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Intuitive definition of complex system
Intuitively...
A complex system (CS) is a system made by a large number of relatively simple
entities that organize themselves without the intervention of an external
controller, create patterns, evolve and, sometime, learn (Mitchell, 2011)

Examples: the economy and financial markets, the immune system, road
traffic, insect colonies, flocking behavior in birds or fish, pedestrian
movements, urban growth and segregation, infrastructures, any non trivial
software, the WWW, natural language, the brain...

Complicated but not complex: a clock
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Present models and applications

Some modeling frameworks
cellular automata, agent based models, master equation based models, networked
dynamical systems, neural networks, evolutionary algorithms, machine learning,
complex networks, complexity measures...

Some applications
epidemic diffusion, vehicular traffic and its pollution, urban growth, infrastructure
management, pedestrian movements, design of emergency exists, tumor growth,
population dynamics and segregation, weak points in power grids, shopping mall
allocation...
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The problem: a universal mathematical theory?
Pros

Holland 95: I do believe a useful unified theory is possible
interdisciplinary perspective
it should encompass standard models

Crutchfield 03: Formal theory for
conceptual hygiene
identify tractable problems

why a math theory: common language, precise definitions and general results

Cons
Already have what we need, we simply need to apply it!
Math anxiety and What has theory done for me lately? Nothing!

Other theories: Kinetic theory for active particles (Bellomo et al), Memory
evolutive systems (Ehresmann, Vanbremeersh), Universal dynamics
(Mack)... no one is universal
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Interacting entities: intuitive description

Interacting entities
The system is made by interacting entities described by dynamical state
variables. Intuitively, an interacting entity is everything able to send or
receive signals to interact with something else.

Examples
cells of a cellular automata
agents of an agent based model
a vehicle, a traffic light or the piece of road between two following cars
advertisement in a street
goods exchanged in a market
a whole population of individuals
...
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Interactions: intuitive description
Interactions
An interaction i of type α is a causally directed process where a set of
agents a1, . . . , an, modify the state of a patient p through a propagator r .
The state space of the propagator r works as a resource space to change p

Examples
a particle p1 sending a signal s to a particle p2

a firm (agent) sending an advertisement (propagator) to a population
(patient)
a biological entity (agent) sending a chemical signal (propagator) to
another entity (patients) with suitable receptors
an object in an object oriented program sending a message to another
object
a single neuron receives multiple connections a1, . . . , an and sends an
electrical signal r to its unique axon p.
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Interaction spaces 1/4: interacting entities and interactions

Definition
A system of entities and interactions EI = (E , tst, tend, T , I) is given by

1 A set E , called the set of interacting entities.
2 A time interval [tst, tend], with 0 ≤ tst < tend ≤ +∞.
3 A finite set T called the set of types of interactions.
4 A set I called the set of interactions: every interaction i ∈ I can be written

as i = (a1, . . . , an, r , α, p) for some type of interaction α ∈ T , some entities
a1, . . . an, r , p ∈ E , where n ≥ 0 depends on i ;

We set Ei := {a1, . . . , an, r , p}, ag(i) := {a1, . . . , an}, pa(i) := {p} and
pr(i) := {r} to denote agents, patient and propagator of i

a1, . . . , an
r ,α−−−−→ p

ai1

ai2

piri, αi

ak1

ak3

pkrk, αk

aj1 = pi

aj2 = pk

pjrj , αj

ak2
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Activation: intuitive/formal description
Activation
Interactions occur only if at least one agent ak is active for that interaction i :
acak

i (ts
i ) = 1 at the starting time ts

i of i , where acak
i (t) ∈ [0, 1].

