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Please see the lecture notes for further details.

1. Discuss the Helmholz equation on Rn.

2. Show that the definition of the Fourier transform on L2 in (8.6) is well
defined (i.e., the limit exists and is independent of the sequence). Show
that the Plancherel identity continues to hold.

3. Show ∫ ∞
0

sin(x)2

x2
dx =

π

2
.

(Hint: Problem 4.1 (i) from the lecture notes.)

4. Provide the details for Example 8.1.

5. Suppose f ∈ L2(Rn) show that ε−1(f(x+ejε)−f(x))→ gj(x) in L2 if and

only if kj f̂(k) ∈ L2, where ej is the unit vector into the j’th coordinate
direction. Moreover, show gj = ∂jf if f ∈ H1(Rn).

6. Assume g ∈ L2(Rn). Show that û(t) = ĝ(k)e−t|k|
2

is differentiable and

solves d
dt û(t)(k) = −|k|2û(t)(k) for t > 0. (Hint: |e−ε|k|2 − 1| ≤ ε|k|2 for

ε ≥ 0.)

7. Consider f(x) =
√
x, U = (0, 1). Compute the weak derivative. For which

p is f ∈W 1,p(U)?

8. The class of absolutely continuous functions can be defined as the class of
antiderivatives of integrable functions

AC[a, b] := {f(x) = f(a) +

∫ x

a

h(y)dy|h ∈ L1(a, b)},

where a < b are some real numbers. It is easy to see that every abso-
lutely continuous function is in particular continuous, AC[a, b] ⊂ C[a, b].
Moreover, using Lebesgue’s differentiation theorem one can show that an
absolutely continuous function is differentiable a.e. with f ′(x) = h(x) (and
hence h is uniquely defined a.e.). However, not every continuous function
is absolutely continuous.

Show that for f, g ∈ AC[a, b] we have the integration by parts formula∫ b

a

f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x)dx.
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and hence every absolutely continuous functions has a weak derivative
which equals the a.e. derivative. Show that the converse also holds.

(Hint: To show the integration by parts formula insert the definition on
the left and use Fubini. To show that a weakly differentiable function is
absolutely continuous, use Lemma B.15 to conclude that a weakly differ-
entiable function is the antiderivative of its weak derivative.)

9. Consider U := B1(0) ⊂ Rn and f(x) = f̃(|x|) with f̃ ∈ C1(0, 1]. Then
f ∈W 1,p

loc (B1(0) \ {0}) and

∂jf(x) = f̃ ′(|x|) xj
|x|
.

Show that if limr→0 r
n−1f̃(r) = 0 then f ∈ W 1,p(B1(0)) if and only if

f̃ , f̃ ′ ∈ Lp((0, 1), rn−1dr).

Conclude that for f(x) := |x|−γ , γ > 0, we have f ∈W 1,p(B1(0)) with

∂jf(x) = − γxj
|x|γ+2

provided γ < n−p
p . (Hint: Use integration by parts on a domain which

excludes Bε(0) and let ε→ 0.)

10. Suppose f ∈W k,p(U) and h ∈ Ckb (U). Then h ·f ∈W k,p(U) and we have
Leibniz’ rule

∂α(h · f) =
∑
β≤α

(
α

β

)
(∂βh)(∂α−βf),

where
(
α
β

)
:= α!

β!(α−β)! , α! :=
∏m
j=1(αj !), and β ≤ α means βj ≤ αj for

1 ≤ j ≤ m.

11. Suppose f ∈ W 1,p(U) satisfies ∂jf = 0 for 1 ≤ j ≤ n. Show that f is
constant if U is connected.

12. Suppose f ∈W 1,p(U). Show that |f | ∈W 1,p(U) with

∂j |f |(x) =
Re(f(x))

|f(x)|
∂jRe(f(x)) +

Im(f(x))

|f(x)|
∂jIm(f(x)),

In particular
∣∣∂j |f |(x)

∣∣ ≤ |∂jf(x)|. Moreover, if f is real-valued we also
have f± := max(0,±f) ∈W 1,p(U) with

∂jf±(x) =

{
±∂jf(x), ±f(x) > 0,

0, else,
∂j |f |(x) =


∂jf(x), f(x) > 0,

−∂jf(x), f(x) < 0,

0, else.

(Hint: |f | = limε→0 gε(Re(f), Im(f)) with gε(x, y) =
√
x2 + y2 + ε2−ε.)

