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Abstract

The aim of this thesis is to obtain dispersive estimates with integrable time decay
for one-dimensional continuous Schrödinger and Jacobi operators in the resonant
case. In the continuous case we are able to improve previous results by weakening
the assumptions on the potential, in the discrete case such an estimate hasn’t been
established yet.

Zusammenfassung

Das Ziel der vorliegenden Arbeit ist es, dispersive Abschätzungen mit integrier-
barem Zeitabfall für kontinuierliche eindimensionale Schrödinger- und für Jakobiop-
eratoren im Resonanzfall herzuleiten. Im kontinuierlichen Fall können wir frühere
Resultate aus diesem Bereich verbessern, indem wir die Anforderungen an das Po-
tential abschwächen, im diskreten Fall ist eine derartige Abschätzung neuartig.
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0. Introduction

The purpose of this thesis is twofold: On the one hand we are interested in
establishing dispersive decay estimates with integrable time decay of order t−

3
2 for

the one-dimensional Schrödinger equation

iψ̇(x, t) = Hψ(x, t), H = − d2

dx2
+ V (x), (x, t) ∈ R2, (0.1)

with (at least) integrable potential V . We are only interested to do this in the
resonant case, which means that we have a bounded solution ψ of Hψ = 0. We
work with the spaces Lpσ = Lpσ(R), σ ∈ R, associated with the norm

‖ψ‖Lpσ =

{(∫
R(1 + |x|)pσ|ψ(x)|pdx

)1/p
, 1 ≤ p <∞,

supx∈R(1 + |x|)σ|ψ(x)|, p =∞,

and are able to improve an earlier result in [6] (where such an integrable time decay
in the resonant case was established for V ∈ L1

4(R)) by showing that V ∈ L1
3(R) is

sufficient. Our calculations mostly rely on the novel fact introduced in [4], that the
reflection and transmission coefficient have integrable Fourier transform, and on a
simple and useful application of the van der Corput lemma, which is also taken
from [4]. We use and extend the techniques mentioned in [4] appropriately. On the
other hand, we prove a similar result in the discrete case, where we work with the
spaces

‖u‖`pσ =

{(∑
n∈Z(1 + |n|)pσ|u(n)|

)1/p
, p ∈ [1,∞),

supn∈Z(1 + |n|)σ|u(n)|, p =∞.
and the equation

iu̇(n, t) = a(n− 1)u(n− 1, t)+b(n)u(n, t) + a(n)u(n+ 1, t) = H̃u(n, t),

(n, t) ∈ Z× R (0.2)

satisfying a(n)→ 1/2, b(n)→ 0 such that∣∣∣a(n)− 1

2

∣∣∣+ |b(n)| (0.3)

is contained in `1σ(Z) for some 0 ≤ σ ≤ 3. The operator H̃ is called the Jacobi
operator. The definition of resonance is similar to the continuous case, namely ẑ is

called a resonance point, if there exists a bounded solution ψ̃ of H̃ψ̃ = ẑψ̃; we have
two possible points ẑ = ±1 of resonance though. Our main result now states, that
if resonance occurs, we obtain a time decay of order t−

4
3 , if (0.3) is an element of

`13(Z). Our proof relies on a similar result regarding the reflection and transmis-
sion coefficients proved in [3], which states that these expressions have summable
Fourier series, and again on an application of the van der Corput lemma, which
is also contained in [3]. There are a lot of similarities, but also some differences
between the approaches on the proofs of our two main results, to point them out
the thesis has the following structure:
Section 1 deals with the Spectral Theorem of self-adjoint operators and, as an
application, Stone’s formula, since they are essential tools in computing our esti-
mates. We sketch the process of constructing functions and integrals of operators,
without giving detailed proofs. This section is a summary of [17, Chap. 3 and Sec.
4.1].
In Section 2 we recall the most important facts of the Scattering theory for H,



iii

which we need in the next section. It also contains a summary and an extension
of the proof of the novel result about the scattering coefficients in [4], which we
mentioned before. The results mentioned in this section are taken from [2], [13]
and [20], where the detailed proofs and computations can be found.
The purpose of Section 3 is to reach our main goal in the continuous case. We
use and extend computations from [4] and [6] to obtain the desired time decay.

Section 4 gives an overview of the scattering theory for H̃. The structure is more
or less the same as in Section 2. Again we also summarize and extend the proof of
the mentioned result about the reflection and transmission coefficients taken from
[3] and [5]. The material of this section is mostly taken from [16] and [18], but we
use a slightly different notation.
Our final Section 5 leads us to the desired integrable time decay in the discrete
case. The structure is similar to Section 3, but sometimes the computations are a
little bit different. We mostly use and extend the methods from [3] and [5].
We just want to mention, that dispersive estimates of our type play an important
role in proving asymptotic stability of solitons in the continuous [1, 11] and discrete
nonlinear equations [9, 10, 15].

Thanks

I want to thank my advisors Gerald Teschl and Iryna Egorova for their pro-
fessional and friendly support throughout the whole writing process of this thesis.
They were always there when I needed help and never gave me the impression
that any of my questions were trivial. Of course I also want to thank my family
for their constant support and love. Without them, this all wouldn’t have been
possible. Last but not least I am greatly indebted my friends and colleagues for
their support, friendship and for providing an excellent counterbalance to studying,
whenever I needed it.
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1. The Spectral Theorem and Applications

This section is devoted to the spectral theorem of unbounded self-adjoint op-
erators and, as an application, Stone’s formula. These tools enable us to define
functions of unbounded self-adjoint operators and are crucial if we want to un-
derstand, e.g., the time evolution of Schrödinger-type-operators. We follow [17,
Chap. 3 and Sect. 4.1], where all the proofs and technical details can be found. For
the measure-theoretical background we also refer to [17, Appendix].
As a warm-up let’s recall some basic functional-analytic definitions: By H we de-
note a complex valued and separable Hilbert-space with inner product 〈., .〉 and
norm ‖ . ‖. For a densely defined linear operator A : D(A) → H, the adjoint A∗ of
A is defined by

D(A∗) =
{
ψ ∈ H | ∃ψ̃ ∈ H : 〈ψ,Aϕ〉 =

〈
ψ̃, ϕ

〉
∀ϕ ∈ D(A)

}
A∗ψ = ψ̃.

If we have A = A∗, that is D(A) = D(A∗) and Aψ = A∗ψ for all ψ ∈ D(A), we call
A self-adjoint. A is called normal, if D(A) = D(A∗) and ‖Aψ‖ = ‖A∗ψ‖ and it’s
called closed, if ψn → ψ and Aψn → ϕ imply Aψ = ϕ. Furthermore, for a closed
operator A, the resolvent set of A is defined by

ρ(A) :=
{
z ∈ C | (A− z)−1 ∈ L(H)

}
,

where L(H) denotes the set of bounded linear operators on H. The function

RA : ρ(A)→ L(H)

z 7→ (A− z)−1

is called the resolvent of A. The complement of the resolvent set is called the spec-
trum σ(A). Now we start our glimpse at the spectral theorem with an important
definition: A projection valued measure P is a map

P : B→ L(H), Ω 7→ P (Ω)

from the Borel σ-Algebra B of R to the set of orthogonal projections, that is
P (Ω) = P (Ω)2 and P (Ω)∗ = P (Ω), such that the following properties hold:

(i) P (R) = I
(ii) If Ω =

⋃
n Ωn such that the sets Ωn are pairwise disjoint, then

∑
n P (Ωn)ψ =

P (Ω)ψ for every ψ ∈ H.

For any ψ ∈ H we get a finite Borel measure µψ(Ω) = 〈ψ, P (Ω)ψ〉. The polarization-
identity leads us to the complex-valued measures µϕ,ψ = 〈ϕ, P (Ω)ψ〉. As our aim
is to define f(A) for a fairly large class of functions f , we proceed step by step
and therefore start with simple functions f =

∑n
j=1 αjχΩj , where Ωj = f−1(αj).

In this case we define P (f) =
∑n
j=1 αjP (Ωj). Then 〈ϕ, P (Ω)ψ〉 =

∑
j αjµϕ,ψ(Ωj)

shows 〈ϕ, P (Ω)ψ〉 =
∫
R f(λ)dµϕ,ψ(λ), so by linearity of the integral, we can deduce

that P is a linear map from the set of simple functions into L(H). Furthermore we
have

‖P (f)ψ‖2 =

∫
R
|f(λ)|2dµψ(λ) (1.1)

and after equipping the set of simple functions with the sup-norm, we get ‖P (f)ψ‖ ≤
‖f‖∞ ‖ψ‖. The simple functions are dense in the Banach-space of bounded Borel
measurable functions B(R), therefore we can find a unique extension of P to a
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bounded linear operator P : B(R) → L(H). As a consequence of (1.1) and the
dominated convergence theorem we also get the following lemma, which turns out
to be useful later on:

Lemma 1.1. [17, Theorem 3.1.] If fn(x)→ f(x) pointwise for f, fn ∈ B(R), and
supλ∈R |fn(λ)| is bounded, then P (fn)→ P (f) strongly.

Our next step is to extend this process to unbounded Borel functions f . To do
so we need a suitable domain first. Comparing with (1.1), the obvious choice is
Df =

{
ψ ∈ H |

∫
R |f(λ)|2dµψ(λ) <∞

}
. One can show that this set is a densely

defined linear subspace of H. Moreover, for every ψ ∈ Df , the sequence of bounded
Borel functions fn = χΩnf, with Ωn = {λ | |f(λ)| ≤ n}, is Cauchy converging to f in
L2(R, dµψ). Thus, by (1.1), the vectors ψn = P (fn)ψ now form a Cauchy sequence
in H and therefore enable us to define P (f)ψ as limn→∞ P (fn)ψ. Moreover the
following theorem holds:

Theorem 1.2. [17, Theorem 3.2.] For any Borel function f , the operator P (f),

with D(P (f)) = Df is normal and satisfies ‖P (f)ψ‖2 =
∫
R |f(λ)|2dµψ(λ) and

〈ψ, P (f)ψ〉 =
∫
R f(λ)dµψ(λ). Furthermore we obtain P (f)∗ = P (f∗) and for any

Borel function g and α, β ∈ C, the following properties hold:

αP (f) + βP (g) ⊆ P (αf + βg), D(αP (f) + βP (g)) = D|f |+|g|

and

P (f)P (g) ⊆ P (fg), D(P (f)P (g)) = Dg ∩Dfg.

Next we want to look closer at similarities between the operators P (f) in H and
the multiplication operator with f in L2(R, dµψ). Therefore we need some further
definitions. First of all an operator U : H→ H is said to be unitary if it’s bijective

and norm-preserving. The operators A in H and Ã in H̃ are said to be unitarily

equivalent, if UA = ÃU and UD(A) = D(Ã) for U unitary. We set

Hψ =
{
P (g)ψ | g ∈ L2(R, dµψ)

}
.

Moreover we call {ψj}j∈J(with some index set J) a set of spectral vectors, if ‖ψj‖ =

1 and Hψi⊥Hψj for all i 6= j. We call a set of spectral vectors a spectral basis, if⊕
j Hψj = H. Then the following theorem holds.

Theorem 1.3. [17, Lemma 3.4.] For every projection-valued measure P , there is
an(at most countable) spectral basis {ψn} such that

H =
⊕
n

Hψn

and a corresponding unitary operator

U =
⊕
n

Uψn : H→
⊕
n

L2(R, dµψn)

such that for any Borel function f ,

UP (f) = fU UDf = D(f).

Our previous considerations especially show that for every projection-valued
measure P there is a self-adjoint operator A = P (λ). To finally obtain the spectral
theorem it remains to prove the inverse statement, that is we need to establish the
existence of a projection-valued measure PA for every self-adjoint operator A. To
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do this we need the resolvent RA(z) and write Fψ(z) = 〈RA(z)ψ,ψ〉. We want
to show that there is a unique measure µψ, such that Fψ(z) =

∫
R

1
λ−zdµψ(λ) and

call Fψ the Borel-transform of the measure µψ in this case. One can show that Fψ
is a holomorphic function, which maps the upper half-plane into itself(a so-called

Herglotz or Nevalinna function) and satisfies the estimate |Fψ(z)| ≤ ‖ψ‖2
Im(z) . Then

it’s guaranteed that Fψ(z) is the Borel-transform of a unique measure µψ, which is
given by the Stieltjes inversion formula

µψ(λ) = lim
δ→0

lim
ε→0

1

π

∫ λ+δ

−∞
Im(Fψ(t+ iε))dt.

