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1. Suppose
∑∞

n=1 |cn| < ∞. Show that

u(t, x) :=

∞∑
n=1

cne
−(πn)2t sin(nπx),

is continuous for (t, x) ∈ [0,∞) × [0, 1] and solves the heat equation for
(t, x) ∈ (0,∞) × [0, 1]. (Hint: Weierstrass M-test. When can you inter-
change the order of summation and differentiation?)

2. Show that |∥f∥ − ∥g∥| ≤ ∥f − g∥.

3. Let X be a Banach space. Show that the norm, vector addition, and
multiplication by scalars are continuous. That is, if fn → f , gn → g, and
αn → α, then ∥fn∥ → ∥f∥, fn + gn → f + g, and αngn → αg.

4. Prove Young’s inequality

α1/pβ1/q ≤ 1

p
α+

1

q
β,

1

p
+

1

q
= 1, α, β ≥ 0.

Show that equality occurs precisely if α = β. (Hint: Take logarithms on
both sides.)

5. Show that ℓp(N), 1 ≤ p < ∞, is complete.

6. Show that there is equality in the Hölder inequality for 1 < p < ∞ if and
only if either a = 0 or |bj |q = α|aj |p for all j ∈ N. Show that we have
equality in the triangle inequality for ℓ1(N) if and only if ajb

∗
j ≥ 0 for

all j ∈ N (here the ‘∗’ denotes complex conjugation). Show that we have
equality in the triangle inequality for ℓp(N) with 1 < p < ∞ if and only if
a = 0 or b = αa with α ≥ 0.

7. Let X be a normed space. Show that the following conditions are equiva-
lent.

(i) If ∥x+ y∥ = ∥x∥+ ∥y∥ then y = αx for some α ≥ 0 or x = 0.

(ii) If ∥x∥ = ∥y∥ = 1 and x ̸= y then ∥λx+(1−λ)y∥ < 1 for all 0 < λ < 1.

(iii) If ∥x∥ = ∥y∥ = 1 and x ̸= y then 1
2∥x+ y∥ < 1.

(iv) The function x 7→ ∥x∥2 is strictly convex.

A norm satisfying one of them is called strictly convex.

Show that ℓp(N) is strictly convex for 1 < p < ∞ but not for p = 1,∞.
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8. Show that p0 ≤ p implies ℓp0(N) ⊂ ℓp(N) and ∥a∥p ≤ ∥a∥p0 . Moreover,
show

lim
p→∞

∥a∥p = ∥a∥∞.

9. Show that ℓ∞(N) is not separable. (Hint: Consider sequences which take
only the value one and zero. How many are there? What is the distance
between two such sequences?)

10. Formally extend the definition of ℓp(N) to p ∈ (0, 1). Show that ∥.∥p does
not satisfy the triangle inequality. However, show that it is a quasinormed
space, that is, it satisfies all requirements for a normed space except for
the triangle inequality which is replaced by

∥a+ b∥ ≤ K(∥a∥+ ∥b∥)

with some constant K ≥ 1. Show, in fact,

∥a+ b∥p ≤ 21/p−1(∥a∥p + ∥b∥p), p ∈ (0, 1).

Moreover, show that ∥.∥pp satisfies the triangle inequality in this case, but
of course it is no longer homogeneous (but at least you can get an honest
metric d(a, b) = ∥a − b∥pp which gives rise to the same topology). (Hint:

Show α+ β ≤ (αp + βp)1/p ≤ 21/p−1(α+ β) for 0 < p < 1 and α, β ≥ 0.)

11. Let I be a compact interval and consider X = C(I). Which of following
sets are subspaces of X? If yes, are they closed?

(i) monotone functions

(ii) even functions

(iii) continuous piecewise linear functions

12. Let I be a compact interval. Show that the set Y := {f ∈ C(I)|f(x) > 0}
is open in X := C(I). Compute its closure.

13. Which of the following bilinear forms are scalar products on Rn?

(i) s(x, y) :=
∑n

j=1(xj + yj).

(ii) s(x, y) :=
∑n

j=1 αjxjyj , α ∈ Rn.

14. Show that the maximum norm on C[0, 1] does not satisfy the parallelogram
law.

15. Suppose Q is a complex vector space. Let s(f, g) be a sesquilinear form
on Q and q(f) := s(f, f) the associated quadratic form. Prove the par-
allelogram law

q(f + g) + q(f − g) = 2q(f) + 2q(g)

and the polarization identity

s(f, g) =
1

4
(q(f + g)− q(f − g) + i q(f − ig)− i q(f + ig)) .

Show that s(f, g) is symmetric if and only if q(f) is real-valued.

Note, that if Q is a real vector space, then the parallelogram law is un-
changed but the polarization identity in the form s(f, g) = 1

4 (q(f + g) −
q(f − g)) will only hold if s(f, g) is symmetric.
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16. Provide a detailed proof of Theorem 1.10.

