Proseminar Advanced Functional Analysis

Iryna Karpenko, Gerald Teschl
SS2021

Please see the lecture notes for further details.

1. Let X be a topological vector space. Show that $U+V$ is open if one of the sets is open.
2. Show that Corollary 5.4 fails even in \mathbb{R}^{2} unless one set is compact.
3. Show that the nonempty intersection of extremal sets is extremal. Show that if $L \subseteq M$ is extremal and $M \subseteq K$ is extremal, then $L \subseteq K$ is extremal as well.
4. Show that the closed unit ball in $L^{1}(0,1)$ has no extremal points.
5. Let X be a topological vector space. Show that the closure and the interior of a convex set is convex. (Hint: One way of showing the first claim is to consider the continuous map $f: X \times X \rightarrow X$ given by $(x, y) \mapsto \lambda x+(1-\lambda) y$ and use Problem B.14.)
6. Show that (5.11) generates the weak topology on $B_{1}(0) \subset X$. Show that (5.13) generates the weak topology on $B_{1}^{*}(0) \subset X^{*}$.
7. Let p, q be two seminorms. Then $p(x) \leq C q(x)$ if and only if $q(x)<1$ implies $p(x)<C$.
8. Instead of (5.17) one frequently uses

$$
\tilde{d}(x, y):=\sum_{n \in \mathbb{N}} \frac{1}{2^{n}} \frac{q_{n}(x-y)}{1+q_{n}(x-y)}
$$

Show that this metric generates the same topology.
Consider the Fréchet space $C(\mathbb{R})$ with $q_{n}(f)=\sup _{[-n, n]}|f|$. Show that the metric balls with respect to \tilde{d} are not convex.
9. Find an equivalent norm for $\ell^{1}(\mathbb{N})$ such that it becomes strictly convex (cf. Problems 1.13 and 1.17).
10. Show that a Hilbert space is uniformly convex. (Hint: Use the parallelogram law.)
11. Consider a linear operator $A: \mathfrak{D}(A) \subseteq X \rightarrow Y$, where X and Y are Banach spaces. Show that $A: \mathfrak{D}(A) \rightarrow Y$ is bounded if we equip $\mathfrak{D}(A)$ with the graph norm

$$
\|x\|_{A}:=\|x\|_{X}+\|A x\|_{Y}, \quad x \in \mathfrak{D}(A) .
$$

Show that the completion X_{A} of $\left(\mathfrak{D}(A),\|\cdot\|_{A}\right)$ can be regarded as a subset of X if and only if A is closable. Show that in this case the completion can be identified with $\mathfrak{D}(\bar{A})$ and that the closure of A in X coincides with the extension from Theorem 1.16 of A in X_{A}. In particular, A is closed if and only if $\left(\mathfrak{D}(A),\|\cdot\|_{A}\right)$ is complete.
12. Let $X:=\ell^{2}(\mathbb{N})$ and $(A a)_{j}:=j a_{j}$ with $\mathfrak{D}(A):=\left\{a \in \ell^{2}(\mathbb{N}) \mid\right.$ $\left.\left(j a_{j}\right)_{j \in \mathbb{N}} \in \ell^{2}(\mathbb{N})\right\}$ and $B a:=\left(\sum_{j \in \mathbb{N}} a_{j}\right) \delta^{1}$. Then we have seen that A is closed while B is not closable. Show that $A+B, \mathfrak{D}(A+B)=$ $\mathfrak{D}(A) \cap \mathfrak{D}(B)=\mathfrak{D}(A)$ is closed.
13. Discuss the spectrum of the right shift R on $\ell^{1}(\mathbb{N})$. Show $\sigma(R)=\sigma_{r}(R)=$ $\bar{B}_{1}(0)$ and $\sigma_{p}(R)=\sigma_{c}(R)=\emptyset$.
14. Suppose $A \in \mathscr{L}(X)$. Show that generalized eigenvectors corresponding to different eigenvalues or with different order are linearly independent.
15. Let X_{j} be finite dimensional vector spaces and suppose

$$
0 \longrightarrow X_{1} \xrightarrow{A_{1}} X_{2} \xrightarrow{A_{2}} X_{3} \cdots X_{n-1} \xrightarrow{A_{n-1}} X_{n} \longrightarrow 0
$$

