Proseminar Advanced Partial Differential Equations

Iryna Karpenko, Gerald Teschl

WS2021/22

Please see the lecture notes for further details.

1. Discuss the Helmholz equation on \mathbb{R}^{n}.
2. Show that the definition of the Fourier transform on L^{2} in (8.6) is well defined (i.e., the limit exists and is independent of the sequence). Show that the Plancherel identity continues to hold.
3. Show

$$
\int_{0}^{\infty} \frac{\sin (x)^{2}}{x^{2}} d x=\frac{\pi}{2}
$$

(Hint: Problem 4.1 (i) from the lecture notes.)
4. Provide the details for Example 8.1.
5. Suppose $f \in L^{2}\left(\mathbb{R}^{n}\right)$ show that $\varepsilon^{-1}\left(f\left(x+e_{j} \varepsilon\right)-f(x)\right) \rightarrow g_{j}(x)$ in L^{2} if and only if $k_{j} \hat{f}(k) \in L^{2}$, where e_{j} is the unit vector into the j 'th coordinate direction. Moreover, show $g_{j}=\partial_{j} f$ if $f \in H^{1}\left(\mathbb{R}^{n}\right)$.
6. Assume $g \in L^{2}\left(\mathbb{R}^{n}\right)$. Show that $\hat{u}(t)=\hat{g}(k) \mathrm{e}^{-t|k|^{2}}$ is differentiable and solves $\frac{d}{d t} \hat{u}(t)(k)=-|k|^{2} \hat{u}(t)(k)$ for $t>0$. (Hint: $\left|\mathrm{e}^{-\varepsilon|k|^{2}}-1\right| \leq \varepsilon|k|^{2}$ for $\varepsilon \geq 0$.)
7. Consider $f(x)=\sqrt{x}, U=(0,1)$. Compute the weak derivative. For which p is $f \in W^{1, p}(U)$?
8. The class of absolutely continuous functions can be defined as the class of antiderivatives of integrable functions

$$
A C[a, b]:=\left\{f(x)=f(a)+\int_{a}^{x} h(y) d y \mid h \in L^{1}(a, b)\right\}
$$

where $a<b$ are some real numbers. It is easy to see that every absolutely continuous function is in particular continuous, $A C[a, b] \subset C[a, b]$. Moreover, using Lebesgue's differentiation theorem one can show that an absolutely continuous function is differentiable a.e. with $f^{\prime}(x)=h(x)$ (and hence h is uniquely defined a.e.). However, not every continuous function is absolutely continuous.
Show that for $f, g \in A C[a, b]$ we have the integration by parts formula

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

and hence every absolutely continuous functions has a weak derivative which equals the a.e. derivative. Show that the converse also holds.
(Hint: To show the integration by parts formula insert the definition on the left and use Fubini. To show that a weakly differentiable function is absolutely continuous, use Lemma B. 15 to conclude that a weakly differentiable function is the antiderivative of its weak derivative.)
9. Consider $U:=B_{1}(0) \subset \mathbb{R}^{n}$ and $f(x)=\tilde{f}(|x|)$ with $\tilde{f} \in C^{1}(0,1]$. Then $f \in W_{l o c}^{1, p}\left(B_{1}(0) \backslash\{0\}\right)$ and

$$
\partial_{j} f(x)=\tilde{f}^{\prime}(|x|) \frac{x_{j}}{|x|}
$$

Show that if $\lim _{r \rightarrow 0} r^{n-1} \tilde{f}(r)=0$ then $f \in W^{1, p}\left(B_{1}(0)\right)$ if and only if $\tilde{f}, \tilde{f}^{\prime} \in L^{p}\left((0,1), r^{n-1} d r\right)$.
Conclude that for $f(x):=|x|^{-\gamma}, \gamma>0$, we have $f \in W^{1, p}\left(B_{1}(0)\right)$ with

$$
\partial_{j} f(x)=-\frac{\gamma x_{j}}{|x|^{\gamma+2}}
$$

provided $\gamma<\frac{n-p}{p}$. (Hint: Use integration by parts on a domain which excludes $B_{\varepsilon}(0)$ and let $\varepsilon \rightarrow 0$.)
10. Suppose $f \in W^{k, p}(U)$ and $h \in C_{b}^{k}(U)$. Then $h \cdot f \in W^{k, p}(U)$ and we have Leibniz' rule

