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Please see the lecture notes for further details.

1. Let X be a topological vector space. Show that U + V is open if one of
the sets is open.

2. Show that Corollary 5.4 fails even in R2 unless one set is compact.

3. Show that the nonempty intersection of extremal sets is extremal. Show
that if L ⊆M is extremal and M ⊆ K is extremal, then L ⊆ K is extremal
as well.

4. Show that the closed unit ball in L1(0, 1) has no extremal points.
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5. Let X be a topological vector space. Show that the closure and the interior
of a convex set is convex. (Hint: One way of showing the first claim is to
consider the continuous map f : X×X → X given by (x, y) 7→ λx+(1−λ)y
and use Problem B.14.)

6. Show that (5.11) generates the weak topology on B1(0) ⊂ X. Show that
(5.13) generates the weak topology on B∗1(0) ⊂ X∗.

7. Let p, q be two seminorms. Then p(x) ≤ Cq(x) if and only if q(x) < 1
implies p(x) < C.

8. Instead of (5.17) one frequently uses

d̃(x, y) :=
∑
n∈N

1

2n
qn(x− y)

1 + qn(x− y)
.

Show that this metric generates the same topology.

Consider the Fréchet space C(R) with qn(f) = sup[−n,n] |f |. Show that

the metric balls with respect to d̃ are not convex.
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9. Find an equivalent norm for `1(N) such that it becomes strictly convex
(cf. Problems 1.13 and 1.17).

10. Show that a Hilbert space is uniformly convex. (Hint: Use the parallelo-
gram law.)

11. Consider a linear operator A : D(A) ⊆ X → Y , where X and Y are
Banach spaces. Show that A : D(A) → Y is bounded if we equip D(A)
with the graph norm

‖x‖A := ‖x‖X + ‖Ax‖Y , x ∈ D(A).

Show that the completion XA of (D(A), ‖.‖A) can be regarded as a subset
of X if and only if A is closable. Show that in this case the completion
can be identified with D(A) and that the closure of A in X coincides with
the extension from Theorem 1.16 of A in XA. In particular, A is closed if
and only if (D(A), ‖.‖A) is complete.

12. Let X := `2(N) and (Aa)j := j aj with D(A) := {a ∈ `2(N)|
(jaj)j∈N ∈ `2(N)} and Ba := (

∑
j∈N aj)δ

1. Then we have seen that
A is closed while B is not closable. Show that A + B, D(A + B) =
D(A) ∩D(B) = D(A) is closed.
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13. Discuss the spectrum of the right shift R on `1(N). Show σ(R) = σr(R) =
B̄1(0) and σp(R) = σc(R) = ∅.

14. Suppose A ∈ L (X). Show that generalized eigenvectors corresponding to
different eigenvalues or with different order are linearly independent.

15. Let Xj be finite dimensional vector spaces and suppose

0 −→ X1
A1−→ X2

A2−→ X3 · · ·Xn−1
An−1−→ Xn −→ 0

is exact. Show that
n∑
j=1

(−1)j dim(Xj) = 0.

(Hint: Rank-nullity theorem.)

16. Suppose A ∈ Φ(X). If the kernel chain stabilizes then ind(A) ≤ 0. If the
range chain stabilizes then ind(A) ≥ 0. Moreover, if A ∈ Φ0(X), then the
kernel chain stabilizes if and only if the range chain stabilizes.
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17. Let a and b be some real-valued sequences in `∞(Z). Consider the operator

Jfn = anfn+1 + an−1fn−1 + bnfn, f ∈ `2(Z).

Show that J is a bounded self-adjoint operator.

18. Show that (αA)∗ = α∗A∗ for α ∈ C \ {0} and (A+B)∗ ⊇ A∗+B∗ (where
D(A∗ +B∗) = D(A∗) ∩D(B∗)) with equality if one operator is bounded.
Give an example where equality does not hold.

19. Suppose AB is densely defined. Show that (AB)∗ ⊇ B∗A∗. Moreover, if
A is bounded or if B has a bounded inverse (defined on all of H), then
(AB)∗ = B∗A∗.

20. Show that normal operators are closed. (Hint: A∗ is closed.)
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21. Suppose that A is closable and B ∈ L (H). Show that αA = αA for
α ∈ C \ {0} and A+B = A+B.

22. Let A = − d2

dx2 , D(A) = {f ∈ H2(0, π) | f(0) = f(π) = 0} and let
ψ(x) = 1

2
√
π
x(π − x). Find the error in the following argument: Since

A is symmetric, we have 1 = 〈Aψ,Aψ〉 = 〈ψ,A2ψ〉 = 0.

