## Proseminar Partielle Differentialgleichungen Iryna Karpenko, Gwenael Mercier, Gerald Teschl WS2020/21

Please see the lecture notes for further details.

1. Show Leibniz' rule

$$\partial_{\alpha}(f \cdot g) = \sum_{\beta \leq \alpha} {\alpha \choose \beta} (\partial_{\beta} f) (\partial_{\alpha - \beta} g), \quad |\alpha| \leq k.$$

- 2. Verify the Gauss–Green theorem (by computing both integrals) in the case u(x) = x and  $U = B_1(0) \subset \mathbb{R}^n$ .
- 3. Let U is a bounded  $C^1$  domain in  $\mathbb{R}^n$  and set  $\frac{\partial g}{\partial \nu} := \nu \cdot \partial g$ . Verify Green's first identity

$$\int_{U} (f\Delta g + \partial f \cdot \partial g) d^{n}x = \int_{\partial U} f \frac{\partial g}{\partial \nu} dS$$

for  $f \in C^1(\overline{U}), \, g \in C^2(\overline{U})$  and Green's second identity

$$\int_{U} (f\Delta g - g\Delta f) d^{n}x = \int_{\partial U} \left( f \frac{\partial g}{\partial \nu} - g \frac{\partial f}{\partial \nu} \right) dS$$

for  $f, g \in C^2(\overline{U})$ .

4. Find the general solution of the differential equation

$$x_1u_{x_1} + \dots + x_nu_{x_n} = c u$$

- 5. Show that for a conservation law with bounded initial conditions, the gradient of the solution remains bounded on bounded positive time intervals (as long as the solution exists) if F is convex and g is increasing. (Hint: Use implicit differentiation to find a formula for  $u_t$ ).
- 6. Solve the Laplace equation with initial conditions u(0, y) = 0,  $u_x(0, y) = y$ .
- 7. Use the Cauchy–Kovalevskaya theorem to solve the wave equation

$$u_{tt} = u_{xx}$$

with initial conditions  $u(0, x) = g(x), u_t(0, x) = h(x)$  and establish d'Alembert's formula  $g(x + t) + g(x - t) = 1 - f^{x+t}$ 

$$u(t,x) = \frac{g(x+t) + g(x-t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} h(y) dy$$

(Hint: Introduce  $v := u_x$ ,  $w := u_t$  and compute the t derivatives of w.)

8. A function f is in the Gevrey class of order  $\theta$  if for every r > 0, there are some constants M, a such that

$$|f^{(m)}(t)| \le Ma^m (m!)^{\theta}, \qquad |t| < r.$$

Note that  $\theta = 1$  gives the class of real analytic functions, while for  $\theta > 1$  the function f will no longer be real analytic in general. Show that if  $\theta < 2$ , then

$$u(t,x) = \sum_{m=0}^{\infty} \frac{f^{(m)}(t)}{(2m)!} x^{2m}$$

converges for all  $x \in \mathbb{R}$  and defines a solution of the heat equation.

9. Consider the Fourier sine

$$f(x) = \sum_{n=1}^{\infty} s_n(f) \sin(n\pi x), \qquad s_n(f) = 2 \int_0^1 \sin(n\pi x) f(x) dx,$$

and Fourier cosine series

$$f(x) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n(f) \cos(n\pi x), \qquad c_n(f) = 2 \int_0^1 \cos(n\pi x) f(x) dx.$$

For given  $k \in \mathbb{N}_0$ , show that

$$\sum_{n=1}^{\infty} n^k |c_n(f)| < \infty, \qquad \sum_{n=1}^{\infty} n^k |s_n(f)| < \infty$$

if  $f \in C^{k+1}([0,1], \mathbb{C})$  with  $f^{(2j)}(0) = f^{(2j)}(1) = 0$  for  $0 \le j \le k/2$  for the case of  $s_n(f)$  and  $f^{(2j+1)}(0) = f^{(2j+1)}(1) = 0$  for  $0 \le j < k/2$  for the case of  $c_n(f)$ . (Hint: Use integration by parts to show

$$c_n(f') = 2((-1)^n f(1) - f(0)) + n\pi s_n(f)$$

and

$$s_n(f') = -n\pi c_n(f).$$

Now use that for  $g \in C([0, 1], \mathbb{C})$ , both  $s_n(g)$  and  $c_n(g)$  are square summable (this is known as Parseval's theorem and you can take it for granted). Moreover, the sequence  $n^{-1}$  is also square summable and the product of two square summable is (absolutely) summable by the Cauchy–Schwarz inequality.)

