Proseminar Partielle Differentialgleichungen
 Iryna Karpenko, Gwenael Mercier, Gerald Teschl

WS2020/21

Please see the lecture notes for further details.

1. Show Leibniz' rule

$$
\partial_{\alpha}(f \cdot g)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta}\left(\partial_{\beta} f\right)\left(\partial_{\alpha-\beta} g\right), \quad|\alpha| \leq k
$$

2. Verify the Gauss-Green theorem (by computing both integrals) in the case $u(x)=x$ and $U=B_{1}(0) \subset \mathbb{R}^{n}$.
3. Let U is a bounded C^{1} domain in \mathbb{R}^{n} and set $\frac{\partial g}{\partial \nu}:=\nu \cdot \partial g$. Verify Green's first identity

$$
\int_{U}(f \Delta g+\partial f \cdot \partial g) d^{n} x=\int_{\partial U} f \frac{\partial g}{\partial \nu} d S
$$

for $f \in C^{1}(\bar{U}), g \in C^{2}(\bar{U})$ and Green's second identity

$$
\int_{U}(f \Delta g-g \Delta f) d^{n} x=\int_{\partial U}\left(f \frac{\partial g}{\partial \nu}-g \frac{\partial f}{\partial \nu}\right) d S
$$

for $f, g \in C^{2}(\bar{U})$.
4. Find the general solution of the differential equation

$$
x_{1} u_{x_{1}}+\cdots+x_{n} u_{x_{n}}=c u
$$

5. Show that for a conservation law with bounded initial conditions, the gradient of the solution remains bounded on bounded positive time intervals (as long as the solution exists) if F is convex and g is increasing. (Hint: Use implicit differentiation to find a formula for u_{t}).
6. Solve the Laplace equation with initial conditions $u(0, y)=0, u_{x}(0, y)=y$.
7. Use the Cauchy-Kovalevskaya theorem to solve the wave equation

$$
u_{t t}=u_{x x}
$$

with initial conditions $u(0, x)=g(x), u_{t}(0, x)=h(x)$ and establish d'Alembert's formula

$$
u(t, x)=\frac{g(x+t)+g(x-t)}{2}+\frac{1}{2} \int_{x-t}^{x+t} h(y) d y
$$

(Hint: Introduce $v:=u_{x}, w:=u_{t}$ and compute the t derivatives of w.)
8. A function f is in the Gevrey class of order θ if for every $r>0$, there are some constants M, a such that

$$
\left|f^{(m)}(t)\right| \leq M a^{m}(m!)^{\theta}, \quad|t|<r
$$

Note that $\theta=1$ gives the class of real analytic functions, while for $\theta>1$ the function f will no longer be real analytic in general.
Show that if $\theta<2$, then

$$
u(t, x)=\sum_{m=0}^{\infty} \frac{f^{(m)}(t)}{(2 m)!} x^{2 m}
$$

converges for all $x \in \mathbb{R}$ and defines a solution of the heat equation.
9. Consider the Fourier sine

$$
f(x)=\sum_{n=1}^{\infty} s_{n}(f) \sin (n \pi x), \quad s_{n}(f)=2 \int_{0}^{1} \sin (n \pi x) f(x) d x
$$

and Fourier cosine series

$$
f(x)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} c_{n}(f) \cos (n \pi x), \quad c_{n}(f)=2 \int_{0}^{1} \cos (n \pi x) f(x) d x
$$

For given $k \in \mathbb{N}_{0}$, show that

$$
\sum_{n=1}^{\infty} n^{k}\left|c_{n}(f)\right|<\infty, \quad \sum_{n=1}^{\infty} n^{k}\left|s_{n}(f)\right|<\infty
$$

if $f \in C^{k+1}([0,1], \mathbb{C})$ with $f^{(2 j)}(0)=f^{(2 j)}(1)=0$ for $0 \leq j \leq k / 2$ for the case of $s_{n}(f)$ and $f^{(2 j+1)}(0)=f^{(2 j+1)}(1)=0$ for $0 \leq j<k / 2$ for the case of $c_{n}(f)$. (Hint: Use integration by parts to show

$$
c_{n}\left(f^{\prime}\right)=2\left((-1)^{n} f(1)-f(0)\right)+n \pi s_{n}(f)
$$

