UE Funktionalanalysis

Iryna Karpenko, Matthias Ostermann und Gerald Teschl

SS2022

Note: References refer to the lecture notes.

1. Suppose $\sum_{n=1}^{\infty}\left|c_{n}\right|<\infty$. Show that

$$
u(t, x):=\sum_{n=1}^{\infty} c_{n} \mathrm{e}^{-(\pi n)^{2} t} \sin (n \pi x)
$$

is continuous for $(t, x) \in[0, \infty) \times[0,1]$ and solves the heat equation for $(t, x) \in(0, \infty) \times[0,1]$. (Hint: Weierstrass M-test. When can you interchange the order of summation and differentiation?)
2. Show that $|\|f\|-\|g\|| \leq\|f-g\|$.
3. Let X be a Banach space. Show that the norm, vector addition, and multiplication by scalars are continuous. That is, if $f_{n} \rightarrow f, g_{n} \rightarrow g$, and $\alpha_{n} \rightarrow \alpha$, then $\left\|f_{n}\right\| \rightarrow\|f\|, f_{n}+g_{n} \rightarrow f+g$, and $\alpha_{n} g_{n} \rightarrow \alpha g$.
4. Prove Young's inequality

$$
\alpha^{1 / p} \beta^{1 / q} \leq \frac{1}{p} \alpha+\frac{1}{q} \beta, \quad \frac{1}{p}+\frac{1}{q}=1, \quad \alpha, \beta \geq 0 .
$$

Show that equality occurs precisely if $\alpha=\beta$. (Hint: Take logarithms on both sides.)
5. Show that $\ell^{p}(\mathbb{N}), 1 \leq p<\infty$, is complete.
6. Show that there is equality in the Hölder inequality for $1<p<\infty$ if and only if either $a=0$ or $\left|b_{j}\right|^{q}=\alpha\left|a_{j}\right|^{p}$ for all $j \in \mathbb{N}$. Show that we have equality in the triangle inequality for $\ell^{1}(\mathbb{N})$ if and only if $a_{j} b_{j}^{*} \geq 0$ for all $j \in \mathbb{N}$ (here the ' $*$ ' denotes complex conjugation). Show that we have equality in the triangle inequality for $\ell^{p}(\mathbb{N})$ with $1<p<\infty$ if and only if $a=0$ or $b=\alpha a$ with $\alpha \geq 0$.
7. Let X be a normed space. Show that the following conditions are equivalent.
(i) If $\|x+y\|=\|x\|+\|y\|$ then $y=\alpha x$ for some $\alpha \geq 0$ or $x=0$.
(ii) If $\|x\|=\|y\|=1$ and $x \neq y$ then $\|\lambda x+(1-\lambda) y\|<1$ for all $0<\lambda<1$.
(iii) If $\|x\|=\|y\|=1$ and $x \neq y$ then $\frac{1}{2}\|x+y\|<1$.
(iv) The function $x \mapsto\|x\|^{2}$ is strictly convex.

A norm satisfying one of them is called strictly convex.
Show that $\ell^{p}(\mathbb{N})$ is strictly convex for $1<p<\infty$ but not for $p=1, \infty$.
8. Show that $p_{0} \leq p$ implies $\ell^{p_{0}}(\mathbb{N}) \subset \ell^{p}(\mathbb{N})$ and $\|a\|_{p} \leq\|a\|_{p_{0}}$. Moreover, show

$$
\lim _{p \rightarrow \infty}\|a\|_{p}=\|a\|_{\infty}
$$

9. Show that $\ell^{\infty}(\mathbb{N})$ is not separable. (Hint: Consider sequences which take only the value one and zero. How many are there? What is the distance between two such sequences?)
10. Formally extend the definition of $\ell^{p}(\mathbb{N})$ to $p \in(0,1)$. Show that $\|.\|_{p}$ does not satisfy the triangle inequality. However, show that it is a quasinormed space, that is, it satisfies all requirements for a normed space except for the triangle inequality which is replaced by

$$
\|a+b\| \leq K(\|a\|+\|b\|)
$$

with some constant $K \geq 1$. Show, in fact,

$$
\|a+b\|_{p} \leq 2^{1 / p-1}\left(\|a\|_{p}+\|b\|_{p}\right), \quad p \in(0,1)
$$

