z)
, n ∈ Z. (1.10)

Taking limits in (1.7) shows that W±∞(f, g) = limn→±∞Wn(f, g) exists if f, g, τf ,
and τg are square summable near ±∞.

The following sections generalize some well-known facts about Sturm–Liouville
operators (to be found, e.g., in [12],[31],[71],[76]) to Jacobi operators. The presented
material is essentially taken from [1],[3],[5],[9].
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1.2 Weyl m-functions

Let cα(z, .), sα(z, .) be the fundamental system of (1.8) corresponding to the initial
conditions

sα(z, 0) = − sin(α), sα(z, 1) = cos(α),

cα(z, 0) =
cos(α)

a(0)
, cα(z, 1) =

sin(α)

a(0)

(1.11)

such that

W (cα(z), sα(z)) = 1. (1.12)

Next pick λ1 ∈ R and define the following rational function with respect to z,

mN(z, α) =
WN(sα(λ1), cα(z))

WN(sα(λ1), sα(z))
, N ∈ Z\{0}, (1.13)

which has poles at the zeros λj(N) ∈ R, λ1(N) ≡ λ1 of WN(sα(λ1), sα(.)) = 0. The
fact that one can rewrite mN(z, α) with λ1 replaced by λj(N) together with

lim
z→λj(N)

WN(sα(λj(N)), cα(z)) = −1, (1.14)

lim
z→λj(N)

WN(sα(λj(N)), sα(z))

z − λj(N)
= WN(sα(λj(N)),

d

dz
sα(λj(N))) (1.15)

imply that all poles of mN(z, α) are simple. Using (1.7) to evaluate (1.15) one infers
that ∓1 times the residue at λj(N) is given by

γj(α,N) =
( N

0∑
n= 1

N+1

sα(λj(N), n)2
)−1

, N >
<

0. (1.16)

The γj(α,N) are called norming constants. Hence one gets

mN(z, α) =
∑
j

∓γj(α,N)

z − λj(N)
+


± tan(α)±1

a(0)
, α ∈ [0,π)

(0,π]
±z−b( 1

0
)

a(0)2
, α = π

0

, N >
<

0. (1.17)

(We note that λj(N) depend on α for j > 1.) Furthermore, the function

uN(z, n) = cα(z, n)−mN(z, α)sα(z, n) (1.18)

satisfies

N
0∑

n= 1
N+1

|uN(z, n)|2 = ±Im(mN(z, α))

Im(z)
, N >

<
0, (1.19)
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i.e., ±mN(z, α) are Herglotz functions for N >
<

0.
Next we want to investigate the limits N → ±∞. Fix z ∈ C\R. Then, as in the

Sturm-Liouville case, the function mN(z, α) (for different values of λ1 ∈ R) lies on a
circle given by

{m ∈ C|[cα(z)−msα(z)]N = 0}. (1.20)

Since [.]N is decreasing in N for N > 0, the circle corresponding to N + 1 lies inside
the circle corresponding to N . Similarly for N < 0. Hence these circles either tend
to a limit point or a limit circle, depending on whether

±∞∑
|sα(z, n)|2 = ∞, or

±∞∑
|sα(z, n)|2 <∞. (1.21)

Accordingly, one says that τ is limit point (l.p.) respectively limit circle (l.c.) at ±∞.
One can show that this definition is independent of z ∈ C\R. Thus the pointwise
convergence of mN(z, α) is clear in the l.p. case. In the l.c. case both Wronskians in
(1.13) converge and we may set

m̃±(z, α) = lim
N→±∞

mN(z, α). (1.22)

Remark 1.2 (i). m̃±(z, 0) are not the usual Weyl m-functions defined in the litera-
ture. For a connection with the standard Weyl m-functions m±(z) see (1.47), (1.48).
We have chosen to introduce m̃±(z, α) in order to simplify our notation in various
places.
(ii). This explicit construction of converging sequences, even in the l.c. case, also
works for Sturm-Liouville operators and seems to be novel to the best of our knowl-
edge. Previously one usually proved the existence of such sequences using Helly’s
selection theorem (cf., e.g., [12]).

Moreover, the above sequences are locally bounded in z (fix an N and take all
circles corresponding to a (sufficiently small) neighborhood of any point z and note
that all following circles lie inside the ones corresponding to N) and by Vitali’s the-
orem ([72], p. 168) they converge uniformly on every compact set in C± = {z ∈
C| ± Im(z) > 0}, implying that ±m̃±(z, α) are again Herglotz functions.

Upon setting

u±(z, n) = cα(z, n)− m̃±(z, α)sα(z, n) (1.23)

we get a function which is square summable near ±∞
∞
0∑

n= 1
−∞

|u±(z, n)|2 = ±Im(m̃±(z, α))

Im(z)
, N >

<
0. (1.24)
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In addition,

W±∞(sα(λ1), u±(z)) = 0, (1.25)

if τ is l.c. at ±∞. We remark that (independently of the l.c. and l.p. case at ±∞)

m̃±(z) = m̃±(z, 0) =
−u±(z, 1)

a(0)u±(z, 0)
(1.26)

and that m̃±(z, α) can be expressed in terms of m̃±(z, β) (use that u± is unique up
to a constant) by

m̃±(z, α) =
1

a(0)

a(0) cos(β − α)m̃±(z, β)− sin(β − α)

a(0) sin(β − α)m̃±(z, β) + cos(β − α)
. (1.27)

1.3 Weyl-Titchmarsh Theory on N
Let H+ be a given self-adjoint operator associated with τ on N and a Dirichlet bound-
ary condition at n = 0. Abbreviate s(z, n) = s0(z, n) and let u+(z, n), z ∈ C\σ(H+)
be a solution of (1.8) which is square summable near ∞ and fulfills the boundary
condition at ∞ (if any). The resolvent of H+ then reads

((H+ − z)−1f)(n) =
∑
m∈N

G+(z,m, n)f(m), z ∈ C\σ(H+), (1.28)

where

G+(z,m, n) =
1

W (s(z), u+(z))

{
s(z, n)u+(z,m), m ≥ n
s(z,m)u+(z, n), m ≤ n

. (1.29)

Since s(z, n) is a polynomial in z we infer by induction

s(H+, n)δ1 = δn, δn(k) =

{
1, k = n
0, k 6= n

, (1.30)

implying that δ1 is a cyclic vector for H+. If E+(.) denotes the family of spectral
projections corresponding to H+ we introduce the measure

dρ+(.) = d〈δ1, E+(.)δ1〉. (1.31)

Equation (1.30) now shows that the polynomials s(z, n), n ∈ N are orthogonal with
respect to this measure, i.e.,

〈s(j), s(k)〉 =

∞∫
−∞

s(λ, j)s(λ, k) dρ+(λ) = δj(k), (1.32)
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implying

a(n) = 〈s(n+ 1), λs(n)〉, b(n) = −〈s(n), λs(n)〉, n ∈ N. (1.33)

Now consider the following transformation U from the set `0(N) onto the set of
polynomials

(Uf)(λ) =
∞∑

n=1

f(n)s(λ, n), (1.34)

(U−1F )(n) =
∫

R
s(λ, n)F (λ)dρ+(λ). (1.35)

A simple calculation for F (λ) = (Uf)(λ) shows that

∞∑
n=1

|f(n)|2 =
∫

R
|F (λ)|2dρ+(λ). (1.36)

Thus U extends to a unitary transformation

Ũ : `2(N) → L2(R, dρ+) (1.37)

(since the set of polynomials is dense in L2(R, dρ+), [5], Theorem VII.1.7) which maps
the operator H+ to the multiplication operator by λ,

ŨH+Ũ
−1 = H̃, (1.38)

where

H̃F (λ) = λF (λ), D(H̃) = {F ∈ L2(R, dρ+)|λF (λ) ∈ L2(R, dρ+)}. (1.39)

This is easily verified for f ∈ `0(N). If τ is l.p. at ∞ note that `0(N) is a core for
H+ and if τ is l.c. at ∞ note that dρ+ is a pure point measure and that eigenfunctions
are mapped onto eigenfunctions (all finite linear combinations of eigenfunctions form
again a core).

This implies that the spectrum of H+ can be characterized as follows. Let the
Lebesgue decomposition of dρ+ be given by

dρ+ = dρ+,p + dρ+,ac + dρ+,sc, (1.40)

then we have (ρ+(λ) =
∫
(−∞,λ] dρ+)

σ(H+) = {λ ∈ R|λ is a growth point of ρ+}, (1.41)

σp(H+) = {λ ∈ R|λ is a growth point of ρ+,p}, (1.42)

σac(H+) = {λ ∈ R|λ is a growth point of ρ+,ac}, (1.43)

σsc(H+) = {λ ∈ R|λ is a growth point of ρ+,sc}. (1.44)
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The Stieltjes transform of the spectral function ρ+ is called the Weyl m-function

m+(z) =
∫

R

dρ+(λ)

z − λ
, z ∈ C\R. (1.45)

Conversely, the spectral function ρ+ can be recovered from m+(z) by the Stieltjes
inversion formula

ρ+(λ) =
−1

π
lim
δ↓0

lim
ε↓0

λ+δ∫
−∞

Im(m+(ν + iε))dν. (1.46)

We have normalized ρ+ such that it is right continuous and satisfies lim
λ→−∞

ρ+(λ) = 0.

One infers

m+(z) = G+(z, 1, 1) =
−u+(1)

a(0)u+(0)
= m̃+(z), (1.47)

and we remark that the local compact convergence of mN(z, 0) to m̃+(z) = m+(z) im-
plies the convergence of the associated spectral functions at every point of continuity
([2], p. 332). The second Weyl m-function is usually defined as

m−(z) = G−(z,−1,−1) =
−u−(−1)

a(−1)u−(0)
= −z + b(0) + a(0)2m̃−(z)

a(−1)2
. (1.48)

m±(z), like ±m̃±(z), are Herglotz functions.

1.4 Weyl–Titchmarsh Theory on Z
In Section 1.3 we have dealt with the half-line N. In this section we extend these
results to all of Z.

LetH be a given self-adjoint operator associated with τ . Let u±(z, n) be a solution
of (1.8) which is square summable near ±∞ (provided such a solution exists) and
fulfills the boundary condition at ±∞ if any. The resolvent of H then reads

((H − z)−1f)(n) =
∑
m∈Z

G(z,m, n)f(m), z ∈ ρ(H), (1.49)

where

G(z,m, n) =
1

W (u−(z), u+(z))

{
u−(z, n)u+(z,m), m ≥ n
u−(z,m)u+(z, n), m ≤ n

. (1.50)

Consider the vector-valued polynomials

S(z, n) =
(
s(z, n), c(z, n)

)
, (1.51)
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where s(z, n), c(z, n) are solutions of (1.8) satisfying the initial conditions

s(z, 0) = 0, s(z, 1) = 1,
c(z, 0) = 1, c(z, 1) = 0.

(1.52)

The analog of (1.30) reads

s(H,n)δ1 + c(H,n)δ0 = δn. (1.53)

This is obvious for n = 0, 1 and the rest follows from induction upon applying H to
(1.53). If E(.) denotes the spectral resolution of the identity corresponding to H we
introduce the measures

dρj,k(.) = d〈δj, E(.)δk〉, (1.54)

and the (hermitian) matrix-valued measure

dρ =

(
dρ1,1 dρ1,2

dρ2,1 dρ2,2

)
. (1.55)

By (1.53) the vector-valued polynomials are orthogonal with respect to dρ

〈S(m), S(n)〉 =
2∑

j,k=1

∫
R
Sj(λ,m) Sk(λ, n)dρj,k(λ)

≡
∫

R
S(λ,m)dρ(λ) S(λ, n) = δn(m). (1.56)

The analogous formulas to (1.33) then read

a(n) = 〈S(n+ 1), λS(n)〉, b(n) = 〈S(n), λS(n)〉, n ∈ Z. (1.57)

Next we consider the following transformation U from the set `0(Z) onto the set
of vector-valued polynomials

(Uf)(λ) =
∑
n∈Z

f(n)S(λ, n), (1.58)

(U−1F )(n) =
∫

R
S(λ, n)dρ(λ)F (λ). (1.59)

Again a simple calculation for F (λ) = (Uf)(λ) shows that

∑
n∈Z

|f(n)|2 =
∫

R
F (λ)dρ(z)F (λ). (1.60)

Thus U extends to a unitary transformation

Ũ : `2(Z) → L2(R, dρ) (1.61)
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which maps the operator H to the multiplication operator by λ,

ŨHŨ−1 = H̃, (1.62)

where

H̃F (λ) = zF (λ), D(H̃) = {F ∈ L2(R, dρ)|λF (λ) ∈ L2(R, dρ)}. (1.63)

In order to characterize the spectrum of H one only needs to consider the trace
dρt of dρ

dρt = dρ1,1 + dρ2,2. (1.64)

Let the Lebesgue decomposition of dρt be given by

dρt = dρt
p + dρt

ac + dρt
sc, (1.65)

then we have (ρt(λ) =
∫
(−∞,λ] dρ

t, etc.)

σ(H) = {λ ∈ R|λ is a growth point of ρt}, (1.66)

σp(H) = {λ ∈ R|λ is a growth point of ρt
p}, (1.67)

σac(H) = {λ ∈ R|λ is a growth point of ρt
ac}, (1.68)

σsc(H) = {λ ∈ R|λ is a growth point of ρt
sc}. (1.69)

The Weyl-matrix M(z) is defined as

M(z) =

∞∫
−∞

dρ(λ)

z − λ
, z ∈ C\R. (1.70)

Explicit evaluation yields

M(z) =

(
G(z, 0, 0) G(z, 1, 0)
G(z, 0, 1) G(z, 1, 1)

)

=
a(0)−2

m̃−(z)− m̃+(z)

(
1 −a(0)m̃+(z)

−a(0)m̃+(z) a(0)2m̃+(z)m̃−(z)

)
. (1.71)

Finally, assuming ρ to be right continuous and normalizing ρ(−∞) = 0 one obtains

ρj,k(λ) =
−1

π
lim
δ↓0

lim
ε↓0

λ+δ∫
−∞

Im(Mj,k(ν + iε))dν, 1 ≤ j, k ≤ 2. (1.72)
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1.5 Some Useful Lemmas

This section provides some useful results needed later on. Denote by s(z, n) and c(z, n)
the solutions of τu = zu corresponding to the initial conditions s(z, 0) = c(z, 1) = 0,
s(z, 1) = c(z, 0) = 1.

Lemma 1.3 Let λ0 < λ1 be such that [λ0, λ1] ∩ σess(H+) = ∅. Then there exists a
solution u+(z, .) ∈ `2+(Z) of τu = zu satisfying the boundary condition of H at +∞
(if any) which is holomorphic with respect to z for z ∈ C\((−∞, λ0] ∪ [λ1,∞)). In
addition, we can assume u+(z, .) 6≡ 0 and u+(z, .) = u+(z, .).

Similarly, [λ0, λ1] ∩ σess(H−) = ∅ implies the existence of a solution u−(z, .) ∈
`−(Z) fulfilling the boundary condition of H at −∞ (if any) and, as a function of z,
satisfies the same conditions as u+(z, .).

Proof. Explicitly, we can set

u±(z, n) =
( ∏

µ∈σ(H+)∩[λ0,λ1]

(z − µ)
)(
a(0)−1c(z, n)− m̃±(z)s(z, n)

)
. (1.73)

2

Lemma 1.4 Suppose a(n) < 0 and let λ < inf σ(H). Then we can assume

u±(λ, n) > 0, n ∈ Z, (1.74)

n s(λ, n) > 0, n ∈ Z\{0}. (1.75)

They solutions u±(λ, .) are called principal solutions of (H − λ)u = 0 near ±∞ in
[43].

Proof. From (H − λ) > 0 one infers (H+,n − λ) > 0 and hence

0 < 〈δn+1, (H+,n − λ)−1δn+1〉 =
u+(λ, n+ 1)

−a(n)u+(λ, n)
(1.76)

showing that u+(λ) can be chosen to be positive. Furthermore, for n > 0 we obtain

0 < 〈δn, (H+ − λ)−1δn〉 =
u+(λ, n)s(λ, n)

−a(0)u+(λ, 0)
(1.77)

implying s(λ, n) > 0 for n > 0. Similarly one proves the remaining results. 2

Let u±(z, n) are solutions of τu = zu as in Lemma 1.3. Then Green’s formula
(1.7) implies

Wn(u+(z), u+(z̃)) = (z − z̃)
∞∑

j=n+1

u+(z, j)u+(z̃, j) (1.78)
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and furthermore,

Wn(u+(z), u̇+(z)) = lim
z̃→z

Wn(u+(z),
u+(z)− u+(z̃)

z − z̃
)

=
∞∑

j=n+1

u+(z, j)2. (1.79)

Here the dot denotes the derivative with respect to z. An analogous result holds for
u−(z, n). Interchanging limit and summation can be justified using (cf. Remark 2.8)

u+(z̃, j) = const(z̃)(Hβ
+,n−1 − z̃)−1δn(j) for j ≤ n (1.80)

(with β such that z 6∈ σ(Hβ
+,n−1)) and the first resolvent identity. Summarizing

(compare [3], Theorem 4.2.2):

Lemma 1.5 Let u±(z, n) be solutions of τu = zu as in Lemma 1.3. Then we have

Wn(u±(z), u̇±(z)) =


−

∞∑
j=n+1

u+(z, j)2

n∑
j=−∞

u−(z, j)2
. (1.81)
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Chapter 2

Oscillation Theory

2.1 Introduction

In 1836 Sturm originated the investigations of oscillation properties of solutions of
second-order differential and difference equations [70]. Since then numerous exten-
sions have been made. Especially, around 1948, Hartman and others have shown the
following in a series of papers ([44], [45], [46]). For a given Sturm–Liouville operator
H on L2(0,∞), the dimension of the spectral projection P(−∞,λ)(H) equals the num-
ber of zeros of certain solutions of Hu = λu. Moreover, the dimension of P(λ1,λ2)(H)
can be obtained by considering the difference of the number of zeros inside a finite
interval (0, x) of two solutions corresponding to their respective spectral parameters
λ1 and λ2, and performing a limit x → ∞. Only recently it was shown in [39] by
F. Gesztesy, B. Simon, and myself that these limits can be avoided by using a renor-
malized version of oscillation theory, that is, counting zeros of Wronskians of solutions
instead.