is exact. Show that

$$
\sum_{j=1}^{n}(-1)^{j} \operatorname{dim}\left(X_{j}\right)=0
$$

(Hint: Rank-nullity theorem.)
16. Suppose $A \in \Phi(X)$. If the kernel chain stabilizes then $\operatorname{ind}(A) \leq 0$. If the range chain stabilizes then $\operatorname{ind}(A) \geq 0$. Moreover, if $A \in \Phi_{0}(X)$, then the kernel chain stabilizes if and only if the range chain stabilizes.
17. Let a and b be some real-valued sequences in $\ell^{\infty}(\mathbb{Z})$. Consider the operator

$$
J f_{n}=a_{n} f_{n+1}+a_{n-1} f_{n-1}+b_{n} f_{n}, \quad f \in \ell^{2}(\mathbb{Z})
$$

Show that J is a bounded self-adjoint operator.
18. Show that $(\alpha A)^{*}=\alpha^{*} A^{*}$ for $\alpha \in \mathbb{C} \backslash\{0\}$ and $(A+B)^{*} \supseteq A^{*}+B^{*}$ (where $\left.\mathfrak{D}\left(A^{*}+B^{*}\right)=\mathfrak{D}\left(A^{*}\right) \cap \mathfrak{D}\left(B^{*}\right)\right)$ with equality if one operator is bounded. Give an example where equality does not hold.
19. Suppose $A B$ is densely defined. Show that $(A B)^{*} \supseteq B^{*} A^{*}$. Moreover, if A is bounded or if B has a bounded inverse (defined on all of \mathfrak{H}), then $(A B)^{*}=B^{*} A^{*}$.
20. Show that normal operators are closed. (Hint: A^{*} is closed.)
21. Suppose that A is closable and $B \in \mathscr{L}(\mathfrak{H})$. Show that $\overline{\alpha A}=\alpha \bar{A}$ for $\alpha \in \mathbb{C} \backslash\{0\}$ and $\overline{A+B}=\bar{A}+B$.
22. Let $A=-\frac{d^{2}}{d x^{2}}, \mathfrak{D}(A)=\left\{f \in H^{2}(0, \pi) \mid f(0)=f(\pi)=0\right\}$ and let $\psi(x)=\frac{1}{2 \sqrt{\pi}} x(\pi-x)$. Find the error in the following argument: Since A is symmetric, we have $1=\langle A \psi, A \psi\rangle=\left\langle\psi, A^{2} \psi\right\rangle=0$.
23. Suppose A is a densely defined closed operator. Show that $A^{*} A$ (with $\left.\mathfrak{D}\left(A^{*} A\right)=\left\{\psi \in \mathfrak{D}(A) \mid A \psi \in \mathfrak{D}\left(A^{*}\right)\right\}\right)$ is self-adjoint. Show $\mathfrak{Q}\left(A^{*} A\right)=$ $\mathfrak{D}(A)$. (Hint: $A^{*} A \geq 0$.)
24. Suppose a densely defined operator A_{0} can be written as $A_{0}=S^{*} S$, where S is a closable operator with $\mathfrak{D}(S)=\mathfrak{D}\left(A_{0}\right)$. Show that the Friedrichs extension is given by $A=S^{*} \bar{S}$.
Use this to compute the Friedrichs extension of $A_{0}=-\frac{d^{2}}{d x^{2}}, \mathfrak{D}\left(A_{0}\right)=\{f \in$ $\left.C^{2}(0, \pi) \mid f(0)=f(\pi)=0\right\}$. Compute also the self-adjoint operator $\bar{S} S^{*}$ and its form domain.
25. Find a Weyl sequence for the self-adjoint operator $A=-\frac{d^{2}}{d x^{2}}, \mathfrak{D}(A)=$ $H^{2}(\mathbb{R})$ for $z \in(0, \infty)$. What is $\sigma(A)$? (Hint: Cut off the solutions of $-u^{\prime \prime}(x)=z u(x)$ outside a finite ball.)
26. Show that for a normal operator eigenvectors corresponding to different eigenvalues are orthogonal.
27. Show that for $A=\bigoplus_{j} A_{j}$ as defined in the lecture, we have $\left(\bigoplus_{j} A_{j}\right)^{*}=$ $\bigoplus_{j} A_{j}^{*}$.
28. Show that for $A=\bigoplus_{j} A_{j}$ as defined in the lecture, we have $\|A\|=$ $\sup _{j}\left\|A_{j}\right\|$.
29. Let $\mathfrak{H}=L^{2}(\mathbb{R})$ and let f be a real-valued measurable function. Show that