13. Show that W k,p(U) ∩W j,q(U) (with 1 ≤ p, q ≤ ∞, j, k ∈ N0) together
with the norm ‖f‖Wk,p∩W j,q := ‖f‖Wk,p + ‖f‖W j,q is a Banach space.

14. Show W k,p
0 (Rn) = W k,p(Rn) for 1 ≤ p < ∞. (Hint: Consider fζm with

ζm ∈ C∞c (Rm) and ζm = 1 on Bm(0).)
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15. Show that f ∈ W k,p
0 (U) can be extended to a function f̄ ∈ W k,p

0 (Rn) by
setting it equal to zero outside U . In this case the weak derivatives of f̄
are obtained by setting the weak derivatives of f equal to zero outside U .

16. Suppose γ ≥ 1. Show that f ∈ W 1,p(U) implies |f |γ ∈ W 1,p/γ(U) with
∂j |f |γ = γ|f |γ−1∂j |f |. (Hint: Problem 12.)

17. Let 1 ≤ p <∞ and U bounded. Show that Tf = f
∣∣
∂U

defined on C(U) ⊆
Lp(U) → Lp(∂U) is unbounded (and hence has no meaningful extension
to Lp(U)). (Hint: Take a sequence which equals 1 on the boundary and
converges to 0 in the interior.)

18. Show that the inequality ‖f‖q ≤ C‖∇f‖p for f ∈W 1,p(Rn) can only hold
for q = np

n−p . (Hint: Consider fλ(x) = f(λx).)

19. Show that f(x) := log log(1 + 1
|x| ) is in W 1,n(B1(0)) if n > 1. (Hint:

Problem 9.)

20. Consider U := {(x, y) ∈ R2|0 < x, y < 1, xβ < y} and f(x, y) := y−α

with α, β > 0. Show f ∈ W 1,p(U) for p < 1+β
(1+α)β . Now observe that for

0 < β < 1 and α < 1−β
2β we have 2 < 1+β

(1+α)β .

21. Prove Young’s inequality

α1/pβ1/q ≤ 1

p
α+

1

q
β,

1

p
+

1

q
= 1, α, β ≥ 0.

Show that equality occurs precisely if α = β. (Hint: Take logarithms on
both sides.)

22. Show that if f ∈ Lp0 ∩ Lp1 for some p0 < p1 then f ∈ Lp for every
p ∈ [p0, p1] and we have the Lyapunov inequality

‖f‖p ≤ ‖f‖1−θp0 ‖f‖
θ
p1 ,

where 1
p = 1−θ

p0
+ θ

p1
, θ ∈ (0, 1). (Hint: Generalized Hölder inequality —

see Problem B.12 from the notes.)

23. Let U = B1(0) ⊂ Rn and consider

um(x) =

{
m

n
p−1(1−m|x|), |x| < 1

m ,

0, else.

Show that um is bounded in W 1,p(U) for 1 ≤ p < n but has no convergent
subsequence in Lp

∗
(U). (Hint: The beta integral might be useful — see

Problem A.8 from the notes.)

24. Compute J∗ for U := (0, 1) ⊂ R (defined in the notes in (10.7)).

25. Investigate the Helmholtz equation

−∆u(x) + u(x) = f(x), x ∈ U,
u(x) = 0, x ∈ ∂U,

on a domain U ⊆ Rn. (Note, that U is not required to be bounded.)
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26. Find a weak formulation of the Poisson problem with Robin boundary
conditions

−∆u(x) + λu(x) = f(x), x ∈ U,
∂u

∂ν
(x) + a(x)u(x) = 0, x ∈ ∂U,

on a bounded domain U ⊆ Rn with a C1 boundary. Here a ∈ L∞(U,R).
Establish existence of weak solutions for λ > λ0. Show that if a ≥ 0
is nonzero and U is bounded and connected, then all eigenvalues of the
Laplacian with Robin boundary conditions are positive. (Hint: Green’s
first identity.)

27. Consider the Dirichlet problem −∆u = 0 on the punctured disc U :=
B1(0) \ {0} ⊂ Rn with boundary data g(x) = 0 for |x| = 1 and g(0) = 1.
Since this domain does not have a trace operator, we understand the
boundary condition as u − ḡ ∈ H1

0 (U), where ḡ = 1 − |x|2. Find the
corresponding weak solution. (Hint: Observe that the weak solution must
be radial. In particular, you are looking for a radial harmonic function
satisfying the boundary conditions.)