By polarization, we can construct a corresponding complex measure µϕ,ψ for every
φ, ψ ∈ H, such that 〈ϕ,RA(z)ψ〉 =

∫
R

1
λ−zdµϕ,ψ(λ). Now it’s natural to define a

family of operators via the sesquilinear forms

sΩ(ϕ,ψ) =

∫
R
χΩdµϕ,ψ(λ),

which satisfy |sΩ(ϕ,ψ)| ≤ ‖ϕ‖ ‖ψ‖. Therefore we can deduce that there is a family

of nonnegative (0 ≤ 〈ψ, PA(Ω)ψ〉 ≤ ‖ψ‖2) and hence self-adjoint operators PA(Ω),
which satisfy

〈ϕ, PA(Ω)ψ〉 =

∫
R
χΩdµϕ,ψ(λ).

A longer calculation shows that the family PA(Ω) is indeed a projection valued
measure. Thus we finally arrive at the spectral theorem:

Theorem 1.4 (Spectral Theorem). [17, Theorem 3.6.] To every self-adjoint op-
erator A there corresponds a unique projection valued measure PA, such that A =
PA(λ).

Now we try to characterize the spectrum of A using the associated projectors:

Theorem 1.5. [17, Theorem 3.7., Corollary 3.8.] The spectrum of A is given by

σ(A) = {λ ∈ R |PA((λ− ε, λ+ ε)) 6= 0 ∀ε > 0} .

Moreover we have PA(σ(A)) = I and PA(R ∩ ρ(A)) = 0.

From now on we write f(A) instead of PA(f). Our next goal is to have a closer
look at multiplication operators on L2(R, dµ), where µ is a finite Borel measure,
since they enable us to get a better understanding of arbitrary self-adjoint operators
A by Theorem 1.3. We call

σ(µ) = {λ ∈ R |µ((λ− ε, λ+ ε)) > 0 ∀ε > 0}

the spectrum of µ. Similar calculations as for Theorem 1.5 show that the spectrum
σ(µ) is a support for µ, that is µ(R\σ(µ)) = 0. Closely linked with the measure µ
is the operator

Af(λ) = λf(λ), D(A) =
{
f ∈ L2(R, dµ) |λf(λ) ∈ L2(R, dµ)

}
.

Again by Theorem 1.5, we have σ(A) = σ(µ). Next we recall some measure-
theoretical facts: The unique decomposition of µ with respect to the Lebesgue
measure is given by

dµ = dµac + dµs,
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where µac is absolutely continuous with respect to the Lebesgue-measure(i.e. µac(B) =
0 for every set B with Lebesgue measure zero), and µs is singular with respect to
the Lebesgue-measure(i.e., there is a Lebesgue null set B, such that µ(R\B) = 0).
Furthermore µs can be written as a sum of a (singularly) continuous and a pure
point part,

dµs = dµsc + dµpp,

where µsc is continuous on R and µpp is a step function. As the measures dµac,
dµsc and dµpp are mutually singular, their supports Mac, Msc and Mpp are mutually
disjoint. It’s important to observe that these sets are not unique. Consequently we
can choose them such that Mpp is the set of all jumps of µ(λ) and such that Msc is
a Lebesgue null set. Next we define the corresponding projectors P ac = χMac

(A),
P sc = χMsc

(A), and P pp = χMpp
(A), which satisfy P ac+P sc+P pp = I. Thus both

our Hilbert space L2(R, dµ) and our operator A can be written as direct sums:

L2(R, dµ) = L2(R, dµac)⊕ L2(R, dµsc)⊕ L2(R, dµpp)
and

A = (AP ac)⊕ (AP sc)⊕ (AP pp).

Their spectra, σac(A) = σ(µac), σsc(A) = σ(µsc) and σpp(A) = σ(µpp), are called
the absolutely continuous, singularly continuous, and pure point spectrum of A,
respectively.
Using Theorem 1.3, these results can be transferred to arbitrary self-adjoint op-
erators A as well. Therefore we need a spectral measure, which gives us all the
information from all measures in a spectral basis. This is the case if we have a
vector ψ, such that for every ϕ ∈ H its spectral measure µϕ is absolutely contin-
uous with respect to µψ. Then we call ψ a maximal spectral vector of A and µψ
a maximal spectral measure of A. It can be shown that such a maximal spectral
vector always exists for a self-adjoint operator A. A set {ψj} of spectral vectors is

called ordered, if ψk is a maximal spectral vector for A restricted to
(⊕k−1

j Hψj

)⊥
.

We can even show that for every self-adjoint operator there is an ordered spectral
basis. Next we define

Hac = {ψ ∈ H |µψ is absolutely continuous}
Hsc = {ψ ∈ H |µψ is singularly continuous}
Hpp = {ψ ∈ H |µψ is pure point} .

Then we get a similar operator splitting as before:

Theorem 1.6. [17, Lemma 3.18.] We have

H = Hac ⊕ Hsc ⊕ Hpp.

There are Borel sets Mxx such that the projector onto Hxx is given by P xx = χMxx
,

xx ∈ {ac,sc,pp}. For the sets Mxx one can choose the corresponding supports of
some maximal spectral measure µ.

Finally the definition of the absolutely continuous, singularly continuous, and
pure point spectrum of A is given by

σac(A) = σ(A|Hac), σsc(A) = σ(A|Hsc), σpp(A) = σ(A|Hpp).

Moreover, if µ is a maximal spectral measure, the corresponding spectra of A and
µ coincide.
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The remaining part of this section is now devoted to Stone’s formula, as an useful
application of the Spectral theorem. Therefore we first have a look at integration
in Banach spaces. We look at mappings f : I → X, where I = [t0, t1] is a compact
interval, X a Banach space and µ a (σ)-finite Borel measure. f is called simple if
its image is finite, f(I) = {xi}ni=1, and if each inverse image f−1(xi), 1 ≤ i ≤ n,
is measurable. The set of simple functions S(I,X) is a linear space that can be
equipped with the sup norm ‖f‖∞ = supt∈I ‖f(t)‖. We call the corresponding
Banach space, which we get after completion, the set of regular functions R(I,X).
Furthermore we can easily deduce that C(I,X) ⊂ R(I,X). For f ∈ S(I,X) it is
now possible to define a linear map

∫
: S(I,X)→ X by∫

I

f(λ)dµ(λ) =

n∑
i=1

xiµ(f−1(xi)).

This map has the property, that∥∥∥∥∫
I

f(λ)dµ(λ)

∥∥∥∥ ≤ ‖f‖∞ µ(I),

and hence can be extended uniquely to a linear map
∫

: R(I,X) → X with the
same norm. We even have∥∥∥∥∫

I

f(λ)dµ(λ)

∥∥∥∥ ≤ ∫
I

‖f(λ)‖ dµ(λ), (1.2)

which is valid for simple functions and therefore for all f ∈ R(I,X) by continuity.
Furthermore, if A(t) ∈ R(I,L(H)), then(∫

I

A(λ)dµ(λ)

)
ψ =

∫
I

(A(λ)ψ)dµ(λ).

If I = R, we call f : I → X integrable, if f ∈ R([−r, r], X) for all r > 0 and if
‖f(t)‖ is integrable with respect to µ. Then we define∫

R
f(λ)dµ(λ) = lim

r→∞

∫
[−r,r]

f(λ)dµ(λ),

and (1.2) continues to hold. For us, the following theorem, which is basically a
consequence of Theorem 1.4 and Fubini’s theorem, is of interest:

Theorem 1.7. [17, Lemma 4.1.] Suppose f : I×R→ C is a bounded µ-measurable
function and set F (x) =

∫
I
f(λ, x)dµ(λ). Let A be self-adjoint. Then f(λ,A) ∈

R(I,L(H)) and F (A) =
∫
I
f(λ,A)dµ(λ), respectively, F (A)ψ =

∫
I
f(t, A)ψdµ(λ).

Now, finally we are ready to formulate and prove Stone’s formula in the form we
need it:

Theorem 1.8 (Stone). [17, Problem 4.3.] Suppose f ∈ C(R) is bounded and A
self-adjoint. Then

1

2πi

∫
R
f(λ)(RA(λ+ iε)−RA(λ− iε))dλ

s→ f(A)

strongly. Furthermore we have

1

2πi

∫ λ2

λ1

f(λ)(RA(λ+ iε)−RA(λ− iε))dλ
s→ 1

2
(PA([λ1, λ2]) + PA((λ1, λ2)))f(A).
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Proof. For the first claim we observe that

1

x− λ− iε
− 1

x− λ+ iε
=

2iε

(λ− x)2 + ε2
.

Now we consider the integral 1
π

∫
R f(λ) ε

(λ−x)2+ε2 dλ and use the substitution u =
λ−x
ε to rewrite this expression as

1

π

∫
R
f(x+ εu)

1

u2 + 1
du =

1

π

∫
R

(f(x+ εu)− f(x))
1

u2 + 1
du+

1

π

∫
R
f(x)

1

u2 + 1
du.

To treat the first summand let’s write gε(u) = (f(x+ εu)− f(x)) 1
u2+1 and use the

boundedness of f to obtain that for every ε > 0, |gε(u)| is bounded above by C
u2+1 ,

which is integrable. Therefore we can apply dominated convergence and we use the
continuity of f to deduce that 1

π

∫
R gε(λ)dλ converges to zero as ε→ 0. The second

summand can now be written as f(x) and thus we have shown that

1

2πi

∫
R
f(λ)(

1

x− λ− iε
− 1

x− λ+ iε
)dλ→ f(x).

Combining Lemma 1.1 and Theorem 1.7 proves the first claim.
The second claim follows from the first, if f vanishes at the boundary points. Thus
it remains to consider the cases f(λ) = 1 and f(λ) = λ, which can be verified by a
straightforward calculation. �
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2. Continuous One-Dimensional Schrödinger Operators and their
Scattering Theory

In this section we consider the scattering theory of H, defined in (0.1). In [17,
Sect. 9.7] it is proved, that for V ∈ L1

1 the operator H is self-adjoint on the domain

D(H) =
{
ψ ∈ L2(R) |ψ,ψ′ are locally absolutely continuous, Hψ ∈ L2(R)

}
,

has a purely absolutely continuous spectrum on [0,∞) and a finite number of eigen-
values in (−∞, 0). Our next step is to have a look at the scattering theory of H. To
do so we start with a theorem about solutions of certain integral equations. They
are solved by the method of successive approximation. Since this tool also plays an
important role in our computations later on, we explain it in all detail. For further
background see [2, 13].

Theorem 2.1 (Volterra Integral equations). Suppose f ∈ L∞(−∞, x] for every
x ∈ R, and for y ≤ x let K(x, y) satisfy the conditions

(i) K is measurable and |K(x, y)| ≤ K1(x, y), where K1(x, y) is non-decreasing
in x for each y ≤ x.

(ii) For each fixed x ∈ R, K1(x, y) is integrable with respect to y on the interval
(−∞, x].

Then

g(x) = f(x) +

∫ x

−∞
K(x, y)g(y)dy

has a unique solution g which satisfies the estimate

|g(x)− f(x)| ≤ sup
y∈(−∞,x]

|f(y)| ·
∫ x

−∞
K1(x, y)dy · exp

(∫ x

−∞
K1(x, y)dy

)
Proof. Set g0(x) = f(x), gn+1(x) =

∫ x
−∞K(x, y)gn(y)dy. By induction we observe

that gn(x) is well-defined for each n ∈ N, using the assumptions on f and K.
Furthermore

n∑
k=0

gk(x) = f(x) +

∫ x

−∞
K(x, y)

n−1∑
k=0

gk(y)dy.

To establish existence we need that the series
∑∞
n=0 gn(x) converges uniformly on

every compact interval in R. We therefore show

|gn(x)| ≤ sup
y∈(−∞,x]

|f(y)| · 1

n!

(∫ x

−∞
K1(x, y)dy

)n
(2.1)

inductively first. For n = 0 it’s obvious. Now assume that it’s true for some n ∈ N.
Then we get

|gn+1(x)| ≤
∫ x

−∞
K1(x, y)|gn(y)|dy

≤
∫ x

−∞
K1(x, y) sup

z∈(−∞,y]

|f(z)| · 1

n!