This naturally raises the question whether similar results hold for second-order
difference equations. Despite a variety of literature on this subject (cf., e.g., [3],
[7], [18], [27], [37], [41], Sections 14 and 37, [43], [47], [48], [49], [52], [61], [62] and
the references therein) only a few things concerning the connections between oscil-
lation properties of solutions and spectra of the corresponding operators appear to
be known. In particular, the analogs of the aforementioned theorems seem to be un-
known. Moreover, even the analog of the well-known fact that the n-th eigenfunction
of a Sturm-Liouville operator (below the essential spectrum) has n− 1 nodes is only
known in the special case of finite Jacobi operators (i.e., finite tri-diagonal matrices)
[3], Theorem 4.3.5, [27]. The present thesis aims at filling these gaps and provides a
complete solution to these problems.

Now, we want to give the reader an intuitive idea of how oscillation theory works.
In the sequel a solution of τu = λu, λ ∈ R will always mean a real-valued, non-zero
solution. We first need to define what we mean by a node of a real-valued sequence
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u ∈ `(Z). A point n ∈ Z, is called a node of u if either

u(n) = 0 or a(n)u(n)u(n+ 1) > 0. (2.1)

In the special case a(n) < 0, n ∈ Z a node of u is precisely a sign flip of u as one
would expect. In the general case, however, one has to take the sign of a(n) into
account.

For simplicity we shall assume a(n) < 0 (cf. Lemma 2.2) and a, b bounded (im-
plying H bounded) for the remainder of this section.

By Lemma 1.3 u−(λ, .) can be assumed to be continuous with respect to λ as
long as λ is below the essential spectrum of H. In addition, u−(λ, .) can be assumed
positive for λ below the spectrum of H and hence has no nodes in this case. Increasing
λ one needs to observe three things: (i) Nodes of u−(λ) move to the right (by (2.34))
without colliding; (ii) u−(λ) cannot pick up nodes locally (by (2.14)); (iii) u−(λ)
cannot lose nodes at −∞. By (i) and (ii) we infer that u−(λ) can only pick up nodes
at +∞. Intuitively this happens if u−(λ) ∈ `2(Z) (or equivalently, if λ an eigenvalue
of H) and hence limn→∞ u−(λ, n) = 0. Summarizing, u−(λ) has no nodes below the
spectrum of H and picks up one additional node whenever λ is an eigenvalue of H.
Since no nodes get lost we are lead to (cf. Theorem 2.13)

dim RanP(−∞,λ)(H) = #(u−(λ)), (2.2)

where #(u) denotes the total number of nodes of u and PΩ(H) is the spectral pro-
jection of H corresponding to the Borel set Ω ⊆ R. As a corollary we conclude, as
already anticipated, that the n-th eigenfunction (below the essential spectrum) has
n− 1 nodes.

To obtain the number of eigenvalues between two given values λ1 and λ2 it seems
natural to consider #(u−(λ2))−#(u−(λ1)). This gives nothing new below the essential
spectrum and otherwise we have #(u) = ∞ for any solution of τu = λu with λ above
the infimum of the essential spectrum. Hence, a naive use of oscillation theory in the
latter case yields∞−∞. There are two ways to overcome this problem. The first, due
to [45] in the case of differential operators, uses a limiting procedure which only works
for half-line operators and can be found in Theorem 2.16. The second, due to [39] in
the case of differential operators, uses the fact that the nodes of the Wronskian of two
solutions u1, u2 corresponding to λ1, λ2, respectively, essentially counts the additional
nodes of u2 with respect to u1 (cf. Corollary 2.18). In this sense the Wronskian comes
with a built-in renormalization. Moreover, the nodes of Wronskians behave similar
to the nodes of solutions and satisfy the above properties (i), (ii), and (iii) as well.
Hence, similar techniques apply.

To give rigorous proofs for the indicated results we first introduce and investi-
gate Prüfer variables in Section 2.2. They will be our main tool in Section 2.3 and
Section 2.4 where our major theorems are derived. Section 2.5 uses the results of
Section 2.3 and 2.4 to investigate the spectra of short-range perturbations of periodic
Jacobi operators.
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2.2 Prüfer Variables

For the rest of this chapter we assume for convenience

Hypothesis H. 2.1 Suppose

a, b ∈ `(Z), a(n) < 0, b(n) ∈ R. (2.3)

We remark that the case a(n) 6= 0 can be reduced to the case a(n) > 0 or a(n) < 0
(cf., e.g., [21], p. 141). In fact one has

Lemma 2.2 Assume (H.1.1) and let H be a Jacobi operator associated with the dif-
ference expression (3.25). Introduce aε by

aε(n) = ε(n)a(n), ε(n) ∈ {+1,−1}, n ∈ Z (2.4)

and the unitary operator Uε by

Uε = {ε̃(n)δm,n}m,n∈Z, ε̃(n) ∈ {+1,−1}, ε̃(n)ε̃(n+ 1) = ε(n). (2.5)

Then Hε defined as

Hε = U−1
ε HUε, (2.6)

is associated with the difference expression

(τεf)(n) = aε(n)f(n+ 1) + aε(n− 1)f(n− 1)− bε(n)f(n). (2.7)

In particular, Hε is unitarily equivalent to H.

In addition, by a solution of τu = λu, λ ∈ R we will always mean a real-valued
solution not vanishing identically.

Given a solution u(λ, .) of τu = λu, λ ∈ R we introduce Prüfer variables ρu(λ, .),
θu(λ, .) via

u(λ, n) = ρu(λ, n) sin θu(λ, n), (2.8)

u(λ, n+ 1) = ρu(λ, n) cos θu(λ, n). (2.9)

Notice that the Prüfer angle θu(λ, .n) is only defined up to an additive integer multiple
of 2π (which depends on n).

Inserting (2.8), (2.9) into (τ − λ)u = 0 yields

a(n) cot θu(λ, n) + a(n− 1) tan θu(λ, n− 1) = b(n) + λ, (2.10)

ρu(λ, n) sin θu(λ, n) = ρu(λ, n− 1) cos θu(λ, n− 1). (2.11)
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Equation (2.10) is a discrete Riccati equation (cf. [48]) for cot θu(n) and (2.11) can
be solved if θu(n) is known provided it is replaced by

a(n)ρu(λ, n) = a(n− 1)ρu(λ, n− 1) = 0 (2.12)

if sin θu(λ, n) = cos θu(λ, n− 1) = 0 (use τu = λu and (2.14) below). The Wronskian
of two solutions u1,2(λ1,2, n) reads

Wn(u1(λ1), u2(λ2)) = a(n)ρu1(λ1, n)ρu2(λ2, n) sin(θu1(λ1, n)− θu2(λ2, n)). (2.13)

The next lemma considers nodes of solutions and their Wronskians more closely.

Lemma 2.3 Let u1,2 be solutions of τu1,2 = λ1,2u1,2 corresponding to λ1 6= λ2, re-
spectively. Then

u1(n) = 0 ⇒ u1(n− 1)u1(n+ 1) < 0. (2.14)

Moreover, suppose Wn(u1, u2) = 0 but Wn−1(u1, u2)Wn+1(u1, u2) 6= 0, then

Wn−1(u1, u2)Wn+1(u1, u2) < 0. (2.15)

Otherwise, if Wn(u1, u2) = Wn+1(u1, u2) = 0, then necessarily

u1(n+ 1) = u2(n+ 1) = 0, and Wn−1(u1, u2)Wn+2(u1, u2) < 0. (2.16)

Proof. The fact u(n) = 0 implies u1(n − 1)u1(n + 1) 6= 0 (otherwise u1 vanishes
identically) and a(n)u1(n + 1) = −a(n − 1)u1(n − 1) (from τu = λu) shows u1(n −
1)u1(n+ 1) < 0.

Next, Wn(u1, u2) = 0 is equivalent to u1(n) = cu2(n), u1(n + 1) = cu2(n + 1) for
some c 6= 0 and from (1.7) we infer

Wn+1(u1, u2)−Wn(u1, u2) = (λ2 − λ1)u1(n+ 1)u2(n+ 1). (2.17)

Applying the above formula gives

Wn−1(u1, u2)Wn+1(u1, u2) = −c2(λ2 − λ1)
2u1(n)2u1(n+ 1)2 (2.18)

proving the first claim. If Wn(u1, u2), Wn+1(u1, u2) are both zero we must have
u1(n+1) = u2(n+1) = 0 and as before Wn−1(u1, u2)Wn+1(u1, u2) = −(λ2−λ1)

2u1(n−
1)u1(n+ 2)u2(n− 1)u2(n+ 2). Hence the claim follows from the first part. 2

We can make the Prüfer angel θu(λ, .) unique by fixing, for instance, θu(λ, 0) and
requiring

[[θu(λ, n)/π]] ≤ [[θu(λ, n+ 1)/π]] ≤ [[θu(λ, n)/π]] + 1, (2.19)

where
[[x]] = sup{n ∈ Z |n < x}. (2.20)
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Lemma 2.4 Let Ω ⊆ R be an interval. Suppose u(λ, n) is continuous with respect
to λ ∈ Ω and (2.19) holds for one λ0 ∈ Ω. Then it holds for all λ ∈ Ω if we require
θu(., n) ∈ C(Ω).

Proof. Fix n and set

θu(λ, n) = kπ + δ(λ), θu(λ, n+ 1) = kπ + ∆(λ), k ∈ Z, (2.21)

where δ(λ) ∈ (0, π], ∆(λ) ∈ (0, 2π]. If (2.19) should break down then by continu-
ity we must have one of the following cases for some λ1 ∈ Ω. (i) δ(λ1) = 0 and
∆(λ1) ∈ (π, 2π), (ii) δ(λ1) = π and ∆(λ1) ∈ (0, π), (iii) ∆(λ1) = 0 and δ(λ1) ∈ (0, π),
(iv) ∆(λ1) = 2π and δ(λ1) ∈ (0, π). Abbreviate R = ρ(λ1, n)ρ(λ1, n + 1). Case
(i) implies 0 > sin(∆(λ1)) = cos(kπ) sin(kπ + ∆(λ1)) = R−1u(λ1, n + 1)2 > 0,
contradicting (i). Case (ii) is similar. Case (iii) implies δ(λ1) = π/2 and hence
1 = sin(kπ+π/2) cos(kπ) = R−1u(λ1, n)u(λ1, n+2) contradicting (2.14). Again, case
(iv) is similar. 2

Let us call a point n ∈ Z a node of a solution u if either u(n) = 0 or a(n)u(n)u(n+
1) > 0. Then, [[θu(n)/π]] = [[θu(n + 1)/π]] implies no node at n. Conversely, if
[[θu(n+ 1)/π]] = [[θu(n)/π]] + 1, then n is a node by (2.14). Denote by #(u) the total
number of nodes of u and by #(m,n)(u) the number of nodes of u between m and
n. More precisely, we shall say that a node n0 of u lies between m and n if either
m < n0 < n or if n0 = m but u(m) 6= 0. Hence we conclude

Lemma 2.5 Let m < n. Then we have for any solution u

#(m,n)(u) = [[θu(n)/π]]− lim
ε↓0

[[θu(m)/π + ε]] (2.22)

and
#(u) = lim

n→∞

(
[[θu(n)/π]]− [[θu(−n)/π]]

)
. (2.23)

Next, we recall the well-known analog of Sturm’s theorem for differential equations
and include a proof for the sake of completeness (cf., [3],[62]).

Lemma 2.6 Let u1,2 be solutions of τu = λu corresponding to λ1 ≤ λ2. Suppose
m < n are two consecutive points which are either nodes of u1 or zeros of W.(u1, u2)
(the cases m = −∞ or n = +∞ are allowed if u1 and u2 are both in `2±(Z) and
W±∞(u1, u2) = 0 respectively) such that u1 has no further node between m and n.
Then u2 has at least one node between m and n+1. Moreover, suppose m1 < · · · < mk

are consecutive nodes of u1. Then u2 has at least k − 1 nodes between m1 and mk.
Hence we even have

#(m,n)(u2) ≥ #(m,n)(u1)− 1. (2.24)
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Proof. Suppose u2 has no node between m and n + 1. Hence we may assume
(perhaps after flipping signs) that u1(j) > 0 for m < j < n, u1(n) ≥ 0, and u2(j) > 0
for m ≤ j ≤ n. Moreover, u1(m) ≤ 0, u1(n+ 1) < 0 and u2(n+ 1) ≥ 0 provided m,n
are finite. By Green’s formula (1.7)

0 ≤ (λ2 − λ1)
n∑

j=m+1

u1(j)u2(j) = Wn(u1, u2)−Wm(u1, u2). (2.25)

Evaluating the Wronskians shows Wn(u1, u2) < 0, Wm(u1, u2) > 0 which is a contra-
diction.

It remains to prove the last part. We will use induction on k. The case k = 1 is
trivial and k = 2 has already been proven. Denote the nodes of u2 lower or equal than
mk+1 by nk > nk−1 > · · ·. If nk > mk we are done since there are k − 1 nodes n such
that m1 ≤ n ≤ mk by induction hypothesis. Otherwise we can find k0, 0 ≤ k0 ≤ k
such that mj = nj for 1 + k0 ≤ j ≤ k. If k0 = 0 we are clearly done and we can
suppose k0 ≥ 1. By induction hypothesis it suffices to show that there are k − k0

nodes n of u2 with mk0 ≤ n ≤ mk+1. By assumption mj = nj, 1 + k0 ≤ j ≤ k are
the only nodes n of u2 such that mk0 ≤ n ≤ mk+1. Abbreviate m = mk0 , n = mk+1

and assume without restriction u1(m+ 1) > 0, u2(m) > 0. Since the nodes of u1 and
u2 coincide we infer 0 <

∑n
j=m+1 u1(j)u2(j) and we can proceed as in the first part to

obtain a contradiction. 2

We call τ oscillatory if one solution of τu = 0 has an infinite number of nodes. In
addition, we call τ oscillatory at ±∞ if one solution of τu = 0 has an infinite number
of nodes near ±∞. We remark that if one solution of (τ − λ)u = 0 has infinitely
many nodes so has any other (corresponding to the same λ) by (2.24). Furthermore,
τ − λ1 oscillatory implies τ − λ2 oscillatory for all λ2 > λ1 (again by (2.24)).

Now we turn to the special solution s(λ, n) characterized via the initial conditions
s(λ, 0) = 0, s(λ, 1) = 1. As in Lemma 1.5 we infer

Wn(s(λ), ṡ(λ)) =
0∑

j=n+1

s(λ, j)2, n < −1, (2.26)

Wn(s(λ), ṡ(λ)) =
n∑

j=1

s(λ, j)2, n ≥ 1. (2.27)

Here the dot denotes the derivative with respect to λ. Notice also W−1(s(λ), ṡ(λ)) =
W0(s(λ), ṡ(λ)) = 0. Evaluating the above equation using Prüfer variables shows

θ̇s(λ, n) =

∑n
j=1 s(λ, j)

2

−a(n)ρs(λ, n)2
> 0, n ≥ 1, (2.28)

θ̇s(λ, n) =

∑0
j=n+1 s(λ, j)

2

a(n)ρs(λ, n)2
< 0, n < −1. (2.29)
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Notice, again that θ̇s(λ,−1) = θ̇s(λ, 0) = 0. Equation (2.28) implies that nodes of
s(λ, n) for n ∈ N move monotonically to the left without colliding (cf., [3] Theo-
rem 4.3.4). In addition, since s(λ, n) cannot pick up nodes locally by (2.14), all nodes
must enter at ∞ and since θ̇s(λ, 0) = 0 they are trapped inside (0,∞).

We shall normalize θs(λ, 0) = 0 and hence θs(λ,−1) = −π/2. Since s(λ, n) is a
polynomial in λ we easily infer s(λ, n) >

<
0 for fixed n >

<
0 and λ sufficiently small.

This implies

−π < θs(λ, n) < −π/2, n < −1, 0 < θs(λ, n) < π, n ≥ 1, (2.30)

for fixed n and λ sufficiently small. Moreover, dividing (2.10) by λ and letting λ →
−∞ using (2.30) shows

lim
λ→±∞

cot(θs(λ, n))±1

λ
=

1

a(n)
, n

≥ +1

< −1
(2.31)

and hence

θs(λ, n) = −π
2
− a(n)

λ
+ o(

1

λ
), n < −1, θs(λ, n) =

a(n)

λ
+ o(

1

λ
), n ≥ 1, (2.32)

as λ→ −∞.
Analogously, let u±(λ, n) be solutions of τu = λu as in Lemma 1.3. Then Lemma

1.5 implies

θ̇+(λ, n) =

∑∞
j=n+1 u+(λ, j)2

a(n)ρ+(λ, n)2
< 0, (2.33)

θ̇−(λ, n) =

∑n
j=−∞ u−(λ, j)2

−a(n)ρ−(λ, n)2
> 0, (2.34)

where we have abbreviated ρu± = ρ±, θu± = θ±.
If H is bounded from below we can normalize

0 < θ∓(λ, n) < π/2, n ∈ Z, λ < inf σ(H) (2.35)

and we get as before

θ−(λ, n) =
a(n)

λ
+ o(

1

λ
), θ+(λ, n) =

π

2
− a(n)

λ
+ o(

1

λ
), n ∈ Z (2.36)

as λ→ −∞.