and

$$
s_{n}\left(f^{\prime}\right)=-n \pi c_{n}(f)
$$

Now use that for $g \in C([0,1], \mathbb{C})$, both $s_{n}(g)$ and $c_{n}(g)$ are square summable (this is known as Parseval's theorem and you can take it for granted). Moreover, the sequence n^{-1} is also square summable and the product of two square summable is (absolutely) summable by the Cauchy-Schwarz inequality.)
10. Show that for $u \in C^{1}[0,1]$ with $u(0)=u(1)=0$ we have the Poincaré inequality

$$
\int_{0}^{1} u(x)^{2} d x \leq C \int_{0}^{1} u^{\prime}(x)^{2} d x
$$

for some $C>0$. (Hint: Insert $u(x)=\int_{0}^{x} u^{\prime}(y) d y$ one the left. This gives the inequality with $C=\frac{1}{2}$.)
11. Solve the heat equation with Neumann boundary conditions $u_{x}(t, 0)=$ $u_{x}(t, 1)=0$. Show that the solution converges to the average temperature at an exponential rate. Show that the solution is unique.
12. Show that

$$
\varphi(t):= \begin{cases}\mathrm{e}^{-1 / t^{2}}, & t>0 \\ 0, & t \leq 0\end{cases}
$$

is in the Gevrey class of order $\theta=\frac{3}{2}$. (Hint: Use the Cauchy integral formula

$$
\varphi^{(m)}(t)=\frac{m!}{2 \pi \mathrm{i}} \oint_{\gamma} \frac{\mathrm{e}^{-z^{-2}}}{(z-t)^{m+1}} d z
$$

with $\gamma=\left\{\left.t+\frac{t}{2} \mathrm{e}^{\mathrm{i} \vartheta} \right\rvert\, 0 \leq \vartheta \leq 2 \pi\right\}$. You will need to find the minimum of $\operatorname{Re}\left(z^{-2}\right)$ on this circle. You can either argue why this minimum is positive or compute it explicitly. In the latter case a CAS might be helpful. Also you can use that $n^{n} \leq \mathrm{e}^{n} n!$.)
13. Show uniqueness for the heat equation with Robin boundary conditions provided $a_{0}, a_{1} \geq 0$.
14. Find transformations which reduce

- $u_{t}=u_{x x}+c u$
- $u_{t}=u_{x x}-a u_{x}$
to the heat equation. (Hint: For the first multiply u by a suitable function. For the second equation switch to a moving frame $y=x-a t$.)

15. Let $u \in C\left(\overline{U_{T}}\right) \cap C^{1 ; 2}\left(U_{T}\right)$ solve

$$
u_{t}=u_{x x}+f, \quad \begin{cases}u(0, x)=g(x), & x \in(0,1) \\ u(t, 0)=a_{0}(t), u(t, 1)=a_{1}(t), & t \in[0, T]\end{cases}
$$

Show

$$
|u| \leq \max _{[0,1]}|g|+\max _{[0, T]}\left|a_{0}\right|+\max _{[0, T]}\left|a_{1}\right|+T \max _{[0, T] \times[0,1]}|f| .
$$

(Hint: Apply the maximum principle to $v:=u-t F$, where F is a suitably chosen constant.)
16. Let

$$
L:=-\frac{d^{2}}{d x^{2}}+q(x), \quad x \in(a, b)
$$

defined for $f, g \in C^{2}(a, b)$ satisfying the boundary conditions

$$
\cos (\alpha) y(a)=\sin (\alpha) y^{\prime}(a), \quad \cos (\beta) y(b)=\sin (\beta) y^{\prime}(b)
$$

Show that for twice differentiable functions f, g satisfying the boundary conditions we have

$$
\langle f, L g\rangle=\langle L f, g\rangle
$$

Use this to show that all eigenvalues E_{n} of L are real and eigenvectors corresponding to different eigenvalues are orthogonal.
17. Show that solutions of

$$
\begin{aligned}
& \frac{1}{c^{2}} u_{t t}(t, x)-u_{x x}(t, x)+q(x) u(t, x)=0 \\
& u(0, x)=g(x), \quad u_{t}(0, x)=h(x) \\
& u(t, 0)=u(t, 1)=0
\end{aligned}
$$

preserve the energy

$$
E(t)=\frac{1}{2} \int_{0}^{1}\left(c^{-2} u_{t}(t, x)^{2}+u_{x}(t, x)^{2}+q(x) u(t, x)^{2}\right) d x
$$