(∫ y

−∞
K1(y, z)dz

)n
dy

≤ sup
y∈(−∞,x]

|f(y)|
∫ x

−∞
K1(x, y) · 1

n!

(∫ y

−∞
K1(x, z)dz

)n
dy

= sup
y∈(−∞,x]

|f(y)| 1

(n+ 1)!

(∫ x

−∞
K1(x, y)dy

)n+1

,
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where the last equality is a consequence of the substitution u =
∫ y
−∞K1(x, z)dz.

Therefore (2.1) implies

∞∑
n=1

|gn(x)| ≤ sup
y∈(−∞,x]

|f(y)| ·
∞∑
n=1

1

n!

(∫ x

−∞
K1(x, y)dy

)n
= sup
y∈(−∞,x]

|f(y)|
∫ x

−∞
K1(x, y)dy · exp

(∫ x

−∞
K1(x, y)dy

)
.

Thus we have established the absolute convergence of the series on every compact
interval in R and therefore, the existence of the solution of the integral equation
and the desired estimate follow immediately. Our next aim is to show uniqueness.
Let therefore g and g̃ be two solutions of the integral equation and set h = g − g̃.
Then h(x) =

∫ x
−∞K(x, y)h(y)dy. Using (2.1) gives us

|h(x)| ≤ sup
y∈(−∞,x]

|h(y)| · 1

n!

(∫ x

−∞
K1(x, y)dy

)n
,

which converges to 0 as n→∞.
�

Now we apply this result to establish existence and uniqueness of solutions f of
the equation Hf = k2f for some complex number k. We also mention asymptotics
of these solutions and their derivatives. For notational simplicity we introduce the
functions

γ±(x) =

∫ ±∞
x

(y − x)|V (y)|dy, and η±(x) = ±
∫ ±∞
x

|V (y)|dy. (2.2)

Theorem 2.2. Let V ∈ L1
1(R). Then for each k with 0 ≤ Im(k) the integral

equations

f±(x, k) = e±ikx −
∫ ±∞
x

sin(k(x− y))

k
V (y)f±(y, k)dy (2.3)

have unique solutions defined everywhere on R, which solve the Schrödinger-equation

Hψ = k2ψ. (2.4)

For each x the functions f±(x, k), ∂
∂xf±(x, k) = f ′±(x, k) are analytic in the upper

half-plane Im(k) > 0 and continuous in 0 ≤ Im(k). They satisfy the following
estimates: ∣∣f±(x, k)− e±ikx

∣∣ ≤ const

|k|
exp(

const

|k|
)e∓ Im(k)x, k 6= 0 (2.5)

|f±(x, k)| ≤ const(1 + max {x, 0})e∓ Im(k)x (2.6)∣∣f ′±(x, k)
∣∣ ≤ const(

1 + |k|
|k|

)e∓ Im(k)x, k 6= 0 (2.7)∣∣f ′±(x, k)
∣∣ ≤ const(1 + |k|+ |k||x|)e∓ Im(k)x, (2.8)

where const denotes a constant, that is independent of x and k. If V ∈ L1
2(R), then

∂
∂kf±(x, k) = ḟ(x, k) exists for 0 ≤ Im(k) and is continuous there as a function of



9

k. Furthermore the following estimates are valid:

| ∂
∂k

(
e∓ikxf±(x, k)

)
| ≤ const(1 + x2) (2.9)

| ∂
∂k

(f±(x, k)) | ≤ const(1 + x2)e∓ Im(k)x (2.10)

Proof. We only sketch the proof. For details we refer for example to [20, Chapter
5, Theorem 26]. We introduce the function

h±(x, k) = e∓ikxf±(x, k), (2.11)

but only consider the − -case, since the + -case is similar. (2.3) for f− can be
written as

h−(x, k) = 1 +

∫ x

−∞

e2ik(x−y) − 1

2ik
V (y)h−(y, k)dy.

For the kernel K(x, y) = e2ik(x−y)−1
2ik V (y) we get the estimates

|K(x, y)| ≤ |V (y)|
|k|

, i.e.,

∫ x

−∞
|K(x, y)|dy ≤

‖V ‖1
|k|

, k 6= 0 (2.12)

and

|K(x, y)| ≤ (x− y)|V (y)|, i.e.,

∫ x

−∞
|K(x, y)|dy ≤ max {x, 0} ‖V ‖1 + ‖V ‖11

(2.13)
for 0 ≤ x − y and 0 ≤ Im(k). If we use (2.12) and apply Theorem 2.1, we get
that for k 6= 0 h− and hence f− are uniquely determined functions, and also (2.5)
follows immediately. Inserting (2.5) into

h′−(x, k) =

∫ x

−∞
e2ik(x−y)V (y)h−(x, y)dy

gives us estimate (2.7). If we apply Gronwall’s inequality (c.f. [18, Lemma 2.7]) to
(2.13), we get

|h−(x, k)− 1| ≤ γ−(x)eγ−(x), (2.14)

which gives us existence and uniqueness also for k = 0. A direct calculation using
the Leibnitz rule for parameter integrals shows that f± solves the Schrödinger
equation. Since the series for m− is locally uniformly convergent, we get analyticity
of h− and hence of f− in Im(k) > 0 and continuity in 0 ≤ Im(k). To establish (2.6),
we first observe that |h−(x, k)| ≤ 1+γ−(0)eγ−(0) for x < 0. For x > 0 we use (2.13)
to obtain

|h−(x, k)| ≤ K +

∫ x

−∞
x(1 + |y|)|V (y)| |h−(y, k)|

1 + |y|
dy

for some 0 ≤ K. Setting M(x, k) = |h−(x,k)|
K(1+|x|) leads us to the following inequality for

M :

M(x, k) ≤ 1 +

∫ x

−∞
(1 + |y|)|V (y)|M(y, k)dy.

Inserting this inequality repeatedly into itself, we finally arrive, after some compu-
tations, at

M(x, k) ≤ exp

(∫ x

−∞
(1 + |y|)|V (y)|dy

)
≤ const.
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This proves (2.6). The inequality (2.8) is now obtained in a similar way as (2.7).
The remaining estimates (2.9) and (2.10) can be derived using a similar iteration
process as before. �

From now on we always use the symbol ′ as an abbreviation for the derivative
with respect to the variable x, and · for the derivative w.r.t. k. Next we consider

the functions f̃±(x, k) = f±(x, k∗)∗, which solve the equation

f̃±(x, k) = e∓ikx −
∫ ±∞
x

sin(k(x− y))

k
V (y)f̃±(y, k)dy

for Im(k) ≤ 0. By W (ϕ(x, k), ψ(x, k)) = ϕ(x, k)ψ′(x, k)−ϕ′(x, k)ψ(x, k) we denote
the usual Wronskian. A straightforward calculation, using the fact that f±(x, k) and

f̃±(x, k) solve the Schrödinger equation (2.4), shows ∂
∂x

(
W (f±(x, k), f̃±(x, k))

)
=

0. Thus to calculate W (f±(x, k), f̃±(x, k)) it’s sufficient to consider

lim
x→±∞

W (f±(x, k), f̃±(x, k)) = ∓2ik. (2.15)

Furthermore we use the following expressions:

W (k) = W (f−(x, k), f+(x, k)), W±(k) = W (f∓(x, k), f̃±(x, k)).

If k is real valued, we obtain four solutions of (2.4), which obviously can’t be
linearly independent. However as a consequence of (2.15), we have that the pairs

(f+, f̃+) and (f−, f̃−) are linearly independent. Since for real k we even have

f̃±(x, k) = f±(x,−k), this finally leads, after some calculations, to the scattering
relations

T (k)f±(x, k) = R∓(k)f∓(x, k) + f∓(x,−k), k 6= 0 (2.16)

where T and R± denote the transmission and reflection coefficients, given by

T (k) =
2ik

W (k)
, R±(k) = ∓W±(k)

W (k)
. (2.17)

Some more important properties concerning these coefficients are e.g. that

g1(k) =
1

T (k)
6= 0, k ∈ R, (2.18)

and that T (k) and R±(k) both are continuous at k = 0. For the proof we again
refer to [20, Proposition 27]. The continuity of R± was established in [8]. Moreover,
by a direct calculation, one can show the following useful identities:

|T (k)|2 + |R±(k)|2 = 1 and R∗+(k)T (k) + T ∗(k)R−(k) = 0. (2.19)

Finally we also need to mention, that the presence of a resonance at k = 0 is
equivalent to the fact, that the Wronskian W (0) of the two Jost solutions at this
point disappears. Our next aim is to state some results about the Fourier transform
of h±(x, k) with respect to k. Therefore we first introduce the Banach algebra A
of Fourier transforms of integrable functions

A =

{
f(k) : f(k) =

∫
R

eikpf̂(p)dp, f̂(·) ∈ L1(R)

}
(2.20)

with the norm ‖f‖A = ‖f̂‖L1 , and the corresponding unital Banach algebra A1

A1 =

{
f(k) : f(k) = c+

∫
R

eikpĝ(p)dp, ĝ(·) ∈ L1(R), c ∈ C
}

(2.21)
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with the norm ‖f‖A1
= |c|+ ‖ĝ‖L1 . It’s immediately clear, that A is a subalgebra

of A1. The algebra A1 can be seen as an algebra of Fourier transforms of functions
cδ(·) + ĝ(·), where δ is the Dirac delta distribution and ĝ ∈ L1(R). Later on we
often use the important fact, that if f ∈ A1 \ A and f(k) 6= 0 for all k ∈ R
then f−1(k) ∈ A1 by the Wiener lemma [21]. For the Jost solutions, the following
theorem is valid:

Theorem 2.3.

h±(x, k) = 1±
∫ ±∞

0

B±(x, y)e±2ikydy, (2.22)

where B±(x, y) are real-valued and satisfy

|B±(x, y)| ≤ eγ±(x)η±(x+ y), (2.23)

| ∂
∂x
B±(x, y)± V (x+ y)| ≤ 2eγ±(x)η±(x+ y)η±(x). (2.24)

One of the major tools used to obtain the previous theorem, which also plays
a key role in our remaining computations, is the following important result by
Marchenko:

Theorem 2.4. The kernels B±(x, y) defined by (2.22), satisfy the following equa-
tion

F±(x+ y) +B±(x, y)±
∫ ±∞

0

B±(x, z)F±(x+ y + z)dz = 0, (2.25)

where the functions F±(x) given by [13, 3.5.19’] are absolutely continuous with F ′± ∈
L1(R±) and

|F±(x)| ≤ Cη±(x), ±x ≥ 0, (2.26)

with η± from (2.2).

For the proofs of the previous two facts we refer to [13, §3.5] or [20, §5.2.]. In all
these computations Cauchy’s theorem is crucial. Moreover

h±(x, ·)− 1, h′±(x, ·) ∈ A, ∀x ∈ R, (2.27)

is an easy consequence of (2.22)–(2.24) and the A-norms of these expressions don’t
depend on x, if ±x ≥ 0, which also follows from these estimates. Now we have
a closer look at a novel result by Egorova, Kopylova, Teschl and Marchenko. We
explain the techniques used there in all detail and also extend some of their results:

Theorem 2.5. [4, Theorem 2.1] If V ∈ L1
1, then T (k)− 1 ∈ A and R±(k) ∈ A.

Proof. We only consider the resonant case, since this is the area we mainly focus
on. First of all, we abbreviate h±(k) = h±(0, k), h′±(k) = h′±(0, k). Then (2.11)
implies

W (k) = 2ikh+(k)h−(k) + W̃ (k), W̃ (k) = h−(k)h′+(k)− h′−(k)h+(k), (2.28)

W±(k) = h∓(k)h′±(−k)− h±(−k)h′∓(k). (2.29)

Moreover, W̃ (k), W±(k) ∈ A. In the next step, we first introduce some new
functions

Φ±(k) = h±(k)h′±(0)− h′±(k)h±(0), (2.30)

K±(x) = ±
∫ ±∞
x

B±(0, y)dy, D±(x) = ±
∫ ±∞
x

∂

∂x
B±(0, y)dy, (2.31)



12

where B±(x, y) are the transformation operators from (2.22). Integrating (2.22)
formally by parts we obtain

h′±(k) = ±
∫ ±∞

0

∂

∂x
B±(0, y)e±2ikydy = D±(0) + 2ik

∫ ±∞
0

D±(y)e±2ikydy

= h′±(0) + 2ik

∫ ±∞
0

D±(y)e±2ikydy,

h±(k) = h±(0) + 2ik

∫ ±∞
0

K±(y)e±2ikydy.