10. Show that for  $u \in C^1[0,1]$  with u(0) = u(1) = 0 we have the Poincaré inequality

$$\int_{0}^{1} u(x)^{2} dx \le C \int_{0}^{1} u'(x)^{2} dx$$

for some C > 0. (Hint: Insert  $u(x) = \int_0^x u'(y) dy$  one the left. This gives the inequality with  $C = \frac{1}{2}$ .)

11. Solve the heat equation with Neumann boundary conditions  $u_x(t,0) = u_x(t,1) = 0$ . Show that the solution converges to the average temperature at an exponential rate. Show that the solution is unique.

12. Show that

$$\varphi(t) := \begin{cases} e^{-1/t^2}, & t > 0, \\ 0, & t \le 0, \end{cases}$$

is in the Gevrey class of order  $\theta = \frac{3}{2}$ . (Hint: Use the Cauchy integral formula

$$\varphi^{(m)}(t) = \frac{m!}{2\pi i} \oint_{\gamma} \frac{e^{-z^{-2}}}{(z-t)^{m+1}} dz$$

with  $\gamma = \{t + \frac{t}{2}e^{i\vartheta}| 0 \le \vartheta \le 2\pi\}$ . You will need to find the minimum of  $\operatorname{Re}(z^{-2})$  on this circle. You can either argue why this minimum is positive or compute it explicitly. In the latter case a CAS might be helpful. Also you can use that  $n^n \le e^n n!$ .)

- 13. Show uniqueness for the heat equation with Robin boundary conditions provided  $a_0, a_1 \ge 0$ .
- 14. Find transformations which reduce
  - $u_t = u_{xx} + cu$
  - $u_t = u_{xx} au_x$

to the heat equation. (Hint: For the first multiply u by a suitable function. For the second equation switch to a moving frame y = x - at.)

15. Let  $u \in C(\overline{U_T}) \cap C^{1,2}(U_T)$  solve

$$u_t = u_{xx} + f, \quad \begin{cases} u(0,x) = g(x), & x \in (0,1), \\ u(t,0) = a_0(t), \ u(t,1) = a_1(t), & t \in [0,T]. \end{cases}$$

Show

$$|u| \leq \max_{[0,1]} |g| + \max_{[0,T]} |a_0| + \max_{[0,T]} |a_1| + T \max_{[0,T] \times [0,1]} |f|$$

(Hint: Apply the maximum principle to v := u - tF, where F is a suitably chosen constant.)

16. Let

$$L := -\frac{d^2}{dx^2} + q(x), \qquad x \in (a, b),$$

defined for  $f, g \in C^2(a, b)$  satisfying the boundary conditions

$$\cos(\alpha)y(a) = \sin(\alpha)y'(a), \quad \cos(\beta)y(b) = \sin(\beta)y'(b).$$

Show that for twice differentiable functions f,g satisfying the boundary conditions we have

$$\langle f, Lg \rangle = \langle Lf, g \rangle.$$

Use this to show that all eigenvalues  $E_n$  of L are real and eigenvectors corresponding to different eigenvalues are orthogonal.

17. Show that solutions of

$$\begin{split} &\frac{1}{c^2} u_{tt}(t,x) - u_{xx}(t,x) + q(x) u(t,x) = 0, \\ &u(0,x) = g(x), \qquad u_t(0,x) = h(x), \\ &u(t,0) = u(t,1) = 0. \end{split}$$

preserve the energy

$$E(t) = \frac{1}{2} \int_0^1 \left( c^{-2} u_t(t,x)^2 + u_x(t,x)^2 + q(x) u(t,x)^2 \right) dx.$$

Conclude that solutions are unique if  $q(x) \ge 0$ .