$$
\partial_{\alpha}(h \cdot f)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta}\left(\partial_{\beta} h\right)\left(\partial_{\alpha-\beta} f\right)
$$

where $\binom{\alpha}{\beta}:=\frac{\alpha!}{\beta!(\alpha-\beta)!}, \alpha!:=\prod_{j=1}^{m}\left(\alpha_{j}!\right)$, and $\beta \leq \alpha$ means $\beta_{j} \leq \alpha_{j}$ for $1 \leq j \leq m$.
11. Suppose $f \in W^{1, p}(U)$ satisfies $\partial_{j} f=0$ for $1 \leq j \leq n$. Show that f is constant if U is connected.
12. Suppose $f \in W^{1, p}(U)$. Show that $|f| \in W^{1, p}(U)$ with

$$
\partial_{j}|f|(x)=\frac{\operatorname{Re}(f(x))}{|f(x)|} \partial_{j} \operatorname{Re}(f(x))+\frac{\operatorname{Im}(f(x))}{|f(x)|} \partial_{j} \operatorname{Im}(f(x))
$$

In particular $\left|\partial_{j}\right| f|(x)| \leq\left|\partial_{j} f(x)\right|$. Moreover, if f is real-valued we also have $f_{ \pm}:=\max (0, \pm f) \in W^{1, p}(U)$ with
$\partial_{j} f_{ \pm}(x)=\left\{\begin{array}{ll} \pm \partial_{j} f(x), & \pm f(x)>0, \\ 0, & \text { else },\end{array} \quad \partial_{j}|f|(x)= \begin{cases}\partial_{j} f(x), & f(x)>0, \\ -\partial_{j} f(x), & f(x)<0, \\ 0, & \text { else. }\end{cases}\right.$
(Hint: $|f|=\lim _{\varepsilon \rightarrow 0} g_{\varepsilon}(\operatorname{Re}(f), \operatorname{Im}(f))$ with $g_{\varepsilon}(x, y)=\sqrt{x^{2}+y^{2}+\varepsilon^{2}}-\varepsilon$.)
13. Show that $W^{k, p}(U) \cap W^{j, q}(U)$ (with $1 \leq p, q \leq \infty, j, k \in \mathbb{N}_{0}$) together with the norm $\|f\|_{W^{k, p} \cap W^{j, q}}:=\|f\|_{W^{k, p}}+\|f\|_{W^{j, q}}$ is a Banach space.
14. Show $W_{0}^{k, p}\left(\mathbb{R}^{n}\right)=W^{k, p}\left(\mathbb{R}^{n}\right)$ for $1 \leq p<\infty$. (Hint: Consider $f \zeta_{m}$ with $\zeta_{m} \in C_{c}^{\infty}\left(\mathbb{R}^{m}\right)$ and $\zeta_{m}=1$ on $\left.B_{m}(0).\right)$
15. Show that $f \in W_{0}^{k, p}(U)$ can be extended to a function $\bar{f} \in W_{0}^{k, p}\left(\mathbb{R}^{n}\right)$ by setting it equal to zero outside U. In this case the weak derivatives of \bar{f} are obtained by setting the weak derivatives of f equal to zero outside U.
16. Suppose $\gamma \geq 1$. Show that $f \in W^{1, p}(U)$ implies $|f|^{\gamma} \in W^{1, p / \gamma}(U)$ with $\partial_{j}|f|^{\gamma}=\gamma|f|^{\gamma-1} \partial_{j}|f|$. (Hint: Problem 12.)
17. Let $1 \leq p<\infty$ and U bounded. Show that $T f=\left.f\right|_{\partial U}$ defined on $C(\bar{U}) \subseteq$ $L^{p}(U) \rightarrow L^{p}(\partial U)$ is unbounded (and hence has no meaningful extension to $L^{p}(U)$). (Hint: Take a sequence which equals 1 on the boundary and converges to 0 in the interior.)
18. Show that the inequality $\|f\|_{q} \leq C\|\nabla f\|_{p}$ for $f \in W^{1, p}\left(\mathbb{R}^{n}\right)$ can only hold for $q=\frac{n p}{n-p}$. (Hint: Consider $f_{\lambda}(x)=f(\lambda x)$.)
19. Show that $f(x):=\log \log \left(1+\frac{1}{|x|}\right)$ is in $W^{1, n}\left(B_{1}(0)\right)$ if $n>1$. (Hint: Problem 9.)
20. Consider $U:=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x, y<1, x^{\beta}<y\right\}$ and $f(x, y):=y^{-\alpha}$ with $\alpha, \beta>0$. Show $f \in W^{1, p}(U)$ for $p<\frac{1+\beta}{(1+\alpha) \beta}$. Now observe that for $0<\beta<1$ and $\alpha<\frac{1-\beta}{2 \beta}$ we have $2<\frac{1+\beta}{(1+\alpha) \beta}$.
21. Prove Young's inequality