$$
P(\Omega)=\chi_{f^{-1}(\Omega)}
$$

is a projection-valued measure. What is the corresponding operator?
30. Show that a resolution of the identity $P(\lambda)=P((-\infty, \lambda])$ satisfies properties (i)-(iv) stated in the book.
31. Show that for a self-adjoint operator A we have $\left\|R_{A}(z)\right\|=\operatorname{dist}(z, \sigma(A))^{-1}$.
32. Suppose A is self-adjoint. Let λ_{0} be an eigenvalue and ψ a corresponding normalized eigenvector. Compute μ_{ψ}.
33. Construct a multiplication operator A on $L^{2}(\mathbb{R})$ which has dense point spectrum, $\overline{\sigma_{p}(A)}=\mathbb{R}$.
34. Let $d \mu(\lambda)=\chi_{[0,1]}(\lambda) d \lambda$ and $f(\lambda)=\chi_{(-\infty, t]}(\lambda), t \in \mathbb{R}$. Compute $f_{\star} \mu$.
35. Show the missing direction in the proof of Lemma 3.12
36. Compute $\sigma(A), \sigma_{a c}(A), \sigma_{s c}(A)$, and $\sigma_{p p}(A)$ for the multiplication operator $A(x)=\lfloor x\rfloor$ in $L^{2}(\mathbb{R})$. What is its spectral multiplicity?
37. Let $\mathfrak{H}=L^{2}(0,2 \pi)$ and consider the one-parameter unitary group given by $U(t) f(x)=f(x-t \bmod 2 \pi)$. Show that it is strongly continuous. What is the generator of U ?
38. Suppose $\psi(t)$ is differentiable on \mathbb{R}. Show that

$$
\|\psi(t)-\psi(s)\| \leq M|t-s|, \quad M=\sup _{\tau \in[s, t]}\left\|\frac{d \psi}{d t}(\tau)\right\| .
$$

(Hint: Consider $f(\tau)=\|\psi(\tau)-\psi(s)\|-\tilde{M}(\tau-s)$ for $\tau \in[s, t]$. Suppose τ_{0} is the largest τ for which the claim holds with $\tilde{M}>M$ and find a contradiction if $\tau_{0}<t$.)
39. (Mean ergodic theorem) Let A be self-adjoint and $\lambda_{0} \in \mathbb{R}$. Show

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left\langle\varphi, \mathrm{e}^{\mathrm{i} t\left(A-\lambda_{0}\right)} \psi\right\rangle d t=\left\langle\varphi, P_{A}\left(\left\{\lambda_{0}\right\}\right) \psi\right\rangle
$$

and conclude

$$
\underset{T \rightarrow \infty}{\mathrm{~s}-\lim _{T}} \frac{1}{T} \int_{0}^{T} \mathrm{e}^{\mathrm{i} t\left(A-\lambda_{0}\right)} d t=P_{A}\left(\left\{\lambda_{0}\right\}\right) .
$$

40. Prove Corollary 5.10 from the notes.
41. Let A be the self-adjoint operator $A=-\frac{d^{2}}{d x^{2}}, \mathfrak{D}(A)=\left\{f \in H^{2}[0,1] \mid f(0)=\right.$ $f(1)=0\}$ in the Hilbert space $L^{2}(0,1)$ and $q \in L^{2}(0,1)$.
Show that for every $f \in \mathfrak{D}(A)$ we have

$$
\|f\|_{\infty}^{2} \leq \frac{\varepsilon}{2}\left\|f^{\prime \prime}\right\|^{2}+\frac{1}{2 \varepsilon}\|f\|^{2}
$$