- 18. Prove Lemma 2.10 from the lecture notes.
- 19. Solve the wave equation with damping

$$u_{tt}(t,x) + 2\eta u_t = c^2 u_{xx}, \qquad 0 < \eta < c,$$

and Dirichlet boundary conditions on [0, 1]. Show that the solutions converge to 0. Show that the energy is non-increasing and conclude that solutions are unique.

- 20. Solve the conservation law in  $\mathbb{R}^2$  with velocity field v(t, x) := x.
- 21. Let  $\Gamma = \{x \in \mathbb{R}^2 | x_1 = 0\}$  and solve

$$u_{x_1}u_{x_2} = 4u, \qquad u(0, x_2) = x_2^2.$$

- 22. Solve the Laplace equation with initial conditions  $u(0, y) = y^2$ ,  $u_x(0, y) = 0$ .
- 23. Solve

$$u_t(t,x) = u_{xx}(t,x),$$
  $u(t,0) = u(t,1) = 0,$   $u(0,x) = 2\sin(\pi x)\cos(\pi x)$ 

- 24. Explain how d'Alembert's formula can be used to obtain solutions which satisfy Neumann boundary conditions  $u_x(t,0) = u_x(t,1) = 0$ . Discuss what happens to a small bump traveling to the right.
- 25. Let  $\rho_1$ ,  $\rho_2$  be two solutions of

$$\rho^{\prime\prime} + \frac{1}{r}\rho^{\prime} - \frac{n^2}{r^2}\rho = -\lambda\rho$$

corresponding to  $\lambda_1$ ,  $\lambda_2$ , respectively. Show that

$$\frac{d}{dr}r(\rho_1(r)\rho_2'(r) - \rho_1'(r)\rho_2(r)) = (\lambda_1 - \lambda_2)r\,\rho_1(r)\rho_2(r).$$

Conclude

$$\int_0^1 J_n(j_{n,k}r) J_n(j_{n,l}r) r \, dr = \begin{cases} \frac{1}{2} J'_n(j_{n,k})^2, & l = k, \\ 0, & l \neq k. \end{cases}$$

Note that  $J'_n(j_{n,k}) \neq 0$  since if for a solution of a second order linear equation both the function and its derivative would vanish, it would be the zero solution.

26. Consider the vibrations of a chain of length 1 suspended at x = 1. Denote the displacement by u(t, x). Then the motion is described by the equation

$$u_{tt}(t,x)=g\frac{\partial}{\partial x}x\frac{\partial}{\partial x}u(t,x),\quad x\in[0,1],$$

with boundary conditions u(t, 1) = 0, where g > 0 is a constant. Apply separation of variables to find the eigenvalues and eigenfunctions.

27. Find the solution of the Laplace equation on the unit disc which satisfies  $u(x,y) = x^2$  for  $x^2 + y^2 = 1$ . Give the solution in Cartesian coordinates.

28. Compute the Fourier transform of the following functions  $f : \mathbb{R} \to \mathbb{C}$ :

(i) 
$$f(x) = \chi_{(-1,1)}(x)$$
. (ii)  $f(x) = \frac{e^{-a|x|}}{a}$ ,  $\operatorname{Re}(a) > 0$ .

29. Show that

$$\psi_n(x) = H_n(x) \mathrm{e}^{-\frac{x^2}{2}},$$

where  $H_n(x)$  is the Hermite polynomial of degree n given by

$$H_n(x) := \mathrm{e}^{\frac{x^2}{2}} \left( x - \frac{d}{dx} \right)^n \mathrm{e}^{-\frac{x^2}{2}},$$

are eigenfunctions of the Fourier transform:  $\hat{\psi}_n(k) = (-i)^n \psi_n(k)$ .