$$
\alpha^{1 / p} \beta^{1 / q} \leq \frac{1}{p} \alpha+\frac{1}{q} \beta, \quad \frac{1}{p}+\frac{1}{q}=1, \quad \alpha, \beta \geq 0 .
$$

Show that equality occurs precisely if $\alpha=\beta$. (Hint: Take logarithms on both sides.)
22. Show that if $f \in L^{p_{0}} \cap L^{p_{1}}$ for some $p_{0}<p_{1}$ then $f \in L^{p}$ for every $p \in\left[p_{0}, p_{1}\right]$ and we have the Lyapunov inequality

$$
\|f\|_{p} \leq\|f\|_{p_{0}}^{1-\theta}\|f\|_{p_{1}}^{\theta}
$$

where $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \theta \in(0,1)$. (Hint: Generalized Hölder inequality see Problem B. 12 from the notes.)
23. Let $U=B_{1}(0) \subset \mathbb{R}^{n}$ and consider

$$
u_{m}(x)= \begin{cases}m^{\frac{n}{p}-1}(1-m|x|), & |x|<\frac{1}{m} \\ 0, & \text { else }\end{cases}
$$

Show that u_{m} is bounded in $W^{1, p}(U)$ for $1 \leq p<n$ but has no convergent subsequence in $L^{p^{*}}(U)$. (Hint: The beta integral might be useful - see Problem A. 8 from the notes.)
24. Compute J^{*} for $U:=(0,1) \subset \mathbb{R}$ (defined in the notes in (10.7)).
25. Investigate the Helmholtz equation

$$
\begin{aligned}
-\Delta u(x)+u(x) & =f(x), & x \in U \\
u(x) & =0, & x \in \partial U
\end{aligned}
$$

on a domain $U \subseteq \mathbb{R}^{n}$. (Note, that U is not required to be bounded.)
26. Find a weak formulation of the Poisson problem with Robin boundary conditions

$$
\begin{aligned}
-\Delta u(x)+\lambda u(x) & =f(x), & x \in U \\
\frac{\partial u}{\partial \nu}(x)+a(x) u(x) & =0, & x \in \partial U
\end{aligned}
$$

on a bounded domain $U \subseteq \mathbb{R}^{n}$ with a C^{1} boundary. Here $a \in L^{\infty}(U, \mathbb{R})$. Establish existence of weak solutions for $\lambda>\lambda_{0}$. Show that if $a \geq 0$ is nonzero and U is bounded and connected, then all eigenvalues of the Laplacian with Robin boundary conditions are positive. (Hint: Green's first identity.)
27. Consider the Dirichlet problem $-\Delta u=0$ on the punctured disc $U:=$ $B_{1}(0) \backslash\{0\} \subset \mathbb{R}^{n}$ with boundary data $g(x)=0$ for $|x|=1$ and $g(0)=1$. Since this domain does not have a trace operator, we understand the boundary condition as $u-\bar{g} \in H_{0}^{1}(U)$, where $\bar{g}=1-|x|^{2}$. Find the corresponding weak solution. (Hint: Observe that the weak solution must be radial. In particular, you are looking for a radial harmonic function satisfying the boundary conditions.)
28. Consider a function $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $|F(t)| \leq|t|^{3}$ for all $t \in \mathbb{R}$ and let $U \subset \mathbb{R}^{3}$ be a bounded domain with the extension property. Prove that if $u \in H^{1}(U)$ is a weak solution of the nonlinear Poisson equation $-\Delta u=F(u)$, then in fact we have $u \in H_{l o c}^{2}(U)$. (Hint: Corollary 9.23.)
29. Let $U \subset \mathbb{R}^{n}$ be an open set with a bounded C^{k} boundary. Show that a function $f \in C^{k}(\partial U)$ has an extension $\bar{f} \in C_{b}^{k}(\bar{U})$ such that $\left.\bar{f}\right|_{\partial U}=f$. (Hint: Reduce it to the case of a flat boundary.)
30. Recall (B.27) and (9.10). Show