Agents can pass
to an active state because of an interaction (endogenous or exogenous)

1 Agents activate the propagator r at the starting time ts
i : acr

i (ts
i ) = 1

2 If no interaction stops r , it arrives and activates the patient at the arrival
time ta

i ≥ ts
i : acr

i (ta
i ) = 1, acp

i (ta
i ) = 1

3 After the arrival of the propagator we say that i is ongoing. We set
to
i (t) = ta

i if i occurs instantaneously and to
i (t) = t if it occurs continuously

in time

Examples
only people activated for the advertised products will have a modification
only biological entities with suitable receptors are active for interactions
only hungry predators are active for hunting preys
only software objects with a suitable public state can change
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Goods and resources: intuitive description

We will use these notions to define a complex adaptive systems, but they
are also useful for modeling

Goods and resources
When an interaction i starts, its agents probabilistically extract a quantity
(called good) γi(t) = π ∈ Ri from the state space of the propagator r of i
(called space of resources) and send the signal (r , π) to the patient p.

Examples
resources exhausted before the end of i : the propagator is deactivated
input currents of a neuron (goods) are integrated to change the
output synapses
A developer has a new house’s project (good π1) and money (good
π2). The state of the building’s plot will change unless the municipal
administration blocks the project
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Interaction spaces 2/4: State spaces and activation

Definition
Let EI = (E , tst, tend, T , I) be a system of entities and interactions. A system of
state spaces and activation maps SA = (S,S, R, x) for EI is given by:

1 For every interacting entity e ∈ E , a Borel space (Se ,Se), called the state
space of the interacting entity e

2 A state map x that satisfies ∀t ∈ [tst, tend] ∀e ∈ E : xe(t) ∈ [0, 1]I × Se
(stochastic path)

3 If i ∈ I, e ∈ E , t ∈ [tst, tend], the activation map ace
i (t) := xe(t)1,i ∈ [0, 1]

4 If a1, . . . , an
r ,α−−−−→ p ∈ I, then γi(t) := xr (t)2,i ∈ Ri is the state of the

goods of i in the space of resources Ri

Paolo Giordano (UniVienna) 9th SEAMS-UGM 2023 10 / 32



Occurrence times: intuitive description

Occurrence times
Generally speaking, interactions occur at random times. Using the
previous notations, we can say that ts

i , ta
i , to

i are random times (stochastic
paths) with model-depending distributions

Examples
an agent chooses a shop, based on its information about quality,
prices, and goods availability, at random times
a house leasing randomly occurs depending on the rate of birth, of
marriage, of immigration, etc
a virus infection depends randomly on the encountered hosts
an excited electron produces a photon that changes another electron
a program randomly starts depending on user’s interaction with
program’s interface
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Neighbourhood of an interaction: intuitive description

Neighborhood of an interaction
Occurrence and effects of an interaction i depend only on the state history
of a set of entities called the neighborhood Ui(t) of the interaction.

Neighborhood of i “:=” all the entities where i takes the information it
needs to operate (always includes active agents, patient and propagator)

Examples
an agent is searching for a house: only the information collected in
some order in its memory will affect its decisions
only the objects in the visual field of a pedestrian may influence its
goal-oriented path
the information collected in a graphical user interface may influence
the starting of a program
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Interaction spaces 3/4: Clock functions

Definition
We say that T is a set of discrete or continuous (discr./cont.) time events if
T ⊆ [tst, tend] is the disjoint union of single instants tj or of intervals [t1

k , t2
k ], and

all accumulation points of T lie only in its subintervals.

We say that τ(−) is a clock function if

∃T discr./cont. ∀t ∈ [tst, tend] : τ(t) = inf {s ≥ t | s ∈ T}
the next time event in T after t

Data D = ((ts
i )i∈I , (to

i )i∈I , U) for the
interactions: For all t ∈ [tst, tend], we ask:

ts
i (−), to

i (−) are clock functions
If ts

i (t), to
i (t) < +∞, then ts

i (t) ≤ to
i (t)

ta
i (t) := tj or ta

i (t) := t1
k resp. for

discr./cont. of to
i (−){

e ∈ Ei | aci
e(t) = 1

}
⊆ Ui(t) ⊆ Et
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T ⊆ [tst, tend] is the disjoint union of single instants tj or of intervals [t1

k , t2
k ], and

all accumulation points of T lie only in its subintervals.
We say that τ(−) is a clock function if