- 30. Find the solution of the heat equation on  $(0, \infty)$  with a Dirichlet boundary condition at 0. What about Neumann boundary conditions? (Hint: Reflection.)
- 31. Compute the energy of the fundamental solution  $\Phi$  of the heat equation. Show that it does not decay exponentially, and conclude that there is no Poincaré inequality on  $\mathbb{R}$ .
- 32. Establish Huygens' principle: Suppose g, h are supported in  $[a, b] \subset \mathbb{R}$ . Then the solution of the wave equation has support in  $\{(t, x)|x \in [a - ct, b + ct]\}$ . If  $\int_a^b h(x)dx = 0$  the support is in  $\{(t, x)|x \in [a - ct, b - ct] \cup [a + ct, b + ct]\}$ .

- 33. Find the solution of the wave equation on  $(0, \infty)$  with a Dirichlet boundary condition at 0. What about Neumann boundary conditions? (Hint: Reflection.)
- 34. Verify that

$$u(t,x) = \frac{1}{2} \int_0^t \int_{x-(t-s)}^{x+(t-s)} f(s,y) dy \, ds$$

is in  $C^2$  and solves the inhomogeneous wave equation provided  $f \in C^{0;1}(\mathbb{R}^2)$ .

- 35. Let  $\phi \in C^3$  with  $\phi'(k_0) = 0$  and  $\phi''(k_0) \neq 0$ . Show that there is a local change of coordinates  $\kappa \in C^2$  such that  $\phi(k) \phi(k_0) = \frac{\sigma}{2}\kappa(k k_0)^2$ ,  $\sigma := \operatorname{sign}(\phi''(k_0))$ , holds in a neighborhood of  $k_0$ . In particular,  $\kappa(0) = 0$ ,  $\kappa'(0) = \sqrt{|\phi''(k_0)|}$ , and  $\kappa''(0) = \frac{\sigma}{3\sqrt{|\phi''(k_0)|}}\phi'''(k_0)$ . Moreover, if  $\phi \in C^4$ , then  $\kappa \in C^3$ .
- 36. Use the integral representation for the Bessel function

$$J_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(nt - \sin(t)x)} dt, \qquad n \in \mathbb{N}_0,$$

to establish the asymptotics

$$J_n(x) = \sqrt{\frac{2}{\pi x}} \left( \cos\left(x - \frac{\pi}{2}n - \frac{\pi}{4}\right) + O(x^{-1/2}) \right).$$

- 37. Show that a positive harmonic function on  $\mathbb{R}^n$  is constant. Moreover, a harmonic function on  $\mathbb{R}^n$  is constant if it is bounded from above or from below. (Hint: Fix two points x, y and note that  $B_r(x) \subset B_{r+d}(y)$  for d := |x y|.)
- 38. Find all harmonic functions u in  $\mathbb{R}^2$  such that  $u_x(x,y) < u_y(x,y)$ .
- 39. Show that if u is harmonic, then  $\varphi(u)$  is subharmonic for every convex function  $\varphi \in C(\mathbb{R})$ .
- 40. Suppose f is integrable with compact support and  $n \ge 3$ . Then the Newton potential satisfies

$$u(x) = C\Phi(x) + O(|x|^{-n+1})$$

as  $|x| \to \infty$ , where  $C := \int_{\mathbb{R}^n} f(y) d^n y$ . (Hint: The inverse triangle inequality  $||x| - |y|| \le |x - y|$  might be useful.)

41. Let U be a bounded  $C^1$  domain and let a partition of its boundary  $\partial U = V_1 \cup V_2$  be given. Show that solutions  $u \in C^2(\overline{U})$  of the mixed Dirichlet/Neumann problem

$$-\Delta u = f, \qquad u|_{V_1} = g_1, \quad \frac{\partial u}{\partial \nu}\Big|_{V_2} = g_2,$$

differ by at most a constant. Moreover, this constant is zero if  $V_1$  is nonempty. (Hint: Green's first identity with both functions equal.)