All the above integrals have to be understood as improper integrals. Inserting them
into (2.30) gives

Φ±(k) = 2ikΨ±(k),Ψ±(k) =

∫ ±∞
0

(D±(y)h±(0)−K±(y)h′±(0))e±2ikydy. (2.32)

Moreover we define

H±(x) = D±(x)h±(0)−K±(x)h′±(0) (2.33)

and prove the following lemma, which is an extension of [4, Lemma 2.2]:

Lemma 2.6. If V ∈ L1
1 then Ψ±(k) ∈ A. Moreover we have that |H±(x)| ≤

Ĉη±(x) for some universal constant Ĉ > 0 and η±(x) given by (2.2).

Proof. The proof is inspired by [8] and therefore we first take advantage of Theorem
2.4. On the one hand we differentiate (2.25) with respect to x and set x = 0, on the
other hand we set x = 0 in (2.25) and then integrate both equations with respect
to y from x to ±∞. Then (2.31) implies

±
∫ ±∞
x

F±(y)dy +K±(x) +

∫ ±∞
0

B±(0, z)

∫ ±∞
x

F±(y + z)dy dz = 0

and

∓F±(x) +D±(x) +

∫ ±∞
0

∂

∂x
B±(0, z)

∫ ±∞
x

F±(y + z)dy dz

−
∫ ±∞

0

B±(0, z)F±(x+ z)dz = 0.

Next, we apply (2.31) and the identity

∂

∂z

∫ ±∞
x

F±(y + z)dy = −F±(x+ z).

Integration by parts leads to

± (1 +K±(0))

∫ ±∞
x

F±(y)dy +K±(x)∓
∫ ±∞

0

K±(z)F±(x+ z)dz (2.34)

= K±(x)± h±(0)

∫ ±∞
x

F±(y)dy ∓
∫ ±∞

0

K±(z)F±(x+ z)dz = 0

and

∓ F±(x) +D±(x)± h′±(0)

∫ ±∞
x

F±(y)dy ∓
∫ ±∞

0

D±(z)F±(x+ z)dz (2.35)

−
∫ ±∞

0

B±(0, z)F±(x+ z)dz = 0.
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Furthermore we multiply (2.34) by h′±(0) and (2.35) by h±(0) and subtracting, we
get integral equations

H±(x)∓
∫ ±∞

0

H±(y)F±(x+ y)dy = G±(x), (2.36)

where

G±(x) = h±(0)
(∫ ±∞

0

B±(0, y)F±(x+ y)dy ± F±(x)
)
.

(2.23) and (2.26) imply

|G±(x)| ≤ C̃η±(x), ±x ≥ 0. (2.37)

As we want to obtain H± ∈ L1(R±), we apply the method of successive approxi-

mations to (2.36). To this end let N > 0 such that ±C
∫ ±∞
±N η±(y)dy < 1, where C

is given by (2.26). Then we can rewrite (2.36) in the form

H±(x)∓
∫ ±∞
±N

H±(y)F±(x+ y)dy = G±(x,N), (2.38)

where

G±(x,N) = G±(x)±
∫ ±N

0

H±(y)F±(x+ y)dy. (2.39)

From the formulas (2.31) and the estimates (2.23)–(2.24) we deduceH± ∈ L∞(R±)∩
C(R±). We also have

|G±(x,N)| ≤ C(N)η±(x) (2.40)

by the boundedness of H±, (2.37) and monotonicity of η±(x). Now let

H±,0(x) = G(x,N), H±,n+1(x) =

∫ ±∞
±N

H±,n(y)F±(x+ y)dy.

We show that

|H±,n(x)| ≤ C(N)η±(x)

[
±C

∫ ±∞
±N

η±(y)dy

]n
. (2.41)

Then we are done by Theorem 2.1, and the desired estimate for H±(x) also follows
immediately, because

|H±(x)| ≤ C(N)η±(x)

∞∑
n=0

[
±C

∫ ±∞
±N

η±(y)dy

]n
= Ĉ(N)η±(x).

So it remains to verify (2.41) by induction. Equation (2.40) ensures the estimate
for n = 0. Now assume it is true for n. Then, using (2.26) and monotonicity of
η±(x), we finally get

|H±,n+1(x)| ≤ ±C(N)

∫ ±∞
±N

η±(y)

[
±C

∫ ±∞
±N

η±(z)dz

]n
|F±(x+ y)|dy

≤ ±C(N)

[
±C

∫ ±∞
±N

η±(z)dz

]n ∫ ±∞
±N

η±(y)Cη±(x+ y)dy

≤ C(N)η±(x)

[
±C

∫ ±∞
±N

η±(z)dz

]n+1

.

�
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Now we can continue the proof of Theorem 2.5. Since the Jost solutions are
linearly dependent at k = 0, which means that h+(x, 0) = c h−(x, 0), we can
consider two cases: (a) h+(0)h−(0) 6= 0 and (b) h+(0) = h−(0) = 0. In both cases

we have W̃ (0) = W±(0) = 0 (see (2.28)–(2.29)).

Let us look at case (a) first. We have

W̃ (k) = W̃ (k)− W̃ (0) =
h−(k)

h+(0)
Φ+(k)− h+(k)

h−(0)
Φ−(k)

= 2ik
(h−(k)

h+(0)
Ψ+(k)− h+(k)

h−(0)
Ψ−(k)

)
= 2ikΨ(k), (2.42)

where Ψ(k) ∈ A by Lemma 2.6. Thus

W (k) = 2ik(h−(k)h+(k) + Ψ(k)). (2.43)

This representation together with (2.27) and (2.18), gives us

g1(k) ∈ A1 \ A. (2.44)

Therefore,

T (k) =
1

g1(k)
∈ A1, T (k)− 1 ∈ A. (2.45)

by the Wiener lemma. Analogously,

W±(k) =
h∓(k)

h±(0)
Φ±(−k)− h±(−k)

h∓(0)
Φ∓(k) = 2ikΨ±,1(k), (2.46)

where Ψ±,1 ∈ A. Finally, W±(k)/k ∈ A which together with (2.44) implies that
R±(k) ∈ A.

In the case (b) Lemma 2.6 ensures K±(x) ∈ L1(R±) and, therefore h±(k) =

2ikK̂±(k), where K̂±(0) 6= 0 and K̂± ∈ A. From (2.27) and (2.28) we get that

g1(k) = h+(k)h−(k) + K̂−(k)h′+(k)− K̂+(k)h′−(k) ∈ A1 \ A

and does not have zeros on R by (2.18). Hence again, T ∈ A1. Similarly we obtain
R± ∈ A. �

The next essential lemma is a small variant of the van der Corput lemma(c.f.
[12, Cor. 1.1, Page 15]). It can be found in [4, Lemma 5.4]:

Lemma 2.7. Consider the oscillatory integral

I(t) =

∫ b

a

eitφ(k)f(k)dk,

where φ(k) is real-valued function. If φ′′(k) 6= 0 in [a,b] and f ∈ A1, then

|I(t)| ≤ C2[t min
a≤k≤b

|φ′′(k)|]−1/2‖f‖A1
, t ≥ 1.

where C2 ≤ 28/3 is the optimal constant from the van der Corput lemma.

We conclude this section by giving an explicit formula for the kernel of our
operator e−itHPac(H) and naming some results shown in [4], which to a high extend
rely on the results of Theorem 2.5. To do so, the next property is crucial, because
it gives us an explicit formula for the kernel of the resolvent of H.
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Theorem 2.8. For the kernel of the resolvent R(ω) of H for ω = k2 ± i0, k > 0,
the following expression is valid:

[R(k2 ± i0)](x, y) = −f+(y,±k)f−(x,±k)

W (±k)
= ∓f+(y,±k)f−(x,±k)T (±k)

2ik
(2.47)

for all x ≤ y (and the positions of x, y reversed if x > y).

We refer , e.g., to [17, Lemma 9.7.]. Next we use Stone’s Formula 1.8 to arrive
at the following representation:

e−itHPac =
1

2πi

∫ ∞
0

e−itk(R(k + i0)−R(k − i0))dk, (2.48)

where we integrate with respect to the spectral measure of H(cf. [17, Sect. 9.3
- 9.7.] for further details on the computation of this measure) and the expression is
understood as an improper integral. Next we make the change of variables k 7→ k2

in (2.48). To do so inside the resolvent, we remark that R(k + i0) is an analytic
continuation of (H−z)−1 from the upper half-plane. The continuation of (H−z2)−1

is therefore (H − (k + i0)2)−1, which is equivalent to R(k2 + i0) along the positive
and to R(k2 − i0) along the negative half line. Therefore it’s possible to integrate
along the whole real line and in the case x ≤ y we arrive at the following expression
for the kernel of e−itHPc

[e−itHPac](x, y) =
i

π

∫ ∞
−∞

e−itk2 f+(y, k)f−(x, k)T (k)

2ik
k dk

=
1

2π

∫ ∞
−∞

e−i(tk2−|y−x|k)h+(y, k)h−(x, k)T (k)dk. (2.49)

With the results mentioned so far, Egorova, Kopylova, Marchenko and Teschl
proved the following theorems on dispersive estimates for Schrödinger operators
and improved previous results:

Theorem 2.9. [4, Theorem 1.1] Let V ∈ L1
1(R). Then the following decay holds

‖e−itHPac‖L1→L∞ = O(t−1/2), t→∞. (2.50)

Moreover, if there is no resonance at k = 0, the following holds:

Theorem 2.10. [4, Theorem 1.2] Let V ∈ L1
2(R). Then, in the non-resonant case,

the following decay holds

‖e−itHPac‖L1
1→L∞−1

= O(t−3/2), t→∞.

It should be remarked that if we want to prove e.g. (2.50), we actually need to
verify that ∥∥e−itHPacψ

∥∥
∞ ≤ const · t

−1/2 ‖ψ‖1 , ψ ∈ L1(R) ∩ L2(R)

holds, since we can extend such an estimate to all L1-functions by an approximation
argument. In the next section, we show that a t−3/2 time decay is also possible in
the resonant case, using stronger assumptions on the potential V .
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3. The Resonant Case: Continuous Version

The aim of this section is to prove the following theorem:

Theorem 3.1. Suppose V ∈ L1
3(R) and let f0 be a bounded function for which

Hf0 = 0 and limx→∞

(
|f0(x)|2 + |f0(−x)|2

)
= 2 holds. Denote by P0 the projection

on the span of f0 given formally by P0ψ = 〈ψ, f0〉 f0. Then the following decay holds

‖e−itHPac − (4πit)−
1
2P0‖L1

2→L∞−2
= O(t−3/2), t→∞. (3.1)

To establish this result we need some preparatory lemmas. First of all we show
the following:

Lemma 3.2. If V ∈ L1
2, we have that ∂

∂kh±(x, k) and ∂
∂kh

′
±(x, k) are contained in

A, and for ±x ≥ 0 the A-norms of these expressions do not depend on x.

Proof. Taking the derivative with respect to k in (2.22), we obtain

∂

∂k
h±(x, k) = 2i

∫ ±∞
0

yB±(x, y)e±2ikydy

and for ∓x ≤ 0, yB±(x, y) is integrable with respect to y by (2.23), with L1-norm
not depending on x.
For h′±(x, k) the calculations are exactly the same, we just have to substitute
B±(x, y) by B′±(x, y) and h±(x, k) by h′±(x, k) and use (2.24) instead. �

The next result which we need is obtained in a similar way:

Lemma 3.3. Let V ∈ L1
3. Then ∂

∂k (h±(x,k)−h±(x,0)
k ) and ∂

∂k (
h′±(x,k)−h′±(x,0)

k ) are
contained in A, and for ±x ≥ 0 the A-norms of these expressions do not depend
on x.

Proof. We have

g±,2(x, k) =
h±(x, k)− h±(x, 0)

k
= ±

∫ ±∞
0

B±(x, y)
e±2iky − 1

k
dy

= ±2i

∫ ±∞
0

B±(x, z)

(∫ z

0

e±2ikydy

)
dz (3.2)

and denote

K±(x, y) = ±
∫ ±∞
y

B±(x, z)dz.

Then (3.2) can be written as

±2i

∫ ±∞
0

e±2iky

(∫ ±∞
y

B±(x, z)dz

)
dy = 2i

∫ ±∞
0

K±(x, y)e±2ikydy.

