PS Topologie und Funktionalanalysis

Luca Lombardini und Gerald Teschl

WS2025/26

Note: References refer to the lecture notes.

1. Suppose $\sum_{n=1}^{\infty} |c_n| < \infty$. Show that

$$u(t,x) := \sum_{n=1}^{\infty} c_n e^{-(\pi n)^2 t} \sin(n\pi x),$$

is continuous for $(t,x) \in [0,\infty) \times [0,1]$ and solves the heat equation for $(t,x) \in (0,\infty) \times [0,1]$. (Hint: Weierstrass M-test. When can you interchange the order of summation and differentiation?)

2. Show that for $n, m \in \mathbb{N}$ we have

$$2\int_0^1 \sin(n\pi x)\sin(m\pi x)dx = \begin{cases} 1, & n=m, \\ 0, & n\neq m. \end{cases}$$

Conclude that the Fourier sine coefficients are given by

$$\hat{u}_{0,n} = 2\int_0^1 \sin(n\pi x) u_0(x) dx$$

provided the sum in (*) converges uniformly. Conclude that in this case the solution can be expressed as

$$u(t,x) = \int_0^1 K(t,x,y)u_0(y)dy, \qquad t > 0,$$

where

$$K(t, x, y) := 2 \sum_{n=1}^{\infty} e^{-(\pi n)^2 t} \sin(n\pi x) \sin(n\pi y)$$
$$= \frac{1}{2} \left(\vartheta(\frac{x-y}{2}, i\pi t) - \vartheta(\frac{x+y}{2}, i\pi t) \right).$$

Here

$$\vartheta(z,\tau) := \sum_{n \in \mathbb{Z}} \mathrm{e}^{\mathrm{i}\pi n^2 \tau + 2\pi \mathrm{i} n z} = 1 + 2 \sum_{n \in \mathbb{N}} \mathrm{e}^{\mathrm{i}\pi n^2 \tau} \cos(2\pi n z), \quad \mathrm{Im}(\tau) > 0,$$

is the Jacobi theta function.

- 3. Show that $|||f|| ||g||| \le ||f g||$.
- 4. Let X be a Banach space. Show that the norm, vector addition, and multiplication by scalars are continuous. That is, if $f_n \to f$, $g_n \to g$, and $\alpha_n \to \alpha$, then $||f_n|| \to ||f||$, $f_n + g_n \to f + g$, and $\alpha_n g_n \to \alpha g$.

5. While $\ell^1(\mathbb{N})$ is separable, it still has room for an uncountable set of linearly independent vectors. Show this by considering vectors of the form

$$a^{\alpha} = (1, \alpha, \alpha^2, \dots), \qquad \alpha \in (0, 1).$$

(Hint: Recall the Vandermonde determinant.)

6. Prove Young's inequality

$$\alpha^{1/p}\beta^{1/q} \leq \frac{1}{p}\alpha + \frac{1}{q}\beta, \qquad \frac{1}{p} + \frac{1}{q} = 1, \quad \alpha, \beta \geq 0.$$

Show that equality occurs precisely if $\alpha = \beta$. (Hint: Take logarithms on both sides.)

- 7. Show that $\ell^{\infty}(\mathbb{N})$ is a Banach space.
- 8. Is $\ell^1(\mathbb{N})$ a closed subspace of $\ell^{\infty}(\mathbb{N})$ (with respect to the $\|.\|_{\infty}$ norm)? If not, what is its closure?
- 9. Consider $\ell^1(\mathbb{N})$. Show that $||a|| := \sup_{k \in \mathbb{N}} |\sum_{j=1}^k a_j|$ is a norm. Is $\ell^1(\mathbb{N})$ complete with this norm?
- 10. Show that $\ell^{\infty}(\mathbb{N})$ is not separable. (Hint: Consider sequences which take only the value one and zero. How many are there? What is the distance between two such sequences?)
- 11. Let X be a normed space. Show that the following conditions are equivalent.
 - (i) If ||x + y|| = ||x|| + ||y|| then $y = \alpha x$ for some $\alpha \ge 0$ or x = 0.
 - (ii) If ||x|| = ||y|| = 1 and $x \neq y$ then $||\lambda x + (1 \lambda)y|| < 1$ for all $0 < \lambda < 1$.
 - (iii) If ||x|| = ||y|| = 1 and $x \neq y$ then $\frac{1}{2}||x + y|| < 1$.
 - (iv) The function $x \mapsto ||x||^2$ is strictly convex.