- 42. Let G be the Green function of the unit ball. Compute  $\int_{B_1(0)} G(x, y) d^n y$ . (Hint: There is no need to do the integral.)
- 43. Prove the following Theorem:

Let U be a bounded domain and suppose L is uniformly elliptic with  $c \ge 0$ . Then the problem

$$Lu = f, \qquad u|_{\partial U} = g.$$

has at most one solution  $u \in C^2(U) \cap C(\overline{U})$  for given  $g \in C(\partial U)$ ,  $f \in C(U)$ . Moreover, there is a constant C depending only on U and L such that a solution satisfies

$$\max_{\overline{U}} |u| \le \max_{\partial U} |g| + C \sup_{U} |f|.$$

(Hint: Assume that U is within a strip  $0 < x_1 < r$  and construct a supersolution using  $e^{\lambda x_1}$ .)

44. Derive a Dirichlet principle for the elliptic operator  $\tilde{L}$  in divergence form with  $A \in C^1$  and b = 0.

45. Compute the Fourier transform of

$$|x|^2 e^{-|x|^2/2}$$

in  $\mathbb{R}^n$ . (Hint: There is no need to compute integrals.)

- 46. Find a function f such that  $\int_{\mathbb{R}} f(y) f(x-y) dy = e^{-x^2}$ .
- 47. Compute the Fourier transform of

$$\varphi_t(x) = \sqrt{\frac{\pi}{2}} \frac{\chi_{[0,t]}(|x|)}{|x|}, \qquad t \ge 0,$$

in  $\mathbb{R}^3$ . (Hint: Spherical coordinates.)

48. Suppose g is integrable. Show that solutions of the heat equation satisfy

$$\int_{\mathbb{R}^n} |u(t,x)| d^n x \leq \int_{\mathbb{R}^n} |g(x)| d^n x$$

with the inequality being strict unless g is of one sign.

49. Let  $\rho_n(t) := \sqrt{2nt \log(\frac{r^2}{4\pi t})}$ . Show

$$\frac{1}{2r^n} \int_{t-r^2/4\pi}^t \frac{\rho_n(t-s)}{t-s} \int_{|y-x|=\rho_n(t-s)} dS(y) ds = 1.$$

(Hint: The final integral can be evaluated in terms of the Gamma function — Problem A.5 in the text.)

50. Let L be elliptic and suppose  $c(x) \ge -c_0$  with  $c_0 \ge 0$ . Show that if u solves  $u_t + Lu \le 0$ , then

$$u(t,x) \le e^{c_0 t} \max_{(t,x)\in\Gamma_T} u(t,x), \qquad 0 \le t \le T.$$

(Hint: Find a transformation to reduce it to the case  $c(x) \ge 0$ . Then apply the results from the text.)

- 51. Find the solution of the wave equation with initial condition g(x) = 0,  $h(x) = |x|^2$  in  $\mathbb{R}^3$ .
- 52. Derive a formula for the Fourier transform  $\hat{u}(t,k)$  of a solution of the Klein–Gordon equation

$$u_{tt} = \Delta u - m^2 u, \qquad u(0) = g, \quad u_t(0) = h,$$

with m > 0.

53. Maxwell's equations in vacuum for the electric field E(t, x) and the magnetic field B(t, x) are given by

$$B_t = -\operatorname{curl} E, \quad \mu_0 \varepsilon_0 E_t = \operatorname{curl} B, \quad \operatorname{div} E = 0, \quad \operatorname{div} B = 0,$$

where  $\mu_0 > 0$  and  $\varepsilon_0 > 0$  are the permeability and the permittivity of the vacuum, respectively. Show that both E and B satisfy the wave equation with  $c = (\mu_0 \varepsilon_0)^{-1/2}$ . Here curl  $f := \nabla \times f$  is the infinitesimal circulation (also known as rotation) of a vector field f in  $\mathbb{R}^3$ .

54. Suppose g and h are supported in a ball of radius r. Use Kirchhoff's formula to show

$$|u(t,x)| \le \frac{Cr^2}{|t|} \left( \sup_{\mathbb{R}^3} |g| + \sup_{\mathbb{R}^3} |\nabla g| + \sup_{\mathbb{R}^3} |h| \right)$$

for  $t \ge 1$ . (Hint: What is the area of  $\partial B_{|t|}(x) \cap B_r(0)$ ?)