for every $\varepsilon>0$. Conclude that the relative bound of q with respect to A is zero. (Hint: $|f(x)|^{2} \leq \int_{0}^{1}\left|f^{\prime}(t)\right|^{2} d t=-\int_{0}^{1} f(t)^{*} f^{\prime \prime}(t) d t$.)
42. Suppose A is closed and B relatively bounded with A-bound less than one. Show that $A+B$ is closed. Show that this fails without the restriction on the A-bound of B.
43. Show that the singular values $s_{j}(K)$ of a compact operator K satisfy

$$
\|K\|=\max _{j} s_{j}(K) .
$$

44. Show that every bounded operator can be written as a linear combination of two self-adjoint operators. Furthermore, show that every bounded selfadjoint operator can be written as a linear combination of two unitary operators. (Hint: $x \pm \mathrm{i} \sqrt{1-x^{2}}$ has absolute value one for $x \in[-1,1]$.)
45. Suppose $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Then the set $\left\{f(x+a) \mid a \in \mathbb{R}^{n}\right\}$ is total in $L^{2}\left(\mathbb{R}^{n}\right)$ if and only if $\hat{f}(p) \neq 0$ a.e. (Hint: Use Lemma 7.2 and the fact that a subspace is total if and only if its orthogonal complement is zero.)
46. The free relativistic Hamiltonian is given by $H_{0}=\sqrt{-\Delta+m^{2}}, \mathfrak{D}\left(H_{0}\right)=$ $H^{1}\left(\mathbb{R}^{n}\right)$. Show that H_{0} is self-adjoint, find its spectrum and compute the spectral measure of ψ.
47. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomially bounded. Show that $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is a core for $f(p), \mathfrak{D}(f)=\left\{\psi \in L^{2}\left(\mathbb{R}^{n}\right) \mid f(p) \hat{\psi}(p) \in L^{2}\left(\mathbb{R}^{n}\right)\right\}$. (Hint: Have a look at the examples on page 73).
48. Show that $\mathfrak{D}_{0}=\{\psi \in \mathcal{S}(\mathbb{R}) \mid \psi(0)=0\}$ is dense but not a core for $H_{0}=$ $-\frac{d^{2}}{d x^{2}}$. Can you give another self-adjoint extension? (Hint: Have a look at the examples on page 73).
49. The Bessel function of order $\nu \in \mathbb{C}$ can be defined as

$$
J_{\nu}(z)=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!\Gamma(\nu+j+1)}\left(\frac{z}{2}\right)^{2 j+\nu}
$$

Show that $J_{\nu}(z)$ is a solution of the Bessel differential equation

$$
z^{2} u^{\prime \prime}+z u^{\prime}+\left(z^{2}-\nu^{2}\right) u=0
$$

Prove the following properties of the Bessel functions.
(a) $\left(z^{ \pm \nu} J_{\nu}(z)\right)^{\prime}= \pm z^{ \pm \nu} J_{\nu \mp 1}(z)$.
50. Given $\alpha, \beta, \gamma, \delta$, show that there is a function f in $\mathfrak{D}(\tau)$ restricted to $[c, d] \subseteq(a, b)$ such that $f(c)=\alpha,\left(p f^{\prime}\right)(c)=\beta$ and $f(d)=\gamma,\left(p f^{\prime}\right)(d)=\delta$. (Hint: Lemma 9.2 from the notes.)
51. Let $A_{0}=-\frac{d^{2}}{d x^{2}}, \mathfrak{D}\left(A_{0}\right)=\left\{f \in H^{2}[0,1] \mid f(0)=f(1)=0\right\}$ and $B=q$, $\mathfrak{D}(B)=\left\{f \in L^{2}(0,1) \mid q f \in L^{2}(0,1)\right\}$. Find a $q \in L^{1}(0,1)$ such that $\mathfrak{D}\left(A_{0}\right) \cap \mathfrak{D}(B)=\{0\}$. (Hint: Problem 0.41 in the notes.)
52. Show that every Sturm-Liouville equation can be transformed into one with $r=p=1$ as follows: Show that the transformation $U: L^{2}((a, b), r d x) \rightarrow$ $L^{2}(d, e), d=-\int_{a}^{c} \sqrt{\frac{r(t)}{p(t)}} d t, e=\int_{c}^{b} \sqrt{\frac{r(t)}{p(t)}} d t$, defined via $u(x) \mapsto v(y)$, where