17. Show that a subset K ⊂ c0(N) is relatively compact if and only if there is
a nonnegative sequence a ∈ c0(N) such that |bn| ≤ an for all n ∈ N and
all b ∈ K.

18. Which of the following families are relatively compact in C[0, 1]?

(i) F = {f ∈ C1[0, 1]| ∥f∥∞ ≤ 1}
(ii) F = {f ∈ C1[0, 1]| ∥f ′∥∞ ≤ 1}
(iii) F = {f ∈ C1[0, 1]| ∥f∥∞ ≤ 1, ∥f ′∥2 ≤ 1}

19. Let X := C[0, 1]. Show that ℓ(f) :=
∫ 1

0
f(x)dx is a linear functional.

Compute its norm. Is the norm attained? What if we replace X by
X0 := {f ∈ C[0, 1]|f(0) = 0} (in particular, check that this is a closed
subspace)?

20. Show that the integral operator

(Kf)(x) :=

∫ 1

0

K(x, y)f(y)dy,

where K(x, y) ∈ C([0, 1]× [0, 1]), defined on D(K) := C[0, 1], is a bounded
operator in X := L2

cont(0, 1).

21. Let I be a compact interval. Show that the set of differentiable func-
tions C1(I) becomes a Banach space if we set ∥f∥∞,1 := maxx∈I |f(x)|+
maxx∈I |f ′(x)|.

22. Suppose B ∈ L(X) with ∥B∥ < 1. Then I+B is invertible with

(I+B)−1 =

∞∑
n=0

(−1)nBn.

Consequently for A,B ∈ L(X,Y ), A+B is invertible if A is invertible and
∥B∥ < ∥A−1∥−1.

23. Let Xj , j = 1, . . . , n, be Banach spaces. Let X :=
⊕n

p,j=1 Xj be the
Cartesian product X1 × · · · ×Xn together with the norm

∥(x1, . . . , xn)∥p :=


(∑n

j=1 ∥xj∥p
)1/p

, 1 ≤ p < ∞,

maxj=1,...,n ∥xj∥, p = ∞.

Show that X is a Banach space. Show that all norms are equivalent and
that this sum is associative (X1 ⊕p X2)⊕p X3 = X1 ⊕p (X2 ⊕p X3).

24. Compute ∥[e]∥ in ℓ∞(N)/c0(N), where e := (1, 1, 1, . . . ).

25. Suppose A ∈ L(X,Y ). Show that Ker(A) is closed. Suppose M ⊆ Ker(A)
is a closed subspace. Show that the induced map Ã : X/M → Y , [x] 7→ Ax
is a well-defined operator satisfying ∥Ã∥ = ∥A∥ and Ker(Ã) = Ker(A)/M .
In particular, Ã is injective for M = Ker(A).
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26. Given some vectors f1, . . . , fn we define their Gram determinant as

Γ(f1, . . . , fn) := det (⟨fj , fk⟩)1≤j,k≤n .

Show that the Gram determinant is nonzero if and only if the vectors are
linearly independent. Moreover, show that in this case

dist(g, span{f1, . . . , fn})2 =
Γ(f1, . . . , fn, g)

Γ(f1, . . . , fn)

and

Γ(f1, . . . , fn) ≤
n∏

j=1

∥fj∥2.

with equality if the vectors are orthogonal. (Hint: First establish Γ(f1, . . . , fj+
αfk, . . . , fn) = Γ(f1, . . . , fn) for j ̸= k and use it to investigate how Γ
changes when you apply the Gram–Schmidt procedure?)

27. Show that ℓ(a) =
∑∞

j=1
aj+aj+2

2j defines a bounded linera functional on

X := ℓ2(N). Compute its norm.

28. Suppose P ∈ L(H) satisfies

P 2 = P and ⟨Pf, g⟩ = ⟨f, Pg⟩

and set M := Ran(P ). Show

• Pf = f for f ∈ M and M is closed,

• Ker(P ) = M⊥

and conclude P = PM .

29. Let H1, H2 be Hilbert spaces and let u ∈ H1, v ∈ H2. Show that the
operator

Af := ⟨u, f⟩v

is bounded and compute its norm. Compute the adjoint of A.

30. Prove
∥A∥ = sup

∥g∥H2
=∥f∥H1

=1

|⟨g,Af⟩H2
| ≤ C.

(Hint: Use ∥f∥ = sup∥g∥=1 |⟨g, f⟩| — compare Theorem 1.5.)

31. Suppose A ∈ L(H1,H2) has a bounded inverse A−1 ∈ L(H2,H1). Show
(A−1)∗ = (A∗)−1.

32. Show
Ker(A∗) = Ran(A)⊥.

33. Show that f ⊗ f̃ = 0 if and only if f = 0 or f̃ = 0.

34. Show Theorem 3.1.

35. Is the left shift (a1, a2, a3, . . . ) 7→ (a2, a3, . . . ) compact in ℓ2(N)?
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36. Is the operator d
dx : Ck[0, 1] → C[0, 1] compact for k = 1, 2? (Hint:

Problem 18 and Example 3.3 from the lecture notes.)