Now differentiating with respect to k gives us

∂

∂k
g±,2(x, k) = ∓4

∫ ±∞
0

yK±(x, y)e±2ikydy,

and for ∓x ≤ 0, yK±(x, y) is again integrable with respect to y by (2.23), with
L1-norm not depending on x.
For the second task we can proceed exactly in the same way as pointed out at the
end of the previous lemma. �
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In a similar way we can obtain the next important result:

Lemma 3.4. If V ∈ L1
3, we get that ∂

∂k (Ψ±(k)−Ψ±(0)
k ) and Ψ̇±(k) lie in A, where

Ψ±(k) is given by (2.32).

Proof. By (2.32) Ψ±(k) can be written as
∫ ±∞

0
H±(y)e±2ikydy. So we can proceed

as in Lemma 3.2 or Lemma 3.3 respectively by using the estimate for H± established
in Lemma 2.6. �

A key-tool to prove Theorem 3.1 is the next statement. Therefore we need all
the results established so far in this section and we use similar arguments as in
Theorem 2.5:

Theorem 3.5. If V ∈ L1
3, then Ṫ (k), ∂

∂k (T (k)−T (0)
k ), Ṙ±(k) and ∂

∂k (R±(k)−R±(0)
k )

are elements of A.

Proof. Throughout the proof of this theorem we use the same notation as in
Theorem 2.5. Again we distinguish the two cases (a) h+(0)h−(0) 6= 0 and (b)
h+(0) = h−(0) = 0.
In case (a) we obtained W (k) = 2ik(h−(k)h+(k) + Ψ(k)), where Ψ(k) is given by

(2.42). We have g1(k) = 1
T (k) = W (k)

2ik = h−(k)h+(k) + Ψ(k). We then get

T (k)− T (0)

k
= −g1(k)− g1(0)

k
· 1

g1(k)g1(0)
.

The derivative of this expression can be written as

∂

∂k

(
−g1(k)− g1(0)

k

)
· 1

g1(k)g1(0)
+
g1(k)− g1(0)

k
· ġ1(k)g1(0) ·

(
1

g1(k)

)2

. (3.3)

We already know that 1
g1(k) ∈ A1. So in order to show that (3.3) lies in the Wiener

algebra A, we have to show that ġ1(k) and ∂
∂k

(
g1(k)−g1(0)

k

)
do.

To establish the first claim a direct calculation shows, that ġ1(k) is given by

ḣ−(k)h+(k)+h−(k)ḣ+(k)+
ḣ−(k)

h+(0)
Ψ+(k)+

h−(k)

h+(0)
Ψ̇+(k)− ḣ+(k)

h−(0)
Ψ−(k)−h+(k)

h−(0)
Ψ̇−(k),

and using Lemma 3.2 and Lemma 3.4, we conclude that this expression has to lie

in A. For the second claim we rewrite g1(k)−g1(0)
k as

h+(k)− h+(0)

k
h−(k) +

h−(k)− h−(0)

k
h+(0) +

Ψ+(k)−Ψ+(0)

k

h−(k)

h+(0)
+ (3.4)

h−(k)− h−(0)

k

Ψ+(0)

h+(0)
− Ψ−(k)−Ψ−(0)

k

h+(k)

h−(0)
− h+(k)− h+(0)

k

Ψ−(0)

h−(0)
.

To see that the derivative lies in A we have to treat each summand separately and
use Lemma 3.2, Lemma 3.3 and Lemma 3.4. We only show it for the first one, for
the other ones the procedure is exactly the same:

∂

∂k

(
h+(k)− h+(0)

k
h−(k)

)
=

∂

∂k

(
h+(k)− h+(0)

k

)
h−(k)+

h+(k)− h+(0)

k
ḣ−(k).

This expression obviously is contained in A.

To finish the first case it now remains to show that ∂
∂k (R±(k)−R±(0)

k ) ∈ A. A similar
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calculation as in (3.4) shows that ∂
∂k (

Ψ±,1(k)−Ψ±,1(0)
k ) ∈ A where Ψ±,1 is given by

(2.46). Since R±(k) = ∓Ψ±,1(k) · T (k) by (2.17), we obtain

R±(k)−R±(0)

k
= ∓

[
Ψ±,1(k)−Ψ±,1(0)

k
T (k) +

T (k)− T (0)

k
Ψ±,1(0)

]
.

If we take derivatives as before, we are done.
In the case (b) we have Ψ±(k) = −K̂±(k)h′±(0) by (2.33). Since we can assume

h′±(0) 6= 0, Lemma 3.4 also works for K̂±(k) in this case. Furthermore we have

h±(k) = 2ikK̂±(k) with K̂±(0) 6= 0 by Lemma 2.6. g1(k) is therefore given by

h+(k)h−(k) + K̂−(k)h′+(k)− K̂+(k)h′−(k), lies in A1 \ A and does not have zeroes

on R. This implies 1
g1(k) ∈ A1. Taking the derivative with respect to k and using

Lemma 3.2 and Lemma 3.4 it immediately follows, that ġ1(k) lies in A. If we do

similar calculations as in (3.4), we arrive at the following expression for g1(k)−g1(0)
k :

h+(k)− h+(0)

k
h−(k) +

h−(k)− h−(0)

k
h+(0) +

K̂+(k)− K̂+(0)

k
h′−(k)+

h′−(k)− h′−(0)

k
K̂+(0)− K̂−(k)− K̂−(0)

k
h′+(k)−

h′+(k)− h′+(0)

k
K̂−(0).

Now ∂
∂k ( g1(k)−g1(0)

k ) ∈ A follows like before, invoking Lemma 3.2, Lemma 3.3 and
Lemma 3.4. Following (3.3) we are done.

For R±(k) the calculations are similar. We get that Ψ±,1 = K̂∓(k)h′±(−k) +

K±(−k)h′∓(k) and therefore ∂
∂k (

Ψ±,1(k)−Ψ±,1(0)
k ) ∈ A. The rest follows like in case

(a). �

Now we continue with the proof of our main Theorem 3.1. To do so, we now
give another representation of our projection operator (4πit)−

1
2P0. This result is

taken from [6]:

Lemma 3.6. The Integral kernel of (4πit)−
1
2P0, which is (per definition) given by

(4πit)−
1
2 f0(x)f0(y), can also be written in the form

1

2π

∫ ∞
−∞

e−itk2T (0)f−(x, 0)f+(y, 0)dk.

Proof. It is clear that f−(x, 0) and f+(x, 0) are both scalar multiplies of f0(x). So
we are interested in finding the values of these scalars. First of all we convince
ourselves, that in the resonant case T (0) and R±(0) are real-valued: Since by
(2.42)–(2.43) T (k) = h−(k)h+(k) + Ψ(k) the claim for T follows, if we set k = 0
in (2.22) and (2.32). For R± we do the same in (2.46). Next we have a closer look
at the limiting values of our Jost solutions f±(x, 0). Clearly f±(x, 0) goes to 1 as
x approaches ±∞. For the limit x → ∓∞ we use the scattering relations (2.16).
Since all the appearing functions are continuous at k = 0, this implies that f±(x, 0)

converges to R∓(0)+1
T (0) in this case.

So if f±(x, 0) = c±f0(x), we get

lim
x→∞

(
c2± |f0(x)|2 + c2± |f0(−x)|2

)
= 2c2± =

lim
x→∞

(
|f±(x, 0)|2 + |f±(−x, 0)|2

)
=

(
1 +

R∓(0) + 1

T (0)

)2
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and therefore c± =

√
1
2 ·
[(

R∓(0)+1
T (0)

)2

+ 1

]
. Since 1

2π

∫∞
−∞ e−itk2dk = (4πit)−

1
2 the

only thing to show, in order to finish the proof, is c+c−T (0) = 1. To this end we
observe that (2.19) gives us T (0)2 +R±(0)2 = 1 and R+(0) = −R−(0). Using these
properties we get

c+c−T (0) =
1

2T (0)

√[
(R−(0) + 1)

2
+ T (0)2

] [
(R+(0) + 1)

2
+ T (0)2

]
=

1

2T (0)

√
[R−(0)2 + 2R−(0) + 1 + T (0)2] [R+(0)2 + 2R+(0) + 1 + T (0)2] =

1

2T (0)

√
2 [1 +R−(0)] 2 [1−R−(0)] = 1.

�

Moreover, we need to calculate the following Fourier transform:

Lemma 3.7. The function eikx−1
k and its derivative are contained in A, with A-

norm at most proportional to |x| and |x|2 respectively.

Proof. First of all we can easily calculate:

eikx − 1

k
= 2ieik x2

sin(k x2 )

k
.

Let ±x ≥ 0. Then we get

(
eikx − 1

k
)̂(p) = i

√
2

π

∫ ∞
−∞

e−ikpeik x2
sin(k x2 )

k
dk = ±i

√
2

π

∫ ∞
−∞

e−ik( 2p
x +1) sin k

k
dk

= ±2i(
sin k

k
)̂(

2p

x
+ 1),

where we used the transformation k → k x2 to obtain the second equality. The
Fourier transform of the characteristic function χ[−1,1] of the interval [−1, 1] can

be computed as (χ[−1,1](k))̂(p) =
√

2
π

sin p
p by a straightforward calculation. Since

χ[−1,1] is an even function, this allows us to conclude ( sin k
k )̂(p) =

√
π
2χ[−1,1](p).

Therefore ( eikx−1
k )̂(p) is given by

±i
√

2πχ[−1,1](
2p

x
+ 1) = ±i

√
2πχ[−x,0](p).

Thus theA-norm of eikx−1
k is proportional to |x| and also the claim for the derivative

now follows immediately. �

Finally we have all the ingredients needed to obtain Theorem 3.1:

Proof of Theorem 3.1. For the kernel of e−itHPac(H) we use (2.49):

[e−itHPac](x, y) =
1

2π

∫ ∞
−∞

e−itk2ei|y−x|kh+(y, k)h−(x, k)T (k)dk.

By Lemma 3.6 the kernel of e−itHPac − (4πit)−
1
2P0 can now be written as

1

2π

∫ ∞
−∞

e−itk2(ei|y−x|kh+(y, k)h−(x, k)T (k)− h+(y, 0)h−(x, 0)T (0))dk. (3.5)
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Let
g3(x, y, k) = ei|y−x|kh+(y, k)h−(x, k)T (k). (3.6)

Integrating (3.5) by parts, we obtain

1

2π

∫ ∞
−∞

e−itk2(g3(x, y, k)− g3(x, y, 0))dk =

1

4πit

∫ ∞
−∞

e−itk2 ∂

∂k

(
g3(x, y, k)− g3(x, y, 0)

k

)
dk. (3.7)

Now we apply Lemma 2.7 to get the desired t−
3
2 time-decay. So in order to finish

our proof, it remains to bound the A-norm of ∂
∂k

(
g3(x,y,k)−g3(x,y,0)

k

)
appropriately,

which is done in the next lemma: �

Lemma 3.8. Assume V ∈ L1
3. Then the A-norm of ∂

∂k

(
g3(x,y,k)−g3(x,y,0)

k

)
is

bounded by C(|x|+ |y|)2.

Proof. We assume x ≤ y and distinguish the cases (i) x ≤ 0 ≤ y, (ii) 0 ≤ x ≤ y
and (iii) x ≤ y ≤ 0.
First of all we introduce the function g4(x, y, k) = T (k)h+(y, k)h−(x, k). Then for
∂
∂k ( g3(x,y,k)−g3(x,y,0)

k ) the following representation is valid:

∂

∂k

(
ei(y−x)k − 1

k

)
g4(x, y, k)+

ei(y−x)k − 1

k
g4(x, y, k)+

∂

∂k

(
g4(x, y, k)− g4(x, y, 0)

k

)
.

By Lemma 3.7, the A-norm of ei(y−x)k−1
k is bounded by C(|x| + |y|) and that of

its derivative by C(|x| + |y|)2. So it remains to consider the A-norm-bounds of

g4(x, y, k), ∂
∂k (g4(x, y, k)) and ∂

∂k

(
g4(x,y,k)−g4(x,y,0)

k

)
.