2.3 Standard Oscillation Theory

First of all we recall ([39], Lemma 5.2).
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Lemma 2.7 Let H,Hn be self-adjoint operators and Hn → H in strong resolvent
sense as n→∞. Then

dim RanP(λ1,λ2)(H) ≤ lim inf
n→∞

dim RanP(λ1,λ2)(Hn). (2.37)

Our first theorem considers half-line operators H± associated with a Dirichlet
boundary condition at n = 0, that is, the following restrictions of H to the subspaces
`2(±N),

H± : D(H±) → `2(±N)

f(n) 7→
{
a(+1

−2
)f(±2)− b(±1)f(±1), n = ±1

(τf)(n), n >
<

± 1
, (2.38)

with

D(H±) = {f ∈ `2(±N)|τf ∈ `2(±N), lim
n→±∞

Wn(u±(z0), f) = 0}. (2.39)

Similarly one defines finite restriction Hn1,n2 to the subspaces `2(n1, n2) with Dirichlet
boundary conditions at n = n1 and n = n2.

Remark 2.8 We only consider the case of a Dirichlet boundary condition at n = 0
since the operators Hβ

±,n0
on `2(n0,±∞) associated with the general boundary condi-

tion
f(n0 + 1) + βf(n0) = 0, β ∈ R ∪ {∞} (2.40)

at n = n0 can be reduced to this case by a simple shift and altering the sequence b at
one point. More precisely, we have

H0
+,n0

= H+,n0+1, Hβ
+,n0

= H+,n0 − a(n0)β
−1〈δn0+1, .〉δn0+1, β 6= 0, (2.41)

and

H∞
−,n0

= H−,n0 , Hβ
−,n0

= H−,n0+1 − a(n0)β〈δn0 , .〉δn0 , β 6= ∞, (2.42)

where δn0(n) = 1 if n = n0 and δn0(n) = 0 otherwise. Hence all one has to do is alter
the definition of b(n0) or b(n0 + 1). Analogously one defines the corresponding finite
operators Hβ1,β2

n1,n2
which will be used in the next section.

Theorem 2.9 Let λ ∈ R. Suppose τ is l.p. at +∞ or λ ∈ σp(H+). Then

dim RanP(−∞,λ)(H+) = #(0,+∞)(s(λ)). (2.43)

The same theorem holds if + is replaced by −.
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Proof. We only carry out the proof for the plus sign (the other part following
from reflection). By virtue of (2.28), (2.32), and Lemma 2.5 we infer

dim RanP(−∞,λ)(H0,n) = [[θs(λ, n)/π]] = #(0,n)(s(λ)), n > 1, (2.44)

since λ ∈ σ(H0,n) if and only if θs(λ, n) = 0 mod π. Let k = #(s(λ)) if #(s(λ)) <∞,
otherwise the following argument works for arbitrary k ∈ N. If we pick n so large
that k nodes of s(λ) are to the left of n we have k eigenvalues λ̂1 < · · · < λ̂k < λ
of H0,n. Taking an arbitrary linear combination η(m) =

∑k
j=1 cjs(λ̂j,m), cj ∈ C for

m < n and η(m) = 0 for m ≥ n a straightforward calculation (using orthogonality of
s(λ̂j)) yields

〈η,H+η〉 < λ‖η‖2. (2.45)

Invoking the spectral theorem shows

dim RanP(−∞,λ)(H±) ≥ k. (2.46)

For the reversed inequality we can assume k = #(s(λ)) <∞.
We first suppose τ is l.p. at +∞. Consider H̃0,n = H0,n ⊕ λI on `2(0, n)⊕ `2(n−

1,∞). Then Theorem 9.16.(i) in [76] (take `0(Z) as a core) implies strong resolvent
convergence of H̃0,n to H+ as n→∞ and by Lemma 2.7 we have

dim RanP(−∞,λ)(H+) ≤ lim
n→∞

dim RanP(−∞,λ)(H0,n) = k (2.47)

completing the proof if τ is l.p. at +∞.
Otherwise, that is, if τ is l.c. at +∞ (implying that the spectrum of H+ is purely

discrete), λ is an eigenvalue by hypothesis. We first suppose H bounded from below.
Hence it suffices to show that the n-th eigenvalue λn, n ∈ N has at least n− 1 nodes.
This is trivial for n = 1. Suppose this is true for λn and let m be the largest node
of s(λn). By θs(λn+1,m) > θs(λn,m) we infer that θs(λn+1,m) has either more nodes
between 0 and m or there is at least one additional node of θs(λn+1,m) larger than
m by Lemma 2.6. In the case where H is not bounded from below we can label the
eigenvalues λn, n ∈ Z. The same argument as before shows that the eigenfunction
corresponding to λm has |m − n| nodes more than the one corresponding to λn.
Letting m → −∞ shows that the eigenfunction corresponding to λn has infinitely
many nodes. This completes the proof. 2

Remark 2.10 (i) The l.p. / λ ∈ σp(H+) assumption is crucial since we need some
information about the boundary condition at +∞.
(ii) The previous remark implies the following. Let λ ∈ R. Suppose τ is l.p. at +∞
or λ ∈ σp(H

β
+,n0

) and β 6= 0. Then

dim RanP(−∞,λ)(H
β
+,n0

) = #(0,+∞)(sβ(λ, ., n0)), (2.48)

where sβ(λ, ., n0) is a sequence satisfying τs = λs and the boundary condition (2.40).
Similar modifications apply to Theorems 2.16, 2.19, and 2.20.
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As a consequence of Theorem 2.9 we infer

Corollary 2.11 We have

dim RanP(−∞,λ)(H±) <∞ (2.49)

if and only if τ − λ is non-oscillatory near ±∞, respectively, and hence

inf σess(H±) = inf{λ ∈ R | (τ − λ) is oscillatory at ±∞}. (2.50)

Moreover, let H± be bounded from below and λ1 < · · · < λk < · · · be the eigenvalues
of H± below the essential spectrum of H±. Then the eigenfunction corresponding to
λk has precisely k − 1 nodes inside (0,±∞).

We remark that the first part of Corollary 2.11 can be found in [41], Theorem 32 (see
also [47]).

Remark 2.12 Consider the following example

a(n) = −1

2
, n ∈ N, b(1) = 1, b(2) = b2, b(3) =

1

2
, b(n) = 0, n ≥ 4. (2.51)

The essential spectrum of H+ is given by σess(H+) = [−1, 1] and one might expect
that H+ has no eigenvalues below the essential spectrum if b2 → −∞. However, since
we have

s(−1, 0) = 0, s(−1, 1) = 1, s(−1, 2) = 0, s(−1, n) = −1, n ≥ 3, (2.52)

Theorem 2.9 shows that, independent of b2 ∈ R, there is always precisely one eigen-
value below the essential spectrum.

In a similar way we obtain

Theorem 2.13 Let λ < inf σess(H). Suppose τ is l.p. at −∞ or λ ∈ σp(H). Then

dim RanP(−∞,λ)(H) = #(u+(λ)). (2.53)

The same theorem holds if l.p. at −∞ and u+(λ) is replaced by l.p. at +∞ and u−(λ).

Proof. Again it suffices to prove the minus case. If H is not bounded from below
the same is true for H−⊕H+ (which can be embedded into `2(Z) and considered as a
finite rank perturbation of H). Hence H− or H+ (or both) is not bounded from below
implying τ − λ oscillatory near −∞ or +∞ by Corollary 2.11 and we can suppose H
bounded from below.

By virtue of (2.34) and (2.36) we infer

dim RanP(−∞,λ)(H−,n) = [[θ−(λ, n)/π]], n ∈ Z. (2.54)
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We first want to show [[θ−(λ, n)/π]] = #(−∞,n)(u−(λ)) or equivalently

lim
n→∞

[[θ−(λ, n)/π]] = 0. (2.55)

Suppose limn→∞[[θ−(λ1, n)/π]] = k ≥ 1 for some λ1 ∈ R (saying that u−(., n) loses at
least one node at −∞). In this case we can find n such that θ−(λ1, n) > kπ for m ≥ n.
Now pick λ0 such that θ−(λ0, n) = kπ. Then u−(λ0, .) has a node at n but no node
between −∞ and n (by Lemma 2.5). Now apply Lemma 2.6 to u−(λ0, .), u−(λ1, .) to
obtain a contradiction. The rest follows as in the proof of Theorem 2.9. 2

As before we obtain

Corollary 2.14 We have

dim RanP(−∞,λ)(H) <∞ (2.56)

if and only if τ − λ is non-oscillatory and hence

inf σess(H) = inf{λ ∈ R | (τ − λ) is oscillatory}. (2.57)

Furthermore, let H be bounded from below and λ1 < · · · < λk < . . . be the eigenvalues
of H below the essential spectrum of H. Then the eigenfunction corresponding to λk

has precisely k − 1 nodes.

Remark 2.15 Corresponding results for the projection P(λ,∞)(H) can be obtained
from P(λ,∞)(H) = P(−∞,−λ)(−H). In fact, it suffices to change the definition of a
node according to u(n) = 0 or a(n)u(n)u(n+ 1) < 0 and P(−∞,λ)(H) to P(λ,∞)(H) in
all results of this section.

Now we turn to the analog of [45], Theorem I.

Theorem 2.16 Let λ1 < λ2. Suppose τ − λ2 is oscillatory near +∞ and τ is l.p. at
+∞. Then

dim RanP(λ1,λ2)(H+) = lim inf
n→+∞

(
#(0,n)(s(λ2))−#(0,n)(s(λ1))

)
. (2.58)

The same theorem holds if + is replaced by −.

Proof. As before we only carry out the proof for the plus sign. Abbreviate
∆(n) = [[θs(λ2, n)/π]] − [[θs(λ1, n)/π]] = #(0,n)(s(λ2)) − #(0,n)(s(λ1)). By (2.44) we
infer

dim RanP[λ1,λ2)(H0,n) = ∆(n), n > 2. (2.59)

Let k = lim inf ∆(n) if lim sup ∆(n) < ∞ and k ∈ N otherwise. We contend that
there exists a n ∈ N such that

dim RanP(λ1,λ2)(H0,n) ≥ k. (2.60)
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In fact, if k = lim sup ∆(n) < ∞ it follows that ∆(n) is eventually equal to k and
since λ1 6∈ σ(H0,m) ∩ σ(H0,m+1), m ∈ N we are done in this case. Otherwise we can
pick n such that dim RanP[λ1,λ2)(H0,n) ≥ k+1. Hence H0,n has at least k eigenvalues

λ̂j with λ1 < λ̂1 < . . . < λ̂k < λ2. Again let η(m) =
∑k

j=1 cjs(λ̂j, n), cj ∈ C for m < n
and η(m) = 0 for n ≥ m be an arbitrary linear combination. Then

‖(H+ −
λ2 + λ1

2
)η‖ < λ2 − λ1

2
‖η‖ (2.61)

together with the spectral theorem implies

dim RanP(λ1,λ2)(H+) ≥ k. (2.62)

To prove the second inequality we use that H̃0,n = H0,n ⊕ λ2I converges to H+ in
strong resolvent sense as n→∞ and proceed as before

dim RanP(λ1,λ2)(H+) ≤ lim inf
n→∞

P[λ1,λ2)(H̃0,n) = k (2.63)

since P[λ1,λ2)(H̃0,n) = P[λ1,λ2)(H0,n). 2

2.4 Renormalized Oscillation Theory

The objective of this section is to look at the nodes of the Wronskian of two solutions
u1,2 corresponding to λ1,2, respectively. We call n ∈ Z a node of the Wronskian if
Wn(u1, u2) = 0 and Wn+1(u1, u2) 6= 0 or if Wn(u1, u2)Wn+1(u1, u2) < 0. Again we
shall say that a node n0 of W (u1, u2) lies between m and n if either m < n0 < n or
if n0 = m but Wn0(u1, u2) 6= 0. We abbreviate

∆u1,u2(n) = (θu2(n)− θu1(n)) mod 2π. (2.64)

and require

[[∆u1,u2(n)/π]] ≤ [[∆u1,u2(n+ 1)/π]] ≤ [[∆u1,u2(n)/π]] + 1. (2.65)

We shall fix λ1 ∈ R and a corresponding solution u1 and choose a second solution
u(λ, n) with λ ∈ [λ1, λ2]. Now let us consider

Wn(u1, u(λ)) = −a(n)ρu1(n)ρu(λ, n) sin(∆u1,u(λ, n)) (2.66)

as a function of λ ∈ [λ1, λ2].

Lemma 2.17 Suppose ∆u1,u(λ1, .) satisfies (2.65) then we have

∆u1,u(λ, n) = θu(λ, n)− θu1(n) (2.67)
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where θu(λ, .), θu1(.) both satisfy (2.19). That is, ∆u1,u(., n) ∈ C[λ1, λ2] and (2.65)
holds for all ∆u1,u(λ, .) with λ ∈ [λ1, λ2]. In particular, the second inequality in
(2.19) is attained if and only if n is a node of W.(u1, u(λ)). Moreover, denote by
#(m,n)W (u1, u2) the total number of nodes of W.(u1, u2) between m and n. Then

#(m,n)W (u1, u2) = [[∆u1,u2(n)/π]]− lim
ε↓0

[[∆u1,u2(m)/π + ε]] (2.68)

and

#W (u1, u2) = #(−∞,∞)W (u1, u2) = lim
n→∞

(
[[∆u1,u2(n)/π]]− [[∆u1,u2(−n)/π]]

)
. (2.69)

Proof. We fix n and set

∆u1,u(λ, n) = kπ + δ(λ), ∆u1,u(λ, n+ 1) = kπ + ∆(λ), (2.70)

where k ∈ Z, δ(λ1) ∈ (0, π] and ∆(λ1) ∈ (0, 2π]. Clearly (2.67) holds for λ =
λ1 since W.(u1, u(λ1)) is constant. If (2.65) should break down we must have one
of the following cases for some λ0 ≥ λ1. (i) δ(λ0) = 0, ∆(λ0) ∈ (π, 2π], or (ii)
δ(λ0) = π, ∆(λ0) ∈ (0, π], or (iii) ∆(λ0) = 2π, δ(λ0) ∈ (π, π], or (iv) ∆(λ0) = 0,
δ(λ0) ∈ (π, π]. For notational convenience let us set δ = δ(λ0),∆ = ∆(λ0) and
θu1(n) = θ1(n), θu(λ0, n) = θ2(n). Furthermore, we can assume θ1,2(n) = k1,2π + δ1,2,
θ1,2(n+ 1) = k1,2π + ∆1,2 with k1,2 ∈ Z, δ1,2 ∈ (0, π] and ∆1,2 ∈ (0, 2π].

Suppose (i). Then

Wn+1(u1, u(λ0)) = (λ0 − λ1)u1(n+ 1)u(λ0, n+ 1). (2.71)

Inserting Prüfer variables shows

sin(∆2 −∆1) = ρ cos2(δ1) ≥ 0 (2.72)

for some ρ > 0 since δ = 0 implies δ1 = δ2. Moreover, k = (k2 − k1) mod 2 and
kπ + ∆ = (k2 − k1)π + ∆2 − ∆1 implies ∆ = (∆2 − ∆1) mod 2π. Hence we have
sin ∆ ≥ 0 and ∆ ∈ (π, 2π] implies ∆ = 2π. But this says δ1 = δ2 = π/2 and
∆1 = ∆2 = π. Since we have at least δ(λ2 − ε) > 0 and hence δ2(λ2 − ε) > π/2,
∆2(λ2 − ε) > π for ε > 0 sufficiently small. Thus from ∆(λ2 − ε) ∈ (π, 2π) we get

0 > sin ∆(λ2 − ε) = sin(∆2(λ2 − ε)− π) > 0, (2.73)

contradicting (i).
Suppose (ii). Again by (2.71) we have sin(∆2 −∆1) ≥ 0 since δ1 = δ2. But now

(k + 1) = (k1 − k2) mod 2. Furthermore, sin(∆2 − ∆1) = − sin(∆) ≥ 0 says ∆ = π
since ∆ ∈ (0, π]. Again this implies δ1 = δ2 = π/2 and ∆1 = ∆2 = π. But since δ(λ)
increases/decreases precisely if ∆(λ) increases/decreases for λ near λ0 (2.65) stays
valid.
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Suppose (iii) or (iv). Then

Wn(u1, u(λ0)) = −(λ0 − λ1)u1(n+ 1)u(λ0, n+ 1). (2.74)

Inserting Prüfer variables gives

sin(δ2 − δ1) = −ρ sin(∆1) sin(∆2) (2.75)

for some ρ > 0. We first assume δ2 > δ1. In this case we infer k = (k2 − k1) mod 2
implying ∆2 − ∆1 = 0 mod 2π contradicting (2.75). Next assume δ2 ≤ δ1. Then we
obtain (k+1) = (k2−k1) mod 2 implying ∆2−∆1 = πmod 2π and hence sin(δ2−δ1) ≥
0 from (2.75). Thus we get δ1 = δ2 = π/2 ∆1 = ∆2 = π, and hence ∆2 − ∆1 =
0 mod 2π contradicting (iii), (iv). This settles (2.67).

Furthermore, if ∆(λ) ∈ (0, π] we have no node at n since δ(λ) = π implies ∆(λ) =
π by (ii). Conversely, if ∆(λ) ∈ (π, 2π] we have a node at n since ∆(λ) = 2π is
impossible by (iii). The rest being straightforward. 2

Equations (2.22), (2.67), and (2.68) imply

Corollary 2.18 Let λ1 ≤ λ2 and suppose u1,2 satisfy τu1,2 = λ1,2u1,2, respectively.
Then we have

|#(n,m)W (u1, u2)− (#(n,m)(u2)−#(n,m)(u1))| ≤ 2 (2.76)

Now we come to a renormalized version of Theorem 2.16. We first need the result
for a finite interval.

