Proseminar Advanced Complex Analysis

Iryna Karpenko, Gerald Teschl

WS2022/23

Note: Most problems are taken from W. Schlag, A Course in Complex Analysis and Riemann Surfaces, GSM 154, AMS, Providence, 2014.

1. Find a Möbius transformation that
(i) takes $\{z \in \mathbb{C}:|z-1+\mathrm{i}|<1\}$ onto $\{z \in \mathbb{C}:|z|<1\}$.
(ii) takes $\{z \in \mathbb{C}: \operatorname{Im}(z)>1\}$ onto $\{z \in \mathbb{C}:|z|>1\}$.
2. Discuss the mapping properties of $z \mapsto w=\frac{1}{2}\left(z+\frac{1}{z}\right)$ on $\{z \in \mathbb{C}:|z|<1\}$. Is it one-to-one there? What is the image of $\{z \in \mathbb{C}:|z|<1\}$ in the w-plane? What happens on $\{z \in \mathbb{C}:|z|=1\}$ and $\{z \in \mathbb{C}:|z|>1\}$? What is the image of the circles $\{z \in \mathbb{C}:|z|=r\}$ with $r<1$, and of the ray $\{z \in \mathbb{C}: \operatorname{Arg}(z)=0\}$ emanating from zero?
3. Let $T(z)=\frac{a z+b}{c z+d}$ be a Mobius transformation.
(i) Show that $T\left(\mathbb{R}_{\infty}\right)=\mathbb{R}_{\infty}$ if and only if we can choose $a, b, c, d \in \mathbb{R}$
(ii) Find all T such that $T(\mathbb{T})=\mathbb{T}$, where $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ is the unit circle.
(iii) Find all T for which $T(\mathbb{D})=\mathbb{D}$, where $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ is the unit disk.
4. (Schwarz lemma) Let $f \in \mathcal{H}(\mathbb{D})$ with $|f(z)|<1$ for all $z \in \mathbb{D}$.

Without any assumption on $f(0)$, prove that

$$
\begin{equation*}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{1-\overline{f\left(z_{1}\right)} f\left(z_{2}\right)}\right| \leq\left|\frac{z_{1}-z_{2}}{1-\overline{z_{1}} z_{2}}\right|, \quad \forall z_{1}, z_{2} \in \mathbb{D} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}, \quad \forall z \in \mathbb{D} \tag{2}
\end{equation*}
$$

Show that equality in (1) for some pair $z_{1} \neq z_{2}$ or in (2) for some $z \in \mathbb{D}$ implies that $f(z)$ is a fractional linear transformation.
5. Let $f \in \mathcal{H}(\mathbb{C})$ and $\operatorname{Re}(f(z))>0$. Show that f is constant.
6. Find the holomorphic function $f(z)=f(x+i y)$ with real part

$$
\frac{x\left(1+x^{2}+y^{2}\right)}{1+2 x^{2}-2 y^{2}+\left(x^{2}+y^{2}\right)^{2}}
$$

such that $f(0)=0$.
7. Let $f \in \mathcal{H}(\mathbb{D})$ be such that $\operatorname{Re}(f(z))>0$ for all $z \in \mathbb{D}$, and $f(0)=a>0$. Prove that $\left|f^{\prime}(0)\right| \leq 2 a$. Is this inequality sharp? If so, which functions attain it?
8. Give another, more elementary, proof of the fundamental theorem of algebra; see (Proposition 1.23) following these lines: Let $p(z)$ be a nonconstant polynomial. Show that $|p(z)|$ attains a minimum in the complex plane, say at z_{0}. If the polynomial $q(z)=p\left(z+z_{0}\right)$ starts with a nonzero constant term, obtain a contradiction by showing that we may find a small z such that $q(z)$ is closer to the origin than $q(0)$.
9. Find the Laurent expansion of the function $f(z)=\frac{1}{z(z-1)}$ in
(i) $\{z \in \mathbb{C}|0<|z|<1\}$
(ii) $\{z \in \mathbb{C}|1<|z|\}$
10. Find all singularities of the following functions (state types of these singularities as well as order of poles)
(i) $\frac{1}{z^{2}-1} \cos \left(\frac{\pi z}{z+1}\right)$
(ii) $\frac{1-\cos (z)}{\sin ^{2}(z)}$
11. Find the principal part of the function $f(z)=\frac{\cos (z)}{(z-1)^{2}}$ at $z=1$.
12. Compute the integral