We start with case (i). g4(x, y, k) lies in A with A-norm-bound independent of x
and y. The same property holds for ∂

∂k (g4(x, y, k)), because of Lemma 3.2 and
Lemma 3.5 after applying the product rule, and it’s also true for the k-derivative

of g4(x,y,k)−g4(x,y,0)
k , since this expression is equivalent to

T (k)− T (0)

k
h+(y, k)h−(x, k)+

h+(y, k)− h+(y, 0)

k
h−(x, k)T (0)+

h−(x, k)− h−(x, 0)

k
h+(y, 0)T (0).

After taking derivatives and again invoking Lemma 3.2, Lemma 3.3 and Lemma 3.5,
we are done in this case. In the cases (ii) and (iii) we use the scattering relations
(2.16) to see that the following representations are valid:

g4(x, y, k) =

h+(y, k)
(
R+(k)h+(x, k)e2ixk + h+(x,−k)

)
0 ≤ x ≤ y,

h−(x, k)
(
R−(k)h−(y, k)e−2iyk + h−(y,−k)

)
x ≤ y ≤ 0.

g4(x, y, k) has an A-norm-bound independent of x and y, since for any function
g(k) ∈ A and any real s we have g(k)eiks ∈ A with the norm independent of s.
If we take the derivative with respect to k, again everything is contained in A
by Lemma 3.2 and Lemma 3.5, however we get an addend where the derivatives
of e2ixk or e2iyk occur, so it follows that the A-norm-bound of ∂

∂k (g4(x, y, k))is at
most proportional to |x| or |y| respectively.

Now finally let’s have a look at ∂
∂k

(
g4(x,y,k)−g4(x,y,0)

k

)
. Here we use the following
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equivalent expression for g4(x,y,k)−g4(x,y,0)
k , (we only consider the case 0 ≤ x ≤ y,

for the other one the calculation is similar):

R+(k)−R+(0)

k
h+(x, k)h+(y, k)e2ixk +

e2ixk − 1

k
R+(0)h+(x, k)h+(y, k)+

h+(x, k)− h+(x, 0)

k
h+(y, k)R+(0) +

h+(y, k)− h+(y, 0)

k
h+(x, 0)R+(0)+

h+(y, k)− h+(y, 0)

k
h+(x,−k) +

h+(x,−k)− h+(x, 0)

k
h+(y, 0).

Here again everything is fine after taking derivatives, which means that every ad-
dend is an element of A by Lemma 3.2, Lemma 3.3 and Lemma 3.5. Since the

derivative of e2ixk−1
k also occurs, the A-norm of ∂

∂k ( g4(x,y,k)−g4(x,y,0)
k ) is at most

proportional to |x|2. �
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4. Scattering Theory in the Discrete Case

In the discrete case we work in a more general setup using the Jacobi operator

H̃, defined by (0.2), since this is more useful in applications. As mentioned in the
beginning, we use the assumption that (0.3) lies in `1σ(Z) for some 0 ≤ σ ≤ 3. We
just briefly mention the discrete analogon of the Schrödinger equation, which is
given by

iu̇(t) = (−∆L + q)u(t) = Su(t), t ∈ R (4.1)

with real potential q. By ∆L we denote the discrete Laplacian defined via

(∆Lu)(n) =
1

2
(u(n+ 1)− 2u(n) + u(n− 1)), n ∈ Z.

Since the operator S is a special case of H̃, our results can also be applied to

(4.1), but now let’s turn back to the investigation of H̃. In [16, Theorem 1.5] it is

proved, that H̃ is a bounded self-adjoint operator from `2(Z) to `2(Z) and under

our assumptions, the absolutely continuous spectrum of H̃ is given by [−1, 1] and
the number of eigenvalues is finite (c.f. [16, Theorem 10.4]). Our next step is to
investigate the equation

H̃ψ = λψ, λ ∈ C. (4.2)

Sometimes it’s more convenient to consider this problem on the unit disk D =
{z ∈ C : |z| < 1} and its boundary T = {z ∈ C : |z| = 1} instead of C. To do so,
we use the so called Joukovski transformation. Namely we put

λ = c(z) =
z + z−1

2
, λ ∈ C \ [−1, 1], (4.3)

which is one-to one from the domain C \ [−1, 1] onto D. Using this setup one can
show the following theorem concerning solutions of (4.2):

Theorem 4.1. There exist Jost solutions ϕ±(z, n) of Hϕ±(z, n) = z+z−1

2 ϕ±(z, n)
for 0 < |z| ≤ 1, which satisfy limn→±∞ ϕ̃±(z, n) = 1 for ϕ̃±(z, n) = ϕ±(z, n)z∓n.
Moreover ϕ̃±(z, n) is holomorphic on |z| < 1 and continuous on |z| ≤ 1.

The proof of this result can be found, e.g., in [16, Theorem 10.2]. In the discrete
case similar scattering relations as in the continuous version hold. Let us therefore
denote the usual Wronskian by

W (f(z, n), g(z, n)) = a(n− 1)(f(z, n− 1)g(z, n)− g(z, n− 1)f(z, n)). (4.4)

Introducing the functions

W (z) = W (ϕ+(z, 1), ϕ−(z, 1)), W±(z) = W (ϕ∓(z, 1), ϕ±(z−1, 1)), s(z) =
z − z−1

2i

one can show that

T (z)ϕ±(z, n) = R∓(z)ϕ∓(z, n) + ϕ∓(z−1, n), |z| = 1, z2 6= 1 (4.5)

is valid, where T and R± again as in (2.17) denote the transmission and reflection
coefficients, given by

T (z) =
is(z)

W (z)
, R±(z) = ∓W±(z)

W (z)
. (4.6)

We remark that if |z| = 1, we often write z = eiθ for 0 ≤ θ ≤ π and write
ϕ±(z, n) = ϕ±(θ, n), T (z) = T (θ), · · · and so on. Further details on all these
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computations can again be found in [16, Section 10.2]. Again as in the discrete case,
the presence of a resonance at ẑ = ±1 is equivalent to the fact, that the Wronskian
W (ẑ) of the two Jost solutions at this point disappears (c.f. [3, Definition 3.5,
Lemma 3.6]). Next we state a similar result as Theorem 2.3, which allows us to
represent the Jost solutions via a kernel:

Theorem 4.2. The Jost solutions ϕ±(z, j) can equivalently be written as

±∞∑
`=j

K±(j, `)z±`, j ∈ Z, |z| ≤ 1, (4.7)

where the transformation operators satisfy

|K±(j, `)| ≤ C±(j)
±∞∑

n=[ j+`2 ]

(∣∣∣a(n)− 1

2

∣∣∣+ |b(n)|
)
, (4.8)

where [.] denotes the floor function. If furthermore ±j ≥ ∓1 holds, we can replace
C±(j) by some universal constant C±(j) ≤ C. As an easy implication, ϕ̃±(z, j)
satisfies

±∞∑
`=0

K̃±(j, `)z±`, j ∈ Z, |z| ≤ 1, K̃±(j, `) = K±(j, `+ j) (4.9)

with the estimate

|K̃±(j, `)| ≤ C±(j)

±∞∑
n=j+[ `2 ]

(∣∣∣a(n)− 1

2

∣∣∣+ |b(n)|
)
, (4.10)

and again C±(j) can be replaced by some universal constant C±(j) ≤ C, if ±j ≥ ∓1
holds.

For the proof we again refer to [16, Section 10.1]. We remark here, that the
notation we use is a little bit different from the one in Teschl’s book, e.g., we use
different transformation operators for the previous theorem. This turns out to be
more convenient for us, since other results, which we mention later on, are also
based on this notation. If we introduce the Wiener Algebra

Ã =
{
f(θ) =

∑
m∈Z

f̂meimθ
∣∣∣ ‖f̂‖`1 <∞},

i.e. the set of all functions with summable Fourier coefficients, and the norm ‖f‖Ã =

‖f̂‖`1 we can deduce that

ϕ±(j, z), ϕ̃±(j, z) ∈ Ã for |z| = 1 (4.11)

with ‖ϕ̃(j, z)‖Ã independent of j for ±j ≥ ∓1 by the previous theorem, if we

assume, that (0.3) is contained in `11(Z). It’s also important to mention that an
analogous version of the Wiener lemma still holds in the discrete case. Moreover
it’s very convenient for us, that in analogy to Theorem 2.4 a similar version of the
Marchenko equation is valid:
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Theorem 4.3. The kernels of the transformation operators satisfy the Marchenko
equations

K±(n,m) +

±∞∑
`=n

K±(n, `)F±(`+m) =
δ(n,m)

K±(n, n)
, ±m ≥ ±n, (4.12)

and for F±(`) we have the following estimate:

|F±(`)| ≤ C
±∞∑
n=[ `2 ]

(∣∣∣a(n)− 1

2

∣∣∣+ |b(n)|
)
. (4.13)

For the proof of the equation we refer to [16, Section 10.3]. Now we consider a
similar result as Theorem 2.5 for the discrete case. We again explain the proof in
all detail and extend some of the considerations from [3] and [5]. A very important
tool in the computations is the summation by parts formula, which is more or less
the discrete analogon to integration by parts:

±∞∑
`=s

(
f(`)− f(`± 1)

)
v(`) =

±∞∑
`=s

f(`)
(
v(`)− v(`∓ 1)

)
+ f(s)v(s∓ 1), (4.14)

which is true for all f(·) ∈ `1(Z±), sup`∈Z± |v(`)| <∞ or vice versa.

Theorem 4.4. [3, Theorem 4.1] If (0.3) is contained in `11(Z), we have that

T (z), R±(z) ∈ Ã for |z| = 1(or equivalently: T (θ), R±(θ) ∈ Ã for −π ≤ θ ≤ π).

Proof. The Wronskian W (z) can only vanish at the boundary points of the contin-
uous spectrum, i.e. at ẑ = ±1. As in the continuous version we only focus on the
resonant case W (1)W (−1) = 0. As a first step we prove the following lemma:

Lemma 4.5. [5, Lemma 4.1] If (0.3) is contained in `11(Z), we have that

W̆±(z) = ϕ±(z, 1)ϕ±(ẑ, 0)− ϕ±(z, 0)ϕ±(ẑ, 1) ∈ Ã

Proof. Let’s introduce the expression

Φ
(j)
± (s) =

±∞∑
`=s

K±(j, `)ẑ` (4.15)

which makes sense because of Theorem 4.2 and the assumption on (0.3). Moreover,
since ẑ−1 = ẑ, it follows that

Φ
(j)
± (j) = ϕ±(ẑ, j). (4.16)

If we apply summation by parts to (4.7), we get

ϕ±(z, j) =

±∞∑
`=j

Φ
(j)
± (`)

(
(ẑz)±` − (ẑz)±`−1

)
+ Φ

(j)
± (j)(ẑz)±j−1.

If we set

ζ(z) =
z − ẑ
z

,
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we obtain

ϕ±(z, 0) = ζ(z)

±∞∑
`= 1±1

2

Φ
(0)
± (`)(ẑz)±` + (zẑ)

±1−1
2 ϕ±(ẑ, 0), (4.17)

ϕ±(z, 1) = ζ(z)

±∞∑
`= 1±1

2

Φ
(1)
± (`)(ẑz)±` + (zẑ)

±1−1
2 ϕ±(ẑ, 1) (4.18)

after a little calculation. Next we multiply (4.17) by ϕ±(ẑ, 1) and (4.18) by ϕ±(ẑ, 0)
and then calculate the difference to arrive at

W̆±(z) = ϕ±(z, 1)ϕ±(ẑ, 0)− ϕ±(z, 0)ϕ±(ẑ, 1) = ζ(z)Ψ̃±(z), (4.19)

where

Ψ̃±(z) =

±∞∑
`= 1±1

2

h±(`)(ẑz)±`, (4.20)

h±(`) = Φ
(1)
± (`)ϕ±(ẑ, 0)− Φ

(0)
± (`)ϕ±(ẑ, 1). (4.21)

By Theorem 4.2 it follows that h±(·) ∈ `∞(Z±). Thus it remains to show h±(·) ∈
`1(Z±). We only do it for h− here, for h+ this has already been done in [5, Lemma
4.1]. For m ≤ 0, the transformation operators appearing in (4.21) satisfy the
following equation by Theorem 4.3:

K−(1,m) +

−∞∑
`=1

K−(1, `)F−(`+m) = 0,

K−(0,m) +

−∞∑
`=0

K−(0, `)F−(`+m) =
δ(0,m)

K−(0, 0)
.