Theorem 2.19 Fix n1 < n2 and λ1 < λ2. Then

dim RanP(λ1,λ2)(Hn1,n2) = #(n1,n2)W (s(λ1, ., n1), s(λ2, ., n2)). (2.77)

Proof. We abbreviate

∆(λ, n) = ∆s(λ1,.,n1),s(λ,.,n2)(n) (2.78)

and normalize (perhaps after flipping the sign of s(λ1, ., n1)) ∆(λ1, n) ∈ (0, π]. From
(2.28) we infer

dim RanP(λ1,λ2)(Hn1,n2) = − lim
ε↓0

[[∆(λ2, n1)/π + ε]] (2.79)

since λ ∈ σ(Hn1,n2) is equivalent to ∆(λ, n1) = 0 mod π. Using (2.68) completes the
proof. 2

Theorem 2.20 Fix λ1 < λ2 and suppose τ is in the l.p. case near +∞ or λ2 ∈
σp(H+). Then

dim RanP(λ1,λ2)(H+) = #(0,+∞)W (s(λ1), s(λ2)). (2.80)

The same theorem holds if + is replaced by −.
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Proof. As usual we only prove the result for H+ and set k = #(0,∞)W (s(λ1),s(λ2))
provided this number is finite and k ∈ N otherwise. We abbreviate

∆(λ, n) = ∆s(λ1),s(λ)(n) (2.81)

and normalize ∆(λ1, n) = 0 implying ∆(λ, n) > 0 for λ > λ1. Hence if we chose n so
large that all k nodes are to the left of n we have

∆(λ, n) > kπ. (2.82)

Thus we can find λ1 < λ̂1 < · · · < λ̂k < λ2 with ∆(λ̂j, n) = jπ. Now define

ηj(m) =

{
s(λ̂j,m)− ρjs(λ1,m) m ≤ n
0 m ≥ n

, (2.83)

where ρj 6= 0 is chosen such that s(λ̂j,m) = ρjs(λ1,m) for m = n, n+1. Furthermore
observe that

τηj(m) =

{
λ̂js(λ̂j,m)− λ1ρ1s(λ1,m) m ≤ n
0 m ≥ n

(2.84)

and that s(λ1,m), s(λ̂j, .), 1 ≤ j ≤ k are orthogonal on 1, . . . , n. Next, let η =∑k
j=1 cjηj, cj be an arbitrary linear combination, then a short calculation verifies

‖(H+ −
λ2 + λ1

2
)η‖ < λ2 − λ1

2
‖η‖. (2.85)

And invoking the spectral theorem gives

dim RanP(λ1,λ2)(H+) ≥ k. (2.86)

To prove the reversed inequality is only necessary if #(0,∞)W (s(λ1),s(λ2)) < ∞. In

this case we look at H∞,β
0,n with β = s(λ2, n + 1)/s(λ2, n). By Theorem 2.19 and

Remark 2.10 (ii) we have

dim RanP(λ1,λ2)(H̃
∞,β
0,n ) = #(0,n)W (s(λ1), s(λ2)). (2.87)

Now use strong resolvent convergence of H̃∞,β
0,n = H∞,β

0,n ⊕ λ1I to H+ (due to our l.p.
/ λ2 ∈ σp(H+) assumption) as n→∞ to obtain

dim RanP(λ1,λ2)(H+) ≤ lim inf
n→∞

dim RanP(λ1,λ2)(H̃
∞,β
0,n ) = k (2.88)

completing the proof. 2

As a consequence we infer.

Corollary 2.21 Let u1,2 satisfy τu1,2 = λ1,2u1,2. Then

#(0,±∞)W (u1, u2) <∞ ⇔ dim RanP(λ1,λ2)(H±) <∞. (2.89)
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Proof. By Corollary 2.18 the result does not depend on the choice of u1,2. Since
the proof of (2.86) does not use the l.p. / λ2 ∈ σp(H+) assumption the first direction

follows. Conversely, we can replace the sequence β in (2.88) by a sequence β̂ such

that H̃∞,β̂
0,n converges to H+. Since we have | dim Ran H̃∞,β̂

0,n − dim Ran H̃∞,β
0,n | ≤ 1 the

corollary is proven. 2

Finally we turn to our main result for Jacobi operatorsH on Z. We emphasize that
to date, Theorem 2.22 appears to be the only oscillation theoretic result concerning
the number of eigenvalues in essential spectral gaps of Jacobi operators on Z.

Theorem 2.22 Fix λ1 < λ2 and suppose [λ1, λ2] ∩ σess(H) = ∅. Then

dim RanP(λ1,λ2)(H) = #W (u∓(λ1), u±(λ2)). (2.90)

In addition, if τ is l.p. at +∞ we even have

dim RanP(λ1,λ2)(H) = #W (u+(λ1), u+(λ2)). (2.91)

The same result holds if + is replaced by −.

Proof. Since the proof is similar to the proof of Theorem 2.20 we shall only outline
the first part. Let k = #W (u+(λ1), u−(λ2)) if this number is finite and k ∈ N else.
Pick n > 0 so large that all zeros of the Wronskian are between −n and n. We
abbreviate

∆(λ, n) = ∆u+(λ1),u−(λ)(n) (2.92)

and normalize ∆(λ1, n) ∈ [0, π) implying ∆(λ, n) > 0 for λ > λ1. Hence if we chose
n ∈ N so large that all k nodes are between −n and n we can assume

∆(λ, n) > kπ. (2.93)

Thus we can find λ1 < λ̂1 < · · · < λ̂k < λ2 with ∆(λ̂j, n) = 0 mod π. Now define

ηj(m) =

{
u−(λ̂j,m) m ≤ n
ρju+(λ1,m) m ≥ n

, (2.94)

where ρj 6= 0 is chosen such that u−(λ̂j,m) = ρju+(λ1,m) for m = n, n + 1. Now
proceed as in the previous theorems. 2

Again, we infer as a consequence.

Corollary 2.23 Let u1,2 satisfy τu1,2 = λ1,2u1,2. Then

#W (u1, u2) <∞ ⇔ dim RanP(λ1,λ2)(H) <∞. (2.95)

Proof. Follows from Corollaries 2.18, 2.21, and dim RanP(λ1,λ2)(H) < ∞ if and
only if (dim Ran P(λ1,λ2)(H−) + dim RanP(λ1,λ2)(H+)) <∞. 2
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Remark 2.24 The most general three-term recurrence relation

τ̃ f(n) = ã(n)f(n+ 1)− b̃(n)f(n) + c̃(n)f(n− 1), (2.96)

with ã(n)c̃(n) > 0, can be transformed to a Jacobi recurrence relation as follows. First
we symmetrise τ̃ via

τ̃ f(n) =
1

w(n)

(
c(n)f(n+ 1) + c(n− 1)f(n− 1)− d(n)f(n)

)
, (2.97)

where

w(n) =



n−1∏
j=n0

ã(j)
c̃(j+1)

for n > n0

1 for n = n0
n0−1∏
j=n

c̃(j+1)
ã(j)

for n < n0

> 0, (2.98)

c(n) = w(n)ã(n) = w(n+ 1)c̃(n+ 1), d(n) = w(n)b̃(n). (2.99)

The natural Hilbert space for τ̃ is the weighted space `2(Z, w) with scalar product

〈f, g〉 =
∑
n∈Z

w(n)f(n)g(n), f, g ∈ `2(Z, w). (2.100)

Let H̃ be a self-adjoint operator associated with τ̃ in `2(Z, w). Then the unitary
operator

U : `2(Z, w) → `2(Z)

u(n) 7→
√
w(n)u(n)

(2.101)

transforms H̃ into a Jacobi operator H in `2(Z) associated with the sequences

a(n) =
c(n)√

w(n)w(n+ 1)
= sgn(ã(n))

√
ã(n)c̃(n+ 1), (2.102)

b(n) =
d(n)

w(n)
= b̃(n). (2.103)

In addition we infer

c(n)
(
f(n)g(n+ 1)− f(n+ 1)g(n)

)
=

a(n)
(
(Uf)(n)(Ug)(n+ 1)− (Uf)(n+ 1)(Ug)(n)

)
. (2.104)

Hence all the results derived for Jacobi operator thus far apply to generalized Jacobi
operators of the type H̃ as well.
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2.5 Applications

One important class of Jacobi operators are periodic ones (cf., e.g., [8], Appendix
B, [55], [60]). Instead of periodic operators themselves we are interested in short-
range perturbations of these operators. In fact, we are going to prove the analog of
the Theorem by Rofe-Beketov ([63], see also [33], [41], Section 67, [53]) about the
finiteness of the number of eigenvalues in essential spectral gaps of the perturbed Hill
operator. Since constant coefficients a, b are a special case of periodic ones our results
contain results from scattering theory (cf., e.g., [10], [42]).

To set the stage, we first recall some basic facts from the theory of periodic
operators. Let Hp be a Jacobi operator associated with periodic sequences ap < 0, bp,
that is,

ap(n+N) = ap(n), bp(n+N) = bp(n), (2.105)

for some fixed N ∈ N. The spectrum of Hp is purely absolutely continuous and
consists of a finite number of gaps, that is,

σ(Hp) =
g⋃

j=0

[E2j, E2j+1], g ∈ N0, (2.106)

with E0 < E1 < · · · < E2g+1 and g ≤ N − 1. Moreover, Floquet theory implies
the existence of solutions up,±(z, .) of τpu = zu, z ∈ C (τp the difference expression
corresponding to Hp) satisfying

up,±(z, n+N) = m±(z)up,±(z, n), (2.107)

where m±(z) ∈ C are called Floquet multipliers. m±(z) satisfy m+(z)m−(z) = 1,
m±(z)2 = 1 for z ∈ {Ej}2g+1

j=0 , |m±(z)| = 1 for z ∈ σ(Hp), and |m+(z)| < 1 for
z ∈ C\σ(Hp). (This says in particular, that up,±(z, .) are bounded for z ∈ σ(Hp) and
linearly independent for z ∈ C\{Ej}2g+1

j=0 .)
We are going to study perturbations H of Hp associated with sequences a, b sat-

isfying a(n) → ap(n) and b(n) → bp(n) as |n| → ∞. Clearly, H and Hp are both
bounded and hence defined on the whole of `2(Z). In fact, we have

σ(H) ⊆ [c, c], (2.108)

where c = infn∈Z(b(n) + a(n − 1) + a(n)) and c = supn∈Z(b(n) − a(n − 1) − a(n)).
Using this notation our theorem reads:

Theorem 2.25 Suppose ap, bp are given periodic sequences and Hp is the correspond-
ing Jacobi operator. Let H be a perturbation of Hp such that∑

n∈Z
|n(a(n)− ap(n))| <∞,

∑
n∈Z

|n(b(n)− bp(n))| <∞. (2.109)

Then we have σess(H) = σ(Hp), the point spectrum of H is finite and confined to the
spectral gaps of Hp, that is, σp(H) ⊂ R\σ(Hp). Furthermore, the essential spectrum
of Hp is purely absolutely continuous.
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For the proof we will need the following lemma the proof of which is elementary.

Lemma 2.26 The Volterra sum equation

f(n) = g(n) +
∞∑

m=n+1

K(n,m)f(m), (2.110)

with

|K(n,m)| ≤ K̂(n,m), K̂(n+ 1,m) ≤ K̂(n,m), K̂(n, .) ∈ `1(0,∞), (2.111)

has for g ∈ `∞(0,∞) a unique solution f ∈ `∞(0,∞), fulfilling the estimate

|f(n)| ≤
(

sup
m>n

|g(m)|
)

exp
( ∞∑

m=n+1

K̂(n,m)
)
. (2.112)

Proof. (of Theorem 2.25) The fact that H − Hp is compact implies σess(H) =
σess(Hp). To prove the remaining claims it suffices to show the existence of solutions
u±(λ, .) of τu = λu for λ ∈ σ(Hp) satisfying

lim
|n|→∞

|u±(λ, n)− up,±(λ, n)| = 0. (2.113)

In fact, since u±(λ, .), λ ∈ σ(Hp) are bounded and do not vanish near±∞, there are no
eigenvalues in the essential spectrum of H and invoking the principal of subordinacy
(cf., [68], [69]) shows that the essential spectrum of H is purely absolutely continuous.
Moreover, (2.113) with λ = E0 implies that H − E0 is non-oscillatory since we can
assume (perhaps after flipping signs) up,±(E0, n) ≥ ε > 0, n ∈ Z and by Corollary 2.14
there are only finitely many eigenvalues below E0. Similarly, (using Remark 2.15)
there are only finitely many eigenvalues above E2g+1. Applying Corollary 2.23 in
each gap (E2j−1, E2j), 1 ≤ j ≤ g shows that the number of eigenvalues in each gap is
finite as well.

It remains to show (2.113). Suppose u+(λ, .), λ ∈ σ(Hp) satisfies (disregarding
summability for a moment)

u+(λ, n) =
ap(n)

a(n)
up,+(λ, n)

+
∞∑

m=n+1

ap(n)

a(n)
K(λ, n,m)u+(λ,m), (2.114)

with

K(λ, n,m) =
sp(λ, n,m− 1)

ap(m− 1)
(a(m− 1)− ap(m− 1))

+
sp(λ, n,m+ 1)

ap(m+ 1)
(a(m)− ap(m))− sp(λ, n,m)

ap(m)
(b(m)− bp(m)), (2.115)
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where sp(λ, .,m) is the solution of of τpu = zu satisfying the initial conditions
sp(z,m,m) = 0 and sp(z,m + 1,m) = 1. Then u+(λ, .) fulfills τu = λu and (2.113).
Hence if we can apply Lemma 2.26 we are done. To do this we need an estimate for
K(λ, n,m) which again follows from Floquet theory

|sp(λ, n,m)| ≤M |n−m|, λ ∈ σ(Hp), (2.116)

for some suitable constant M > 0. 2

As anticipated, specializing to the case ap(n) = −1/2, bp(n) = 0 we obtain a
corresponding result for the scattering case.

Corollary 2.27 ([42]) Suppose∑
n∈Z

|n(1 + 2a(n))| <∞,
∑
n∈Z

|n b(n)| <∞. (2.117)

Then we have
σess(H) = [−1, 1], σp(H) ⊆ [c,−1) ∪ (1, c]. (2.118)

Moreover, the essential spectrum of H is purely absolutely continuous and the point
spectrum of H is finite.

Corollary 2.27 is stated in [42] (for the case ap(n) = 1 – but Lemma 2.2 plus
a scaling transform takes care of that). Similar results can be obtained using the
Birman-Schwinger principle.
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Chapter 3

Spectral Deformations

3.1 Introduction

For a variety of reasons, techniques to insert and remove eigenvalues in spectral gaps of
a given one-dimensional second-order differential (i.e., Sturm-Liouville) respectively
difference (i.e., Jacobi) operator have recently attracted great interest. In fact, these
techniques are vital in diverse fields such as the inverse scattering approach used
by Deift and Trubowitz [17], supersymmetric quantum mechanics (cf. the literature
cited, e.g., in [38]), level comparison theorems (see, e.g., [4]), in the construction of
soliton solutions of the Korteweg-de Vries (KdV) and Toda hierarchies relative to
general KdV and Toda background solutions (see, e.g., [6], [8], [15], [17], [19], Ch.
4, [25], [29], [34], [38], [51]-[56], [57], Sect. 6.6, [64]–[67]), and in connection with
Bäcklund transformations for the KdV and Toda hierarchies (cf., e.g., [8], [20], [22],
[26], [34], [36], [38], [58], [59], [75]).

Historically, methods of inserting eigenvalues in the case of differential operators go
back to Jacobi [50], Darboux [14], Crum [13], Gel’fand and Levitan [30], Schmincke
[65], and especially Deift [15]. Two particular such methods, the so called single
commutation or Crum-Darboux method and the double commutation method, shortly
to be described below, turned out to be of particular importance. The operator
theoretic approach developed in [15] applies to the single commutation method and
has been used in [15] to give a complete spectral characterization in the differential
operator case. The double commutation method on the other hand required entirely
different methods and was only recently solved in the differential operator case. A
solution based on ODE techniques was given in [31] and most recently, a more general
and at the same time greatly simplifying operator theoretic approach to a spectral
characterization of the double commutation method appeared in [35].

Surprisingly, a complete spectral characterization of both the single and double
commutation methods in the difference operator context is lacking in the literature
thus far. Although special cases of the single commutation method with constant or
algebro-geometric backgrounds have been discussed in [8], [16], [74], no treatment of
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general backgrounds is known to us. Moreover, with the exception of reference [74],
where an eigenvalue is inserted into the spectral gap of a two-band periodic Jacobi
operator with period 2, no general formulation of the double commutation method
for finite difference operators seems to be available in the literature. The present
chapter fills these gaps and provides a complete spectral characterization of the single
commutation method (based on Deift’s operator theoretic approach) in Sections 3.2
and 3.3 and develops the corresponding results for the double commutation method
in Sections 3.2-3.6. Section 3.7 gives three applications of our results. The discrete
analog of the FIT formula for the isospectral torus of periodic Schrödinger operators,
thereby deriving an explicit realization of the isospectral torus of all algebro-geometric
quasi-periodic finite-gap Jacobi operators, and the N -soliton solutions of the Toda
and Kac-van Moerbeke equations on an arbitrary background solution using the single
and double commutation methods.

In the remainder of this introduction we provide an informal discussion of com-
mutation methods and restrict ourselves to the case of the whole line and bounded
Jacobi operators (so we don’t have to bother with domain considerations).