∃T discr./cont. ∀t ∈ [tst, tend] : τ(t) = inf {s ≥ t | s ∈ T}
the next time event in T after t

Data D = ((ts
i )i∈I , (to

i )i∈I , U) for the
interactions: For all t ∈ [tst, tend], we ask:

ts
i (−), to

i (−) are clock functions
If ts

i (t), to
i (t) < +∞, then ts

i (t) ≤ to
i (t)

ta
i (t) := tj or ta

i (t) := t1
k resp. for

discr./cont. of to
i (−){

e ∈ Ei | aci
e(t) = 1

}
⊆ Ui(t) ⊆ Et
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Evolution equation: intuitive description

Transition functions
The changing of the state variables of each entity e is determined by a
suitable transition function fe depending on e, on all the interactions
acting on e in a time interval [t, t + ∆e(t)], and by the history of the
neighborhood. Here ∆e(t) ≥ 0 is model dependent

Examples
a bouncing billiard ball
a pedestrian before interacting with other pedestrians or obstacles
the process of building a house after its starting time and before its
end
the internal evolution of a box in a flow chart representing a computer
program
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Summarize of the intuitive description

In an interaction i , active agents a1, . . . , an send the propagator r and
the goods γi(t) = π as a signal to modify the state of the patient p

the modification depends on information collected from the
neighborhood Ui(t) of that interaction
the starting time ts

i , the speed of the signal ta
i and the duration

(ongoing to
i ) of the interaction can be stochastic

interactions are local in the sense that they are affected only by
entities in the neighborhood
their occurrence is causally constrained by logical conditions expressed
by the activation ace

i (t) of the entities

Paolo Giordano (UniVienna) 9th SEAMS-UGM 2023 15 / 32



Summarize of the intuitive description

In an interaction i , active agents a1, . . . , an send the propagator r and
the goods γi(t) = π as a signal to modify the state of the patient p
the modification depends on information collected from the
neighborhood Ui(t) of that interaction

the starting time ts
i , the speed of the signal ta

i and the duration
(ongoing to

i ) of the interaction can be stochastic
interactions are local in the sense that they are affected only by
entities in the neighborhood
their occurrence is causally constrained by logical conditions expressed
by the activation ace

i (t) of the entities

Paolo Giordano (UniVienna) 9th SEAMS-UGM 2023 15 / 32



Summarize of the intuitive description

In an interaction i , active agents a1, . . . , an send the propagator r and
the goods γi(t) = π as a signal to modify the state of the patient p
the modification depends on information collected from the
neighborhood Ui(t) of that interaction
the starting time ts

i , the speed of the signal ta
i and the duration

(ongoing to
i ) of the interaction can be stochastic

interactions are local in the sense that they are affected only by
entities in the neighborhood
their occurrence is causally constrained by logical conditions expressed
by the activation ace

i (t) of the entities

Paolo Giordano (UniVienna) 9th SEAMS-UGM 2023 15 / 32



Summarize of the intuitive description

In an interaction i , active agents a1, . . . , an send the propagator r and
the goods γi(t) = π as a signal to modify the state of the patient p
the modification depends on information collected from the
neighborhood Ui(t) of that interaction
the starting time ts

i , the speed of the signal ta
i and the duration

(ongoing to
i ) of the interaction can be stochastic

interactions are local in the sense that they are affected only by
entities in the neighborhood

their occurrence is causally constrained by logical conditions expressed
by the activation ace

i (t) of the entities

Paolo Giordano (UniVienna) 9th SEAMS-UGM 2023 15 / 32



Summarize of the intuitive description

In an interaction i , active agents a1, . . . , an send the propagator r and
the goods γi(t) = π as a signal to modify the state of the patient p
the modification depends on information collected from the
neighborhood Ui(t) of that interaction
the starting time ts