Moreover, show that $\|\cdot\|_{p}^{p}$ satisfies the triangle inequality in this case, but of course it is no longer homogeneous (but at least you can get an honest metric $d(a, b)=\|a-b\|_{p}^{p}$ which gives rise to the same topology). (Hint: Show $\alpha+\beta \leq\left(\alpha^{p}+\beta^{p}\right)^{1 / p} \leq 2^{1 / p-1}(\alpha+\beta)$ for $0<p<1$ and $\alpha, \beta \geq 0$.)
11. Let I be a compact interval and consider $X=C(I)$. Which of following sets are subspaces of X ? If yes, are they closed?
(i) monotone functions
(ii) even functions
(iii) continuous piecewise linear functions
12. Let I be a compact interval. Show that the set $Y:=\{f \in C(I) \mid f(x)>0\}$ is open in $X:=C(I)$. Compute its closure.
13. Which of the following bilinear forms are scalar products on \mathbb{R}^{n} ?
(i) $s(x, y):=\sum_{j=1}^{n}\left(x_{j}+y_{j}\right)$.
(ii) $s(x, y):=\sum_{j=1}^{n} \alpha_{j} x_{j} y_{j}, \alpha \in \mathbb{R}^{n}$.
14. Show that the maximum norm on $C[0,1]$ does not satisfy the parallelogram law.
15. Suppose \mathfrak{Q} is a complex vector space. Let $s(f, g)$ be a sesquilinear form on \mathfrak{Q} and $q(f):=s(f, f)$ the associated quadratic form. Prove the parallelogram law

$$
q(f+g)+q(f-g)=2 q(f)+2 q(g)
$$

and the polarization identity

$$
s(f, g)=\frac{1}{4}(q(f+g)-q(f-g)+\mathrm{i} q(f-\mathrm{i} g)-\mathrm{i} q(f+\mathrm{i} g))
$$

Show that $s(f, g)$ is symmetric if and only if $q(f)$ is real-valued.
Note, that if \mathfrak{Q} is a real vector space, then the parallelogram law is unchanged but the polarization identity in the form $s(f, g)=\frac{1}{4}(q(f+g)-$ $q(f-g))$ will only hold if $s(f, g)$ is symmetric.
16. Provide a detailed proof of Theorem 1.10.
17. Show that a subset $\mathcal{K} \subset c_{0}(\mathbb{N})$ is relatively compact if and only if there is a nonnegative sequence $a \in c_{0}(\mathbb{N})$ such that $\left|b_{n}\right| \leq a_{n}$ for all $n \in \mathbb{N}$ and all $b \in \mathcal{K}$.
18. Which of the following families are relatively compact in $C[0,1]$?
(i) $F=\left\{f \in C^{1}[0,1] \mid\|f\|_{\infty} \leq 1\right\}$
(ii) $F=\left\{f \in C^{1}[0,1] \mid\left\|f^{\prime}\right\|_{\infty} \leq 1\right\}$
(iii) $F=\left\{f \in C^{1}[0,1] \mid\|f\|_{\infty} \leq 1,\left\|f^{\prime}\right\|_{2} \leq 1\right\}$
19. Let $X:=C[0,1]$. Show that $\ell(f):=\int_{0}^{1} f(x) d x$ is a linear functional. Compute its norm. Is the norm attained? What if we replace X by $X_{0}:=\{f \in C[0,1] \mid f(0)=0\}$ (in particular, check that this is a closed subspace)?
20. Show that the integral operator

$$
(K f)(x):=\int_{0}^{1} K(x, y) f(y) d y
$$

where $K(x, y) \in C([0,1] \times[0,1])$, defined on $\mathfrak{D}(K):=C[0,1]$, is a bounded operator in $X:=\mathcal{L}_{\text {cont }}^{2}(0,1)$.
21. Let I be a compact interval. Show that the set of differentiable functions $C^{1}(I)$ becomes a Banach space if we set $\|f\|_{\infty, 1}:=\max _{x \in I}|f(x)|+$ $\max _{x \in I}\left|f^{\prime}(x)\right|$.
22. Suppose $B \in \mathfrak{L}(X)$ with $\|B\|<1$. Then $\mathbb{I}+B$ is invertible with