Conclude that solutions are unique if $q(x) \geq 0$.
18. Prove Lemma 2.10 from the lecture notes.
19. Solve the wave equation with damping

$$
u_{t t}(t, x)+2 \eta u_{t}=c^{2} u_{x x}, \quad 0<\eta<c,
$$

and Dirichlet boundary conditions on $[0,1]$. Show that the solutions converge to 0 . Show that the energy is non-increasing and conclude that solutions are unique.
20. Solve the conservation law in \mathbb{R}^{2} with velocity field $v(t, x):=x$.
21. Let $\Gamma=\left\{x \in \mathbb{R}^{2} \mid x_{1}=0\right\}$ and solve

$$
u_{x_{1}} u_{x_{2}}=4 u, \quad u\left(0, x_{2}\right)=x_{2}^{2}
$$

22. Solve the Laplace equation with initial conditions $u(0, y)=y^{2}, u_{x}(0, y)=$ 0.
23. Solve

$$
u_{t}(t, x)=u_{x x}(t, x), \quad u(t, 0)=u(t, 1)=0, \quad u(0, x)=2 \sin (\pi x) \cos (\pi x)
$$

24. Explain how d'Alembert's formula can be used to obtain solutions which satisfy Neumann boundary conditions $u_{x}(t, 0)=u_{x}(t, 1)=0$. Discuss what happens to a small bump traveling to the right.
25. Let ρ_{1}, ρ_{2} be two solutions of

$$
\rho^{\prime \prime}+\frac{1}{r} \rho^{\prime}-\frac{n^{2}}{r^{2}} \rho=-\lambda \rho
$$

corresponding to λ_{1}, λ_{2}, respectively. Show that

$$
\frac{d}{d r} r\left(\rho_{1}(r) \rho_{2}^{\prime}(r)-\rho_{1}^{\prime}(r) \rho_{2}(r)\right)=\left(\lambda_{1}-\lambda_{2}\right) r \rho_{1}(r) \rho_{2}(r)
$$

Conclude

$$
\int_{0}^{1} J_{n}\left(j_{n, k} r\right) J_{n}\left(j_{n, l} r\right) r d r= \begin{cases}\frac{1}{2} J_{n}^{\prime}\left(j_{n, k}\right)^{2}, & l=k \\ 0, & l \neq k\end{cases}
$$

Note that $J_{n}^{\prime}\left(j_{n, k}\right) \neq 0$ since if for a solution of a second order linear equation both the function and its derivative would vanish, it would be the zero solution.
26. Consider the vibrations of a chain of length 1 suspended at $x=1$. Denote the displacement by $u(t, x)$. Then the motion is described by the equation

$$
u_{t t}(t, x)=g \frac{\partial}{\partial x} x \frac{\partial}{\partial x} u(t, x), \quad x \in[0,1]
$$

with boundary conditions $u(t, 1)=0$, where $g>0$ is a constant. Apply separation of variables to find the eigenvalues and eigenfunctions.
27. Find the solution of the Laplace equation on the unit disc which satisfies $u(x, y)=x^{2}$ for $x^{2}+y^{2}=1$. Give the solution in Cartesian coordinates.
28. Compute the Fourier transform of the following functions $f: \mathbb{R} \rightarrow \mathbb{C}$:
(i) $f(x)=\chi_{(-1,1)}(x)$.
(ii) $f(x)=\frac{\mathrm{e}^{-a|x|}}{a}, \quad \operatorname{Re}(a)>0$.
29. Show that

$$
\psi_{n}(x)=H_{n}(x) \mathrm{e}^{-\frac{x^{2}}{2}},
$$

where $H_{n}(x)$ is the Hermite polynomial of degree n given by

$$
H_{n}(x):=\mathrm{e}^{\frac{x^{2}}{2}}\left(x-\frac{d}{d x}\right)^{n} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