$$
\int_{U} v\left(D_{l}^{-\varepsilon} u\right) d^{n} x=-\int_{U}\left(D_{l}^{\varepsilon} v\right) u d^{n} x
$$

as well as

$$
D_{l}^{\varepsilon}(u v)=\left(T_{\varepsilon \delta^{\imath}} v\right)\left(D_{l}^{\varepsilon} u\right)+\left(D_{l}^{\varepsilon} v\right) u .
$$

31. Let a be a coercive and symmetric bilinear form. Show that the solution of (10.40) is also the unique minimizer of

$$
v \mapsto \frac{1}{2} a(v, v)-\langle v, f\rangle .
$$

(Hint: Inspect the proof in Section 5.5.)
32. Show the maximum principle for weak solutions: Suppose either $4 \theta c_{1}>b_{0}^{2}$ or $b_{0}=c_{1}=0$. Let $u, v \in H^{1}(U, \mathbb{R})$ with u a weak solution and v a weak subsolution. Then $v \leq u$ on ∂U implies $v \leq u$ on U.
33. Show that for a weak solution $u \in H^{1}(U)$ we have

$$
\|\nabla u\|_{2} \leq \varepsilon\|f\|_{2}+C\|u\|_{2} .
$$

(Hint: Use ellipticity and start from $\theta\|\nabla u\|_{2}^{2} \leq \ldots$.)
34. Let X be a Banach algebra. Show that if $f, g \in C^{1}(I, X)$ then $f g \in$ $C^{1}(I, X)$ and $\frac{d}{d t} f g=\dot{f} g+f \dot{g}$.
35. Let $A: \mathfrak{D}(A) \subseteq X \rightarrow X$ be a closed operator. Show that

$$
A \int_{a}^{b} f(t) d t=\int_{a}^{b} A f(t) d t
$$

holds for $f \in C(I, X)$ with $\operatorname{Ran}(f) \subseteq \mathfrak{D}(A)$ and $A f \in C(I, X)$.
36. Let X be a Hilbert space and $A \in \mathscr{L}(X)$. Show that $T(t)^{*}$ is a uniformly continuous operator group whose generator is A^{*}. Conclude that if A is skew adjoint, that is, $A^{*}=-A$, then T is unitary.
37. Discuss the discrete Schrödinger equation

$$
\mathrm{i} \dot{u}=H u, \quad(H u)_{n}:=u_{n+1}+u_{n-1}+q_{n} u_{n},
$$

in $\ell^{2}(\mathbb{Z})$, where $q \in \ell^{\infty}(\mathbb{Z}, \mathbb{R})$. In particular, show $\|u(t)\|=\|u(0)\|$ and $\langle u(t), H u(t)\rangle=\langle u(0), H u(0)\rangle$.
38. Let $T(t)$ be a C_{0}-semigroup. Show that if $T\left(t_{0}\right)$ has a bounded inverse for one $t_{0}>0$ then this holds for all $t>0$ and it extends to a strongly continuous group via $T(t):=T(-t)^{-1}$ for $t<0$.
39. Consider the translation group $T(t):=T_{t}$ on $L^{p}(\mathbb{R}), 1 \leq p<\infty$. Show that this is a strongly continuous group and compute its generator. Show that it is not strongly continuous for $p=\infty$. (Hint: Problem B. 15 in the notes.)
40. Let A be the generator of a C_{0}-semigroup $T(t)$. Show

$$
T(t) f=f+t A f+\int_{0}^{t}(t-s) T(s) A^{2} f d s, \quad f \in \mathfrak{D}\left(A^{2}\right) .
$$