We first review the single commutation method [40]: Let a, b ∈ `(Z) be two
bounded, real-valued sequences satisfying

a(n) < 0, b(n) ∈ R, (3.1)

and introduce the corresponding Jacobi operator H in `2(Z)

(Hf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1)− b(n)f(n), u ∈ `2(Z). (3.2)

Next (cf. Lemma 2.2), assume the existence of two weak positive solutions u±(λ1, n)
of

Hu± = λ1u±, u±(λ1, n) > 0, u±(λ1, n) ∈ `2(±N) (3.3)

(implying b(n) + λ1 < 0, i.e., H − λ1 ≥ 0). u± are the principal solutions as used,
e.g., in [37]. Any positive solution can then be written as

uσ1(λ1, n) =
1 + σ1

2
u+(λ1, n) +

1− σ1

2
u−(λ1, n), σ1 ∈ [−1, 1]. (3.4)

Now define the operator Aσ1 in `2(Z) by

(Aσ1f)(n) = ρo,σ1(n)f(n+ 1) + ρe,σ1(n)f(n), f ∈ `2(Z), (3.5)

where

ρo,σ1(n) = −

√√√√−a(n)uσ1(λ1, n)

uσ1(λ1, n+ 1)
, ρe,σ1(n) =

√√√√−a(n)uσ1(λ1, n+ 1)

uσ1(λ1, n)
. (3.6)

We will always take the positive branch of all square roots involved. We note that
ρo,σ1 and ρe,σ1 are bounded sequences as can be seen from

|a(n)uσ1(λ1, n+ 1)

u1
σ1

(λ1, n)
|+ |a(n− 1)uσ1(λ1, n− 1)

uσ1(λ1, n)
| = |b(n) + λ1|. (3.7)
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The adjoint operator A∗σ1
of Aσ1 is given by

(A∗σ1
f)(n) = ρo,σ1(n− 1)f(n− 1) + ρe,σ1(n)f(n), f ∈ `2(Z), (3.8)

and for the (positive self-adjoint) operator A∗σ1
Aσ1 one infers

A∗σ1
Aσ1 = H − λ1. (3.9)

This shows that (H − λ1) ≥ 0 is a necessary condition for the existence of a positive
solution of (3.3). We remark that this condition is also sufficient (see, e.g., [37],
Theorem 2.8). Commuting A∗σ1

and Aσ1 (observing (A∗σ1
)∗ = Aσ1) yields a second

positive self-adjoint bounded operator Aσ1A
∗
σ1

and further the commuted operator

Hσ1 = Aσ1A
∗
σ1

+ λ1. (3.10)

A straightforward calculation shows

(Hσ1f)(n) = aσ1(n)f(n+ 1) + aσ1(n− 1)f(n− 1)− bσ1(n)f(n), (3.11)

with

aσ1(n) = −

√
a(n)a(n+ 1)uσ1(λ1, n)uσ1(λ1, n+ 2)

uσ1(λ1, n+ 1)
, (3.12)

bσ1(n) = a(n)
( uσ1(λ1, n)

uσ1(λ1, n+ 1)
+
uσ1(λ1, n+ 1)

uσ1(λ1, n)

)
− λ1. (3.13)

As proven by Deift [15], the operatorsH−λ1 andHσ1−λ1, restricted to the orthogonal
complements of their respective null-spaces, are unitarily equivalent. Specifically, we
have

σ(Hσ1) =

{
σ(H) ∪ {λ1}, σ1 ∈ (−1, 1)

σ(H), σ1 ∈ {−1, 1} , σac(Hσ1) = σac(H),

σp(Hσ1) =

{
σp(H) ∪ {λ1}, σ1 ∈ (−1, 1)

σp(H), σ1 ∈ {−1, 1} , σsc(Hσ1) = σsc(H).
(3.14)

Here σp(.), σac(.), and σsc(.) denote the the point spectrum (i.e., the set of eigenvalues),
absolutely, and singularly continuous spectrum, respectively.

This method is known as the single commutation method [40] and we will give a
complete spectral characterization of it in Sections 3.2 and 3.3.

Our next aim is to remove the condition that H is bounded from below and
thereby introduce the double commutation method. Fix γ± > 0 and define

ρo,γ±(n) = ρe,±1(n+ 1)

√√√√ cγ±(λ1, n)

cγ±(λ1, n+ 1)
, (3.15)

ρe,γ±(n) = ρo,±1(n)

√√√√cγ±(λ1, n+ 1)

cγ±(λ1, n)
, (3.16)
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where

cγ±(λ1, n) = 1 + γ±

n+1
n∑

j=±∞
u±(λ1, j)

2, (3.17)

and introduce corresponding operators Aγ± , A
∗
γ± in `2(Z) by

(Aγ±f)(n) = ρo,γ±(n)f(n+ 1) + ρe,γ±(n)f(n), (3.18)

(A∗γ±f)(n) = ρo,γ±(n− 1)f(n− 1) + ρe,γ±(n)f(n). (3.19)

A simple calculation shows that A∗γ±Aγ± = A±1A
∗
±1 and hence

H±1 = A∗γ±Aγ± + λ1. (3.20)

Performing a second commutation yields the doubly commuted operator

Hγ± = Aγ±A
∗
γ± + λ1. (3.21)

Explicitly, one verifies

(Hγ±f)(n) = aγ±(n)f(n+ 1) + aγ±(n− 1)f(n− 1)− bγ±(n)f(n), (3.22)

with

aγ±(n) = a(n+ 1)

√
cγ±(λ1, n)cγ±(λ1, n+ 2)

cγ±(λ1, n+ 1)
, (3.23)

bγ±(n) = b(n+ 1)± γ±
(a(n)u±(λ1, n)u±(λ1, n+ 1)

cγ±(λ1, n)

− a(n+ 1)u±(λ1, n+ 1)u±(λ1, n+ 2)

cγ±(λ1, n+ 1)

)
. (3.24)

Now observe that Hγ± remains well-defined even if u± is no longer positive. This
applies, in particular, in the case where u±(λ1) has zeros and hence all intermediate
operators A±1, Aγ± , H±1, etc., become ill-defined. Thus to define Hγ± it suffices to
assume the existence of a solution u±(λ1) which is square summable near ±∞. This
condition is much less restrictive than the existence of a positive solution (e.g., σ(H) 6=
R, i.e., the existence of a spectral gap for H around λ1 is sufficient in this context).

One expects that formulas analogous to (3.14) will carry over to this more general
setup. That this is actually the case will be shown in our principal Theorem 3.13 of
Section 3.4. Hence the double commutation method (contrary to the single commu-
tation method) enables one to insert eigenvalues not only below the spectrum of H
but into arbitrary spectral gaps of H.
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3.2 The Single Commutation Method

In this section we intend to give a detailed investigation of the single commutation
method. We will assume a, b to satisfy (H.2.1) throughout Sections 3.2 and 3.3.

We shall consider (self-adjoint) Jacobi operators H associated with the difference
expression

(τf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1)− b(n)f(n), (3.25)

in the Hilbert space `2(Z). As a preparation we prove
We start with operators associated with the difference expression (3.25) on the

half axis ±N. For simplicity we will do most calculations only for `2(N). Let u(λ1)
be a positive solution of τu = λ1u and define

ρo,+(n) = −

√√√√−a(n)u(λ1, n+ 1)

u(λ1, n)
, (3.26)

ρe,+(n) =

√√√√−a(n− 1)u(λ1, n− 1)

u(λ1, n)
, n > 0. (3.27)

Define the operator Ȧ+ on `0(N)

(Ȧ+f)(n) = ρo,+(n)f(n+ 1) + ρe,+(n)f(n), f ∈ `0(N) (3.28)

and denote its operator closure (in `2(N)) by A+. One verifies,

D(A+) ⊆ {f ∈ `2(N)|ρo,+(n)f(n+ 1) + ρe,+(n)f(n) ∈ `2(N)}. (3.29)

The adjoint A∗+ of A+ is then given by

(A∗+f)(n) = ρo,+(n− 1)f(n− 1) + ρe,+(n)f(n), (3.30)

D(A∗+) = {f ∈ `2(N)|f(0) = 0; ρo,+(n− 1)f(n− 1) + ρe,+(n)f(n) ∈ `2(N)}.

(The boundary condition f(0) = 0 is only introduced so that we don’t have to specify
(A∗+f)(1) separately.) Due to a well known result of von Neumann (see, e.g., [76],
Theorem 5.39) the operator A+A

∗
+ is a positive self-adjoint operator when defined

naturally

D(A+A
∗
+) = {f ∈ D(A∗+)|A∗+f ∈ D(A+)}. (3.31)

A simple calculation shows A+A
∗
+f = (τ − λ1)f and hence we may define

H+ = A+A
∗
+ + λ1, D(H+) ⊆ {f ∈ `2(N)|f(0) = 0, τf ∈ `2(N)}, (3.32)

where equality in the last relation is equivalent to τ being limit point (l.p.) at +∞.
Similarly one defines for n < 0

ρo,−(n) = −

√√√√−a(n)u(λ1, n)

u(λ1, n+ 1)
, ρe,−(n) =

√√√√−a(n)u(λ1, n+ 1)

u(λ1, n)
(3.33)
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and operators A−, and A∗− in `2(−N) which satisfy H− = A∗−A− + λ1.
Commuting A∗± and A± yields a second positive self-adjoint operator A−A

∗
−, re-

spectively A∗+A+, and further the commuted operators

H+,1 = A∗+A+ + λ1, H−,1 = A−A
∗
− + λ1. (3.34)

The next theorem characterizes H±,1 in terms of H±, but first we need to introduce

Hypothesis H. 3.1 Suppose H± satisfies one of the following spectral conditions.
(i) σess(H±) 6= ∅.
(ii) σ(H±) = σd(H±) = {λ±,j}j∈J± with

∑
j∈J±(1 + λ2

±,j)
−1 = ∞.

Hypothesis (H.3.1) is satisfied if a, b are bounded near ±∞.
Either one of the conditions (i), (ii) implies that τ is l.p. at ±∞. This follows since

otherwise the resolvent of H± would be a Hilbert-Schmidt operator contradicting (i),
(ii). This further implies that the domain of H± is given by

D(H±) = {f ∈ `2(±N)|f(0) = 0, τf ∈ `2(±N)}. (3.35)

Theorem 3.2 Assume (H.2.1) and (H.3.1). Then the operators H±,1 constructed
above satisfy (H.2.1) and (H.3.1) and are given by

(H±,1f)(n) = (τ±,1f)(n)

= a±,1(n)f(n+ 1) + a±,1(n− 1)f(n− 1)− b±,1(n)f(n), (3.36)

D(H±,1) = {f ∈ `2(±N)|f(0) = 0, τ±,1f ∈ `2(±N)},

with

a+,1(n) = −

√
a(n− 1)a(n)u(λ1, n− 1)u(λ1, n+ 1)

u(λ1, n)
, n > 0, (3.37)

b+,1(n) = a(n− 1)
( u(λ1, n)

u(λ1, n− 1)
+
u(λ1, n− 1)

u(λ1, n)

)
− λ1, n > 1,

b+,1(1) = a(0)
u(λ1, 0)

u(λ1, 1)
− λ1, (3.38)

and

a−,1(n) = −

√
a(n)a(n+ 1)u(λ1, n)u(λ1, n+ 2)

u(λ1, n+ 1)
, n < −1, (3.39)

b−,1(n) = a(n)
( u(λ1, n)

u(λ1, n+ 1)
+
u(λ1, n+ 1)

u(λ1, n)

)
− λ1, n < −1,

b−,1(−1) = a(−1)
u(λ1, 0)

u(λ1,−1)
− λ1. (3.40)

37



Moreover, H± − λ1 and H±,1 − λ1 restricted to the orthogonal complements of their
null-spaces are unitarily equivalent and hence

σ(H±,1)\{λ1} = σ(H±)\{λ1}, σac(H±,1) = σac(H±),
σp(H±,1)\{λ1} = σp(H±)\{λ1}, σsc(H±,1) = σsc(H±).

(3.41)

Proof. The unitary equivalence follows from [15], Theorem 1 and clearly settles
the spectral claims. Thus both H± and H±,1 satisfy (H.3.1) and hence τ± and τ±,1

are l.p. at ±∞. The rest are straightforward calculations. 2

Next we turn to the case of the whole lattice `2(Z). We pick σ1 ∈ [−1, 1] and λ1 <
inf(σ(H)). Further denote by u±(λ, n) (for λ < inf(σ(H))) the solutions constructed
in Lemma 2.2 and set

uσ1(λ1, n) =
1 + σ1

2
u+(λ1, n) +

1− σ1

2
u−(λ1, n). (3.42)

Now define sequences

ρo,σ1(n) = −

√√√√−a(n)uσ1(λ1, n)

uσ1(λ1, n+ 1)
, ρe,σ1(n) =

√√√√−a(n)uσ1(λ1, n+ 1)

uσ1(λ1, n)
, (3.43)

and the corresponding operator Aσ1 (first on `0(Z) and then take the closure in `2(Z)
as before) together with its adjoint A∗σ1

,

(Aσ1f)(n) = ρo,σ1(n)f(n+ 1) + ρe,σ1(n)f(n), (3.44)

D(Aσ1) ⊆ {f ∈ `2(Z)|ρo,σ1(n)f(n+ 1) + ρe,σ1(n)f(n) ∈ `2(Z)},
(A∗σ1

f)(n) = ρo,σ1(n− 1)f(n− 1) + ρe,σ1(n)f(n), (3.45)

D(A∗σ1
) = {f ∈ `2(Z)|ρo,σ1(n− 1)f(n− 1) + ρe,σ1(n)f(n) ∈ `2(Z)}.

Again by von Neumann’s result A∗σ1
Aσ1 is a positive self-adjoint operator when defined

naturally by

D(A∗σ1
Aσ1) = {f ∈ D(Aσ1)|Aσ1f ∈ D(A∗σ1

)}. (3.46)

A simple calculation shows A∗σ1
Aσ1 = τ − λ1 and we hence may define

H = A∗σ1
Aσ1 + λ1, D(H) ⊆ {f ∈ `2(Z)|τf ∈ `2(Z)}. (3.47)

Commuting A∗σ1
and Aσ1 yields a second positive self-adjoint operator Aσ1A

∗
σ1

and
further the commuted operator

Hσ1 = Aσ1A
∗
σ1

+ λ1, D(Hσ1) ⊆ {f ∈ `2(Z)|τσ1f ∈ `2(Z)}, (3.48)

where τσ1 is the difference expression corresponding to Hσ1 . The next theorem char-
acterizes Hσ1 under Assumption (H.2.2) for H+ and H− implying that τ is l.p. at ±∞
and hence that

D(H) = {f ∈ `2(Z)|τf ∈ `2(Z)}. (3.49)
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Theorem 3.3 Assume (H.2.1) and (H.3.1). Then the operator Hσ1,

(Hσ1f)(n) = (τσ1f)(n)

= aσ1(n)f(n+ 1) + aσ1(n− 1)f(n− 1)− bσ1(n)f(n), (3.50)

D(Hσ1) = {f ∈ `2(Z)|τσ1f ∈ `2(Z)},

is self-adjoint. Moreover,

aσ1(n) = −

√
a(n)a(n+ 1)uσ1(λ1, n)uσ1(λ1, n+ 2)

uσ1(λ1, n+ 1)
, (3.51)

bσ1(n) = a(n)
( uσ1(λ1, n)

uσ1(λ1, n+ 1)
+
uσ1(λ1, n+ 1)

uσ1(λ1, n)

)
− λ1 (3.52)

and aσ1, bσ1 satisfy (H.2.1). The equation τσ1v = λ1v has the positive solution

vσ1(λ1, n) =
1√

−a(n)uσ1(λ1, n)uσ1(λ1, n+ 1)
(3.53)

which is an eigenfunction of Hσ1 if and only if σ1 ∈ (−1, 1). H − λ1 and Hσ1 − λ1

restricted to the orthogonal complements of their corresponding one-dimensional null-
spaces are unitarily equivalent and hence

σ(Hσ1) =

{
σ(H) ∪ {λ1}, σ1 ∈ (−1, 1)

σ(H), σ1 ∈ {−1, 1} , σac(Hσ1) = σac(H),

σp(Hσ1) =

{
σp(H) ∪ {λ1}, σ1 ∈ (−1, 1)

σp(H), σ1 ∈ {−1, 1} , σsc(Hσ1) = σsc(H).
(3.54)

In addition, the sequence

(Aσ1u)(z, n) =
Wn(uσ1(λ1), u(z))√

−a(n)uσ1(λ1, n)uσ1(λ1, n+ 1)
(3.55)

solves τσ1u = zu if u(z) solves τu = zu for some z ∈ C, where

Wn(u, v) = a(n)(u(n)v(n+ 1)− u(n+ 1)v(n)) (3.56)

denotes the modified Wronskian. Moreover, one obtains

Wσ1,n(Au(z), Av(z)) = (λ1 − z)Wn(u(z), v(z)) (3.57)

for solutions u, v of τu = zu, where Wσ1,n(u, v) = aσ1(n)(u(n)v(n+1)−u(n+1)v(n)).
The resolvents of H,Hσ1 for z ∈ C\(σ(H) ∪ {λ1}) are related via

(Hσ1 − z)−1 =
1

z − λ1

(
1− Aσ1(H − z)−1A∗σ1

)
(3.58)
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or, in terms of Green’s functions for n ≥ m, z ∈ C\(σ(H) ∪ {λ1}),

G(z, n,m) =
u+(z, n)u−(z,m)
Wn(u+(z), u−(z))

implies Gσ1(z, n,m) =
(Aσ1u+)(z, n)(−Aσ1u−)(z,m)

(z − λ1)Wn(u+(z), u−(z))
. (3.59)

Furthermore, uσ1,±(z, n), the principal solutions of (Hσ1 − z)u = 0 for z < λ1, are
given by

uσ1,±(z, n) = ±Aσ1u±(z, n) =
∓Wn(uσ1(λ1), u±(z))√

−a(n)uσ1(λ1, n)uσ1(λ1, n+ 1)
. (3.60)

In addition, we have∑
n∈Z

vσ1(λ1, n)2 =
4

1− σ2
1

W (u−(λ1), u+(λ1))
−1, σ1 ∈ (−1, 1) (3.61)

and, if τu(λ) = λu(λ), u(λ, .) ∈ `2(Z),∑
n∈Z

(Aσ1u)(λ, n)2 = (λ− λ1)
∑
n∈Z

u(λ, n)2. (3.62)

Proof. The unitary equivalence together with equation (3.58) follow from [15],
Theorem 1. That Hσ1 is l.p. at ±∞ follows upon looking at the restrictions H±, H±,1

and using Theorem 3.2. Equation (3.58) together with (3.57) imply (3.59). The facts
concerning the point spectrum follow since Gσ1(z, n, n) has a pole at z = λ1 if and
only if σ1 ∈ (−1, 1). (3.61) can be obtained by investigating the residue of Gσ1(z, n, n)
at z = λ1. The rest are straightforward calculations. 2

Remark 3.4 (i). Hypothesis (H.3.1) is only needed in Theorem 3.3 to characterize
the domains of H and Hσ1 explicitly.
(ii). Multiplying uσ1 with a positive constant leaves all formulas and, in particular,
Hσ1 invariant.
(iii). If H is bounded from above we can insert eigenvalues into the highest spectral
gap, i.e., above the spectrum of H, upon considering −H. Then λ > sup(σ(H))
implies that we don’t have positive but rather alternating solutions and all our previous
calculations carry over with minor changes.
(iv). We can weaken (H.2.1) by requiring a(n) 6= 0 instead of a(n) < 0. Everything
stays the same with the only difference that u± are not positive but change sign in such
a way that (1.76) stays positive. Moreover, the signs of aσ1(n) can also be prescribed
arbitrarily by altering the signs of ρo,σ1 and ρe,σ1.
(v). The fact that vσ1 ∈ `2(Z) if and only if σ1 ∈ (−1, 1) gives an alternate proof of

±∞∑
n=0

1

−a(n)uσ1(λ1, n)uσ1(λ1, n+ 1)
<∞ if and only if σ1 ∈

[−1, 1)
(−1, 1]

(3.63)

(cf. [62] and [37], Lemma 2.10, Remark 2.11).
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At the end of this section we will show some connections between the single
commutation method and some other theories. We start with the Weyl-Titchmarsh
theory and freely use the definitions of Appendices B and C.

