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Abstract

Is it possible to define a powerful ring of actual infinitesimals us-
ing standard analysis only? Can we realize this goal without using
a specific background of logic? Are we able to define this ring al-
ways keeping a good intuitive interpretation of the new numbers we
are defining? The theory of Fermat reals was born trying to answer
these questions. In this article we introduce axiomatically the ring of
Fermat reals, we review its surprisingly simple definition and study its
total order relation. We prove that a clear geometrical representation
of this ring is possible, we characterize its skeleton group, generalize
the existence of supremum and present its computer implementation.
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1 Axioms for infinitesimals

Several students experienced the unpleasant feeling to switch from the clas-
sical Calculus lectures, where usually everything is ε− δ, to the Physics ones
where the lecturer report, e.g., Einstein’s formulas like

1√
1− v2

c2

= 1 +
v2

2c2

√
1− h44(x) = 1− 1

2
h44(x) (1.1)

with explicit use of infinitesimals v/c � 1 or h44(x) � 1, such that, e.g.,
h44(x)2 = 0. If student’s passion is still alive, she can start a long journey
passing through nonstandard analysis (NSA), Synthetic Differential Geom-
etry (SDG), Surreal numbers, Levi-Civita fields, to mention only a few of
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possible stages of this trip. As researchers, the best we can hope for her is
also to try her own solution, since two different languages (ε−δ and informal
infinitesimals) which are able to describe a sufficiently large part of nature
must have a stringent relationship among each other. Using only elementary
analysis, after a couple of tens of years, she can also be successful. The solu-
tion •R is essentially unique, and indeed it can be described axiomatically.
Axiom, decomposition: •R is a commutative ring with unity, called ring
of Fermat reals. Every Fermat reals x ∈ •R can be written, in a unique way,
as

x = ◦x+
N∑
i=1

ai · dtαi , (1.2)

where ◦x, αi, ai ∈ R are standard reals, α1 > α2 > · · · > αN ≥ 1, ai 6= 0.
The term ◦x ∈ R is called standard part of x, and ai =: ◦xi its i-th standard
part.

For example x = 2− log(3) dt2 and y = r ∈ R are elements of •R.
Axiom, base infinitesimals: The terms dta verify the following properties

dta · dtb = dt ab
a+b

( dta)
p = dta

p
∀p ∈ R≥1 (1.3)

dta = 0 ∀a ∈ R<1.

Therefore, among Fermat reals we also have nilpotent infinitesimals, like
x = 3 dt2, since x3 = 27 dt2/3 = 0. These are exactly the same type of
infinitesimals used by Einstein in formulas like (1.1). We will simply use the
symbol dt for dt1.
Axiom, order of infinitesimals: The order ω(x) =: a1 (see (1.2)) can be
interpreted as the leading term in the decomposition and hence it has the
following expected properties

ω(x+ y) = max [ω(x), ω(y)]

1

ω(x · y)
=

1

ω(x)
+

1

ω(y)
,

whenever x, y are infinitesimals such that x+ y 6= 0, respectively x · y 6= 0.
In the decomposition (1.2), the term αi =: ωi(x) will be called the i-th order
of x.

Directly from (1.2) it is not hard to prove that if k ∈ N>1, then xk = 0
iff ω(x) < k. Nilpotent Fermat reals can be thought as non zero numbers
which are so small that a suitable power of them gives zero.
Axiom, ideals of infinitesimals: For a ∈ R≥0 ∪ {∞}, the set

Da := {x ∈ •R | ◦x = 0, ω(x) < a+ 1}

is an ideal. Moreover, for k ∈ N≥1 we have that Dk =
{
x ∈ •R |xk+1 = 0

}
.
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We will simply use D for D1. The ideal Dk is therefore the “ideal” k-
th order infinitesimal neighbourhood of zero, where every k-th order Taylor
formula doesn’t have rest, since xk+1 = 0. This is indeed the subject of the
next
Axiom, Taylor formula: Set •Rd := •R× d. . . . . . ×•R, then every ordinary
smooth function f : A −→ R defined on an open set A of Rd can be extended
to the set

•A =
{
x ∈ •Rd | ◦x ∈ A

}
, (1.4)

•f : •A −→ •R,

obviously obtaining a true extension, i.e. •f(x) = f(x) if x ∈ A. Moreover,
the following Taylor formula

∀h ∈ Dd
k : •f(x+ h) =

∑
j∈Nd
|j|≤k

hj

j!
· ∂
|j|f

∂xj
(x) (1.5)

holds, where x ∈ A is a standard point, and Dd
k = Dk × d. . . . . . ×Dk.