i , the speed of the signal ta
i and the duration

(ongoing to
i ) of the interaction can be stochastic

interactions are local in the sense that they are affected only by
entities in the neighborhood
their occurrence is causally constrained by logical conditions expressed
by the activation ace

i (t) of the entities

Paolo Giordano (UniVienna) 9th SEAMS-UGM 2023 15 / 32



Interaction spaces 4/4: Evolution equation

Definition
For all t ∈ [tst, tend], we set

1 The first arrival ≥ t is ta(t) := inf {ta
i (t) ≥ t | i ∈ I} is the first time of

arrival of some propagator

2 Ie(t) := {i ∈ I | ta(t) ≤ ta
i (t) ≤ ta(t) + ∆e(t)} all the interactions whose

propagator arrives in [ta(t), ta(t) + ∆e(t)]
3 Ipa

e (t) := {i ∈ Ie(t) | pa(i) = e} all interactions in this interval acting on e
4 next : (τ, i , ε) ∈ {(τ, i , ε) | τ ∈ [tst, t], i ∈ Ipa

e (τ), ε ∈ Ui(τ)} 7→ xε(τ) past
state of the neighborhood of e

5 In a system of transition functions T F = (f , Ω, F , P) for EI, SA and I we
have (Ωe , Fe , Pe) a probability space of stochastic evolution of e

6 There exists ω ∈ Ωe such that if t ∈ [tst, tend], ta(t) < +∞,
ta(t) ≤ s ≤ ta(t) + ∆e(t) ≤ tend, then

xe(s) = fe(ω, s, nex)
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Interaction spaces: a universal mathematical theory of CS

Definition
An interaction space (IS) I = (EI, SA, I, T F) is given by considering all the
previously defined systems:

1 A system of entities and interactions EI = (E , tst, tend, T , I).
2 A system of state spaces and activation maps SA = (S,S, G , x) for EI.
3 A system of data D = ((ts

i )i∈I , (to
i )i∈I , U) for the interactions of EI and

SA.
4 A system of transition functions T F = (f , Ω, F , P) for EI, SA and D.

Theorem
Cellular automata, agent based models, master equation based models, networked
dynamical systems, neural networks and evolutionary algorithms can be faithfully
embedded as IS
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not stationary and Markovian IS

Definition
We say that the IS I is not stationary if

1 All the entity e ∈ E are always active: ∀t ∈ [tst, tend] ∃i ∈ I : ace
i (t) = 1

2 The global state space M =
∏

e∈E Se is at most countable
3 ∀t ∈ [tst, tend] ∀σ ∈ M : p(σ, t) := Pg [Xt = σ] > 0, where (Ωg, Fg, Pg) is

product of all the prob. spaces of I and X : Ωg −→ M is a global state RV
4 τ ∈ [tst, tend] 7→ p(µ, τ | σ, t) := Pg [Xτ = µ | Xt = σ] is differentiable at

τ = t
5 The IS I is called Markovian if p(µ, τ | σ, t) does not depend on t ≤ τ .

Theorem
For σ, µ ∈ M and t ∈ [tst, tend], set wt(µ, σ) := ∂p(µ,τ |σ,t)

∂τ (t). If∑
µ∈M |wt(σ, µ)| < +∞, then

∂p
∂t (σ, t) =

∑
µ∈M
µ̸=σ

[wt(σ, µ) · p(µ, t) − wt(µ, σ) · p(σ, t)]

Paolo Giordano (UniVienna) 9th SEAMS-UGM 2023 18 / 32



Complex Adaptive Systems following Zipf’s idea

G.K. Zipf 1949 “Human behavior and the principle of least efforts”: CAS
are the result of two opposing processes: unification and diversification.