Lemma 3.5 Assume (H.2.1). The Weyl m̃-functions m̃±,σ1(z) of Hσ1, σ1 ∈ [−1, 1]
in terms of m̃±(z), the ones of H, read

m̃±,σ1(z) =
−uσ1(λ1, 1)

a(1)uσ1(λ1, 2)

(
1 +

(z − λ1)m̃±(z)

1 +
a(0)uσ1 (λ1,0)

uσ1 (λ1,1)
m̃±(z)

)
. (3.64)

Proof. The above formulas are straightforward calculations using (3.59) and
(1.47), (1.48). 2

Finally we turn to scattering theory. In order to facilitate comparison with the
standard literature on (inverse) scattering theory for second-order difference operators
(cf. [10], [11], [23], [32], [42], [73]) we now assume

a(n) > 0, b(n) ∈ R, n|1− 2a(n)|, nb(n) ∈ `1(Z) (3.65)

(cf. Remark 3.4). This implies

σac(H) = [−1, 1], σsc(H) = ∅, σp(H) = {λj}j∈J ⊆ R\[−1, 1], (3.66)

where J ⊆ N is a suitable (finite) index set, and the existence of the so called Jost
solutions f±(k, n),

(
τ − k + k−1

2

)
f±(k, n) = 0, lim

n→±∞
k∓nf±(k, n) = 1, |k| ≤ 1. (3.67)

Transmission T (k) and reflection R±(k) coefficients are then defined via

T (k)f∓(k, n) = f±(k−1, n) +R±(k)f±(k, n), |k| = 1, (3.68)

and the norming constants γ±,j corresponding to λj ∈ σp(H) are given by

γ−1
±,j =

∑
n∈Z

|f±(kj, n)|2, kj = λj +
√
λ2

j − 1 ∈ (−1, 0), j ∈ J. (3.69)

Lemma 3.6 Suppose H satisfies (2.117) and let Hσ1 be constructed as in Theorem
3.3 with

uσ1(λ1, n) =
1 + σ1

2
f+(k1, n) +

1− σ1

2
f−(k1, n). (3.70)

Then the transmission Tσ1(k) and reflection coefficients R±,σ1(k) of Hσ1 in terms of
the corresponding scattering data T (k), R±(k) of H are given by

Tσ1(k) =
1− k k1

k − k1

T (k), R±,σ1(k) = k±1 k − k1

1− k k1

R±(k), σ1 ∈ (−1, 1), (3.71)
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Tσ1(k) = T (k), R±,σ1(k) =
kσ1

1 − k∓1

kσ1
1 − k±1

R±(k), σ1 ∈ {−1, 1}, (3.72)

where k1 = λ1+
√
λ2

1 − 1 ∈ (−1, 0). Moreover, the norming constants γσ1,±,j associated
with λj ∈ σp(Hσ1) in terms of γ±,j corresponding to H read

γσ1,±,j = |kj|±1 1− kjk1

(kj − k1)
γ±,j, j ∈ J, σ1 ∈ (−1, 1),

γσ1,±,1 =
(

1− σ1

1 + σ1

)±1

|1− k∓2
1 |T (k1), σ1 ∈ (−1, 1), (3.73)

γσ1,±,j = |kσ1
1 − k∓1

j |γ±,j, j ∈ J, σ1 ∈ {−1, 1}. (3.74)

Proof. The claims follow easily after observing that up to normalization the Jost
solutions of Hσ1 are given by Aσ1f±(k, n) (compare (3.59)). 2

3.3 Iteration of the Single Commutation Method

By choosing λ2 < λ1 and σ2 ∈ [−1, 1] we can define

uσ1,σ2(λ2, n) =
1 + σ2

2
uσ1,+(λ2, n) +

1− σ2

2
uσ1,−(λ2, n) (3.75)

and repeat the process of the previous section by defining ρo,σ1,σ2 , ρe,σ1,σ2 and corre-
sponding operators Aσ1,σ2 , A

∗
σ1,σ2

which satisfy

Hσ1 = A∗σ1,σ2
Aσ1,σ2 − λ2. (3.76)

A further commutation then yields the operator

Hσ1,σ2 = Aσ1,σ2A
∗
σ1,σ2

− λ2 (3.77)

associated with sequences aσ1,σ2 , bσ1,σ2 . The result after N steps is summarized in

Theorem 3.7 Assume (H.2.1) and (H.3.1). Let H be as in Section 3.2 and choose

λN < . . . < λ2 < λ1 < inf(σ(H)), σ` ∈ [−1, 1], 1 ≤ ` ≤ N, N ∈ N. (3.78)

Then we have

aσ1,...,σN
(n) = −

√
a(n)a(n+N)

√
Cn(u1

σ1
, . . . , uN

σN
)Cn+2(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN

σN
)

, (3.79)

bσ1,...,σN
(n) = −λN + a(n)

Cn+2(u
1
σ1
, . . . , uN−1

σN−1
)Cn(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN−1

σN−1
)Cn+1(u1

σ1
, . . . , uN

σN
)

+ a(n+N − 1)
Cn(u1

σ1
, . . . , uN−1

σN−1
)Cn+1(u

1
σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN−1

σN−1
)Cn(u1

σ1
, . . . , uN

σN
)
, (3.80)
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where

u`
σ`

(n) =
1 + σ`

2
u+(λ`, n) + (−1)`+1 1− σ`

2
u−(λ`, n), (3.81)

and Cn denotes the n-dimensional Casoratian

Cn(u1, . . . , uN) = det{ui(n+ j − 1)}1≤i,j≤N . (3.82)

Moreover, for 1 ≤ ` ≤ N , λ < λ`

uσ1,...,σ`,±(λ, n) =

±
√

`−1∏
j=0

(−a(n+ j))Cn(u1
σ1
, . . . , u`

σ`
, u±(λ))√

Cn(u1
σ1
, . . . , u`

σ`
)Cn+1(u1

σ1
, . . . , u`

σ`
)

, (3.83)

are the principal solutions of τσ1,...,σ`
u = λu and

uσ1,...,σ`
(λ`, n) =

1 + σ`

2
uσ1,...,σ`−1,+(λ`, n) +

1− σ`

2
uσ1,...,σ`−1,−(λ`, n) (3.84)

is used to define Hσ1,...,σ`
. We also have

ρo,σ1,...,σN
(n) = −

√
−a(n)

Cn+2(u1
σ1

,...,uN−1
σN−1

)Cn(u1
σ1

,...,uN
σN

)

Cn+1(u1
σ1

,...,uN−1
σN−1

)Cn+1(u1
σ1

,...,uN
σN

)
, (3.85)

ρe,σ1,...,σN
(n) =

√
−a(n+N − 1)

Cn(u1
σ1

,...,uN−1
σN−1

)Cn+1(u1
σ1

,...,uN
σN

)

Cn+1(u1
σ1

,...,uN−1
σN−1

)Cn(u1
σ1

,...,uN
σN

)
. (3.86)

The spectrum of Hσ1,...,σN
is given by

σ(Hσ1,...,σN
) = σ(H) ∪ {λ` | σ` ∈ (−1, 1), 1 ≤ ` ≤ N}. (3.87)

Proof. It is enough to prove the formulas for aσ1,...,σN
(n) and uσ1,...,σN

(n), the
remaining assertions then follow easily. We will use a proof by induction on N . They
are valid for N = 1 and we need to show

uσ1,...,σN+1,±(λ, n) =

√
−aσ1,...,σN

(n)Cn(uσ1,...,σN
(λN), uσ1,...,σN ,±1(λ))

±
√
uσ1,...,σN

(λN , n)uσ1,...,σN
(λN , n+ 1)

, (3.88)

aσ1,...,σN+1
(n) =

√
aσ1,...,σN

(n)aσ1,...,σN
(n+ 1)×√

uσ1,...,σN
(λN , n)uσ1,...,σN

(λN , n+ 1)

uσ1,...,σN
(λN , n+ 1)

. (3.89)

The first relation follows after a straightforward calculation using Sylvester’s deter-
minant identity (cf. [28], Sect. II.3)

Cn(u1
σ1
, . . . , uN

σN
, u±(λ))Cn+1(u

1
σ1
, . . . , uN+1

σN+1
)

− Cn+1(u
1
σ1
, . . . , uN

σN
, u±(λ))Cn(u1

σ1
, . . . , uN+1

σN+1
)

= Cn+1(u
1
σ1
, . . . , uN

σN
)Cn(u1

σ1
, . . . , uN+1

σN+1
, u±(λ)), (3.90)

and the second is a simple calculation. 2
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Remark 3.8 If u(z, n) is any solution of τu = zu, z ∈ C define uσ1,...,σN
(z, n) as in

(3.83) but with ` = N and u±(λ, n) replaced by u(z, n). Then uσ1,...,σN
(z, n) solves

τσ1,...,σN
u = zu.

Finally we extend Lemma 3.6 and assume for brevity σ` ∈ (−1, 1).

Lemma 3.9 Suppose H satisfies (2.117) and let Hσ1,...,σN
, σ` ∈ (−1, 1, ), 1 ≤ ` ≤ N

be constructed as in Theorem 3.7 with

u`
σ`

(n) =
1 + σ`

2
f+(k`, n) + (−1)`+1 1− σ`

2
f−(k`, n). (3.91)

Then the transmission Tσ1,...,σN
(k) and reflection coefficients R±,σ1,...,σN

(k) of the op-
erator Hσ1,...,σN

in terms of the corresponding scattering data T (k), R±(k) of H are
given by

Tσ1,...,σN
(k) =

(
N∏

`=1

1− k k`

k − k`

)
T (k), (3.92)

R±,σ1,...,σN
(k) = k±N

(
N∏

`=1

k − k`

1− k k`

)
R±(k), (3.93)

where k` = λ` +
√
λ2

` − 1 ∈ (−1, 0), 1 ≤ ` ≤ N . Moreover, the norming constants
γσ1,...,σN ,±,j associated with λj ∈ σp(Hσ1,...,σN

) in terms of γ±,j corresponding to H read

γσ1,...,σN ,±,j =
(

1−σj

1+σj

)±1
|kj|−2∓(N−1)

∏N
`=1 |1− kjk`|∏N

`=1
` 6=j

|kj − kl|
T (kj), 1 ≤ j ≤ N,

γσ1,...,σN ,±,j = |kj|±N
N∏

`=1

1− kjk`

|kj − k`|
γ±,j, j ∈ J. (3.94)

Proof. Observe that

uσ1,σ2(λ2, n) =
1 + σ2

2
Aσ1f+(k2, n) +

1− σ2

2
Aσ1f−(k2, n)

= c
(1 + σ̂2

2
fσ1,+(k2, n) +

1− σ̂2

2
fσ1,−(k2, n)

)
, (3.95)

where c > 0 and σ2, σ̂2 are related via

1 + σ̂2

1− σ̂2

=
1

k2

1 + σ1

1− σ1

. (3.96)

The claims now follow from Lemma 3.6 after extending this result by induction. 2
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3.4 The Double Commutation Method

In this section we provide a complete characterization of the double commutation
method for Jacobi operators. We start with a linear transformation which turns out
to be unitary when restricted to proper subspaces of our Hilbert space. We use this
transformation to construct an operator Hγ1 from a given background operator H.
This operator Hγ1 will be the doubly commuted operator of H as discussed in the
Introduction. The results of Sections 4-6 appear to be without precedent.

Let H = `2(M−−1,M+ +1) be the underlying Hilbert space (−∞ ≤M− < M+ ≤
∞) and let ψ(n) be a given real-valued sequence which is square summable near M−.
Choose a positive constant γ > 0 and define

cγ(n) = 1 + γ
n∑

j=M−

ψ(j)2, n ≥M−. (3.97)

(We set in addition cγ(M− − 1) = 1 if M− is finite.) Denote the set of sequences
in `(M− − 1,M+ + 1) which are square summable near M− by H− and consider the
following (linear) transformation

Uγ : H− → H−

f(n) 7→ fγ(n) =
√

cγ(n)
cγ(n−1)

f(n)− γψγ(n)
n∑

j=M−
ψ(j)f(j).

(3.98)

By inspection, the sequence fγ is also square summable near M− and the inverse
transformation is given by

U−1
γ : H− → H−

g(n) 7→
√

dγ(n)
dγ(n−1)

g(n) + γψ(n)
n∑

j=M−
ψγ(j)g(j)

, (3.99)

where

dγ(n) = cγ(n)−1 = 1− γ
n∑

j=M−

ψγ(j)
2, ψγ(n) =

ψ(n)√
cγ(n− 1)cγ(n)

. (3.100)

Lemma 3.10 Define ψγ as in (3.100). Then ψγ ∈ H and

‖ψγ‖2 =
1

γ

(
1− lim

n→M+

cγ(n)−1
)
. (3.101)

If P, Pγ denote the orthogonal projections onto the one-dimensional subspaces of H

spanned by ψ, ψγ (set P = 0 if ψ 6∈ H) the operator Uγ is unitary from (1−P )H onto
(1− Pγ)H.

Proof. For the claims concerning ψ we use

n∑
j=M−

|ψγ(j)|2 =
1

γ

n∑
j=M−

( 1

cγ(j − 1)
− 1

cγ(j)

)
=

1

γ

(
1− 1

cγ(n)

)
. (3.102)
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Next we note that

cγ(n)
n∑

j=M−

ψγ(j)fγ(j) =
n∑

j=M−

ψ(j)f(j) (3.103)

and a direct calculation shows

n∑
j=M−

|fγ(j)|2 =
n∑

j=M−

|f(j)|2 − γ

cγ(n)
|

n∑
j=M−

f(j)ψ(j)|2. (3.104)

This clearly proves the lemma if ψ ∈ H. Otherwise, i.e., if ψ 6∈ H, consider Uγ, U
−1
γ on

the dense subspace `0((M−,M+)) and take closures (cf., e.g., [76], Theorem 6.13). 2

Using, e.g., the polarization identity, we further get

n∑
j=M−

gγ(j)fγ(j) =
n∑

j=M−

g(j)f(j)− γ

cγ(n)

n∑
j=M−

ψ(j)f(j)
n∑

j=M−

ψ(j)g(j). (3.105)

Next we take two sequences a, b satisfying

Hypothesis H. 3.11 Suppose

a, b ∈ `(M− − 1,M+ + 1), a(n) ∈ R\{0}, b(n) ∈ R (3.106)

and introduce the difference expression

(τf)(n) = a(n)f(n+ 1) + a(n− 1)f(n− 1)− b(n)f(n). (3.107)

We want to consider a self-adjoint operator H associated with τ and separated bound-
ary conditions at M± and assume the existence of a sequence ψ(λ1, n) of the following
kind.

Hypothesis H. 3.12 Suppose ψ(λ) satisfies the following conditions.
(i) ψ(λ, n) is a real-valued solution of τψ(λ) = λψ(λ).
(ii) ψ(λ, n) is square summable near M− and fulfills the boundary condition (of H)
at M− (if any, i.e., if τ is l.c. at M−).
(iii) ψ(λ, n) also fulfills the boundary condition (of H) at M+ if τ is l.c. at M+

(ψ(λ, n) is then an eigenfunction of H).

Sufficient conditions for the above function to exist are
(i) λ ∈ σp(H), or
(ii) τ is l.c. at M− but not at M+, or
(iii) σ(H) 6= R (and λ ∈ R\σ(H)), or
(iv) σ(H−) 6= R (and λ ∈ R\σ(H−)), where H− is a restriction of H to `2(M− −
1, M̂ + 1) with M̂ ∈ Z and (for instance) a Dirichlet boundary condition at M̂ + 1.
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It follows that H is explicitly given by

D(H) = {f ∈ H| τf ∈ H; WM−−1(ψ(λ1), f) = 0 if τ is l.c. at M−,
WM+(ψ(λ1), f) = 0 if τ is l.c. at M+}.