$$
y(x)=\int_{c}^{x} \sqrt{\frac{r(t)}{p(t)}} d t, \quad v(y)=\sqrt[4]{r(x(y)) p(x(y))} u(x(y))
$$

is unitary. Moreover, if $p, r, p^{\prime}, r^{\prime} \in A C(a, b)$, then

$$
-\left(p u^{\prime}\right)^{\prime}+q u=r \lambda u
$$

transforms into

$$
-v^{\prime \prime}+Q v=\lambda v
$$

where

$$
Q=\frac{q}{r}-\frac{(p r)^{1 / 4}}{r}\left(p\left((p r)^{-1 / 4}\right)^{\prime}\right)^{\prime}
$$

53. Compute the spectrum and the resolvent of $\tau=-\frac{d^{2}}{d x^{2}}, I=(0, \infty)$ defined on $\mathfrak{D}(A)=\{f \in \mathfrak{D}(\tau) \mid f(0)=0\}$.
54. Suppose a is regular and $\lim _{x \rightarrow b} q(x) / r(x)=\infty$. Show that $\sigma_{\text {ess }}(A)=\emptyset$ for every self-adjoint extension. (Hint: Fix some positive constant n, choose $c \in(a, b)$ such that $q(x) / r(x) \geq n$ in (c, b), and use Theorem 9.11.)
55. Fix $z \in \mathbb{C} \backslash \mathbb{R}$ and $c \in(a, b)$. Introduce

$$
[u]_{x}=\frac{W_{x}\left(u, u^{*}\right)}{z-z^{*}} \in \mathbb{R}
$$

and use (9.4) to show that

$$
[u]_{x}=[u]_{c}+\int_{c}^{x}|u(y)|^{2} r(y) d y, \quad(\tau-z) u=0
$$

Hence $[u]_{x}$ is increasing and $[u]_{b}=\lim _{x \uparrow b}[u]_{x}$ exists if and only if $u \in$ $L^{2}((c, b), r d x)$.
Let $u_{1,2}$ be two solutions of $(\tau-z) u=0$ which satisfy $\left[u_{1}\right]_{c}=\left[u_{2}\right]_{c}=0$ and $W\left(u_{1}, u_{2}\right)=1$. Then, all (nonzero) solutions u of $(\tau-z) u=0$ that satisfy $[u]_{b}=0$ can be written as

$$
u=u_{2}+m u_{1}, \quad m \in \mathbb{C}
$$

up to a complex multiple (note $\left[u_{1}\right]_{x}>0$ for $x>c$).
Show that

$$
\left[u_{2}+m u_{1}\right]_{x}=\left[u_{1}\right]_{x}\left(|m-M(x)|^{2}-R(x)^{2}\right)
$$

where

$$
M(x)=-\frac{W_{x}\left(u_{2}, u_{1}^{*}\right)}{W_{x}\left(u_{1}, u_{1}^{*}\right)}
$$

and

$$
\begin{aligned}
R(x)^{2} & =\left(\left|W_{x}\left(u_{2}, u_{1}^{*}\right)\right|^{2}+W_{x}\left(u_{2}, u_{2}^{*}\right) W_{x}\left(u_{1}, u_{1}^{*}\right)\right)\left(\left|z-z^{*}\right|\left[u_{1}\right]_{x}\right)^{-2} \\
& =\left(\left|z-z^{*}\right|\left[u_{1}\right]_{x}\right)^{-2}
\end{aligned}
$$

Hence the numbers m for which $[u]_{x}=0$ lie on a circle which either converges to a circle (if $\lim _{x \rightarrow b} R(x)>0$) or to a point (if $\lim _{x \rightarrow b} R(x)=0$) as $x \rightarrow b$. Show that τ is l.c. at b in the first case and l.p. in the second case.
56. Show that the dependence of the Weyl function on the boundary condition is given by

$$
m_{b, \alpha}(z)=\frac{\cos (\alpha-\beta) m_{b, \beta}(z)+\sin (\alpha-\beta)}{\cos (\alpha-\beta)-\sin (\alpha-\beta) m_{b, \beta}(z)}
$$

(Hint: The case $\beta=0$ is (9.52).)