41. Let A be the generator of a C_{0}-semigroup $T(t)$ satisfying $\|T(t)\| \leq M$. Derive the abstract Landau inequality

$$
\|A f\| \leq 2 M\left\|A^{2} f\right\|^{1 / 2}\|f\|^{1 / 2}
$$

(Hint: Problem 40.)
42. Let $T(t)$ be a C_{0}-semigroup and $\alpha>0, \lambda \in \mathbb{C}$. Show that $S(t):=\mathrm{e}^{\lambda t} T(\alpha t)$ is a C_{0}-semigroup with generator $B=\alpha A+\lambda, \mathfrak{D}(B)=\mathfrak{D}(A)$.
43. Show that A generates a C_{0} group of isometries, that is, $\|T(t) g\|=\|g\|$ for all $g \in X$ if and only if both A and $-A$ generate contraction semigroups. That is, both A and $-A$ satisfy the hypothesis of either the Hill-Yosida or the Lumer-Phillips theorem.
44. Let $T(t)$ be a contraction C_{0}-semigroup with generator A and $B \in \mathscr{L}(X)$. Show that $A+B$ generates a C_{0}-semigroup $S(t)$ satisfying $\|S(t)\| \leq \mathrm{e}^{\|B\| t}$. (Hint: Use Problem B.18.)
45. Let $X=\ell^{2}(\mathbb{N})$ and $(A a)_{n}:=\mathrm{in}^{2} a_{n},(B a)_{n}:=n a_{n}$ both defined maximally. Show that A generates a C_{0}-semigroup but $A+\varepsilon B$ does not for any $\varepsilon>0$.
46. Consider the heat equation (Example 11.14) on $[0,1]$ with Neumann boundary conditions $u^{\prime}(0)=u^{\prime}(1)=0$.
47. Show that a solution of the heat equation satisfies

$$
\|u(t)\|_{2}^{2}+2 \int_{0}^{t}\|\nabla u(t)\|^{2} d s=\|u(0)\|_{2}^{2}
$$

48. Let $U \subseteq \mathbb{R}^{n}$ be a domain (not necessarily bounded). Consider $H_{0}^{1}(U) \oplus$ $L^{2}(U)$ with norm

$$
\|\xi\|^{2}:=\|u\|_{H^{1}}^{2}+\|v\|_{L^{2}}^{2}, \quad \xi=(u, v)
$$

Show that A defined in (11.69), (11.70) generates a C_{0}-group.
49. Discuss the telegraph equation

$$
u_{t t}+b u_{t}=\Delta u+c u
$$

where $c, b \in L^{\infty}(U)$, on a bounded domain with Dirichlet boundary conditions. (Hint: Problem 44.)
50. Show that mild solutions of the semilinear problem

$$
\dot{u}=A u+F(u), \quad u(0)=g,
$$

with F Lipschitz on bounded sets are global if $\|F(x)\| \leq C(1+\|x\|)$ for some constant C. (Hint: Use Gronwall's inequality to bound $\|u(t)\|$.)
51. Let $u \in C\left(\left[-t_{0}, t_{0}\right], H^{r+2}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left(\left[-t_{0}, t_{0}\right], H^{r}\left(\mathbb{R}^{n}\right)\right)$ be a strong solution of the NLS equation (with $r>\frac{n}{2}$). Show that momentum and energy are independent of $t \in\left[-t_{0}, t_{0}\right]$.
52. Show that the real derivative (with respect to the identification $\mathbb{C} \cong \mathbb{R}^{2}$) of $F(u)=|u|^{\alpha-1} u$ is given by

$$
F^{\prime}(u) v=|u|^{\alpha-1} v+(\alpha-1)|u|^{\alpha-3} u \operatorname{Re}\left(u^{*} v\right)
$$