$$
(\mathbb{I}+B)^{-1}=\sum_{n=0}^{\infty}(-1)^{n} B^{n}
$$

Consequently for $A, B \in \mathfrak{L}(X, Y), A+B$ is invertible if A is invertible and $\|B\|<\left\|A^{-1}\right\|^{-1}$.
23. Let $X_{j}, j=1, \ldots, n$, be Banach spaces. Let $X:=\bigoplus_{p, j=1}^{n} X_{j}$ be the Cartesian product $X_{1} \times \cdots \times X_{n}$ together with the norm

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}:= \begin{cases}\left(\sum_{j=1}^{n}\left\|x_{j}\right\|^{p}\right)^{1 / p}, & 1 \leq p<\infty \\ \max _{j=1, \ldots, n}\left\|x_{j}\right\|, & p=\infty\end{cases}
$$

Show that X is a Banach space. Show that all norms are equivalent and that this sum is associative $\left(X_{1} \oplus_{p} X_{2}\right) \oplus_{p} X_{3}=X_{1} \oplus_{p}\left(X_{2} \oplus_{p} X_{3}\right)$.
24. Compute $\|[e]\|$ in $\ell^{\infty}(\mathbb{N}) / c_{0}(\mathbb{N})$, where $e:=(1,1,1, \ldots)$.
25. Suppose $A \in \mathfrak{L}(X, Y)$. Show that $\operatorname{Ker}(A)$ is closed. Suppose $M \subseteq \operatorname{Ker}(A)$ is a closed subspace. Show that the induced map $\tilde{A}: X / M \rightarrow Y,[x] \mapsto A x$ is a well-defined operator satisfying $\|\tilde{A}\|=\|A\|$ and $\operatorname{Ker}(\tilde{A})=\operatorname{Ker}(A) / M$. In particular, \tilde{A} is injective for $M=\operatorname{Ker}(A)$.
26. Given some vectors f_{1}, \ldots, f_{n} we define their Gram determinant as

$$
\Gamma\left(f_{1}, \ldots, f_{n}\right):=\operatorname{det}\left(\left\langle f_{j}, f_{k}\right\rangle\right)_{1 \leq j, k \leq n}
$$

Show that the Gram determinant is nonzero if and only if the vectors are linearly independent. Moreover, show that in this case

$$
\operatorname{dist}\left(g, \operatorname{span}\left\{f_{1}, \ldots, f_{n}\right\}\right)^{2}=\frac{\Gamma\left(f_{1}, \ldots, f_{n}, g\right)}{\Gamma\left(f_{1}, \ldots, f_{n}\right)}
$$

and

$$
\Gamma\left(f_{1}, \ldots, f_{n}\right) \leq \prod_{j=1}^{n}\left\|f_{j}\right\|^{2}
$$

with equality if the vectors are orthogonal. (Hint: First establish $\Gamma\left(f_{1}, \ldots, f_{j}+\right.$ $\left.\alpha f_{k}, \ldots, f_{n}\right)=\Gamma\left(f_{1}, \ldots, f_{n}\right)$ for $j \neq k$ and use it to investigate how Γ changes when you apply the Gram-Schmidt procedure?)
27. Show that $\ell(a)=\sum_{j=1}^{\infty} \frac{a_{j}+a_{j+2}}{2^{j}}$ defines a bounded linera functional on $X:=\ell^{2}(\mathbb{N})$. Compute its norm.
28. Suppose $P \in \mathfrak{L}(\mathfrak{H})$ satisfies

$$
P^{2}=P \quad \text { and } \quad\langle P f, g\rangle=\langle f, P g\rangle
$$

and set $M:=\operatorname{Ran}(P)$. Show

- $P f=f$ for $f \in M$ and M is closed,
- $\operatorname{Ker}(P)=M^{\perp}$
and conclude $P=P_{M}$.

