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1. Suppose
∑∞

n=1 |cn| < ∞. Show that

u(t, x) :=

∞∑
n=1

cne
−(πn)2t sin(nπx),

is continuous for (t, x) ∈ [0,∞) × [0, 1] and solves the heat equation for
(t, x) ∈ (0,∞) × [0, 1]. (Hint: Weierstrass M-test. When can you inter-
change the order of summation and differentiation?)

2. Show that for n,m ∈ N we have

2

∫ 1

0

sin(nπx) sin(mπx)dx =

{
1, n = m,

0, n ̸= m.

Conclude that the Fourier sine coefficients are given by

û0,n = 2

∫ 1

0

sin(nπx)u0(x)dx

provided the sum in (∗) converges uniformly. Conclude that in this case
the solution can be expressed as

u(t, x) =

∫ 1

0

K(t, x, y)u0(y)dy, t > 0,

where

K(t, x, y) := 2

∞∑
n=1

e−(πn)2t sin(nπx) sin(nπy)

=
1

2

(
ϑ(

x− y

2
, iπt)− ϑ(

x+ y

2
, iπt)

)
.

Here

ϑ(z, τ) :=
∑
n∈Z

eiπn
2τ+2πinz = 1 + 2

∑
n∈N

eiπn
2τ cos(2πnz), Im(τ) > 0,

is the Jacobi theta function.

3. Show that |∥f∥ − ∥g∥| ≤ ∥f − g∥.

4. Let X be a Banach space. Show that the norm, vector addition, and
multiplication by scalars are continuous. That is, if fn → f , gn → g, and
αn → α, then ∥fn∥ → ∥f∥, fn + gn → f + g, and αngn → αg.
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5. While ℓ1(N) is separable, it still has room for an uncountable set of linearly
independent vectors. Show this by considering vectors of the form

aα = (1, α, α2, . . . ), α ∈ (0, 1).

(Hint: Recall the Vandermonde determinant.)

6. Prove Young’s inequality

α1/pβ1/q ≤ 1

p
α+

1

q
β,

1

p
+

1

q
= 1, α, β ≥ 0.

Show that equality occurs precisely if α = β. (Hint: Take logarithms on
both sides.)

7. Show that ℓ∞(N) is a Banach space.

8. Is ℓ1(N) a closed subspace of ℓ∞(N) (with respect to the ∥.∥∞ norm)? If
not, what is its closure?

9. Consider ℓ1(N). Show that ∥a∥ := supk∈N |
∑k

j=1 aj | is a norm. Is ℓ1(N)
complete with this norm?

10. Show that ℓ∞(N) is not separable. (Hint: Consider sequences which take
only the value one and zero. How many are there? What is the distance
between two such sequences?)

11. Let X be a normed space. Show that the following conditions are equiva-
lent.

(i) If ∥x+ y∥ = ∥x∥+ ∥y∥ then y = αx for some α ≥ 0 or x = 0.

(ii) If ∥x∥ = ∥y∥ = 1 and x ̸= y then ∥λx+(1−λ)y∥ < 1 for all 0 < λ < 1.

(iii) If ∥x∥ = ∥y∥ = 1 and x ̸= y then 1
2∥x+ y∥ < 1.

(iv) The function x 7→ ∥x∥2 is strictly convex.

A norm satisfying one of them is called strictly convex.

12. Consider X = C([−1, 1]). Which of the following subsets are subspaces of
X? Which of them are closed?

(i) monotone functions

(ii) even functions

(iii) polynomials

(iv) polynomials of degree at most k for some fixed k ∈ N0

(v) continuous piecewise linear functions

(vi) C1([−1, 1])

(vii) {f ∈ C([−1, 1]) | f(c) = f0} for some fixed c ∈ [−1, 1] and f0 ∈ R

13. Let I be a compact interval. Show that the set Y := {f ∈ C(I,R) | f(x) >
0} is open in X := C(I,R). Compute its closure.

14. Compute the closure of the following subsets of ℓ2(N): (i) B1 := {a ∈
ℓ2(N) |

∑
j∈N |aj | ≤ 1}. (ii) B∞ := {a ∈ ℓ2(N) |

∑
j∈N |aj | < ∞}.
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15. Show that, in a Hilbert space,∑
1≤j<k≤n

∥fj − fk∥2 + ∥
∑

1≤j≤n

fj∥2 = n
∑

1≤j≤n

∥fj∥2

for every n ∈ N. The case n = 2 is the parallelogram law.