28. Consider a function F : R → R such that |F (t)| ≤ |t|3 for all t ∈ R and
let U ⊂ R3 be a bounded domain with the extension property. Prove
that if u ∈ H1(U) is a weak solution of the nonlinear Poisson equation
−∆u = F (u), then in fact we have u ∈ H2

loc(U). (Hint: Corollary 9.23.)

29. Let U ⊂ Rn be an open set with a bounded Ck boundary. Show that a
function f ∈ Ck(∂U) has an extension f̄ ∈ Ckb (U) such that f̄ |∂U = f .
(Hint: Reduce it to the case of a flat boundary.)

30. Recall (B.27) and (9.10). Show∫
U

v(D−εl u)dnx = −
∫
U

(Dε
l v)u dnx

as well as
Dε
l (uv) = (Tεδlv)(Dε

l u) + (Dε
l v)u.

31. Let a be a coercive and symmetric bilinear form. Show that the solution
of (10.40) is also the unique minimizer of

v 7→ 1

2
a(v, v)− 〈v, f〉.

(Hint: Inspect the proof in Section 5.5.)

32. Show the maximum principle for weak solutions: Suppose either 4θc1 > b20
or b0 = c1 = 0. Let u, v ∈ H1(U,R) with u a weak solution and v a weak
subsolution. Then v ≤ u on ∂U implies v ≤ u on U .

33. Show that for a weak solution u ∈ H1(U) we have

‖∇u‖2 ≤ ε‖f‖2 + C‖u‖2.

(Hint: Use ellipticity and start from θ‖∇u‖22 ≤ . . . .)
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34. Let X be a Banach algebra. Show that if f, g ∈ C1(I,X) then fg ∈
C1(I,X) and d

dtfg = ḟg + fġ.

35. Let A : D(A) ⊆ X → X be a closed operator. Show that

A

∫ b

a

f(t)dt =

∫ b

a

Af(t)dt.

holds for f ∈ C(I,X) with Ran(f) ⊆ D(A) and Af ∈ C(I,X).

36. Let X be a Hilbert space and A ∈ L (X). Show that T (t)∗ is a uniformly
continuous operator group whose generator is A∗. Conclude that if A is
skew adjoint, that is, A∗ = −A, then T is unitary.

37. Discuss the discrete Schrödinger equation

iu̇ = Hu, (Hu)n := un+1 + un−1 + qnun,

in `2(Z), where q ∈ `∞(Z,R). In particular, show ‖u(t)‖ = ‖u(0)‖ and
〈u(t), Hu(t)〉 = 〈u(0), Hu(0)〉.

38. Let T (t) be a C0-semigroup. Show that if T (t0) has a bounded inverse
for one t0 > 0 then this holds for all t > 0 and it extends to a strongly
continuous group via T (t) := T (−t)−1 for t < 0.

39. Consider the translation group T (t) := Tt on Lp(R), 1 ≤ p < ∞. Show
that this is a strongly continuous group and compute its generator. Show
that it is not strongly continuous for p =∞. (Hint: Problem B.15 in the
notes.)

40. Let A be the generator of a C0-semigroup T (t). Show

T (t)f = f + tAf +

∫ t

0

(t− s)T (s)A2f ds, f ∈ D(A2).

41. Let A be the generator of a C0-semigroup T (t) satisfying ‖T (t)‖ ≤ M .
Derive the abstract Landau inequality

‖Af‖ ≤ 2M‖A2f‖1/2‖f‖1/2.

(Hint: Problem 40.)

42. Let T (t) be a C0-semigroup and α > 0, λ ∈ C. Show that S(t) := eλtT (αt)
is a C0-semigroup with generator B = αA+ λ, D(B) = D(A).

43. Show that A generates a C0 group of isometries, that is, ‖T (t)g‖ = ‖g‖ for
all g ∈ X if and only if both A and −A generate contraction semigroups.
That is, both A and −A satisfy the hypothesis of either the Hill–Yosida
or the Lumer–Phillips theorem.

44. Let T (t) be a contraction C0-semigroup with generator A and B ∈ L (X).
Show that A+B generates a C0-semigroup S(t) satisfying ‖S(t)‖ ≤ e‖B‖t.
(Hint: Use Problem B.18.)
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45. LetX = `2(N) and (Aa)n := in2an, (Ba)n := nan both defined maximally.
Show that A generates a C0-semigroup but A+εB does not for any ε > 0.