29. Let $\mathfrak{H}_{1}, \mathfrak{H}_{2}$ be Hilbert spaces and let $u \in \mathfrak{H}_{1}, v \in \mathfrak{H}_{2}$. Show that the operator

$$
A f:=\langle u, f\rangle v
$$

is bounded and compute its norm. Compute the adjoint of A.
30. Prove

$$
\|A\|=\sup _{\|g\|_{\mathfrak{S}_{2}}=\|f\|_{\mathfrak{S}_{1}}=1}\left|\langle g, A f\rangle_{\mathfrak{H}_{2}}\right| \leq C
$$

(Hint: Use $\|f\|=\sup _{\|g\|=1}|\langle g, f\rangle|$ - compare Theorem 1.5.)
31. Suppose $A \in \mathfrak{L}\left(\mathfrak{H}_{1}, \mathfrak{H}_{2}\right)$ has a bounded inverse $A^{-1} \in \mathfrak{L}\left(\mathfrak{H}_{2}, \mathfrak{H}_{1}\right)$. Show $\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$.
32. Show

$$
\operatorname{Ker}\left(A^{*}\right)=\operatorname{Ran}(A)^{\perp}
$$

33. Show that $f \otimes \tilde{f}=0$ if and only if $f=0$ or $\tilde{f}=0$.
34. Show Theorem 3.1.
35. Is the left shift $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mapsto\left(a_{2}, a_{3}, \ldots\right)$ compact in $\ell^{2}(\mathbb{N})$?
36. Is the operator $\frac{d}{d x}: C^{k}[0,1] \rightarrow C[0,1]$ compact for $k=1,2$? (Hint: Problem 18 and Example 3.3 from the lecture notes.)
37. Let $\mathfrak{H}:=\mathcal{L}_{\text {cont }}^{2}(0,1)$. Find the eigenvalues and eigenfunctions of the differentiation operator $A: \mathfrak{D}(A) \subseteq \mathfrak{H} \rightarrow \mathfrak{H}, f(x) \mapsto f^{\prime}(x)$ for the following domains
(i) $\mathfrak{D}(A):=C^{1}[0,1]$.
(ii) $\mathfrak{D}(A):=\left\{f \in C^{1}[0,1] \mid f(0)=0\right\}$.
(iii) $\mathfrak{D}(A):=\left\{f \in C^{1}[0,1] \mid f(0)=f(1)\right\}$.
38. Find the eigenvalues and eigenfunctions of the integral operator $K \in$ $\mathfrak{L}\left(\mathcal{L}_{\text {cont }}^{2}(0,1)\right)$ given by

$$
(K f)(x):=\int_{0}^{1} u(x) v(y) f(y) d y
$$

where $u, v \in C([0,1])$ are some given continuous functions.
39. Find the eigenvalues and eigenfunctions of the integral operator $K \in$ $\mathfrak{L}\left(\mathcal{L}_{\text {cont }}^{2}(0,1)\right)$ given by

$$
(K f)(x):=2 \int_{0}^{1}(2 x y-x-y+1) f(y) d y
$$

40. Let $\mathfrak{H}:=\mathcal{L}_{\text {cont }}^{2}(0,1)$. Show that the Volterra integral operator $K: \mathfrak{H} \rightarrow \mathfrak{H}$ defined by

$$
(K f)(x):=\int_{a}^{x} K(x, y) f(y) d y
$$

where $K(x, y) \in C([a, b] \times[a, b])$, has no eigenvalues except for 0 . Show that 0 is no eigenvalue if $K(x, y)$ is C^{1} and satisfies $K(x, x)>0$. Why does this not contradict Theorem 3.6? (Hint: Gronwall's inequality.)
41. Show that the resolvent $R_{A}(z)=(A-z)^{-1}$ (provided it exists and is densely defined) of a symmetric operator A is again symmetric for $z \in \mathbb{R}$. (Hint: $g \in \mathfrak{D}\left(R_{A}(z)\right)$ if and only if $g=(A-z) f$ for some $f \in \mathfrak{D}(A)$.)
42. Show that for our Sturm-Liouville operator $u_{ \pm}(z, x)^{*}=u_{ \pm}\left(z^{*}, x\right)$. (Hint: Which differential equation does $u_{ \pm}(z, x)^{*}$ solve?)
43. Show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