A norm satisfying one of them is called strictly convex.

- 12. Consider X = C([-1,1]). Which of the following subsets are subspaces of X? Which of them are closed?
 - (i) monotone functions
 - (ii) even functions
 - (iii) polynomials
 - (iv) polynomials of degree at most k for some fixed $k \in \mathbb{N}_0$
 - (v) continuous piecewise linear functions
 - (vi) $C^1([-1,1])$
 - (vii) $\{f \in C([-1,1]) \mid f(c) = f_0\}$ for some fixed $c \in [-1,1]$ and $f_0 \in \mathbb{R}$
- 13. Let I be a compact interval. Show that the set $Y := \{ f \in C(I, \mathbb{R}) \mid f(x) > 0 \}$ is open in $X := C(I, \mathbb{R})$. Compute its closure.
- 14. Compute the closure of the following subsets of $\ell^2(\mathbb{N})$: (i) $B_1 := \{a \in \ell^2(\mathbb{N}) \mid \sum_{j \in \mathbb{N}} |a_j| \leq 1\}$. (ii) $B_{\infty} := \{a \in \ell^2(\mathbb{N}) \mid \sum_{j \in \mathbb{N}} |a_j| < \infty\}$.

15. Show that, in a Hilbert space,

$$\sum_{1 \le j < k \le n} \|f_j - f_k\|^2 + \|\sum_{1 \le j \le n} f_j\|^2 = n \sum_{1 \le j \le n} \|f_j\|^2$$

for every $n \in \mathbb{N}$. The case n = 2 is the parallelogram law.

- 16. Show that the maximum norm on C[0,1] does not satisfy the parallelogram law
- 17. Let X and Y be real normed spaces. Show that an additive (i.e. T(x+y) = T(x) + T(y)) continuous map $T: X \to Y$ is linear. What about complex spaces?
- 18. Suppose \mathfrak{Q} is a complex vector space. Let s(f,g) be a sesquilinear form on \mathfrak{Q} and q(f) := s(f,f) the associated quadratic form. Prove the **parallelogram law**

$$q(f+g) + q(f-g) = 2q(f) + 2q(g)$$

and the polarization identity

$$s(f,g) = \frac{1}{4} (q(f+g) - q(f-g) + i q(f-ig) - i q(f+ig)).$$

Show that s(f,g) is symmetric if and only if q(f) is real-valued.

Note, that if $\mathfrak Q$ is a real vector space, then the parallelogram law is unchanged but the polarization identity in the form $s(f,g)=\frac{1}{4}(q(f+g)-q(f-g))$ will only hold if s(f,g) is symmetric.

19. Show that the integral defined in Example 1.15 satisfies

$$\int_{c}^{e} f(x)dx = \int_{c}^{d} f(x)dx + \int_{d}^{e} f(x)dx, \qquad \left| \int_{c}^{d} f(x)dx \right| \le \int_{c}^{d} |f(x)|dx.$$

How should |f| be defined here?

- 20. Is it possible to define $\sin(f)$ for $f \in L^1(I)$? If yes, how should this be done? What about $\exp(f)$?
- 21. Show that in a metric space X a totally bounded set U is bounded.
- 22. Find a compact subset of $\ell^{\infty}(\mathbb{N})$ which does not satisfy (ii) from Theorem 1.12.
- 23. Which of the following families are relatively compact in C[0,1]?
 - (i) $F := \{ f \in C^1[0,1] \mid ||f||_{\infty} < 1 \}$
 - (ii) $F := \{ f \in C^1[0,1] \mid ||f'||_{\infty} < 1 \}$
 - (iii) $F := \{ f \in C^1[0,1] \mid ||f||_{\infty} \le 1, ||f'||_2 \le 1 \}$