$$
\int_{\partial D} \frac{1}{1+z^{4}} d z
$$

where $D=\{z \in \mathbb{C}:|z-1|<1\}$.
13. Compute the integral

$$
\int_{-\infty}^{\infty} \frac{\cos (x)}{1+x^{2}} d x
$$

14. Compute the integral

$$
\int_{-\pi}^{\pi} \frac{1}{5+3 \cos \phi} d \phi
$$

15. Prove Jordan's lemma:

Let $g(z) \in C(\overline{\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}}), C_{R}=\left\{z=R e^{i \phi}: \phi \in[0, \pi]\right\}$ and $a>0$. Then

$$
\left|\int_{C_{R}} g(z) e^{i a z} d z\right| \leq M_{R} \frac{\pi}{a}
$$

where $M_{R}=\max _{\phi \in[0, \pi]}\left|g\left(R e^{i \phi}\right)\right|$.
16. Compute the integral

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{1+x^{2}} d x
$$

(Hint: Use the following contour depicted below.)

17. Find the number of roots of:
(i) $f(z)=z^{4}-3 z+1$ in $\{z \in \mathbb{C}||z|<1\}$
(ii) $f(z)=z^{6}-6 z+10$ in $\{z \in \mathbb{C}||z|>1\}$
18. Show that the equation $z e^{\lambda-z}=1$ with $\lambda>1$ has exactly one zero in $\{z \in \mathbb{C}||z| \leq 1\}$. Show that it is real and positive.
19. Show that the equation $\lambda-e^{-z}-z=0$ with $\lambda>1$ has exactly one zero in $\{z \in \mathbb{C} \mid \operatorname{Re} z \geq 0\}$.
20. Prove the Schwarz reflection principle.
(i) Let Ω be an open set in the closed upper half-plane $\overline{\mathbb{H}}$ and denote $\Omega_{0}=\Omega \cap \mathbb{H}$. Suppose $f \in \mathcal{H}\left(\Omega_{0}\right) \cap C(\Omega)$ with $\operatorname{Im} f(z)=0$ for all $z \in \Omega \cap \partial \mathbb{H}$. Define

$$
F(z):= \begin{cases}f(z), & z \in \Omega \\ \frac{f(\bar{z}),}{}, & z \in \Omega^{-}\end{cases}
$$

where $\Omega^{-}=\{z: \bar{z} \in \Omega\}$. Prove that $F \in \mathcal{H}\left(\Omega \cup \Omega^{-}\right)$.
(ii) Suppose $f \in \mathcal{H}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ so that $|f(z)|=1$ on $|z|=1$. If f does not vanish anywhere in \mathbb{D}, then prove that f is constant.
21. Find the image of $\{z \in \mathbb{C} \mid-\pi<\operatorname{Im}(z)<0\}$ under the map $z \mapsto e^{z}$.
22. Find the image of $\{z \in \mathbb{C} \mid-\pi<\operatorname{Im}(z)<\pi, \operatorname{Re}(z)>0\}$ under the map $z \mapsto \sinh (z)$.
23. Is there a bi-holomorphic map between $\{0<|z|<1\}$ and $\left\{\frac{1}{2}<|z|<1\right\}$? (Hint: Notice that if such map existed, it would have an isolated singularity at 0 . Which type of singularity could it be?)
24. Consider the power series