Conclude in particular,

$$
\left|F^{\prime}(u) v\right| \leq \alpha|u|^{\alpha-1}|v|, \quad|F(u)-F(v)| \leq \alpha\left(|u|^{\alpha-1}+|v|^{\alpha-1}\right)|u-v| .
$$

Moreover, the second derivative is given by

$$
v F^{\prime \prime}(u) w=(\alpha-1)|u|^{\alpha-5} u\left((\alpha+1) \operatorname{Re}\left(u^{*} v\right) \operatorname{Re}\left(u^{*} w\right)-u^{2} v^{*} w^{*}\right)
$$

and hence

$$
\left|v F^{\prime \prime}(u) w\right| \leq(\alpha-1)(\alpha+2)|u|^{\alpha-2}|v||w| .
$$

53. Let $f \in H^{1}(\mathbb{R})$. Show $\|f\|_{\infty}^{2} \leq 2\|f\|_{2}\left\|f^{\prime}\right\|_{2}$ and hence $\|f\|_{\infty} \leq\|f\|_{1,2}$.
54. Show that if $u \in H^{2}(\mathbb{R}) \cap L^{2}\left(\mathbb{R}, x^{4} d x\right)$, then $x u^{\prime}(x) \in L^{2}$.
55. Let L be self-adjoint with an orthonormal basis of eigenfunctions w_{j} corresponding to the eigenvalues E_{j}. For a complex-valued function F define

$$
F(L) g:=\sum_{j=0}^{\infty} F\left(E_{j}\right)\left\langle w_{j}, g\right\rangle w_{j} .
$$

Show

$$
\|F(L)\|=\sup _{j \in \mathbb{N}_{0}}\left|F\left(E_{j}\right)\right|
$$

56. Let L be as in the previous problem with $E_{j} \geq E_{0}>0$. Show that the semigroup $T(t)$ generated by $A:=-L$

$$
\|(T(t)-1) f\| \leq C t\|A f\|, \quad\|L T(t)\| \leq \frac{C}{t}, \quad f \in \mathfrak{D}(A), 0<t \leq 1
$$

57. Show that a differentiable semigroup satisfying

$$
\|A T(t)\| \leq \frac{C}{t}, \quad t>0
$$

also satisfies

$$
\left\|A^{k} T(t)\right\| \leq\left(\frac{C k}{t}\right)^{k}, \quad t>0
$$

and use this to conclude that T can be extended to an analytic function via

$$
T(z):=\sum_{k=0}^{\infty} \frac{(z-t)^{k}}{k!} \frac{d^{k}}{d t^{k}} T(t), \quad|z-t|<\frac{t}{\mathrm{e} C}
$$

Show that this extension still satisfies the semigroup property. (Hint: Problem 11.20.)
58. Let X be a topological space. A function $f: X \rightarrow \overline{\mathbb{R}}$ is called lower semicontinuous if $f^{-1}((a, \infty])$ is open for every $a \in \mathbb{R}$. Show that a lower semicontinuous is sequentially lower semicontinuous and the converse holds if X is a metric space.
59. Show that $F: M \rightarrow \overline{\mathbb{R}}$ is quasiconvex if and only if the sublevel sets $F^{-1}((-\infty, a])$ are convex for every $a \in \mathbb{R}$.
60. Let $U \subseteq \mathbb{R}^{n}$ be a bounded domain with a C^{1} boundary. Let \tilde{L} be an elliptic operator in divergence form with $A, c \in L^{\infty}$ and $b=0, c \geq 0$. Establish existence of weak solutions in $H_{\mathbb{R}}^{1}(U)$ for

$$
\bar{L} u=f,\left.\quad u\right|_{\partial U}=g
$$

61. Extend Example 13.9 to the case

$$
F(u):=\frac{1}{2} \int_{U}|\nabla u|^{2} d^{n} x+\int_{U} V(x)|u|^{2} d^{n} x, \quad u \in H_{0}^{1}(U, \mathbb{R})
$$

where $V \in L^{q}(U)$ is nonnegative with $q>\frac{n}{2}$ and $n \geq 2$.(Hint: RellichKondrachov theorem.)