24. Consider $X = \mathbb{C}^n$ and let $A \in \mathfrak{L}(X)$ be a matrix. Equip X with the norm (show that this is a norm)

$$||x||_{\infty} := \max_{1 \le j \le n} |x_j|$$

and compute the operator norm ||A|| with respect to this norm in terms of the matrix entries. Do the same with respect to the norm

$$||x||_1 := \sum_{1 \le j \le n} |x_j|.$$

- 25. Let X := C[0,1]. Investigate the operator $A: X \to X$, $f(x) \mapsto x f(x)$. Show that this is a bounded linear operator and compute its norm. What is the closure of Ran(A)?
- 26. Show that the Fredholm integral operator

$$(Kf)(x) := \int_0^1 K(x, y) f(y) dy,$$

where $K(x,y) \in C([0,1] \times [0,1])$, defined on $\mathfrak{D}(K) := C[0,1]$, is a bounded operator both in X := C[0,1] (max norm) and $X := L^2(0,1)$. Show that the norm in the X = C[0,1] case is given by

$$\|K\| = \max_{x \in [0,1]} \int_0^1 |K(x,y)| dy.$$

27. Let $A \in \mathfrak{L}(X)$ be a bijection. Show

$$||A^{-1}||^{-1} = \inf_{x \in X, ||x|| = 1} ||Af||.$$

- 28. Prove Lemma 1.19. (Hint: Hölder's inequality in \mathbb{C}^n and note that equality is attained.)
- 29. Let X, Y be normed spaces and suppose $A \in \mathfrak{L}(X, Y)$. Show that $\operatorname{Ker}(A)$ is closed. Suppose $M \subseteq \operatorname{Ker}(A)$ is a closed subspace. Show that the induced map $\tilde{A}: X/M \to Y, [x] \mapsto Ax$ is a well-defined operator satisfying $\|\tilde{A}\| = \|A\|$ and $\operatorname{Ker}(\tilde{A}) = \operatorname{Ker}(A)/M$, $\operatorname{Ran}(\tilde{A}) = \operatorname{Ran}(A)$. In particular, \tilde{A} is injective for $M = \operatorname{Ker}(A)$.
- 30. Given some vectors f_1, \ldots, f_n we define their **Gram determinant** as

$$\Gamma(f_1,\ldots,f_n) := \det \left(\langle f_j, f_k \rangle \right)_{1 \leq j,k \leq n}$$

Show that the Gram determinant is nonzero if and only if the vectors are linearly independent. Moreover, show that in this case

$$\operatorname{dist}(g,\operatorname{span}\{f_1,\ldots,f_n\})^2 = \frac{\Gamma(f_1,\ldots,f_n,g)}{\Gamma(f_1,\ldots,f_n)}$$

and

$$\Gamma(f_1,\ldots,f_n) \leq \prod_{j=1}^n ||f_j||^2.$$

with equality if the vectors are orthogonal. (Hint: First establish $\Gamma(f_1, \ldots, f_j + \alpha f_k, \ldots, f_n) = \Gamma(f_1, \ldots, f_n)$ for $j \neq k$ and use it to investigate how Γ changes when you apply the Gram–Schmidt procedure?)

- 31. Let $\{u_j\}$ be some orthonormal basis. Show that a bounded linear operator A is uniquely determined by its matrix elements $A_{jk} := \langle u_j, Au_k \rangle$ with respect to this basis.
- 32. Let I = (a, b) be some interval and consider the scalar product

$$\langle f, g \rangle := \int_a^b f(x)^* g(x) w(x) dx$$

associated with some positive weight function w(x). Let $P_j(x) = x^j + \beta_j x^{j-1} + \gamma_j x^{j-2} + \ldots$ be the corresponding monic orthogonal polynomials obtained by applying the Gram–Schmidt procedure (without normalization) to the monomials:

$$\int_{a}^{b} P_{i}(x)P_{j}(x)w(x)dx = \begin{cases} \alpha_{j}^{2}, & i = j, \\ 0, & \text{otherwise.} \end{cases}$$

Let $\bar{P}_j(x) := \alpha_j^{-1} P_j(x)$ be the corresponding orthonormal polynomials and show that they satisfy the three term recurrence relation

$$a_j \bar{P}_{j+1}(x) + b_j \bar{P}_j(x) + a_{j-1} \bar{P}_{j-1}(x) = x \bar{P}_j(x),$$

or equivalently

$$P_{j+1}(x) = (x - b_j)P_j(x) - a_{j-1}^2 P_{j-1}(x),$$

where

$$a_j := \int_a^b x \bar{P}_{j+1}(x) \bar{P}_j(x) w(x) dx, \qquad b_j := \int_a^b x \bar{P}_j(x)^2 w(x) dx.$$

Here we set $P_{-1}(x) = \bar{P}_{-1}(x) \equiv 0$ for notational convenience (in particular we also have $\beta_0 = \gamma_0 = \gamma_1 = 0$).

