
1 Fermat Numbers

Following P.Giordano by Fermat number we understand number of the form

x = r +
n∑

i=1

αiτ
ai (1)

where r, αi, ai, i = 1, 2, ..., n are standard numbers (given e.g. by their dec-
imal representations)such that a1 < a2 < ... < an ≤ 1 and τ is nilpotent
number,i.e. τa = 0, a > 1.

2 Fokker-Planck equations

Let x be a state variable for some system (with one degree of freedom). By
a process we understand the map t 7→ x(t). The process t 7→ x(t) is said to
be forward diffusion if it obeys the first Îto equation

x(t + τ) = x(t) + b(t, x(t))τ + λτ 1/2, (2)

where b = b(t, x) is called the forward drift velocity, λ - diffusion coefficient
of the process and τ is nilpotent variable such that τ 3/2 = 0.

The observables of the system are the smooth functions f(t, x). Since
(bτ + λτ 1/2)2 = λ2τ and (bτ + λτ 1/2)3 = 0 we have

δf := f(t + τ, x(t + τ)− f(t, x(t)) = [∂tf(t, x(t)) + b(t, x(t))∂xf(t, x(t))

+λ2/2∂xxf(t, x(t))]τ + λ∂xf(t, x(t))τ 1/2.

The linear part of this expression determines the forward operator D of full
time derivative given by

D = ∂t + b(t, x)∂x + (λ2/2)∂xx. (3)

The statistical state of the system is determined by the probability density
(pd) ρ(t, x) and the mean value of some observable non-depending on time
f(x) in such state is given by

〈f〉 =
∫

f(x)ρ(t, x)dx. (4)
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Assuming that taking the mean value and full time derivative are independent
(and therefore commute)we have

D〈f〉 = 〈Df〉 (5)

.Integrating by parts one can easily obtain the forward Fokker-Planck equa-
tion

∂ρ

∂t
+

∂(bρ)

∂x
− λ2

2

∂2ρ

∂x2
= 0. (6)

Analogically the backward diffusion is defined by the second Îto equation

x(t) = x(t− τ) + b∗(t, x(t))τ + λτ 1/2, (7)

where b∗ is the backward drift velocity. The change of the observable f is
equal to

δ∗f := f(t, x(t))− f(t− τ, x(t− τ)). (8)

Again the linear part of this expression determines the backward operator of
full time derivative

D∗ = ∂t + b∗(t, x)∂x − (λ2/2)∂xx (9)

which leads to the backward Fokker-Planck equation

∂ρ∗
∂t

+
∂(b∗ρ∗)

∂x
+

λ2

2

∂2ρ∗
∂x2

= 0. (10)

3 Quantum Systems

In general the solutions of the equations (6) and (10) are different but if we
want to consider a particle with coordinate x(t) at time t then we say that
this is a quantum particle if λ2 = h̄/m ,m being the mass of the particle, and
that the particle is in quantum equilibrium when ρ = ρ∗. Summing the two
equations we come to the continuity equation

∂ρ

∂t
+

∂(ρv)

∂x
= 0, (11)
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where v = (b+b∗)/2 is the mean velocity. The difference of the two equations
yields the so called osmotic velocity

u := (b− b∗)/2 =
h̄

2m

ρx

ρ
, (12)

where ρx = ∂ρ/∂x.
This is not all however. While the probability density ρ(t, x) reflects our

ignorance of the true position, the velocity at some point x is intrinsically not
well defined - due to the vacuum fluctuations it is contained with predom-
inating probability into interval [b, b∗], when b < b∗, or [b∗, b], when b∗ < b.
(Let us note that according to the Îto equations b∗ can be considered as in-
coming velocity into x and b as outgoing velocity from x.) This implies that
we can consider the momentum of the particle as a random variable with
mean value

〈p|t, x〉 = mv = m(b + b∗)/2 = Sx :=
∂S

∂x
, (13)

where we have introduced the momentum potential

S(t, x) =
∫ x

x0

mv(t, y)dy, (14)

x0 being arbitrary standard number.(Let us note that S is determined up to
additive constant.) and uncertainty

∆p(t, x) = m|u| = m|b− b∗|/2 =
h̄

2

|ρx|
ρ

. (15)

In other words there should exists a conditional pd w(p|t, x) such that the
local mean value of some observable f(x, p) at space -time point (t, x) is given
by

〈f |t, x〉 =
∫

f(x, p)w(p|t, x)dp. (16)

In particular the local dispersion is determined by

∆p(t, x)2 =
∫

(p− 〈p|t, x〉)2w(p|t, x)dp = 〈p2|t, x〉 − 〈p|t, x〉2. (17)
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4 Schrödinger equation

It is natural to consider w(t, x, p) = w(p|t, x)ρ(t, x) as the joint probability
density of the coordinate and momentum of the particle with pd of coordinate
ρ(t, x) and local pd of momentum at (t, x) equal to w(p|t, x). Then the mean
energy of the particle is

〈H〉 =
∫
{ p2

2m
+ V (t, x)}w(t, x, p)dpdx

=
∫
{〈p

2|t, x〉
2m

+ V (t, x)}ρ(t, x)dx. (18)

Using Eqs.(13),(15),(17) we come to the following expression

〈H〉 =
∫

Hdx, (19)

where

H = (
S2

x

2m
+ V (t, x))ρ +

h̄2

8m

ρ2
x

ρ
(20)

is the local density of energy at (t, x). We consider the pair (ρ, S) as a
statistical state of the particle describing its time evolution. Making change
of variables

ψ =
√

ρe
i
h̄

S, ψ∗ =
√

ρe−
i
h̄

S (21)

we obtain

H =
h̄2

2m
ψ∗xψx + V ψ∗ψ. (22)

The Hamilton equations of the system are

ih̄
∂ψ

∂t
=

δ〈H〉
δψ∗

:=
∂H

∂ψ∗
− ∂x

∂H

∂ψ∗x
, (23)

and the complex conjugate. Equation (23)is just the Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ V ψ. (24)
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5 Conclusion

Every successful derivation of Schrödinger equation allows to make some con-
clusions about the motion of a quantum particle. Given external conditions
(potential V (t, x)) the quantum state of the particle is given by the pair of
drift velocities (b, b∗) (or equivalently the pd of coordinate ρ and the mo-
mentum potential S). First of them gives the outgoing velocity b(t, x) from
x at time t, and the second gives the incoming velocity b∗(t, x) to x at the
same time t. Since the two velocities are (in general) different this means
infinite force acting on the particle. This leads in effect that the velocity (as
well the corresponding momentum) becomes a random quantity with local
pd (for momentum)w(p|t, x). The product W (t, x, p) = w(p|t, x)ρ(t, x) can
be considered as joint pd and the mean value of the energy with respect this
pd is functional depending on the field variables (ρ, S). Let us note that
w(p|t, x) is not known - it can be every pd with the same mean value 〈p|t, x〉
and same dispersion ∆p(t, x)2 of momentum. Any two such pd are therefore
equivalent with respect quantum state under consideration. In other words
in a given quantum state not only momentum at some point is not speci-
fied but a whole class of possible local pds of momentum at that point are
possible. Quantum state specifies only the local mean value and the local
dispersion (uncertainty) at the point. As a result, choosing e.g. the Gaussian
distribution one can suggest the following expression for the mean value of
some observable f(x, p)

〈f〉 =
∫

dx
∫

dpf(x, p)
ρ(t, x)√

2πσ2
exp{−(p− Sx)

2

2σ2
}, (25)

where σ = h̄|ρx/2ρ.
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