are eigenfunctions of the Fourier transform: $\hat{\psi}_{n}(k)=(-\mathrm{i})^{n} \psi_{n}(k)$.
30. Find the solution of the heat equation on $(0, \infty)$ with a Dirichlet boundary condition at 0 . What about Neumann boundary conditions? (Hint: Reflection.)
31. Compute the energy of the fundamental solution Φ of the heat equation. Show that it does not decay exponentially, and conclude that there is no Poincaré inequality on \mathbb{R}.
32. Establish Huygens' principle: Suppose g, h are supported in $[a, b] \subset \mathbb{R}$. Then the solution of the wave equation has support in $\{(t, x) \mid x \in[a-$ $c t, b+c t]\}$. If $\int_{a}^{b} h(x) d x=0$ the support is in $\{(t, x) \mid x \in[a-c t, b-c t] \cup$ $[a+c t, b+c t]\}$.
33. Find the solution of the wave equation on $(0, \infty)$ with a Dirichlet boundary condition at 0 . What about Neumann boundary conditions? (Hint: Reflection.)
34. Verify that

$$
u(t, x)=\frac{1}{2} \int_{0}^{t} \int_{x-(t-s)}^{x+(t-s)} f(s, y) d y d s
$$

is in C^{2} and solves the inhomogeneous wave equation provided $f \in C^{0 ; 1}\left(\mathbb{R}^{2}\right)$.
35. Let $\phi \in C^{3}$ with $\phi^{\prime}\left(k_{0}\right)=0$ and $\phi^{\prime \prime}\left(k_{0}\right) \neq 0$. Show that there is a local change of coordinates $\kappa \in C^{2}$ such that $\phi(k)-\phi\left(k_{0}\right)=\frac{\sigma}{2} \kappa\left(k-k_{0}\right)^{2}$, $\sigma:=\operatorname{sign}\left(\phi^{\prime \prime}\left(k_{0}\right)\right)$, holds in a neighborhood of k_{0}. In particular, $\kappa(0)=0$, $\kappa^{\prime}(0)=\sqrt{\left|\phi^{\prime \prime}\left(k_{0}\right)\right|}$, and $\kappa^{\prime \prime}(0)=\frac{\sigma}{3 \sqrt{\left|\phi^{\prime \prime}\left(k_{0}\right)\right|}} \phi^{\prime \prime \prime}\left(k_{0}\right)$. Moreover, if $\phi \in C^{4}$, then $\kappa \in C^{3}$.
36. Use the integral representation for the Bessel function

$$
J_{n}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}(n t-\sin (t) x)} d t, \quad n \in \mathbb{N}_{0}
$$

to establish the asymptotics

$$
J_{n}(x)=\sqrt{\frac{2}{\pi x}}\left(\cos \left(x-\frac{\pi}{2} n-\frac{\pi}{4}\right)+O\left(x^{-1 / 2}\right)\right)
$$

37. Show that a positive harmonic function on \mathbb{R}^{n} is constant. Moreover, a harmonic function on \mathbb{R}^{n} is constant if it is bounded from above or from below. (Hint: Fix two points x, y and note that $B_{r}(x) \subset B_{r+d}(y)$ for $d:=|x-y|$.
38. Find all harmonic functions u in \mathbb{R}^{2} such that $u_{x}(x, y)<u_{y}(x, y)$.
39. Show that if u is harmonic, then $\varphi(u)$ is subharmonic for every convex function $\varphi \in C(\mathbb{R})$.
40. Suppose f is integrable with compact support and $n \geq 3$. Then the Newton potential satisfies

$$
u(x)=C \Phi(x)+O\left(|x|^{-n+1}\right)
$$

as $|x| \rightarrow \infty$, where $C:=\int_{\mathbb{R}^{n}} f(y) d^{n} y$. (Hint: The inverse triangle inequality $||x|-|y|| \leq|x-y|$ might be useful.)
41. Let U be a bounded C^{1} domain and let a partition of its boundary $\partial U=V_{1} \cup V_{2}$ be given. Show that solutions $u \in C^{2}(\bar{U})$ of the mixed Dirichlet/Neumann problem

$$
-\Delta u=f,\left.\quad u\right|_{V_{1}}=g_{1},\left.\quad \frac{\partial u}{\partial \nu}\right|_{V_{2}}=g_{2}
$$

differ by at most a constant. Moreover, this constant is zero if V_{1} is nonempty. (Hint: Green's first identity with both functions equal.)
42. Let G be the Green function of the unit ball. Compute $\int_{B_{1}(0)} G(x, y) d^{n} y$. (Hint: There is no need to do the integral.)
43. Prove the following Theorem:

Let U be a bounded domain and suppose L is uniformly elliptic with $c \geq 0$. Then the problem

$$
L u=f,\left.\quad u\right|_{\partial U}=g
$$

has at most one solution $u \in C^{2}(U) \cap C(\bar{U})$ for given $g \in C(\partial U), f \in C(U)$. Moreover, there is a constant C depending only on U and L such that a solution satisfies

$$
\max _{\bar{U}}|u| \leq \max _{\partial U}|g|+C \sup _{U}|f| .
$$

(Hint: Assume that U is within a strip $0<x_{1}<r$ and construct a supersolution using $\mathrm{e}^{\lambda x_{1}}$.)
44. Derive a Dirichlet principle for the elliptic operator \tilde{L} in divergence form with $A \in C^{1}$ and $b=0$.
45. Compute the Fourier transform of

$$
|x|^{2} \mathrm{e}^{-|x|^{2} / 2}
$$

in \mathbb{R}^{n}. (Hint: There is no need to compute integrals.)
46. Find a function f such that $\int_{\mathbb{R}} f(y) f(x-y) d y=\mathrm{e}^{-x^{2}}$.
47. Compute the Fourier transform of

$$
\varphi_{t}(x)=\sqrt{\frac{\pi}{2}} \frac{\chi_{[0, t]}(|x|)}{|x|}, \quad t \geq 0
$$

in \mathbb{R}^{3}. (Hint: Spherical coordinates.)
48. Suppose g is integrable. Show that solutions of the heat equation satisfy

$$
\int_{\mathbb{R}^{n}}|u(t, x)| d^{n} x \leq \int_{\mathbb{R}^{n}}|g(x)| d^{n} x
$$

with the inequality being strict unless g is of one sign.
49. Let $\rho_{n}(t):=\sqrt{2 n t \log \left(\frac{r^{2}}{4 \pi t}\right)}$. Show

$$
\frac{1}{2 r^{n}} \int_{t-r^{2} / 4 \pi}^{t} \frac{\rho_{n}(t-s)}{t-s} \int_{|y-x|=\rho_{n}(t-s)} d S(y) d s=1
$$

(Hint: The final integral can be evaluated in terms of the Gamma function - Problem A. 5 in the text.)
50. Let L be elliptic and suppose $c(x) \geq-c_{0}$ with $c_{0} \geq 0$. Show that if u solves $u_{t}+L u \leq 0$, then

$$
u(t, x) \leq \mathrm{e}^{c_{0} t} \max _{(t, x) \in \Gamma_{T}} u(t, x), \quad 0 \leq t \leq T
$$

(Hint: Find a transformation to reduce it to the case $c(x) \geq 0$. Then apply the results from the text.)
51. Find the solution of the wave equation with initial condition $g(x)=0$, $h(x)=|x|^{2}$ in \mathbb{R}^{3}.
52. Derive a formula for the Fourier transform $\hat{u}(t, k)$ of a solution of the Klein-Gordon equation

$$
u_{t t}=\Delta u-m^{2} u, \quad u(0)=g, \quad u_{t}(0)=h
$$

with $m>0$.
53. Maxwell's equations in vacuum for the electric field $E(t, x)$ and the magnetic field $B(t, x)$ are given by

$$
B_{t}=-\operatorname{curl} E, \quad \mu_{0} \varepsilon_{0} E_{t}=\operatorname{curl} B, \quad \operatorname{div} E=0, \quad \operatorname{div} B=0,
$$

where $\mu_{0}>0$ and $\varepsilon_{0}>0$ are the permeability and the permittivity of the vacuum, respectively. Show that both E and B satisfy the wave equation with $c=\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$. Here curl $f:=\nabla \times f$ is the infinitesimal circulation (also known as rotation) of a vector field f in \mathbb{R}^{3}.
54. Suppose g and h are supported in a ball of radius r. Use Kirchhoff's formula to show

$$
|u(t, x)| \leq \frac{C r^{2}}{|t|}\left(\sup _{\mathbb{R}^{3}}|g|+\sup _{\mathbb{R}^{3}}|\nabla g|+\sup _{\mathbb{R}^{3}}|h|\right)
$$

for $t \geq 1$. (Hint: What is the area of $\partial B_{|t|}(x) \cap B_{r}(0)$?)