The idea
Unification processes: decreasing in convenient costs
Diversification processes: long term changes of suitable interactions,
i.e. increasing of the information entropy of the goods generated by
these interactions
It is the implementation of these interactions and the most diversified
exchange of fluxes of goods that enable the population to be resilient
and keep a low value of costs.
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Examples

Natural language: unification processes shorten frequently used words;
diversification ones make evolve the language towards longer words
Cities development: unification brings near people so as to decrease costs of
living; diversification uses all the possible living locations so as to decrease
rent costs
Natural selection: unification forces push giraffes to search for eatable trees;
diversification selects all the best genetic codes that allow for a longer neck
Companies with a longer life span not only decrease costs and increase
profits (unification), but also adapt to their environment with long-term
diversification processes
Phyllotaxis: unification forces are related to energy exploitation by each
primordium; diversification forces tend to uniformly distribute energy sources
between old and new primordia
Network of financial institutions: shows that this system is not well adapted.
The centrality of certain institutions does not allow the system to be
resilient to financial fails of few institutions
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CAS := generalized evolution principle

Definition
Let I be an IS, and let s, t ∈ [tst, tend], P ⊆ Es ∩ Et , x , y ∈ M, i ∈ Is ∩ It .
Then we say that at y, t the population P is better adapted than at x, s
with respect to Ci , PCi (briefly: P is a CAS) if

1 Ci : SP −→ R≥0 is a random variable, where
(SP ,SP) := (

∏
e∈P Se ,

∏
e∈P Se)

2 PCi is a probability on the global state space (SP ,SP) of the
population P

3 i is an interaction of P
4 Set Di(ni y , t) := Entropy (Gi(−; ni y , t)), then we have

E (Ci(yt |P)) ≤ E (Ci(xs |P)) unification
Di(ni y , t) ≥ Di(ni x , s) diversification

where the expected value E (−) is computed using PCi
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Power laws and Mandelbrot’s theorem (rigorous)

Theorem
Let y ∈ SP ⊆ Rn be an open set and let qj ∈ C1(SP ,R≥0), for all
j = 1, . . . , d ≤ n, be such that (qj(x))j=1,...,d is a probability ∀x ∈ SP . Set
D(x) := −

∑d
j=1 qj(xj) · log2 qj(xj) ∀x ∈ SP . Let C ∈ C1(SP ,R>0) be such that

∀x ∈ SP : 0 <
C(y)
D(y) ≤ C(x)

D(x)

Finally assume that qj(xj) = xj ∀j = 1, . . . , d ∀x ∈ SP ,
∂kC(y) ≤ αk(y) · log2 k ∀k = 2, . . . , d,

∑d
k=1 k−αk (y)· Di (y)

C(y) =: N(y) ≥ 1
q1(y) ≥ e,

where αk : SP −→ R. Then we have:

qk(y) = q1(y) · k−αk (y)· D(y)
C(y) ∀k = 1, . . . , d

q1(y) = 1
N(y)
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Artificial intelligence with ANN

The methodological problem: no idea about how many neurons and
how to set links between artificial neurons
ANN are universal approximators:

Kolmogorov theorem 1957 (13th Hilbert problem): every continuous
function on [0, 1]n can be written as composition of one variable
continuous functions.
Cybenko 1989: g(x) =

∑N
i=1 ωiφ

(
aT

i x + bi
)

are dense in C0([0, 1]n)
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Examples

adversarial artificial neural networks trained breast cancer detection (?)
for hide-and-seek game

Problem 1: they need too much data (75 million for hide-and-seek games)

Problem 2: interpretation of their “reasoning”

Sony “Focused Research Award” for next-generation AI: “The limitations of many
current-day AI methods and techniques are evident [...] we are seeking powerful
and efficient biologically-inspired AI methods that have the potential to open
entirely new capabilities that are not possible with the methods in our current AI
toolbox and that will support more reliable and more trustworthy AI. AI methods
powerful enough to even, possibly, realize an AGI are sought-after here”
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Future developments: morphisms of IS