(3.108)

We now use Lemma 3.10 with ψ(n) = ψ(λ1, n), γ = γ1, Uγ = Uγ1 to prove

Theorem 3.13 Suppose (H.3.11) and (H.3.12) and let τγ1 be the difference expres-
sion

(τγ1f)(n) = aγ1(n)f(n+ 1) + aγ1(n− 1)f(n− 1)− bγ1(n)f(n), (3.109)

where

aγ1(n) = a(n)

√
cγ1(λ1, n− 1)cγ1(λ1, n+ 1)

cγ1(λ1, n)
, (3.110)

bγ1(n) = b(n) + γ1

(a(n− 1)ψ(λ1, n− 1)ψ(λ1, n)

cγ1(λ1, n− 1)

− a(n)ψ(λ1, n)ψ(λ1, n+ 1)

cγ1(λ1, n)

)
. (3.111)

Then the operator Hγ1 defined by

Hγ1f = τγ1f, (3.112)

D(Hγ1) = {f ∈ H|τγ1f ∈ H;Wγ1,M−−1(ψγ1(λ1), f) = Wγ1,M+(ψγ1(λ1), f) = 0},

where Wγ1,n(u, v) = aγ1(n)(u(n)v(n + 1) − u(n + 1)v(n)), is self-adjoint and has the
eigenfunction

ψγ1(λ1, n) =
ψ(λ1, n)√

cγ1(λ1, n− 1)cγ1(λ1, n)
(3.113)

associated with the eigenvalue λ1. If ψ(λ1) 6∈ H (and hence τ is l.p. at M+) we have

(1− Pγ1(λ1))Hγ1 = Uγ1HU
−1
γ1

(1− Pγ1(λ1)), (3.114)

where Uγ1 is the unitary transformation of Lemma 3.10 and thus

σ(Hγ1) = σ(H) ∪ {λ1}, σac(Hγ1) = σac(H),
σp(Hγ1) = σp(H) ∪ {λ1}, σsc(Hγ1) = σsc(H).

(3.115)

If ψ(λ1) ∈ H there is a unitary operator Ũγ1 = Uγ1 ⊕
√

1 + γ1‖ψ(λ1)‖21 on (1 −
Pγ1(λ1))H⊕ Pγ1(λ1)H such that

Hγ1 = Ũγ1HŨ
−1
γ1

(3.116)

and thus

σ(Hγ1) = σ(H), σac(Hγ1) = σac(H),
σp(Hγ1) = σp(H), σsc(Hγ1) = σsc(H).

(3.117)
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Proof. It suffices to prove

(1− Pγ1(λ1))Hγ1 = Uγ1HU
−1
γ1

(1− Pγ1(λ1)). (3.118)

Let f be a sequence which is square summable near M− such that τf is also square
summable near M− and assume that f fulfills the boundary condition at M−, if any.
Then a straightforward calculation shows

τγ1(Uγ1f) = Uγ1(τf) (3.119)

and we only have to check the boundary conditions at M±. Equation (3.104) shows
that τγ1 is l.c. at M− if and only if τ is and that τγ1 is l.c. at M+ if τ is. The formula

Wγ1,n(ψγ1(λ1), Uγ1f) =
Wn(ψ(λ1), f)

cγ1(λ1, n)
(3.120)

shows that

Wγ1,M−−1(ψγ1(λ1), Uγ1f) = 0, f ∈ D(H). (3.121)

We further claim that

Wγ1,M+(ψγ1(λ1), Uγ1f) = 0, f ∈ D(H). (3.122)

This is clear if ψ(λ1) ∈ H. Otherwise, i.e., if ψ(λ1) 6∈ H, we use

Wn(ψ(λ1), f)

cγ1(λ1, n)
=

∑n
j=M− ψ(λ1, j)(λ1 − τ)f(j)

cγ1(λ1, n)
. (3.123)

The right hand side tends to zero for f ∈ D(H) as can be seen from (3.104) and the
fact that Uγ1 is unitary. Combining (3.121) and (3.122) yields

(1− Pγ1(λ1))Uγ1D(H) ⊆ (1− Pγ1(λ1))D(Hγ1). (3.124)

But (1 − Pγ1(λ1))Uγ1D(H) cannot be properly contained in (1 − Pγ1(λ1))D(Hγ1) by
the property of self-adjoint operators being maximally defined. 2

Remark 3.14 (i). By choosing λ1 ∈ σac(H)∪ σsc(H) (provided the continuous spec-
trum is not empty and a solution satisfying (H.3.12) exists) we can use the double
commutation method to construct operators with eigenvalues embedded in the contin-
uous spectrum.
(ii). If M+ = ∞ and H has an eigenfunction ψ(λ1) one can remove this eigenfunc-
tion from the spectrum upon choosing γ1 = −‖ψ(λ1)‖−2. The corresponding function
ψγ1(λ1) is then no longer in H, implying that τγ1 is l.p. at M+.
(iii). Especially, removing an eigenvalue from an operator which is l.c. at ∞ yields
an operator which is l.p.. Thus τγ1 is not necessary l.p. if τ is. Moreover, this shows
that one cannot insert additional eigenvalues into an operator which is l.c. at M+

(remove this eigenvalue again to obtain a contradiction).
(iv). The limiting case γ1 = ∞ can be handled analogously producing a unitarily
equivalent operator if ψ(λ1) 6∈ H and removes the eigenvalue λ1 otherwise.
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The previous theorem tells us only how to transfer solutions of τu = zu into
solutions of τγ1v = zv if u is square summable near M−. The following lemma treats
the general case.

Lemma 3.15 The sequence

uγ1(z, n) =
cγ1(λ1, n)u(z, n)− γ1

z−λ1
ψ(λ1, n)Wn(ψ(λ1), u(z))√

cγ1(λ1, n− 1)cγ1(λ1, n)
, z ∈ C\{λ1} (3.125)

solves τγ1u = zu if u(z) solves τu = zu. If u(z) is square summable near M−
and fulfills the boundary condition at M− (if any) we have uγ1(z, n) = (Uγ1u)(z, n)
justifying our notation. Furthermore, we note

|uγ1(z, n)|2 = |u(z, n)|2 − γ1

|z − λ1|2
×

( |Wn(ψ(λ1), u(z))|2

cγ1(λ1, n)
− |Wn−1(ψ(λ1), u(z))|2

cγ1(λ1, n− 1)

)
, (3.126)

and

Wγ1,n(ψγ1(λ1), uγ1(z)) =
Wn(ψ(λ1), u(z))

cγ1(λ1, n)
. (3.127)

Hence uγ1 is square summable near M+ if u is. If ûγ(ẑ) is constructed analogously
then

Wγ1,n(uγ1(z), ûγ1(ẑ)) = Wn(u(z), û(ẑ)) +
γ1

cγ1(λ1, n)

z − ẑ

(z − λ1)(ẑ − λ1)
×

Wn(ψ(λ1), u(z))Wn(ψ(λ1), û(ẑ)). (3.128)

Proof. All facts are tedious but straightforward calculations. 2

Next we want to give some conditions implying the l.p. case of τγ1 atM+, assuming

M+ = ∞. Let M− < M̂ < ∞ and let H+ denote a self-adjoint operator associated
with τ on (M̂−1,∞) and the boundary condition induced by ψ(λ1) at M̂ (cf. equation
(3.108)).

Hypothesis H. 3.16 Suppose H+ satisfies one of the following spectral conditions:
(i). σess(H+) 6= ∅.
(ii). σ(H+) = σd(H+) = {λ+,j}j∈J+ with

∑
j∈J+

(1 + λ2
+,j)

−1 = ∞.

Clearly Hypothesis (H.3.16) is satisfied if a, b are bounded near ∞ (which is equiv-
alent to H+ being bounded) since then τ is l.p. at ∞.

Theorem 3.17 Assume (H.3.11), (H.3.12), and (H.3.16). Then τγ1 is l.p. at M+ =
∞.
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Proof. Let γ1,+ = cγ1(λ1, M̂)−1γ1 and consider the doubly commuted operator
H+,γ1,+ of H+. Then τγ1|(M̂,∞) = τγ1,+ and H+,γ1,+ also satisfies (H.3.16). Hence τγ1 is
l.p. at ∞ as claimed. 2

Remark 3.18 We can interchange the role of M− and M+ in this section by substi-
tuting M− ↔M+,

∑n
j=M− →

∑M+

j=n+1 and γ1 → −γ1.

Let M± = ±∞ and H be a given Jacobi operator satisfying (2.117). Our next
aim is to show how the scattering data of the operators H,Hγ1 are related, where Hγ1

is defined as in Theorem 3.13.

Lemma 3.19 Let H be a given Jacobi operator satisfying (2.117). Then the doubly
commuted operator Hγ1, defined via ψ(λ1, n) = f−(k1, n), λ1 = (k1 + k−1

1 )/2 as in
Theorem 3.13, has the transmission and reflection coefficients

Tγ1(k) = sgn(k1)
k k1 − 1

k − k1

T (k), (3.129)

R−,γ1(k) = R−(k), R+,γ1(k) =

(
k − k1

k k1 − 1

)2

R+(k), (3.130)

where k and z are related via z = (k + k−1)/2. Furthermore, the norming constants
γ−,j corresponding to λj ∈ σp(H), j ∈ J (cf. (3.69)) remain unchanged except for an
additional eigenvalue λ1 with norming constant γ−,1 = γ1 if ψ(λ1) 6∈ H respectively
with norming constant γ̃−,1 = γ−,1 + γ1 if ψ(λ1) ∈ H and γ−,1 denotes the original
norming constant of λ1 ∈ σp(H).

Proof. By Lemma 3.15 the Jost solutions fγ1,±(k, n) are up to a constant given
by

cγ1(λ1, n− 1)f±(k, n)− γ1

z−λ1
ψ(λ1, n)Wn−1(ψ(λ1), f±(k))√

cγ1(λ1, n− 1)cγ1(λ1, n)
. (3.131)

This constant is easily seen to be 1 for fγ1,−(k, n). Thus we can compute R−(λ) using
(3.128) (the second unknown constant cancels). The rest follows by a straightforward
calculation. 2

3.5 Double Commutation and Weyl–Titchmarsh

Theory

In this section we want to reveal the connections between Weyl–Titchmarsh theory
and the double commutation method. Without loss of generality we consider only
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the cases `2(N) and `2(Z). We start with the half-line N and freely use the notation
employed in Appendices A–D.

Let H+ be a self-adjoint operator associated with τ on N and a Dirichlet boundary
condition at 0. Without loss of generality we assume ψ(λ1, 1) = 1.

Theorem 3.20 Assume (H.3.11), ψ(λ1, 1) = 1 and let m+(z, 0), m+,γ1(z, 0) denote
the Weyl m-functions of H+, H+,γ1. Then we have

m+,γ1(z, 0) =
1

1 + γ1

(
m+(z, 0)− γ1

z − λ1

)
. (3.132)

If µ+ and µ+,γ1 denote the corresponding spectral functions of H+ and H+,γ1 it follows
that

µ+,γ1(λ) =
1

1 + γ1

(
µ+(λ) + γ1Θ(λ− λ1)

)
, (3.133)

where Θ(.) denotes the (right continuous) step function

Θ(x) =

{
1, x ≥ 0
0, x < 0

. (3.134)

Proof. As in Section 1.2 we use the finite approximationsmN(z, 0) andmN,γ1(z, 0).
If γj(N), γj,γ1(N) are the corresponding norming constants we have

γj,γ1(N) =
1

1 + γ1

{
γj(N) + γ1, λj = λ1

γj(N), λj 6= λ1
. (3.135)

This follows since ψ(z, 0) = 0, ψ(z, 1) = 1 implies ψγ1(z, 0) = 0, ψγ1(z, 1) = (1 +
γ1)

−1/2. Hence we infer

mN,γ1(z, 0) =
1

1 + γ1

(
mN(z, 0)− γ1

z − λ1

)
(3.136)

and the theorem follows upon taking the limit N →∞. 2

Remark 3.21 If we transform the operator H+ into it’s diagonal form as in Sec-
tion 1.3 the double commutation method gets particularly transparent: it corresponds
to adding a step function to the spectral function. This approach can also be used
to derive the unitary transformation stated in Section 2 in the following way. Take
the spectral function µ+ of a given Jacobi operator, switch to µ+,γ1, and compute the
orthogonal polynomials with respect to this new measure (compare Section 1.3 and [1],
Ch. 1). Now take a sequence f(n) and its transform F (z) and use (1.35) to obtain
(3.98).

Next we turn to operators in `2(Z). Without loss of generality we assume

ψ(λ1, 0) = − sin(α), ψ(λ1, 0) = cos(α), α ∈ [0, π). (3.137)
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Theorem 3.22 Assume (H.3.11) and let m̃±(z, α), m̃±,γ1(z, α) denote the Weyl m̃-
functions of H, Hγ1 as introduced in Section 1.2. Then we have

m̃±,γ1(z, α̃) =
(1 + γ̃1(cos(α)4 − sin(α)4))−1/2

((1 + γ̃1 cos(α)2)(1− γ̃1 sin(α)2))1/2

(
m̃±(z, α)− γ̃1

z − λ1

)
, (3.138)

where

γ̃1 =
γ1

cγ1(λ1, 0)
, tan(α̃) =

√√√√ cγ1(λ1, 1)

cγ1(λ1,−1)
tan(α). (3.139)

Proof. Consider the sequences

φα,γ1(z, n), θα,γ1(z, n)− γ̃1

z − λ1

φα,γ1(z, n) (3.140)

constructed from the fundamental system θα(z, n), φα(z, n) for τ (cf. (1.11)) as in
Lemma 3.15. They form a fundamental system for τγ1 corresponding to the initial
conditions associated with α̃ up to constant multiples. Now use (3.127) to evaluate
(1.13). 2

The Weyl M -matrix and the corresponding spectral matrix can now be computed
in a straightforward manner (cf. Section 1.4).

3.6 Iteration of the double commutation method

Finally we demonstrate how to iterate the double commutation method. We choose
a given background operator H (with coefficients a, b satisfying (H.3.11)) and further
γ1 > 0, λ1 ∈ R. Next choose ψ(λ1) as in Hypothesis (H.3.12) to define the transfor-
mation Uγ1 and the operator Hγ1 . In the second step, we choose γ2 > 0, λ2 ∈ R and
another function ψ(λ2) to define ψγ1(λ2) = Uγ1ψ(λ2), a corresponding transformation
Uγ1,γ2 , and an operator Hγ1,γ2 . Applying this procedure N -times results in

Theorem 3.23 Assuming (H.3.11) let H be a given background Jacobi operator in
H = `2(M− − 1,M+ + 1) and let γj > 0, λj, 1 ≤ j ≤ N be such that there exist
corresponding solutions ψ(λj, n) of τψ = λjψ satisfying Hypothesis (H.3.12). We set
ψγ1,...,γk

(λj) = Uγ1,...,γk
· · ·Uγ1ψ(λj) and define the following matrices (1 ≤ ` ≤ N)

C`(n) =

δr(s) +
√
γrγs

n∑
m=M−

ψ(λr,m)ψ(λs,m)


1≤r,s≤`

, (3.141)

C`
i,j(n) =



C`−1(n)r,s r,s≤`−1

√
γs

n∑
m=M−

ψ(λi,m)ψ(λs,m) s≤`−1,r=`

√
γr

n∑
m=M−

ψ(λr,m)ψ(λj,m) r≤`−1,s=`

n∑
m=M−

ψ(λi,m)ψ(λj,m) r=s=`


1≤r,s≤`

, (3.142)
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Ψ`(λj, n) =



C`(n)r,s r,s≤`

√
γs

n∑
m=M−

ψ(λj,m)ψ(λs,m) s≤`,r=`+1

√
γrψ(λr, n) r≤`,s=`+1

ψ(λj, n) r=s=`+1


1≤r,s≤`+1

. (3.143)

Then we have (set C0(n) = 1)

cγ`
(λ`, n) = 1 + γ`

n∑
m=M−

ψγ1,...,γ`
(λ`,m)2 =

detC`(n)

detC`−1(n)
, (3.144)

and hence

N∏
`=1

cγ`
(λ`, n) = detCN(n). (3.145)

Moreover,

n∑
m=M−

ψγ1,...,γ`
(λi,m)ψγ1,...,γ`

(λj,m) =
detC`

i,j(n)

detC`−1(n)
(3.146)

and

ψγ1,...,γ`
(λj, n) =

det Ψ`(λj, n)√
detC`(n− 1) detC`(n)

. (3.147)

In addition, we get

aγ1,...,γN
(n) = a(n)

√
detCN(n− 1) detCN(n+ 1)

detCN(n)
, (3.148)

bγ1,...,γN
(n) = b(n)−

N∑
`=1

γ`

(
a(n)

det Ψ`(λ`, n) det Ψ`(λ`, n+ 1)

detC`−1(n) detC`(n)

− a(n− 1)
det Ψ`(λ`, n− 1) det Ψ`(λ`, n)

detC`−1(n− 1) detC`(n− 1)

)

= −λN + a(n)
detCN(n− 1)

detCN(n)

det ΨN(λN , n+ 1)

det ΨN(λN , n)

+ a(n− 1)
detCN(n)

detCN(n− 1)

det ΨN(λN , n− 1)

det ΨN(λN , n)
, (3.149)

the last equation only being valid if det ΨN(λN , n) 6= 0 (e.g., if λN ≤ inf σ(H)). The
spectrum of Hγ1,...,γN

is given by

σ(Hγ1,...,γN
) = σ(H) ∪ {λj}N

j=1, σac(Hγ1,...,γN
) = σac(H),

σp(Hγ1,...,γN
) = σp(H) ∪ {λj}N

j=1, σsc(Hγ1,...,γN
) = σsc(H).

(3.150)
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Moreover,

Hγ1,...,γN
(1−

N∑
j=1

Pγ1,...,γN
(λj))

= (Uγ1,...,γN
· · ·Uγ1)H(U−1

γ1
· · ·U−1

γ1,...,γN
)(1−

N∑
j=1

Pγ1,...,γN
(λj)), (3.151)

where Pγ1,...,γN
(λj) denotes the projection onto the one-dimensional subspace of H

spanned by ψγ1,...,γN
(λj).