16. Show that the maximum norm on C[0, 1] does not satisfy the parallelogram
law.

17. LetX and Y be real normed spaces. Show that an additive (i.e. T (x+y) =
T (x) + T (y)) continuous map T : X → Y is linear. What about complex
spaces?

18. Suppose Q is a complex vector space. Let s(f, g) be a sesquilinear form
on Q and q(f) := s(f, f) the associated quadratic form. Prove the par-
allelogram law

q(f + g) + q(f − g) = 2q(f) + 2q(g)

and the polarization identity

s(f, g) =
1

4
(q(f + g)− q(f − g) + i q(f − ig)− i q(f + ig)) .

Show that s(f, g) is symmetric if and only if q(f) is real-valued.

Note, that if Q is a real vector space, then the parallelogram law is un-
changed but the polarization identity in the form s(f, g) = 1

4 (q(f + g) −
q(f − g)) will only hold if s(f, g) is symmetric.

19. Show that the integral defined in Example 1.15 satisfies∫ e

c

f(x)dx =

∫ d

c

f(x)dx+

∫ e

d

f(x)dx,

∣∣∣∣∣
∫ d

c

f(x)dx

∣∣∣∣∣ ≤
∫ d

c

|f(x)|dx.

How should |f | be defined here?

20. Is it possible to define sin(f) for f ∈ L1(I)? If yes, how should this be
done? What about exp(f)?

21. Show that in a metric space X a totally bounded set U is bounded.

22. Find a compact subset of ℓ∞(N) which does not satisfy (ii) from Theo-
rem 1.12.

23. Which of the following families are relatively compact in C[0, 1]?

(i) F := {f ∈ C1[0, 1] | ∥f∥∞ ≤ 1}
(ii) F := {f ∈ C1[0, 1] | ∥f ′∥∞ ≤ 1}
(iii) F := {f ∈ C1[0, 1] | ∥f∥∞ ≤ 1, ∥f ′∥2 ≤ 1}
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24. Consider X = Cn and let A ∈ L(X) be a matrix. Equip X with the norm
(show that this is a norm)

∥x∥∞ := max
1≤j≤n

|xj |

and compute the operator norm ∥A∥ with respect to this norm in terms
of the matrix entries. Do the same with respect to the norm

∥x∥1 :=
∑

1≤j≤n

|xj |.

25. Let X := C[0, 1]. Investigate the operator A : X → X, f(x) 7→ x f(x).
Show that this is a bounded linear operator and compute its norm. What
is the closure of Ran(A)?

26. Show that the Fredholm integral operator

(Kf)(x) :=

∫ 1

0

K(x, y)f(y)dy,

where K(x, y) ∈ C([0, 1]× [0, 1]), defined on D(K) := C[0, 1], is a bounded
operator both in X := C[0, 1] (max norm) and X := L2(0, 1). Show that
the norm in the X = C[0, 1] case is given by

∥K∥ = max
x∈[0,1]

∫ 1

0

|K(x, y)|dy.

27. Let A ∈ L(X) be a bijection. Show

∥A−1∥−1 = inf
x∈X,∥x∥=1

∥Af∥.

28. Prove Lemma 1.19. (Hint: Hölder’s inequality in Cn and note that equality
is attained.)

29. Let X, Y be normed spaces and suppose A ∈ L(X,Y ). Show that Ker(A)
is closed. Suppose M ⊆ Ker(A) is a closed subspace. Show that the
induced map Ã : X/M → Y , [x] 7→ Ax is a well-defined operator satisfying
∥Ã∥ = ∥A∥ and Ker(Ã) = Ker(A)/M , Ran(Ã) = Ran(A). In particular,
Ã is injective for M = Ker(A).

30. Given some vectors f1, . . . , fn we define their Gram determinant as

Γ(f1, . . . , fn) := det (⟨fj , fk⟩)1≤j,k≤n .