37. Let H := L2
cont(0, 1). Find the eigenvalues and eigenfunctions of the dif-

ferentiation operator A : D(A) ⊆ H → H, f(x) 7→ f ′(x) for the following
domains

(i) D(A) := C1[0, 1].

(ii) D(A) := {f ∈ C1[0, 1]|f(0) = 0}.
(iii) D(A) := {f ∈ C1[0, 1]|f(0) = f(1)}.

38. Find the eigenvalues and eigenfunctions of the integral operator K ∈
L(L2

cont(0, 1)) given by

(Kf)(x) :=

∫ 1

0

u(x)v(y)f(y)dy,

where u, v ∈ C([0, 1]) are some given continuous functions.

39. Find the eigenvalues and eigenfunctions of the integral operator K ∈
L(L2

cont(0, 1)) given by

(Kf)(x) := 2

∫ 1

0

(2xy − x− y + 1)f(y)dy.

40. Let H := L2
cont(0, 1). Show that the Volterra integral operator K : H → H

defined by

(Kf)(x) :=

∫ x

a

K(x, y)f(y)dy,

where K(x, y) ∈ C([a, b] × [a, b]), has no eigenvalues except for 0. Show
that 0 is no eigenvalue if K(x, y) is C1 and satisfies K(x, x) > 0. Why
does this not contradict Theorem 3.6? (Hint: Gronwall’s inequality.)

41. Show that the resolvent RA(z) = (A − z)−1 (provided it exists and is
densely defined) of a symmetric operator A is again symmetric for z ∈ R.
(Hint: g ∈ D(RA(z)) if and only if g = (A− z)f for some f ∈ D(A).)

42. Show that for our Sturm–Liouville operator u±(z, x)
∗ = u±(z

∗, x). (Hint:
Which differential equation does u±(z, x)

∗ solve?)

43. Show that
∞∑

n=1

1

n2
=

π2

6
.

(Hint: Use the trace formula (3.29).)

44. Consider the Sturm–Liouville problem on a compact interval [a, b] with
domain

D(L) = {f ∈ C2[a, b]|f ′(a) = f ′(b) = 0}.

Show that Theorem 3.11 continues to hold.

45. Every subset of a meager set is again meager.
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46. Let X be the space of sequences with finitely many nonzero terms together
with the sup norm. Consider the family of operators {An}n∈N given by
(Ana)j := jaj , j ≤ n and (Ana)j := 0, j > n. Then this family is
pointwise bounded but not uniformly bounded. Does this contradict the
Banach–Steinhaus theorem?

47. Show that a bilinear map B : X × Y → Z is bounded, ∥B(x, y)∥ ≤
C∥x∥∥y∥, if and only if it is separately continuous with respect to both
arguments. (Hint: Uniform boundedness principle.)

48. Show that a compact symmetric operator in an infinite-dimensional Hilbert
space cannot be surjective.

49. Let X := C3 equipped with the norm |(x, y, z)|1 := |x|+ |y|+ |z| and Y :=
{(x, y, z)|x+ y = 0, z = 0}. Find at least two extensions of ℓ(x, y, z) := x
from Y to X which preserve the norm. What if we take Y := {(x, y, z)|x+
y = 0}?

50. Consider X := C[0, 1] and let f0(x) := 1 − 2x. Find at least two linear
functional with minimal norm such that ℓ(f0) = 1.

51. Show that the extension from Corollary 4.11 is unique if X∗ is strictly
convex. (Hint: Problem 7.)

52. Let X be some normed space. Show that

∥x∥ = sup
ℓ∈V, ∥ℓ∥=1

|ℓ(x)|,

where V ⊂ X∗ is some dense subspace. Show that equality is attained if
V = X∗.

53. Suppose M1, M2 are closed subspaces of X. Show

M1 ∩M2 = (M⊥
1 +M⊥

2 )⊥, M⊥
1 ∩M⊥

2 = (M1 +M2)
⊥

and

(M1 ∩M2)
⊥ ⊇ (M⊥

1 +M⊥
2 ), (M⊥

1 ∩M⊥
2 )⊥ = (M1 +M2).

54. Show that if A ∈ L(X,Y ), then Ran(A)⊥ = Ker(A′) and Ran(A′)⊥ =
Ker(A).

55. Suppose ℓn → ℓ in X∗ and xn ⇀ x in X. Then ℓn(xn) → ℓ(x). Similarly,
suppose s-lim ℓn = ℓ and xn → x. Then ℓn(xn) → ℓ(x). Does this still
hold if s-lim ℓn = ℓ and xn ⇀ x?

56. Establish Lemma 4.34 in the case of weak convergence. (Hint: The formula

∥A∥ = sup
x∈X, ∥x∥=1; ℓ∈V, ∥ℓ∥=1

|ℓ(Ax)|,

might be useful.)