23. Suppose A is a densely defined closed operator. Show that A∗A (with
D(A∗A) = {ψ ∈ D(A)|Aψ ∈ D(A∗)}) is self-adjoint. Show Q(A∗A) =
D(A). (Hint: A∗A ≥ 0.)

24. Suppose a densely defined operator A0 can be written as A0 = S∗S, where
S is a closable operator with D(S) = D(A0). Show that the Friedrichs
extension is given by A = S∗S.

Use this to compute the Friedrichs extension of A0 = − d2

dx2 , D(A0) = {f ∈
C2(0, π)|f(0) = f(π) = 0}. Compute also the self-adjoint operator SS∗

and its form domain.
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25. Find a Weyl sequence for the self-adjoint operator A = − d2

dx2 , D(A) =
H2(R) for z ∈ (0,∞). What is σ(A)? (Hint: Cut off the solutions of
−u′′(x) = z u(x) outside a finite ball.)

26. Show that for a normal operator eigenvectors corresponding to different
eigenvalues are orthogonal.

27. Show that for A =
⊕

j Aj as defined in the lecture, we have (
⊕

j Aj)
∗ =⊕

j A
∗
j .

28. Show that for A =
⊕

j Aj as defined in the lecture, we have ‖A‖ =
supj‖Aj‖.
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29. Let H = L2(R) and let f be a real-valued measurable function. Show that

P (Ω) = χf−1(Ω)

is a projection-valued measure. What is the corresponding operator?

30. Show that a resolution of the identity P (λ) = P ((−∞, λ]) satisfies prop-
erties (i)–(iv) stated in the book.

31. Show that for a self-adjoint operatorA we have ‖RA(z)‖ = dist(z, σ(A))−1.

32. Suppose A is self-adjoint. Let λ0 be an eigenvalue and ψ a corresponding
normalized eigenvector. Compute µψ.
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33. Construct a multiplication operator A on L2(R) which has dense point
spectrum, σp(A) = R.

34. Let dµ(λ) = χ[0,1](λ)dλ and f(λ) = χ(−∞,t](λ), t ∈ R. Compute f?µ.

35. Show the missing direction in the proof of Lemma 3.12

36. Compute σ(A), σac(A), σsc(A), and σpp(A) for the multiplication operator
A(x) = bxc in L2(R). What is its spectral multiplicity?
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37. Let H = L2(0, 2π) and consider the one-parameter unitary group given by
U(t)f(x) = f(x− t mod 2π). Show that it is strongly continuous. What
is the generator of U?

38. Suppose ψ(t) is differentiable on R. Show that

‖ψ(t)− ψ(s)‖ ≤M |t− s|, M = sup
τ∈[s,t]

‖dψ
dt

(τ)‖.

(Hint: Consider f(τ) = ‖ψ(τ)− ψ(s)‖ − M̃(τ − s) for τ ∈ [s, t]. Suppose
τ0 is the largest τ for which the claim holds with M̃ > M and find a
contradiction if τ0 < t.)

39. (Mean ergodic theorem) Let A be self-adjoint and λ0 ∈ R. Show

lim
T→∞

1

T

∫ T

0

〈ϕ, eit(A−λ0)ψ〉dt = 〈ϕ, PA({λ0})ψ〉

and conclude

s-lim
T→∞

1

T

∫ T

0

eit(A−λ0)dt = PA({λ0}).

40. Prove Corollary 5.10 from the notes.
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41. Let A be the self-adjoint operator A = − d2

dx2 , D(A) = {f ∈ H2[0, 1]|f(0) =
f(1) = 0} in the Hilbert space L2(0, 1) and q ∈ L2(0, 1).

Show that for every f ∈ D(A) we have

‖f‖2∞ ≤
ε

2
‖f ′′‖2 +

1

2ε
‖f‖2

for every ε > 0. Conclude that the relative bound of q with respect to A

is zero. (Hint: |f(x)|2 ≤
∫ 1

0
|f ′(t)|2dt = −

∫ 1

0
f(t)∗f ′′(t)dt.)

42. Suppose A is closed and B relatively bounded with A-bound less than one.
Show that A+B is closed. Show that this fails without the restriction on
the A-bound of B.

43. Show that the singular values sj(K) of a compact operator K satisfy

‖K‖ = max
j
sj(K).

44. Show that every bounded operator can be written as a linear combination
of two self-adjoint operators. Furthermore, show that every bounded self-
adjoint operator can be written as a linear combination of two unitary
operators. (Hint: x± i

√
1− x2 has absolute value one for x ∈ [−1, 1].)
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45. Suppose f ∈ L2(Rn). Then the set {f(x + a)|a ∈ Rn} is total in L2(Rn)

if and only if f̂(p) 6= 0 a.e. (Hint: Use Lemma 7.2 and the fact that a
subspace is total if and only if its orthogonal complement is zero.)

