Proseminar Advanced Complexe Analysis Gerald Teschl

WS2019/20

Extra problems

1. Let $\gamma : [0,1] \to \mathbb{C}$ be a curve starting at $\gamma(0) = a$ and $f_a \in \mathcal{O}_a$ a germ. If f_a has an analytic continuation along $\gamma|_{[0,t]}$ we define r(t) to be the radius of convergence of the power series of $f_{\gamma(t)}$ with center at $\gamma(t)$. Otherwise, if there is no analytic continuation, we set r(t) = 0.

Show that if $r(t) = \infty$ for some $t \in [0, 1]$, then $r(t) = \infty$ for all $t \in [0, 1]$. Otherwise show that $r : [0, 1] \to [0, \infty)$ is continuous.

- 2. Let X be a pathwise connected topological space and $x_0, x_1 \in X$. Show that all paths from x_0 to x_1 are homotopic iff every loop is null-homotopic.
- 3. Let $U \subseteq \mathbb{C}$ be a simply connected domain. If $f \in \mathcal{H}(U)$ is nowherevanishing in U, then by [R, Thm. 4.8] there exist $g \in \mathcal{H}(U)$ such that $e^g = f$. Characterize the set of all g with this property.
- 4. Consider the curve $\gamma(t) = e^{2\pi i t}$, $t \in [0, 1]$. Find domains U_1, U_2 such that $\gamma \sim_{U_1} 0$ as well as $\gamma \not\sim_{U_2} 0$. Find a curve γ and a domain U such that $\gamma \sim_U 0$ but γ is not null-homotopic in U.

References

- [J] K. Jänich, Funktionentheorie, Springer, 2004
- [R] A. Rainer, Advanced Complex Analysis, Lecture notes, 2017.