Proof. We start with (3.146). Using Sylvester’s determinant identity (cf. [28],
Sect. II.3) we obtain

detC`−1(n) detC`+1
i,j (n)

= detC`(n) detC`
i,j(n)− γ` detC`

`,j(n) detC`
i,`(n), (3.152)

which proves (3.146) together with a look at (3.105) by induction on N . Next, (3.144)
easily follows from (3.146). Similarly,

detC`(n) det Ψ`+1(λj, n)

= detC`+1(n) det Ψ`(λj, n)− γ` det Ψ`(λ`, n) detC`
j,`(n), (3.153)

and (3.99) prove (3.147). The rest follows in a straightforward manner. 2

Remark 3.24 (i). For a sequence f , which is square summable near M−, fγ1,...,γj
=

Uγ1,...,γj
· · ·Uγ1f is given by substituting ψ(λj) → f in (3.147). Similarly we get the

scalar product of fγ1,...,γi
and gγ1,...,γj

from (3.146) by substituting f → ψ(λi) and
g → ψ(λj) in (3.142).
(ii). Equation (3.147) can be rephrased as

(γ1ψγ1,...,γ`
(λ1, n), . . . , γ`ψγ1,...,γ`

(λ`, n)) =√√√√ detC`(n)

detC`(n− 1)
(C`(n))−1(γ1ψ(λ1, n), . . . , γ`ψ(λ`, n)), (3.154)

where (C`(n))−1 is the inverse matrix of C`(n).

Clearly Theorem 3.17 extends (by induction) to this more general situation.

Theorem 3.25 Assume (H.3.11) and (H.3.16). Then τγ1,...,γN
is l.p. at M+.

Finally we also extend Lemma 3.19. For simplicity we assume ψ(λj, n) 6∈ H,
1 ≤ j ≤ N .
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Lemma 3.26 Let H be a given Jacobi operator satisfying (2.117). Then Hγ1,...,γN
,

defined via ψ(λ`, n) = f−(k`, n), λ` = (k` + k−1
` )/2 ∈ R\σ(Hγ1,...,γ`−1

), 1 ≤ ` ≤ N
has the transmission and reflection coefficients

Tγ1,...,γN
(k) =

∏N
`=1 sgn(k`)

k k`−1
k−k`

T (k), (3.155)

R−,γ1,...,γN
(k) = R−(k), R+,γ1,...,γN

(k) =

(
N∏

`=1

( k − k`

k k` − 1

)2
)
R+(k), (3.156)

where z = (k + k−1)/2. Furthermore, the norming constants γ−,j corresponding to
λj ∈ σp(H), j ∈ J (cf. (3.69)) remain unchanged and the additional eigenvalues λ`

have norming constants γ−,` = γ`.

Remark 3.27 Of special importance is the case a(n) = 1/2, b(n) = 0. Here we have
f±(k, n) = k±n, T (k) = 1, and R±(k) = 0. It is well known from inverse scattering
theory that R±(k), |k| = 1 together with the point spectrum and corresponding norm-
ing constants uniquely determine a(n), b(n). Hence we infer from Lemma 3.9 that
Hγ1,...,γN

constructed from ψ(λ`, n) = f−(k`, n) as in Theorem 3.23 and Hσ1,...,σN
con-

structed from u`
σ`

= 1+σ`

2
f+(k`, n) + (−1)`+1 1−σ`

2
f−(k`, n) as in Theorem 3.7 coincide

if

γj =

(
1− σj

1 + σj

)−1

|kj|−1−N

∏N
`=1 |1− kjk`|∏N
`=1
` 6=j

|kj − k`|
T (kj), 1 ≤ j ≤ N. (3.157)

For a direct proof compare [40].

3.7 Applications

First we state the discrete analogue of the FIT-formula derived in [24] for the isospec-
tral torus of periodic Schrödinger operators. This yields an explicit realization of the
isospectral torus of all algebro-geometric quasi-periodic finite-gap Jacobi operators.

Let a(n), b(n) be given algebro-geometric quasi-periodic g-gap sequences charac-
terized by the band-edges E0 < E1 < . . . < E2g+1 and Dirichlet data {(µj, σj)}g

j=1 at
the reference point n = 0 (cf. [8]), where µj ∈ [E2j−1, E2j] and σj ∈ {±}, 1 ≤ j ≤ g.
Then the spectrum of the associate Jacobi operator H is of the type

σ(H) = σac(H) =
⋃g+1

n=1[E2n−2, E2n−1],

σsc(H) = σp(H) = ∅. (3.158)

and (cf. (3.47))

σ(H±) = σ(H) ∪ {µj|σj = ±, 1 ≤ j ≤ g}. (3.159)
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Then considerations as in Theorem 3.7 readily yield that all other isospectral algebro-
geometric g-gap sequences can be realized in the following way

a(µ̃1,σ̃1),...,(µ̃g ,σ̃g)(n) = −
√
a(n− g)a(n− g + 2)×√√√√ Cn−g(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg), ψ−σ̃g(µ̃g))

Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg), ψ−σ̃g(µ̃g))
×

√√√√Cn−g+2(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg), ψ−σ̃g(µ̃g))

Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg), ψ−σ̃g(µ̃g))
, (3.160)

b(µ̃1,σ̃1),...,(µ̃g ,σ̃g)(n) = a(n− g)
Cn−g+2(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg))

Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg))
×

Cn−g(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg), ψ−σ̃g(µ̃g))

Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg), ψ−σ̃g(µ̃g))

+ a(n+ 1)
Cn−g(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg))

Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg))
×

Cn−g+1(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg), ψ−σ̃g(µ̃g))

Cn−g(ψσ1(µ1), ψ−σ̃1(µ̃1), . . . , ψσg(µg), ψ−σ̃g(µ̃g))
− µ̃g, (3.161)

where ψ±(z, n) are the branches of the Baker-Akhiezer function associated with a, b
(i.e., the solutions of τψ = zψ which are square summable near ±∞) and the new se-
quences are associated with the new Dirichlet data {(µ̃j, σ̃j)}g

j=1 at the same reference
point n = 0. Even though ψ±(z, n) is not necessarily positive as required in our The-
orem 3.7, the above sequences can be shown to be well-defined by using the explicit
theta-function representations for ψ±(z, n) (cf., e.g., [8]) as long as µ̃j ∈ [E2j−1, E2j]
and σ̃j ∈ {±}, 1 ≤ j ≤ g. In fact, consider the hyperelliptic Riemann surface Kg

associated with the function

R2g+2(z)
1/2 =

2g+1∏
j=0

(z − Ej)
1/2 (3.162)

and branch points E0 < E1 < . . . < E2g+1. A point P ∈ Kg will be denoted by
P = (z,±R2g+2(z)

1/2) and we add two points ∞± ∈ Kg such that Kg is compact.
Introduce

z(P, n) = ÂP0
(P )−

g∑
j=1

ÂP0
(µ̂j) + 2nÂP0

(∞+)− Ξ̂P0
, (3.163)

where ÂP0
is Abel’s map with base point P0 = (E0, 0) and Ξ̂P0

is the vector of Riemann
constants (cf. [8] for more details). Then

a(n) = ã[θ(z(∞+, n− 1))θ(z(∞+, n+ 1))/θ(z(∞+, n))2]1/2, (3.164)
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b(n) = −E0 + ã
θ(z(∞+, n− 1))θ(z(P0, n+ 1))

θ(z(∞+, n))θ(z(P0, n))

+ ã
θ(z(∞+, n))θ(z(P0, n− 1))

θ(z(∞+, n− 1))θ(z(P0, n))
, (3.165)

where θ is Riemann’s theta function associated with Kg and ã is a constant depending
only on Kg (i.e.,on {Ej}2g+1

j=0 ). Performing one single commutation at a point Q =

(z, σR2g+2(z)
1/2) ∈ Kg (i.e., choosing ψσ(z, n) to perform the commutation) it is

shown in [8], Chapter 9 that the new sequences are again given by (3.164), (3.165) if
z(P, n) is replaced by

z̃(P, n) = z(P, n) + ÂP0
(Q) + ÂP0

(∞+). (3.166)

As a consequence we note that for the standard procedure as in Theorem 3.3 (i.e.,
with Q = (λ1, σ1R2g+2(λ1)

1/2), σ1 ∈ {±1}) the corresponding commuted operator
Hσ1 is again quasi-periodic and isospectral to H.

Hence, choosing Q = µ̂j we obtain

z̃(P, n) = z(P, n) + ÂP0
(µ̂j) + ÂP0

(∞+) (3.167)

and the Dirichlet eigenvalue at µ̂j is formally replaced by one at∞− (since ÂP0
(∞−) =

−ÂP0
(∞+)). The corresponding sequences are neither real-valued nor well-defined.

To repair this we perform a second single commutation making the following choice
Q = (µ̃j,−σ̃jR2g+2(µ̃j)

1/2). The resulting sequences a(µ̃j ,σ̃j), b(µ̃j ,σ̃j) are associated
with

z(µ̃j ,σ̃j)(P, n) = z(P, n+ 1) + ÂP0
(µ̂j)− ÂP0

((µ̃j, σ̃jR2g+2(µ̃j)
1/2)) (3.168)

and are again real-valued. Moreover, we have replaced the Dirichlet eigenvalue (µj, σj)
by (µ̃j, σ̃j) and we have shifted the reference point for the Dirichlet boundary condition
by one (since z(P, n + 1) and not z(P, n) occurs in (3.168)) whereas everything else
remains unchanged. From Section 3 we know that a(µ̃j ,σ̃j), b(µ̃j ,σ̃j) are equivalently
given by

a(µ̃j ,σ̃j)(n+ 1) = −
√
a(n)a(n+ 2)×√√√√Cn(ψσj

(µj), ψ−σ̃j
(µ̃j))Cn+2(ψσj

(µj), ψ−σ̃j
(µ̃j))

Cn+1(ψσj
(µj), ψ−σ̃j

(µ̃j))2
, (3.169)

b(µ̃j ,σ̃j)(n+ 1) = a(n)
ψσj

(µj, n+ 2)Cn(ψσj
(µj), ψ−σ̃j

(µ̃j))

ψσj
(µj, n+ 1)Cn+1(ψσj

(µj), ψ−σ̃j
(µ̃j))

+

a(n+ 1)
ψσj

(µj, n)Cn+1(ψσj
(µj), ψ−σ̃j

(µ̃j))

ψσj
(µj, n+ 1)Cn(ψσj

(µj), ψ−σ̃j
(µ̃j))

− µ̃j, (3.170)

where the n+1 on the left-hand-side takes the aforementioned shift of reference point
into account. Thus, applying this procedure g times we can replace all Dirichlet
eigenvalues proving (3.160), (3.161).
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The reader might be puzzled by the fact that the Dirichlet eigenvalue µ̂j is shifted
to ∞− (as opposed to ∞+) which seemingly distinguishes ∞− from ∞+. However,
this apparent asymmetry between ∞+ and ∞− is related to our way of factoring H.
If we would instead split up H as

H = Ã∗σj
Ãσj

+ µj, (3.171)

where

(Ãσj
)f(n) = −

√√√√−a(n− 1)ψσj
(µj, n)

ψσj
(µj, n− 1)

f(n− 1) +

√√√√−a(n− 1)ψσj
(µj, n− 1)

ψσj
(µj, n)

f(n),

(3.172)
with Ã∗σj

being the adjoint of Ãσj
, the role of ∞+ and ∞− would be interchanged.

We stress again that (3.160), (3.161) represent an explicit realization of the isospec-
tral torus of all algebro-geometric quasi-periodic g-gap Jacobi operators with spec-
trum (3.158).

Next we turn to bounded solutions (a(n, t), b(n, t)) of the Toda equations and
construct N -soliton solutions on these (arbitrary) background solutions using the
single commutation method.

The corresponding Jacobi operators H(t) satisfy inf(σ(H(t))) = inf(σ(H(0))) >
−∞ for all t ∈ R. Furthermore, this implies the existence of principal solutions
u±(λ, n, t) which satisfy

H(t)u±(λ, n, t) = λu±(λ, n, t), (3.173)

d

dt
u±(λ, n, t) = P (t)u±(λ, n, t), (n, t) ∈ Z× R, (3.174)

where the difference expression P (t) associated with (a(t), b(t)) is defined by

(P (t)f)(n) = a(n, t)f(n+ 1)− a(n− 1, t)f(n− 1). (3.175)

(3.173) and (3.174) then imply the Toda lattice equations,

d

dt
a(n, t) = a(n, t)

(
b(n, t)− b(n+ 1, t)

)
d

dt
b(n, t) = 2

(
a(n− 1, t)2 − a(n, t)2

) , (n, t) ∈ Z× R (3.176)

which are well-known to be equivalent to the Lax equation

d

dt
H(t)− [P (t), H(t)] = 0, t ∈ R (3.177)

(where [., .] denotes the commutator).
Next, let H(t) be as above and choose

λN < . . . < λ1 < inf(σ(H(0))), σj ∈ [−1, 1], 1 ≤ j ≤ N ∈ N. (3.178)
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Then Theorem 3.7 implies

aσ1,...,σN
(n, t) = −

√
a(n, t)a(n+N, t)×√

Cn(u1
σ1
, . . . , uN

σN
)Cn+2(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN

σN
)

, (3.179)

bσ1,...,σN
(n, t) = −λN

+a(n, t)
Cn+2(u

1
σ1
, . . . , uN−1

σN−1
)Cn(u1

σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN−1

σN−1
)Cn+1(u1

σ1
, . . . , uN

σN
)

+ a(n+N − 1, t)
Cn(u1

σ1
, . . . , uN−1

σN−1
)Cn+1(u

1
σ1
, . . . , uN

σN
)

Cn+1(u1
σ1
, . . . , uN−1

σN−1
)Cn(u1

σ1
, . . . , uN

σN
)
, (3.180)

where

u`
σ`

(n, t) =
1 + σ`

2
u+(λ`, n, t) + (−1)`+1 1− σ`

2
u−(λ`, n, t). (3.181)

Moreover, for λ < λN ,

uσ1,...,σN ,±(λ, n, t) =

±
√

N−1∏
j=0

(−a(n+ j, t))Cn(u1
σ1
, . . . , u`

σN
, u±(λ))√

Cn(u1
σ1
, . . . , uN

σN
)Cn+1(u1

σ1
, . . . , uN

σN
)

(3.182)

are the principal solutions of τσ1,...,σN
(t)u = λu satisfying

d

dt
uσ1,...,σN ,±(λ, n, t) = Pσ1,...,σN

(t)uσ1,...,σN ,±(λ, n, t), (3.183)

where Pσ1,...,σN
(t) is defined as in (3.175) with a replaced by aσ1,...,σN

. We also have
(cf. (3.85), (3.86))

ρo,σ1,...,σN
(n, t) = −

√
−a(n, t) Cn+2(u1

σ1
,...,uN−1

σN−1
)Cn(u1

σ1
,...,uN

σN
)

Cn+1(u1
σ1

,...,uN−1
σN−1

)Cn+1(u1
σ1

,...,uN
σN

)
, (3.184)

ρe,σ1,...,σN
(n, t) =

√
−a(n+N − 1, t)

Cn(u1
σ1

,...,uN−1
σN−1

)Cn+1(u1
σ1

,...,uN
σN

)

Cn+1(u1
σ1

,...,uN−1
σN−1

)Cn(u1
σ1

,...,uN
σN

)
. (3.185)

Finally, the sequences aσ1,...,σN
(n, t), bσ1,...,σN

(n, t) fulfill the Toda lattice equations
(3.176) and the sequence

ρσ1,...,σN
(n, t) =

{
ρe,σ1,...,σN

(m, t), n = 2m
ρo,σ1,...,σN

(m, t), n = 2m+ 1
, (3.186)

fulfills the Kac–van Moerbeke lattice equation

d

dt
ρ(n, t) = ρ(n, t)

(
ρ(n+ 1, t)2 − ρ(n− 1, t)2

)
. (3.187)
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At the end we derive the N -soliton solutions relative to an arbitrary Toda back-
ground solution (a(t), b(t)) using the double commutation method.

Denote by ψ(λ, n, t) the solutions of τ(t)ψ = λψ which are square summable near
−∞ and satisfy

d

dt
ψ(λ, n, t) = P (t)ψ(λ, n, t). (3.188)

As in Theorem 3.23 we define the following matrices

CN(n, t) =

δr(s) +
√
γrγs

n∑
m=M−

ψ(λr,m, t)ψ(λs,m, t)


1≤r,s≤N

, (3.189)

ΨN(λj, n, t) =



CN(n, t)r,s r,s≤N

√
γs

n∑
m=M−

ψ(λj,m, t)ψ(λs,m, t) s≤`,r=N+1

√
γrψ(λr, n, t) r≤`,s=N+1

ψ(λj, n, t) r=s=N+1


1≤r,s≤N+1

. (3.190)

Then the sequences

aγ1,...,γN
(n, t) = a(n, t)

√
detCN(n− 1, t) detCN(n+ 1, t)

detCN(n, t)
, (3.191)

bγ1,...,γN
(n, t) = b(n, t)− 1

2

d

dt
ln

detCN(n, t)

detCN(n− 1, t)
. (3.192)

satisfy the Toda lattice equations (3.176). Moreover,

ψγ1,...,γN
(λj, n, t) =

det ΨN(λj, n, t)√
detCN(n− 1, t) detCN(n, t)

(3.193)

satisfies

d

dt
ψγ1,...,γN

(λj, n, t) = Pγ1,...,γN
(t)ψγ1,...,γN

(λj, n, t), (3.194)

where again Pγ1,...,γN
(t) is defined as in (3.175) with a replaced by aγ1,...,γN

.
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