Show that the Gram determinant is nonzero if and only if the vectors are
linearly independent. Moreover, show that in this case

dist(g, span{f1, . . . , fn})2 =
Γ(f1, . . . , fn, g)

Γ(f1, . . . , fn)

and

Γ(f1, . . . , fn) ≤
n∏

j=1

∥fj∥2.

with equality if the vectors are orthogonal. (Hint: First establish Γ(f1, . . . , fj+
αfk, . . . , fn) = Γ(f1, . . . , fn) for j ̸= k and use it to investigate how Γ
changes when you apply the Gram–Schmidt procedure?)
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31. Let {uj} be some orthonormal basis. Show that a bounded linear operator
A is uniquely determined by its matrix elements Ajk := ⟨uj , Auk⟩ with
respect to this basis.

32. Let I = (a, b) be some interval and consider the scalar product

⟨f, g⟩ :=
∫ b

a

f(x)∗g(x)w(x)dx

associated with some positive weight function w(x). Let Pj(x) = xj +
βjx

j−1+γjx
j−2+ . . . be the corresponding monic orthogonal polynomials

obtained by applying the Gram–Schmidt procedure (without normaliza-
tion) to the monomials:∫ b

a

Pi(x)Pj(x)w(x)dx =

{
α2
j , i = j,

0, otherwise.

Let P̄j(x) := α−1
j Pj(x) be the corresponding orthonormal polynomials

and show that they satisfy the three term recurrence relation

ajP̄j+1(x) + bjP̄j(x) + aj−1P̄j−1(x) = xP̄j(x),

or equivalently

Pj+1(x) = (x− bj)Pj(x)− a2j−1Pj−1(x),

where

aj :=

∫ b

a

xP̄j+1(x)P̄j(x)w(x)dx, bj :=

∫ b

a

xP̄j(x)
2w(x)dx.

Here we set P−1(x) = P̄−1(x) ≡ 0 for notational convenience (in particular
we also have β0 = γ0 = γ1 = 0).

33. Consider M := {f ∈ L2(0, 1)|
∫ 1

0
f(x)dx = 0} ⊂ L2(0, 1). Compute M⊥.

34. Consider the subspace Me := {f ∈ C[−1, 1]|f(x) = f(−x)} of all even
continuous functions in L2(−1, 1). Is Me closed? What is PMe

and M⊥
e ?

Compute dist(exp(x),Me).

35. Show that ℓ(a) =
∑∞

j=1
aj+aj+2

2j defines a bounded linear functional on

X := ℓ2(N). Compute its norm.

36. Let H1, H2 be Hilbert spaces and let u ∈ H1, v ∈ H2. Show that the
operator

Af := ⟨u, f⟩v

is bounded and compute its norm. Compute the adjoint of A.

37. Let H be a Hilbert space and {fj}nj=1 ⊂ H some vectors. Show that

A : Cn → H, α 7→
∑n

j=1 αjfj is bounded and compute A∗.

38. Let H1, H2 be Hilbert spaces and suppose A ∈ L(H1,H2) has a bounded
inverse A−1 ∈ L(H2,H1). Show (A−1)∗ = (A∗)−1.
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39. Let H be a Hilbert space and s : H2 → C a bounded coercive sesquilinear
form. Show that the solution of

s(h, f) = ⟨h, g⟩, ∀h ∈ H. (*)

is also the unique minimizer of

h 7→ Re
(1
2
s(h, h)− ⟨h, g⟩

)
if s is nonnegative with s(w,w) ≥ ε∥w∥2 for all w ∈ H.

40. Consider A ∈ L(H) and denote the set of fixed points by Fix(A) :=
Ker(A−I) = {f ∈ H|Af = f}. Show Fix(A) = Fix(A∗) provided ∥A∥ ≤ 1.

Use this to establish the mean ergodic theorem for A ∈ L(H) with ∥A∥ ≤ 1:

lim
n→∞

1

n

n∑
j=1

Ajf = PFixf,

where PFix denotes the orthogonal projection onto Fix(A). (Hint: To see
Fix(A) = Fix(A∗) think about when you have equality in the Cauchy–
Schwarz inequality. To compute the limit consider the cases f ∈ Fix(A)
and f ∈ Ran(A− I). Also Ker(A∗) = Ran(A)⊥ might be useful.)

41. Is the left shift (a1, a2, a3, . . . ) 7→ (a2, a3, . . . ) compact in ℓ2(N)?

42. Is the multiplication operator Mt : C
k[0, 1] → C[0, 1] with Mtf(t) = tf(t)

compact for k = 0, 1? (Hint: Problem 23 and Example 3.2.)