Next we multiply both expressions by ẑ−m and sum from m = s ≤ 0 to −∞ to
arrive at

Φ
(1)
− (s) +

−∞∑
m=s

−∞∑
`=1

F−(`+m)ẑ−`−m
(

Φ
(1)
− (`)− Φ

(1)
− (`− 1)

)
= 0,

Φ
(0)
− (s) +

−∞∑
m=s

−∞∑
`=0

F−(`+m)ẑ−`−m
(

Φ
(0)
− (`)− Φ

(0)
− (`− 1)

)
=

δ(0, s)

K−(0, 0)
.

Now we set v(`) = F+(`)ẑ−` and use summation by parts as it was mentioned in
(4.14), which leads us to

Φ
(1)
− (s) +

−∞∑
m=s

(−∞∑
`=1

(v(`+m)− v(`+m+ 1)) Φ
(1)
− (`)

+ Φ
(1)
− (1)v(m+ 2)

)
= 0, (4.22)

Φ
(0)
− (s) +

−∞∑
m=s

(−∞∑
`=0

(v(`+m)− v(`+m+ 1)) Φ
(0)
− (`)

+ Φ
(0)
− (0)v(m+ 1)

)
=

δ(0, s)

K−(0, 0)
. (4.23)
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Now for the first equality we set dm =

−∞∑
`=1

v(` + m)Φ
(1)
− (`), and obtain for any

M < s, that

M∑
m=s

(dm − dm+1) = dM − ds+1, which converges to −ds+1 as M

approaches −∞. If we treat (4.23) the same way and use (4.16), we obtain

Φ
(1)
− (s) + ϕ−(ẑ, 1)

−∞∑
m=s

v(m+ 1)−
−∞∑
`=0

Φ
(1)
− (`)v(`+ s+ 1) = 0, (4.24)

Φ
(0)
− (s) + ϕ−(ẑ, 0)

−∞∑
m=s

v(m+ 1)−
−∞∑
`=0

Φ
(0)
− (`)v(`+ s+ 1) =

δ(0, s)

K−(0, 0)
.

Next we distinguish two cases. If ϕ−(ẑ, 1)ϕ+(ẑ, 1) 6= 0 is valid, we multiply the first
equation by ϕ+(ẑ, 0), the second by ϕ+(ẑ, 1), subtract the second from the first,
and use (4.21) to arrive at

h−(s)−
−∞∑
`=0

h−(`)v(`+ s+ 1) = − δ(0, s)

K−(0, 0)
ϕ−(ẑ, 1). (4.25)

Since h−(·) ∈ `∞(Z−), we have

|v(`)| ≤ C
+∞∑
n=[ `2 ]

(∣∣∣a(n)− 1

2

∣∣∣+ |b(n)|
)
, (4.26)

if we take (4.13) into account. However, any bounded solution of (4.25), whose
kernel satisfies (4.26) already is contained in `1(Z−). We prove this fact in detail
immediately in the next lemma, again using the successive approximation method
in a similar way as in Lemma 2.6, but before let us consider the case ϕ−(ẑ, 1) =

ϕ+(ẑ, 1) = 0. To this end we observe, that h−(s) = ϕ−(ẑ, 0)Φ
(1)
− (s), which leads to

h−(s)−
−∞∑
`=0

h−(`)v(`+ s− 1) = 0, (4.27)

by (4.24). So to finish the proof it remains to show h−(·) ∈ `1(Z−). Indeed we are
again able to obtain a result which is a little bit stronger and which we need later
on: �

Lemma 4.6. For h±(s) given by (4.21) we have

|h±(s)| ≤ Ĉ
±∞∑

n=[ s+1
2 ]

(∣∣∣a(n)− 1

2

∣∣∣+ |b(n)|
)

= Ĉη̃(s) (4.28)

for some universal constant Ĉ > 0 and ±s ≥ 2.
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Proof. We again only consider the - case here. Let −s ≥ 2. Similar to Lemma 2.6
we rewrite (4.25) as

h−(s)−
−∞∑
`=N

h−(`)v(s+ `+ 1) = −H̃(s,N), where

H̃(s,N) = − δ(0, s)

K−(0, 0)
ϕ−(ẑ, 1) +

N∑
`=0

h−(`)v(`+ s+ 1) and

N ≤ 0 such that C
∑−∞
`=N η̃(`) < 1 and C given by (4.26). The estimate

|H̃(s,N)| ≤ C(N)η̃(s), s ≤ −2 (4.29)

follows from monotonicity of η̃ and h−(·) ∈ `∞(Z−). Now we set

h−,0(s) = H̃(s,N), h−,n+1(s) =

−∞∑
`=N

h−,n(`)v(`+ s+ 1).

We show that

|h−,n(s)| ≤ C(N)η̃(s)

[
C

−∞∑
`=N

η̃(`)

]n
, (4.30)

where C(N) is given by (4.29). Then we are done using similar methods as in
Theorem 2.1, and the desired estimate for h−(s) also follows immediately, because

|h−(s)| ≤ C(N)η̃(s)

∞∑
n=0

[
C

−∞∑
`=N

η̃(`)

]n
= Ĉ(N)η̃(s).

So it remains to verify (4.30) by induction. (4.29) ensures the estimate for n = 0.
Now assume it is true for n. Then, using (4.26) and monotonicity of η̃(s), we finally
get

|h−,n+1(s)| ≤ C(N)

−∞∑
`=N

η̃(`)

[
C

−∞∑
k=N

η̃(k)

]n
|v(`+ s+ 1)|

≤ C(N)

[
C

−∞∑
k=N

η̃(k)

]n −∞∑
`=N

η̃(`)Cη̃(`+ s)

≤ C(N)η̃(s)

[
C

−∞∑
`=N

η̃(`)

]n+1

.

�

Now we can continue with the proof of Theorem 4.4. Let us first assume we have
resonance at only one point ẑ. We distinguish the cases (a) ϕ+(ẑ, 0)ϕ−(ẑ, 0) 6= 0
and (b) ϕ+(ẑ, 1)ϕ−(ẑ, 1) 6= 0, since the solutions ϕ±(ẑ,m) cannot vanish at two
consecutive points. First we consider case (a). Then a little calculation, similar to
the one in (2.42), shows

W (z) = ϕ+(z, 0)ϕ−(z, 0)

(
W̆−(z)

ϕ−(ẑ, 0)ϕ−(z, 0)
− W̆+(z)

ϕ+(ẑ, 0)ϕ+(z, 0)

)
=

= ζ(z)

(
ϕ+(z, 0)

ϕ−(ẑ, 0)
Ψ̃−(z)− ϕ−(z, 0)

ϕ+(ẑ, 0)
Ψ̃+(z)

)
= ζ(z)Ψ̃(z), (4.31)
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where Ψ̃(z) ∈ Ã by Lemma 4.5 and (4.11). Since |T (z)| ≤ 1, the zeroes of W (z) can

at most be of first order, which implies Ψ̃(z) 6= 0 on [−1, 1]. Thus the Wiener lemma

implies, that T (z) ∈ Ã. To get the same result for R±(z), we observe that W (ẑ) = 0

impliesW±(ẑ) = 0 and thusW±(z) = ζ(z)Ψ̃±,1(z) with Ψ̃±,1(z) ∈ Ã and Ψ̃±,1(z) 6=
0 on [−1, 1], using similar calculations as before. For case (b) the calculations are
similar. If there is resonance at both points−1 and 1, by the previous considerations
T (z) has two Fourier series expansions with summable Fourier coefficients. These
expansions are valid on T without point −1 or 1 respectively, and they coincide
everywhere, but on these two exceptional points. Thus they exist and coincide also
on the exceptional points and we are done also in this case. �

We again conclude this section by considering the propagator e−itH̃Pac. For the
resolvent, a similar formula as in the continuous case (c.f. (2.47)) is valid:

Theorem 4.7. (cf. [16, (1.99)]) The kernel of the resolvent R(λ) for z ∈ D and λ
given by (4.3), can be expressed as

[R(λ)](n, k) =
1

W (z)

{
ϕ+(z, n)ϕ−(z, k) for n ≥ k,

ϕ+(z, k)ϕ−(z, n) for n ≤ k.
(4.32)

Next we apply Stone’s Formula 1.8 again to arrive at the following representation:

e−itH̃Pac =
1

2πi

∫ 1

−1

e−itλ(R(λ+ i0)−R(λ− i0))dλ, (4.33)

where we integrate with respect to the spectral measure of H̃. Using (4.3) and
the fact that this transformation is a conformal map(so, especially, it preserves
orientation, and, heuristically, maps boundaries to boundaries), with the help of
formula (4.32), the kernel of (4.33) reads[

e−itH̃Pac

]
(n, k) =

1

2πi

∫
z+

e−itc(z)ϕ+(z, n)ϕ−(z, k)

W (z)

is(z)

z
dz+ (4.34)

1

2πi

∫
z−

e−itc(z)ϕ+(z, n)ϕ−(z, k)

W (z)

is(z)

z
dz,

where z+ denotes the positively oriented curve along the upper half of the unit
circle, i.e.

z+ : [0, π]→ C

θ 7→ eiθ,

whereas T− is the negatively oriented analogon with θ ∈ [−π, 0]. Since in terms
of λ, R(λ + i0) is the continuation of the resolvent from the upper half-plane to
the interval [−1, 1], in terms of z(i.e. under the Joukovski transform) this process
can be seen as a continuation of R(c(z)) from D to the boundary T+. Similarly for
R(λ − i0) and T−. This explains (4.34). If we substitute z = eiθ, (4.34) can once
more be transformed to

i

2π

∫ π

−π
e−it cos θϕ+(θ, n)ϕ−(θ, k)

W (θ)
sin θ dθ =

1

2π

∫ π

−π
e−it cos θϕ+(θ, n)ϕ−(θ, k)T (θ)dθ, (4.35)
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by (4.6). To get the desired time-decay estimates, the van der Corput lemma is
essential again. Similar to Lemma 2.7 we need a small variant of this important
result, which can be found in [3, Lemma 5.1]:

Lemma 4.8. Consider the oscillatory integral

I(t) =

∫ b

a

eitφ(θ)f(θ)dθ, −π ≤ a < b ≤ π,

where φ(θ) is real-valued. If min
θ∈[a,b]

|φ(s)(θ)| = ms > 0 for some s ≥ 2 and f ∈ A,

then

|I(t)| ≤ Cs‖f̂‖`1
(mst)1/s

, t ≥ 1,

where Cs is a universal constant.

Now, finally, these are all the preliminaries we need to establish the desired

integrable time decay for H̃ in the resonant case. To conclude this section we
briefly mention some recent results on discrete Schrödinger operators, which are
proved in [3]:

Theorem 4.9. Let q ∈ `11. Then the asymptotics

‖e−itSPac‖`1→`∞ = O(t−1/3), t→∞ (4.36)

hold.

Theorem 4.10. Let q ∈ `12. Then in the non-resonant case the following asymp-
totics hold:

‖e−itSPac‖`11→`∞−1
= O(t−4/3), t→∞.

We mentioned in the beginning of this section, that discrete Schrödinger oper-

ators can be treated in a similar way as H̃. So, in particular, if for H̃ a t−4/3

time decay in the resonant case is valid, it’s clear that this result also holds for
the Schrödinger operator S. On the other hand, one can also apply the results of

the last theorems to H̃. Finally we remark that an estimate of type (4.36) can be
established in the same way as it was mentioned at the end of Section 2.
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5. The Resonant Case: Discrete Version

The main result of this section reads as follows:

Theorem 5.1. Let H̃ be defined by (0.2), such that (0.3) is contained in `13(Z).
Furthermore assume that there is resonance at the points ẑ = ±1, and there exist

bounded solutions ϕẑ(n) of H̃ϕẑ(n) = ẑϕẑ(n) such that

lim
n→+∞

(
|ϕẑ(n)|2 + |ϕẑ(−n)|2

)
= 2

holds. Denote by Pẑ the projection on the span of ϕẑ given by the kernel [Pẑ](n, k) =
ϕẑ(n)ϕẑ(k), and Pẑ = 0, if ẑ is no resonance point. Then the following time-decay
holds:

‖e−itH̃Pac −
e−it

√
−2πit

P1 −
eit

√
2πit

P−1‖`12→`∞−2
= O(t−4/3), t→∞. (5.1)

Before we prove this theorem, let’s start with a little remark. Namely the reason
for the more complicated structure of the projectors, compared to the continuous
case, is, that when we perform integration by parts to get the desired time decay(c.f.
proof of Theorem 3.1), there occurs a boundary term with a factor 1

t , which finally
cancels out due to our choice of the projectors. The procedure in this section is
now more or less the same than it was in Section 3. Thus we start with some
lemmas, regarding the derivatives of the Jost solutions. As in the previous section,
we switch between the representations of the solutions of (4.2) in the variables z ∈ T
and θ ∈ [−π, π], and use the one, which is most convenient for the calculations,
according to the situation.