- 33. Consider $M := \{ f \in L^2(0,1) | \int_0^1 f(x) dx = 0 \} \subset L^2(0,1)$. Compute M^{\perp} .
- 34. Consider the subspace $M_e:=\{f\in C[-1,1]|f(x)=f(-x)\}$ of all even continuous functions in $L^2(-1,1)$. Is M_e closed? What is $P_{\overline{M_e}}$ and M_e^{\perp} ? Compute $\operatorname{dist}(\exp(x),M_e)$.
- 35. Show that $\ell(a) = \sum_{j=1}^{\infty} \frac{a_j + a_{j+2}}{2^j}$ defines a bounded linear functional on $X := \ell^2(\mathbb{N})$. Compute its norm.
- 36. Let \mathfrak{H}_1 , \mathfrak{H}_2 be Hilbert spaces and let $u \in \mathfrak{H}_1$, $v \in \mathfrak{H}_2$. Show that the operator

$$Af := \langle u, f \rangle v$$

is bounded and compute its norm. Compute the adjoint of A.

- 37. Let \mathfrak{H} be a Hilbert space and $\{f_j\}_{j=1}^n\subset \mathfrak{H}$ some vectors. Show that $A:\mathbb{C}^n\to \mathfrak{H},\ \alpha\mapsto \sum_{j=1}^n\alpha_jf_j$ is bounded and compute A^* .
- 38. Let \mathfrak{H}_1 , \mathfrak{H}_2 be Hilbert spaces and suppose $A \in \mathfrak{L}(\mathfrak{H}_1, \mathfrak{H}_2)$ has a bounded inverse $A^{-1} \in \mathfrak{L}(\mathfrak{H}_2, \mathfrak{H}_1)$. Show $(A^{-1})^* = (A^*)^{-1}$.

39. Let $\mathfrak H$ be a Hilbert space and $s:\mathfrak H^2\to\mathbb C$ a bounded coercive sesquilinear form. Show that the solution of

$$s(h, f) = \langle h, g \rangle, \quad \forall h \in \mathfrak{H}.$$
 (*)

is also the unique minimizer of

$$h \mapsto \operatorname{Re}\left(\frac{1}{2}s(h,h) - \langle h, g \rangle\right)$$

if s is nonnegative with $s(w, w) \ge \varepsilon ||w||^2$ for all $w \in \mathfrak{H}$.

40. Consider $A \in \mathfrak{L}(\mathfrak{H})$ and denote the set of fixed points by $\operatorname{Fix}(A) := \operatorname{Ker}(A-\mathbb{I}) = \{f \in \mathfrak{H} | Af = f\}$. Show $\operatorname{Fix}(A) = \operatorname{Fix}(A^*)$ provided $||A|| \leq 1$. Use this to establish the mean ergodic theorem for $A \in \mathfrak{L}(\mathfrak{H})$ with $||A|| \leq 1$:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} A^{j} f = P_{\text{Fix}} f,$$

where P_{Fix} denotes the orthogonal projection onto Fix(A). (Hint: To see Fix(A) = Fix(A*) think about when you have equality in the Cauchy–Schwarz inequality. To compute the limit consider the cases $f \in \text{Fix}(A)$ and $f \in \text{Ran}(A - \mathbb{I})$. Also $\text{Ker}(A^*) = \text{Ran}(A)^{\perp}$ might be useful.)

- 41. Is the left shift $(a_1, a_2, a_3, \dots) \mapsto (a_2, a_3, \dots)$ compact in $\ell^2(\mathbb{N})$?
- 42. Is the multiplication operator $M_t: C^k[0,1] \to C[0,1]$ with $M_t f(t) = t f(t)$ compact for k = 0, 1? (Hint: Problem 23 and Example 3.2.)
- 43. Show that the adjoint of the Fredholm integral operator K on $L^2(a,b)$ from Lemma 3.4 is the integral operator with kernel $K(y,x)^*$:

$$(K^*f)(x) = \int_a^b K(y,x)^*f(y)dy.$$

(Hint: Fubini.)

44. Find the eigenvalues and eigenfunctions of the integral operator $K \in \mathfrak{L}(L^2(0,1))$ given by

$$(Kf)(x) := \int_0^1 u(x)v(y)f(y)dy,$$

where $u, v \in C([0, 1])$ are some given continuous functions.