46. The free relativistic Hamiltonian is given by H0 =
√
−∆ +m2, D(H0) =

H1(Rn). Show that H0 is self-adjoint, find its spectrum and compute the
spectral measure of ψ.

47. Let f : Rn → R be polynomially bounded. Show that S(Rn) is a core for

f(p), D(f) = {ψ ∈ L2(Rn)|f(p)ψ̂(p) ∈ L2(Rn)}. (Hint: Have a look at
the examples on page 73).

48. Show that D0 = {ψ ∈ S(R)|ψ(0) = 0} is dense but not a core for H0 =

− d2

dx2 . Can you give another self-adjoint extension? (Hint: Have a look at
the examples on page 73).
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49. The Bessel function of order ν ∈ C can be defined as

Jν(z) =

∞∑
j=0

(−1)j

j!Γ(ν + j + 1)

(z
2

)2j+ν

.

Show that Jν(z) is a solution of the Bessel differential equation

z2u′′ + zu′ + (z2 − ν2)u = 0.

Prove the following properties of the Bessel functions.

(a) (z±νJν(z))′ = ±z±νJν∓1(z).

50. Given α, β, γ, δ, show that there is a function f in D(τ) restricted to
[c, d] ⊆ (a, b) such that f(c) = α, (pf ′)(c) = β and f(d) = γ, (pf ′)(d) = δ.
(Hint: Lemma 9.2 from the notes.)

51. Let A0 = − d2

dx2 , D(A0) = {f ∈ H2[0, 1]|f(0) = f(1) = 0} and B = q,
D(B) = {f ∈ L2(0, 1)|qf ∈ L2(0, 1)}. Find a q ∈ L1(0, 1) such that
D(A0) ∩D(B) = {0}. (Hint: Problem 0.41 in the notes.)

52. Show that every Sturm–Liouville equation can be transformed into one
with r = p = 1 as follows: Show that the transformation U : L2((a, b), r dx)→
L2(d, e), d = −

∫ c
a

√
r(t)
p(t)dt, e =

∫ b
c

√
r(t)
p(t)dt, defined via u(x) 7→ v(y),

where

y(x) =

∫ x

c

√
r(t)

p(t)
dt, v(y) = 4

√
r(x(y))p(x(y))u(x(y)),

is unitary. Moreover, if p, r, p′, r′ ∈ AC(a, b), then

−(pu′)′ + qu = rλu

transforms into
−v′′ +Qv = λv,

where

Q =
q

r
− (pr)1/4

r

(
p((pr)−1/4)′

)′
.
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53. Compute the spectrum and the resolvent of τ = − d2

dx2 , I = (0,∞) defined
on D(A) = {f ∈ D(τ)|f(0) = 0}.

54. Suppose a is regular and limx→b q(x)/r(x) = ∞. Show that σess(A) = ∅
for every self-adjoint extension. (Hint: Fix some positive constant n,
choose c ∈ (a, b) such that q(x)/r(x) ≥ n in (c, b), and use Theorem 9.11.)

55. Fix z ∈ C \ R and c ∈ (a, b). Introduce

[u]x =
Wx(u, u∗)

z − z∗
∈ R

and use (9.4) to show that

[u]x = [u]c +

∫ x

c

|u(y)|2 r(y)dy, (τ − z)u = 0.

Hence [u]x is increasing and [u]b = limx↑b[u]x exists if and only if u ∈
L2((c, b), r dx).

Let u1,2 be two solutions of (τ − z)u = 0 which satisfy [u1]c = [u2]c = 0
and W (u1, u2) = 1. Then, all (nonzero) solutions u of (τ − z)u = 0 that
satisfy [u]b = 0 can be written as

u = u2 +mu1, m ∈ C,

up to a complex multiple (note [u1]x > 0 for x > c).

Show that

[u2 +mu1]x = [u1]x

(
|m−M(x)|2 −R(x)2

)
,

where

M(x) = −Wx(u2, u
∗
1)

Wx(u1, u∗1)

and

R(x)2 =
(
|Wx(u2, u

∗
1)|2 +Wx(u2, u

∗
2)Wx(u1, u

∗
1)
)(
|z − z∗|[u1]x

)−2

=
(
|z − z∗|[u1]x

)−2

.

Hence the numbers m for which [u]x = 0 lie on a circle which either
converges to a circle (if limx→bR(x) > 0) or to a point (if limx→bR(x) = 0)
as x → b. Show that τ is l.c. at b in the first case and l.p. in the second
case.

56. Show that the dependence of the Weyl function on the boundary condition
is given by

mb,α(z) =
cos(α− β)mb,β(z) + sin(α− β)

cos(α− β)− sin(α− β)mb,β(z)
.

(Hint: The case β = 0 is (9.52).)