Using interactions a1, . . . , am
α, r−−−−−→ p we can define a cause-effect

relations and a corresponding multi-category
Functors between the multi-categories generated by two IS become
morphisms of IS:

a1, . . . , am
α, r−−−−−→ p ⇒ F (a1) , . . . , F (am)

F (α), F (r)
−−−−−−−−−−→ F (p)

This can be used to define hierarchies in complex systems
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Ideas for AGI: exploration rule
Imagine an agent M living in a virtual environment E

Both M and E are modeled as interaction spaces
U : E −→ M forgetful functor: agent’s representation of environment is necessarily
simplified. It preserves cause-effect relations between agent and environment
R : M −→ E right adjoint of U: in E the real interaction a e−−−→ R(p) bijectively

corresponds to the mental interaction U(a) ē−−−→ p in M

What will happen to the real
counterpart R(p) of the patient p ∈ M
if I change the real agent a ∈ E?
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Ideas for AGI: abstraction rule
Inside M we can have different levels Li , i > 0, of representations of interacting entities
and their interactions

Each level Li is a subspace of M but L0 = E is the environment
Higher levels of abstraction Li+1 are linked to lower ones Li by a forgetful functor
Ui : Li −→ Li+1 (U0 =: U)
Interactions of Li+1 are a subset of those of Li so that if a, p are agent resp. patient in Li ,
then Ui (a) and Ui (p) are agent resp. patient in Li+1

Note:
- Ui preserves cause-effect relations
- Interactions between different parts

(entities) of objects are important
- ”a chair” is what you can do with a

chair + interactions between its parts
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Higher levels of abstraction Li+1 are linked to lower ones Li by a forgetful functor
Ui : Li −→ Li+1 (U0 =: U)
Interactions of Li+1 are a subset of those of Li so that if a, p are agent resp. patient in Li ,
then Ui (a) and Ui (p) are agent resp. patient in Li+1

Note:
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Ideas for AGI: simulation rule
U : E −→ M forgetful functor

L : M −→ E left adjoint of U: in M the mental simulation a r−−−→ U(p) bijectively

corresponds to the real interaction L(a) r̄−−−→ p in E
simulations are composition (trees/chains) of cause-effect relations

How can I change the real patient
p ∈ E thinking at the mental agent
a ∈ M and using its real counterpart
L(a)?
Adjoint functors in AI, see: D. Ellerman, 2005-2016

These seem to be very general learning rules
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Architecture of a brain-like system

 Starting from hard-wired interactions
the agent builds up new ones using the
exploration and abstraction rules

 Using simulation rule the agent can
try cause-effect based solutions
[J. Pearl, D. McKenzie, 2018]

 The space M must contain a
simplified model of the agent itself (self
consciousness)
 At the end, we get interpretable
cause-effect graphs
 Suitable (positive and negative) costs
and the generalized evolution principle
always act
 Does the brain work in a similar way?
Maybe...
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Examples of applications
Doable:

recognize when two objects are equal or not but only differently placed
recognize and label an object using a comparable human learning set
play hide-and-seek using a comparable human learning set
take an object out from a given room through the door
play chess with comparable human strategies and learning set
help in software verification

Dreams for the future:

learn from a human to do a dangerous job
remove mines from a minefield
help in removing ruins after a earthquake
describe an environment to help blind people
teaching where there are no teachers
help elderly or disabled peoples
...
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Conclusions

1 IS is a theory at its beginning that need simplifications and stability
2 IS are a framework where good formalizations of intuitive notions are

possible
3 IS are easy to understand intuitively (useful for interdisciplinary work)
4 In this idea of AGI neurons are interacting entities and links are set

using the generalized evolution principle: methodological clarity,
efficiency

5 Cause-effect graphs yields explainable AGI
6 There are non trivial epistemological problems concerning validation

of models of complex systems
7 Strong ethical problems concerning AGI must be considered
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Contacts and references

References:

www.mat.univie.ac.at/˜giordap7/

Contact:

paolo.giordano@univie.ac.at

Thank you for your attention!
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