(Hint: Use the trace formula (3.29).)
44. Consider the Sturm-Liouville problem on a compact interval $[a, b]$ with domain

$$
\mathfrak{D}(L)=\left\{f \in C^{2}[a, b] \mid f^{\prime}(a)=f^{\prime}(b)=0\right\}
$$

Show that Theorem 3.11 continues to hold.
45. Every subset of a meager set is again meager.
46. Let X be the space of sequences with finitely many nonzero terms together with the sup norm. Consider the family of operators $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ given by $\left(A_{n} a\right)_{j}:=j a_{j}, j \leq n$ and $\left(A_{n} a\right)_{j}:=0, j>n$. Then this family is pointwise bounded but not uniformly bounded. Does this contradict the Banach-Steinhaus theorem?
47. Show that a bilinear map $B: X \times Y \rightarrow Z$ is bounded, $\|B(x, y)\| \leq$ $C\|x\|\|y\|$, if and only if it is separately continuous with respect to both arguments. (Hint: Uniform boundedness principle.)
48. Show that a compact symmetric operator in an infinite-dimensional Hilbert space cannot be surjective.
49. Let $X:=\mathbb{C}^{3}$ equipped with the norm $|(x, y, z)|_{1}:=|x|+|y|+|z|$ and $Y:=$ $\{(x, y, z) \mid x+y=0, z=0\}$. Find at least two extensions of $\ell(x, y, z):=x$ from Y to X which preserve the norm. What if we take $Y:=\{(x, y, z) \mid x+$ $y=0\}$?
50. Consider $X:=C[0,1]$ and let $f_{0}(x):=1-2 x$. Find at least two linear functional with minimal norm such that $\ell\left(f_{0}\right)=1$.
51. Show that the extension from Corollary 4.11 is unique if X^{*} is strictly convex. (Hint: Problem 7)
52. Let X be some normed space. Show that

$$
\|x\|=\sup _{\ell \in V,\|\ell\|=1}|\ell(x)|,
$$

where $V \subset X^{*}$ is some dense subspace. Show that equality is attained if $V=X^{*}$.
53. Suppose M_{1}, M_{2} are closed subspaces of X. Show

$$
M_{1} \cap M_{2}=\left(M_{1}^{\perp}+M_{2}^{\perp}\right)_{\perp}, \quad M_{1}^{\perp} \cap M_{2}^{\perp}=\left(M_{1}+M_{2}\right)^{\perp}
$$

and

$$
\left(M_{1} \cap M_{2}\right)^{\perp} \supseteq \overline{\left(M_{1}^{\perp}+M_{2}^{\perp}\right)}, \quad\left(M_{1}^{\perp} \cap M_{2}^{\perp}\right)_{\perp}=\overline{\left(M_{1}+M_{2}\right)} .
$$

54. Show that if $A \in \mathfrak{L}(X, Y)$, then $\operatorname{Ran}(A)^{\perp}=\operatorname{Ker}\left(A^{\prime}\right)$ and $\operatorname{Ran}\left(A^{\prime}\right)_{\perp}=$ $\operatorname{Ker}(A)$.
55. Suppose $\ell_{n} \rightarrow \ell$ in X^{*} and $x_{n} \rightharpoonup x$ in X. Then $\ell_{n}\left(x_{n}\right) \rightarrow \ell(x)$. Similarly, suppose s-lim $\ell_{n}=\ell$ and $x_{n} \rightarrow x$. Then $\ell_{n}\left(x_{n}\right) \rightarrow \ell(x)$. Does this still hold if s-lim $\ell_{n}=\ell$ and $x_{n} \rightharpoonup x$?
56. Establish Lemma 4.34 in the case of weak convergence. (Hint: The formula

$$
\|A\|=\sup _{x \in X,\|x\|=1 ; \ell \in V,\|\ell\|=1}|\ell(A x)|
$$

might be useful.)