Lemma 5.2. If (0.3) is contained in `12, we have that ∂
∂z (ϕ̃±(z, n)) = ϕ̃′±(z, n) is

contained in Ã, and for ±n ≤ ∓1 the Ã-norm of this expression does not depend
on n.

Proof. This follows immediately, if we first differentiate (4.9), then use (4.10) and
the assumption on (0.3). �

The next result is the discrete analogon of Lemma 3.3:

Lemma 5.3. Let (0.3) be contained in `31. Let C ⊂ T be closed and connected

with −ẑ /∈ C. Then, for z ∈ C, it follows that ∂
∂z ( ϕ̃±(z,n)−ϕ̃±(ẑ,n)

s(z) ) ∈ Ã, and for

±n ≤ ∓1, the Ã-norm of this expression does not depend on n.

Proof. Let us denote

g̃±,1(z, n) =
ϕ̃±(z, n)− ϕ̃±(ẑ, n)

s(z)
,

g̃±,2(z, n) =
ϕ̃±(z, n)− ϕ̃±(ẑ, n)

z − ẑ
and

g̃3(z) =
2iz(z − ẑ)
z2 − 1

=
2iz

z + ẑ
.
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By (4.9) we have that

g̃±,2(z, n) =

±∞∑
`=±1

K̃±(n, `)
z±` − ẑ±`

z − ẑ
=

±∞∑
`=±1

K̃±(n, `)

±`−1∑
k=0

zkẑ±`−1−k

=

±∞∑
`=0

(

±∞∑
k=`±1

K̃±(n, k)ẑ`+k−1)z±`.

In order to show, that g̃′±,2(z, n) ∈ Ã, we need to verify that `
∑±∞
k=`±1 |K̃±(n, k)|

is summable. This follows, if we invoke (4.10) and use the assumption on (0.3).

Furthermore we also get, that the Ã-norm is independent from n, if ±n ≤ ∓1. So
it remains to consider the expression g̃3(z) and its derivative. But on C, this is a
smooth function and thus it can be extended to a smooth function on all of T. This
especially shows, that g̃3(z) and its derivative are contained in Ã for z ∈ C. Using
the product rule on g̃±,1(z, n) = g̃±,2(z, n)g̃3(z) finishes the proof. �

In a similar way, we can compute the following result:

Lemma 5.4. Let (0.3) be contained in `31. Let C ⊂ T be closed and connected with

−ẑ /∈ C. Then, for z ∈ C, it follows that ∂
∂z ( ψ̃±(z)−ψ̃±(ẑ)

s(z) ) and ψ̃′±(z) are elements

of Ã, where ψ̃±(z) are defined in (4.20).

Proof. By (4.20) we have Ψ̃±(z) =
∑±∞
`= 1±1

2
h±(`)(ẑz)±`. So we can use the same

arguments as in Lemma 5.2 and Lemma 5.3, because of the estimate on h± estab-
lished in Lemma 4.6. �

Also the next result now follows in a similar manner as Theorem 3.5:

Theorem 5.5. Let (0.3) be contained in `31. Let C ⊂ T be closed and connected with

−ẑ /∈ C. Then, for z ∈ C, it follows that ∂
∂z (T (z)−T (ẑ)

s(z) ), T ′(z), ∂
∂z (R±(z)−R±(ẑ)

s(z) )

and R′±(z) are elements of Ã.

Proof. We again use the same notation as in Theorem 4.4. First of all let us look

at case (a) ϕ+(ẑ, 0)ϕ−(ẑ, 0) 6= 0. Let’s denote g̃4(z) = 1
T (z) = 2ψ̃(z)

z+ẑ = ψ̃(z)g̃5(z) by

(4.31). Then
T (z)− T (ẑ)

s(z)
= − g̃4(z)− g̃4(ẑ)

s(z)
· 1

g̃4(z)g̃4(ẑ)
. (5.2)

We already know that 1
g̃4(z) ∈ Ã. So in order to show that the derivative of(5.2) lies

in the Wiener algebra Ã for z ∈ C, we have to verify that g̃′4(z) and ∂
∂z ( g̃4(z)−g̃4(ẑ)

s(z) )

do.
To establish the first claim we remind that we can say g̃5(z) and all its derivatives

have to lie in Ã for every z ∈ C (c.f. Lemma 5.3). Now having a closer look at

(4.31) and using Lemma 5.2 and Lemma 5.4, we conclude that g̃′4(z) ∈ Ã. For the

second claim we rewrite g̃4(z)−g̃4(ẑ)
s(z) as

g+,1(z, 0)
ψ̃−(z)g5(z)

ϕ̃−(ẑ, 0)
+
ψ̃−(z)− ψ̃−(ẑ)

s(z)

ϕ̃+(ẑ, 0)g5(z)

ϕ̃−(ẑ, 0)
− g3(z)

ψ̃−(z)ϕ̃+(ẑ, 0)

ϕ̃−(ẑ, 0)
−

g−,1(z, 0)
ψ̃+(z)g5(z)

ϕ̃+(ẑ, 0)
− ψ̃+(z)− ψ̃+(ẑ)

s(z)

ϕ̃−(ẑ, 0)g5(z)

ϕ̃+(ẑ, 0)
+ g3(z)

ψ̃+(z)ϕ̃+(ẑ, 0)

ϕ̃+(ẑ, 0)
,
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which gives us all we need if we invoke Lemma 5.2, Lemma 5.3 and Lemma 5.4 and
if we use ϕ−(z, 0) = ϕ̃−(z, 0). The claim for R±(z) follows in a similar manner as in
Theorem 3.5, and in case (b) ϕ+(ẑ, 1)ϕ−(ẑ, 1) 6= 0 we also use similar computations
as before. �

In the next lemma we have a closer look at our projectors:

Lemma 5.6. Using the asymptotics of the Hankel functions (cf. [14, 10.17.5,
10.17.6]), the following expressions for the kernels of our Projectors Pẑ are valid:

e−it

√
−2πit

[P1](n, k) = ϕ+(0, n)ϕ−(0, k)T (0)

[
1

2π

∫ π
2

−π2
e−it cos θdθ +

1

itπ

]
+O(t−

3
2 )

(5.3)

eit

√
2πit

[P−1](n, k) = ϕ+(π, n)ϕ−(π, k)T (π)

[
1

2π

∫ 3π
2

π
2

e−it cos θdθ − 1

itπ

]
+O(t−

3
2 ).

(5.4)

Proof. To show that [Pẑ](n, k) = ϕ+(ẑ, n)ϕ−(ẑ, k)T (ẑ) the same computations as
in Lemma 3.6 work, since continuity for R±(z), T (z) at the resonance points ẑ also
holds in the discrete case. For the reflection coefficient, this was established in [5,
Lemma 4.1]. By [14, 10.9] and [14, 11.5], we get

1

2
(J0(t)− iH0(t)) =

1

2π

∫ π
2

−π2
e−it cos θdθ,

where J0(t) denotes the Bessel function, and H0(t) the Struve function, both of
order 0(c.f. [14, 10.2] and [14, 11.2]). Moreover, by [14, 11.6] the following asymp-
totics hold

H0(t)− Y0(t) =
2

πt
+O(t−3),

where Y0(t) denotes the Neumann function of order 0 (c.f. [14, 10.2]). Since by [14,

10.4] H
(1)
0 (t) = J0(t) + iY0(t) and H

(2)
0 (t) = J0(t)− iY0(t), the claim follows using

the asymptotics [14, 10.17.5, 10.17.6]. �

We also need an analogon of Lemma 3.7

Lemma 5.7. Let C ⊂ T be closed and connected with −ẑ /∈ C. Then, for z ∈ C,

it follows that zn−ẑn
s(z) and its derivative are contained in Ã, where the Ã-norms are

at most proportional to |n| or |n|2, respectively.

Proof. We have that

zn − ẑn

s(z)
= g̃3(z)

zn − ẑn

z − ẑ
= g̃3(z)

n−1∑
`=0

ẑn−1−`z`.

We already know by Lemma 5.3, that we can assume g̃3(z), g̃′3(z) ∈ Ã. The sum

in the last expression is also obviously an element of Ã with norm |n|. Taking

derivatives, we are done, since
∑n−1
`=0 ` is at most proportional to |n|2. �

Since we have got everything we need, it’s time to prove the main theorem of
this section now:
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Proof of Theorem 5.1. Assume w.l.o.g n ≤ k.

Using (4.35), we can write [e−itH̃Pac](n, k) as

1

2π

∫ π

−π
e−it cos θei|n−k|θϕ̃+(θ, n)ϕ̃−(θ, k)T (θ)dθ.

Taking advantage of the fact that all the appearing functions are 2π-periodic, we
can integrate on the interval [−π2 ,

3π
2 ] instead without changing anything. If we

denote

g̃6(θ, n, k) = ei|n−k|θϕ̃+(θ, n)ϕ̃−(θ, k)T (θ),

by Lemma 5.6, the kernel

[e−itH̃Pac −
e−it

√
−2πit

P1 −
eit

√
2πit

P−1](n, k) (5.5)

reads

1

2π

∫ π
2

−π2
e−it cos θ(g̃6(θ, n, k)− g̃6(0, n, k)dθ + g̃6(0, n, k)

1

itπ
(5.6)

+
1

2π

∫ 3π
2

π
2

e−it cos θ(g̃6(θ, n, k)− g̃6(π, n, k)dθ − g̃6(π, n, k)
1

itπ
+O(t−

3
2 ) (5.7)

If we integrate (5.6) by parts similar to Theorem 3.1, we obtain

1

2π

∫ π
2

−π2
e−it cos θ(g̃6(θ, n, k)− g̃6(0, n, k)dθ =

1

2πit

[
e−it cos θ · g̃6(θ, n, k)− g̃6(0, n, k)

sin θ

]π
2

θ=−π2

− 1

2πit

∫ π
2

−π2
e−it cos θ ∂

∂z

(
g̃6(θ, n, k)− g̃6(0, n, k)

sin θ

)
dθ.

If we do the same for (5.7) and compute the boundary terms, we get

1

2πit

[
e−it cos θ g̃6(θ, n, k)− g̃6(0, n, k)

sin θ

]π
2

θ=−π2

=
1

2πit

(
−2g̃6(0, n, k) + g̃6(

π

2
, n, k) + g̃6(−π

2
, n, k)

)
and

1

2πit

[
e−it cos θ g̃6(θ, n, k)− g̃6(π, n, k)

sin θ

] 3π
2

θ=π
2

=
1

2πit

(
−g̃6(

3π

2
, n, k)− g̃6(

π

2
, n, k) + 2g̃6(π, n, k)

)
.

Thus all the terms of order 1
t vanish and we can rewrite (5.5) as

i

2πt

∫ π
2

−π2
e−it cos θ ∂

∂z

(
g̃6(θ, n, k)− g̃6(0, n, k)

sin θ

)
dθ+ (5.8)

i

2πt

∫ 3π
2

π
2

e−it cos θ ∂

∂z

(
g̃6(θ, n, k)− g̃6(π, n, k)

sin θ

)
dθ +O(t−

3
2 ),
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where we neglect the summand of order t−
3
2 from now on. The other two summands

are treated separately and we show the desired t−
4
3 time decay for each expression.

Since the calculations are similar, we only focus on (5.8). Next, to apply Lemma
4.8, we split the domain of integration into parts where either the second or third
derivative of the phase −it cos θ is nonzero. This gives us the time decay. It re-

mains to show that ∂
∂z

(
g̃6(θ,n,k)−g̃6(0,n,k)

sin θ

)
∈ Ã for θ ∈ [−π2 ,

π
2 ], with Ã-norm at

most proportional to (|n| + |k|)2. But this can be proved in completely the same
way as it was done in Lemma 3.8. The same procedure of course also works for
g̃6(θ,n,k)−g̃6(π,n,k)

sin θ , with θ ∈ [π2 ,
3π
2 ]. �
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