$$
f(z):=\sum_{n=0}^{\infty} z^{2^{n}}, \quad|z|<1
$$

with radius of convergence 1 . Prove that f is singular at every point of $\partial \mathbb{D}$.
(Hint: Let $\phi=\frac{2 \pi l}{2^{k}}$, where $k, l \in \mathbb{N}$. Show that $\left|f\left(r \mathrm{e}^{\mathrm{i} \phi}\right)\right| \rightarrow \infty$ as $r \rightarrow 1-$.)
25. Let $K_{1}=D_{1}(4), K_{2}=D_{1}(4 \mathrm{i}), K_{3}=D_{1}(-4), K_{4}=D_{1}(-4 \mathrm{i})$, where $D_{1}(a)$ is a closed disk of radius 1 and with center a. Show that there exists a sequence of entire functions f_{n} such that $f_{n} \rightarrow j$ uniformly on K_{j} for $j=1,2,3,4$.
26. Prove that there exists a sequence of polynomials p_{n} such that $p_{n} \rightarrow 1$ uniformly on compact subsets of $\{z \in \mathbb{C} \mid \operatorname{Re}(z)>0\}, p_{n} \rightarrow-1$ uniformly on compact subsets of $\{z \in \mathbb{C} \mid \operatorname{Re}(z)<0\}$ and $p_{n} \rightarrow 0$ uniformly on compact subsets of $\mathbb{i} \mathbb{R}$.
27. Prove that there exists a sequence of entire functions f_{n} such that $f_{n} \rightarrow 1$ uniformly on compact subsets of the open upper half-plane and $\left(f_{n}\right)$ does not converge at any point of the open lower half-plane.
28. Show that a nonnegative harmonic function on \mathbb{R}^{2} is constant.
29. Find all harmonic functions u such that $u(x, y) \leq x^{2}-y^{2}$.
30. Find all harmonic functions u such that $u_{x}(x, y)<u_{y}(x, y)$.
31. (Phragmen-Lindelöf principle) Let $\lambda \geq 1$ and let S be the sector

$$
S:=\left\{r e^{i \theta}\left|0<r<\infty,|\theta|<\frac{\pi}{2 \lambda}\right\} .\right.
$$

Let u be subharmonic on S and continuous up to the boundary $u \in C(\bar{S})$, and satisfy $u \leq M$ on ∂S and $u(z) \leq|z|^{\rho}$ in S where $\rho<\lambda$. Prove that $u \leq M$ on S.
(Hint: Note that $v(z)=\operatorname{Re}\left(z^{\rho}\right)$ is harmonic. Using $v(z)$, introduce a family function f_{ϵ} such that (i) $f_{\epsilon} \leq M$ on the boundary of some appropriately chosen bounded subdomain of S, (ii) f_{ϵ} decays at infinity in such a way that $f_{\epsilon} \leq M$ on the complement of this subdomain, and (iii) $f_{\epsilon} \rightarrow u$ as $\epsilon \rightarrow 0$.)
32. (Hadamard's three lines lemma) Suppose f is holomorphic and bounded on a vertical strip $a \leq \operatorname{Re} z \leq b$. Show that the logarithm of $M(x)=$ $\sup _{y}|f(x+i y)|$ is a convex function on $[a, b]$ (i.e. $M(x) \leq M(a)^{t} M(b)^{1-t}$ for $x=t a+(1-t) b$ with $0 \leq t \leq 1)$.
33. Express the function $f(z)=e^{z}-1$ as a product.
34. Find an atlas for the Riemann surface of $\sqrt{z^{2}-1}$ and conclude that it is equivalent to the Riemann sphere. (Hint: Show how $\mathbb{C}_{\infty} \backslash[-1,1]$ can be mapped onto the unit disc - see Problem 2. In particular, verify that
this is continuous at ∞. Note that using the other sign, you get a map to the exterior of the unit disc. Now as a set the Riemann surface is $M=\left\{(z, \zeta) \mid z \in \mathbb{C}, \zeta^{2}=z^{2}-1\right\} \cup\{(\infty, \pm \infty)\}$ - why do we need two points at ∞ ? Remove one point and map (bijective) M to \mathbb{C} (you have two options). Compute the transition function.)