45. Find the eigenvalues and eigenfunctions of the integral operator $K \in \mathfrak{L}(L^2(0,1))$ given by

$$(Kf)(x) := 2 \int_0^1 (2xy - x - y + 1)f(y)dy.$$

46. Show that the inverse $(A-z)^{-1}$ (provided it exists and is densely defined) of a symmetric operator A is again symmetric for $z \in \mathbb{R}$.

Show that a densely defined bounded operator is symmetric if and only if its extension, according to Theorem 1.16, is.

(Hint:
$$g \in \mathfrak{D}((A-z)^{-1})$$
 if and only if $g = (A-z)f$ for some $f \in \mathfrak{D}(A)$.)

- 47. The finite union of nowhere dense sets is nowhere dense and the finite intersections of sets with dense interior has dense interior.
- 48. Let X be a topological space. Prove that the meager sets form a σ -ideal. Moreover, prove that every superset of a fat set is fat.
- 49. Consider X:=C[-1,1]. Show that $M:=\{x\in X|x(-t)=x(t)\}$ is meager.
- 50. Consider $f = \chi_{\mathbb{Q}}$ on [0,1]. Show that there cannot be a sequence of continuous functions $f_n \in C[0,1]$ which converges to f pointwise. (Hint: Apply Baire's theorem with $F_n := \{t \in [0,1] | |f_n(t) f_m(t)| \leq \frac{1}{3} \forall m \geq n\}$.)
- 51. Let X be a Banach space and Y, Z normed spaces. Show that a bilinear map $B: X \times Y \to Z$ is bounded, $\|B(x,y)\| \leq C\|x\|\|y\|$, if and only if it is separately continuous with respect to both arguments. (Hint: Uniform boundedness principle.)
- 52. Consider a Schauder basis as in (1.31). Show that the coordinate functionals α_n are continuous. (Hint: Denote the set of all possible sequences of Schauder coefficients $\alpha = (\alpha_n)_{n=1}^N$ by \mathcal{A} and equip it with the norm $\|\alpha\| := \sup_n \|\sum_{k=1}^n \alpha_k u_k\|$. By construction the operator $A: \mathcal{A} \to X$, $\alpha \mapsto \sum_k \alpha_k u_k$ has norm one. Now show that \mathcal{A} is complete and apply the inverse mapping theorem.)
- 53. Show that the operator

$$\mathfrak{D}(A) := \{ a \in \ell^p(\mathbb{N}) | j \, a_j \in \ell^p(\mathbb{N}) \}, \qquad (Aa)_j := j \, a_j,$$

is a closed operator in $X := \ell^p(\mathbb{N})$.

- 54. Suppose $A: X \to Y$ and $B: Y \to Z$ are linear operators between Banach spaces X, Y, Z. Show that A is bounded if BA and B are bounded with B injective.
- 55. Let $X := \mathbb{C}^3$ equipped with the norm $|(x,y,z)|_1 := |x| + |y| + |z|$ and $Y := \{(x,y,z) \in X | x+y=0, z=0\}$. Find at least two extensions of $\ell(x,y,z) := x$ from Y to X which preserve the norm. What if we take $Y := \{(x,y,z) \in X | x+y=0\}$?
- 56. Consider X := C[0,1] and let $f_0(x) := 1 2x$. Find at least two linear functionals with norm one such that $\ell(f_0) = 1$.
- 57. Show that the extension from Corollary 4.13 is unique if X^* is strictly convex. (Hint: Problem 11.)
- 58. Let X be some normed space. Show that

$$||x|| = \sup_{\ell \in V, ||\ell|| = 1} |\ell(x)|,$$

where $V \subset X^*$ is some dense subspace. Show that equality is attained if $V = X^*$.

59. Show that every $l \in \ell^p(\mathbb{N})^*, 1 \leq p < \infty$, can be written as

$$l(a) = l_b(a) := \sum_{j \in \mathbb{N}} b_j a_j$$

with some unique $b \in \ell^q(\mathbb{N})$. (Hint: To see $b \in \ell^q(\mathbb{N})$ consider a^N defined such that $a_j^n := |b_j|^q/b_j$ for $j \le n$ with $b_j \ne 0$ and $b_j^n := 0$ else. Now look at $|l(a^n)| \le |l| ||a^n||_p$.)

60. Let X be a Banach space. Show that a subset $U\subseteq X$ is bounded if and only if $\ell(U)\subseteq\mathbb{C}$ is bounded for every $\ell\in X^*$. (Hint: Uniform boundedness principle.)