43. Show that the adjoint of the Fredholm integral operator K on L2(a, b)
from Lemma 3.4 is the integral operator with kernel K(y, x)∗:

(K∗f)(x) =

∫ b

a

K(y, x)∗f(y)dy.

(Hint: Fubini.)

44. Find the eigenvalues and eigenfunctions of the integral operator K ∈
L(L2(0, 1)) given by

(Kf)(x) :=

∫ 1

0

u(x)v(y)f(y)dy,

where u, v ∈ C([0, 1]) are some given continuous functions.

45. Find the eigenvalues and eigenfunctions of the integral operator K ∈
L(L2(0, 1)) given by

(Kf)(x) := 2

∫ 1

0

(2xy − x− y + 1)f(y)dy.

46. Show that the inverse (A−z)−1 (provided it exists and is densely defined)
of a symmetric operator A is again symmetric for z ∈ R.
Show that a densely defined bounded operator is symmetric if and only if
its extension, according to Theorem 1.16, is.

(Hint: g ∈ D((A− z)−1) if and only if g = (A− z)f for some f ∈ D(A).)
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47. The finite union of nowhere dense sets is nowhere dense and the finite
intersections of sets with dense interior has dense interior.

48. Let X be a topological space. Prove that the meager sets form a σ-ideal.
Moreover, prove that every superset of a fat set is fat.

49. Consider X := C[−1, 1]. Show that M := {x ∈ X|x(−t) = x(t)} is
meager.

50. Consider f = χQ on [0, 1]. Show that there cannot be a sequence of
continuous functions fn ∈ C[0, 1] which converges to f pointwise. (Hint:
Apply Baire’s theorem with Fn := {t ∈ [0, 1]| |fn(t) − fm(t)| ≤ 1

3 ∀m ≥
n}.)

51. Let X be a Banach space and Y,Z normed spaces. Show that a bilinear
map B : X × Y → Z is bounded, ∥B(x, y)∥ ≤ C∥x∥∥y∥, if and only if it
is separately continuous with respect to both arguments. (Hint: Uniform
boundedness principle.)

52. Consider a Schauder basis as in (1.31). Show that the coordinate func-
tionals αn are continuous. (Hint: Denote the set of all possible sequences
of Schauder coefficients α = (αn)

N
n=1 by A and equip it with the norm

∥α∥ := supn ∥
∑n

k=1 αkuk∥. By construction the operator A : A → X,
α 7→

∑
k αkuk has norm one. Now show that A is complete and apply the

inverse mapping theorem.)

53. Show that the operator

D(A) := {a ∈ ℓp(N)|j aj ∈ ℓp(N)}, (Aa)j := j aj ,

is a closed operator in X := ℓp(N).

54. Suppose A : X → Y and B : Y → Z are linear operators between Banach
spaces X,Y, Z. Show that A is bounded if BA and B are bounded with
B injective.

55. Let X := C3 equipped with the norm |(x, y, z)|1 := |x| + |y| + |z| and
Y := {(x, y, z) ∈ X|x + y = 0, z = 0}. Find at least two extensions of
ℓ(x, y, z) := x from Y to X which preserve the norm. What if we take
Y := {(x, y, z) ∈ X|x+ y = 0}?

56. Consider X := C[0, 1] and let f0(x) := 1 − 2x. Find at least two linear
functionals with norm one such that ℓ(f0) = 1.

57. Show that the extension from Corollary 4.13 is unique if X∗ is strictly
convex. (Hint: Problem 11.)

58. Let X be some normed space. Show that

∥x∥ = sup
ℓ∈V, ∥ℓ∥=1

|ℓ(x)|,

where V ⊂ X∗ is some dense subspace. Show that equality is attained if
V = X∗.
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59. Show that every l ∈ ℓp(N)∗, 1 ≤ p < ∞, can be written as

l(a) = lb(a) :=
∑
j∈N

bjaj

with some unique b ∈ ℓq(N). (Hint: To see b ∈ ℓq(N) consider aN defined
such that anj := |bj |q/bj for j ≤ n with bj ̸= 0 and bnj := 0 else. Now look
at |l(an)| ≤ ∥l∥∥an∥p.)

60. Let X be a Banach space. Show that a subset U ⊆ X is bounded if
and only if ℓ(U) ⊆ C is bounded for every ℓ ∈ X∗. (Hint: Uniform
boundedness principle.)