46. Consider the heat equation (Example 11.14) on [0, 1] with Neumann bound-
ary conditions u′(0) = u′(1) = 0.

47. Show that a solution of the heat equation satisfies

‖u(t)‖22 + 2

∫ t

0

‖∇u(t)‖2ds = ‖u(0)‖22.

48. Let U ⊆ Rn be a domain (not necessarily bounded). Consider H1
0 (U) ⊕

L2(U) with norm

‖ξ‖2 := ‖u‖2H1 + ‖v‖2L2 , ξ = (u, v).

Show that A defined in (11.69), (11.70) generates a C0-group.

49. Discuss the telegraph equation

utt + b ut = ∆u+ cu,

where c, b ∈ L∞(U), on a bounded domain with Dirichlet boundary con-
ditions. (Hint: Problem 44.)

50. Show that mild solutions of the semilinear problem

u̇ = Au+ F (u), u(0) = g,

with F Lipschitz on bounded sets are global if ‖F (x)‖ ≤ C(1 + ‖x‖) for
some constant C. (Hint: Use Gronwall’s inequality to bound ‖u(t)‖.)

51. Let u ∈ C([−t0, t0], Hr+2(Rn))∩C1([−t0, t0], Hr(Rn)) be a strong solution
of the NLS equation (with r > n

2 ). Show that momentum and energy are
independent of t ∈ [−t0, t0].

52. Show that the real derivative (with respect to the identification C ∼= R2)
of F (u) = |u|α−1u is given by

F ′(u)v = |u|α−1v + (α− 1)|u|α−3uRe(u∗v).

Conclude in particular,

|F ′(u)v| ≤ α|u|α−1|v|, |F (u)− F (v)| ≤ α(|u|α−1 + |v|α−1)|u− v|.

Moreover, the second derivative is given by

vF ′′(u)w = (α− 1)|u|α−5u
(
(α+ 1)Re(u∗v)Re(u∗w)− u2v∗w∗

)
.

and hence
|vF ′′(u)w| ≤ (α− 1)(α+ 2)|u|α−2|v||w|.

53. Let f ∈ H1(R). Show ‖f‖2∞ ≤ 2‖f‖2‖f ′‖2 and hence ‖f‖∞ ≤ ‖f‖1,2.
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54. Show that if u ∈ H2(R) ∩ L2(R, x4dx), then xu′(x) ∈ L2.

55. Let L be self-adjoint with an orthonormal basis of eigenfunctions wj cor-
responding to the eigenvalues Ej . For a complex-valued function F define

F (L)g :=

∞∑
j=0

F (Ej)〈wj , g〉wj .

Show
‖F (L)‖ = sup

j∈N0

|F (Ej)|.

56. Let L be as in the previous problem with Ej ≥ E0 > 0. Show that the
semigroup T (t) generated by A := −L

‖(T (t)− 1)f‖ ≤ Ct‖Af‖, ‖LT (t)‖ ≤ C

t
, f ∈ D(A), 0 < t ≤ 1.

57. Show that a differentiable semigroup satisfying

‖AT (t)‖ ≤ C

t
, t > 0,

also satisfies

‖AkT (t)‖ ≤
(
Ck

t

)k
, t > 0,

and use this to conclude that T can be extended to an analytic function
via

T (z) :=

∞∑
k=0

(z − t)k

k!

dk

dtk
T (t), |z − t| < t

eC
.

Show that this extension still satisfies the semigroup property. (Hint:
Problem 11.20.)

58. Let X be a topological space. A function f : X → R̄ is called lower semi-
continuous if f−1((a,∞]) is open for every a ∈ R. Show that a lower semi-
continuous is sequentially lower semicontinuous and the converse holds if
X is a metric space.

59. Show that F : M → R is quasiconvex if and only if the sublevel sets
F−1((−∞, a]) are convex for every a ∈ R.

60. Let U ⊆ Rn be a bounded domain with a C1 boundary. Let L̃ be an
elliptic operator in divergence form with A, c ∈ L∞ and b = 0, c ≥ 0.
Establish existence of weak solutions in H1

R(U) for

L̄u = f, u
∣∣
∂U

= g.

61. Extend Example 13.9 to the case

F (u) :=
1

2

∫
U

|∇u|2dnx+

∫
U

V (x)|u|2dnx, u ∈ H1
0 (U,R),

where V ∈ Lq(U) is nonnegative with q > n
2 and n ≥ 2.(Hint: Rellich–

Kondrachov theorem.)