Therefore, smooth functions becomes exactly equal to polynomials of
degree k in the infinitesimal k-th order neighbourhood x+Dd

k. In particular
f(x + h) = f(x) + h · f ′(x) for h ∈ D, i.e. every smooth functions is equal
to its tangent line in a first order infinitesimal neighbourhood. Einstein’s
formulas (1.1) are particular cases of this infinitesimal Taylor formula. Let
us note that applying this formula to the function f(x) = x2 in D we obtain
that h2 = 0 for every h ∈ D: if we want to write Einstein’s formulas exactly
as he did (i.e. with the equality sign and not with an approximate equality
sign), we are necessarily forced to work in a ring with nilpotent infinitesimals
and not in a field.
Axiom, cancellation laws: Let h1, . . . , hn ∈ D∞, i1, . . . , in ∈ N, x ∈ •R,
then we have

1. hi11 · . . . · hinn = 0 if and only if
∑n

k=1
ik

ω(hk) > 1.

2. x is invertible if and only if ◦x 6= 0.

3. If x · r = x · s in •R, where r, s ∈ R and x 6= 0, then r = s.

If you are scared by working in a ring instead of a field, these laws permit
to effectively work with this type of infinitesimals. If x is invertible, and
proceeding like in the case of formal power series, it is not hard to prove that

1

x
=

1
◦x
·

+∞∑
j=0

(−1)j ·
(

n∑
i=1

◦xi
◦x
· dtai

)j
, (1.6)

where the series is really a finite sum due to nilpotency.
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We will see later that the total order relation x ≤ y can also be introduced
axiomatically and effectively decided starting from the decomposition of x
and y.

More advanced axioms have to be introduced to deal with smooth func-
tions that are more general than extension of standard smooth functions, e.g.
like the very simple f(x) = x + dt, see [11, 7]. These axioms are formally
very similar to the Reyes axiom, the integrability axiom and the constancy
axiom of SDG ([14, 1, 15]). Therefore, the previously listed axioms are surely
incomplete, on the one hand, but also redundant, from another point of view.
However, they permit to characterize the structure (•R,+, ·, ◦(−), dt(−)).

Theorem 1. Let us suppose that the structure (R,⊕,�,�(−), δt(−)) verifies
the previous axioms, then there exists one and only one ring isomorphism

f : •R −→ R

such that f (a · dtα) = a� δtα and �f(x) = ◦x. Moreover, this isomorphism
preserves also the order function ω(−).

Proof: Let x = r +
∑N

j=1 aj · dtαj be the decomposition of x ∈ •R. The
only possibility to define the searched isomorphism is obviously

f(x) := r ⊕
N⊕
j=1

aj � δtαj ∈ R. (1.7)

We have to prove that f is a morphism of ordered ring. Let y = s+
∑M

i=1 bi ·
dtβi be the decomposition of y ∈ •R, then to find the decomposition of x+y
and apply our definition (1.7), we firstly have to consider the sets of all the
orders appearing in these decompositions:

Ox := {αj | j = 1, . . . , N}
Oy := {βi | i = 1, . . . ,M}
O := Ox ∪Oy.

Secondly, we have to sum all the coefficients of the two decompositions cor-
responding to the same order: for every q ∈ O set

cq :=
∑

[{aj | j = 1, . . . , N , αj = q} ∪ {bi | i = 1, . . . ,M , βi = q}] .

Let us note that, by the definition of decomposition, if q ∈ Ox\Oy, then cq =
aj , where j = 1, . . . , N is the unique index such that αj = q. Analogously if
q ∈ Oy \ Ox, whereas, if q ∈ Ox ∩ Oy, then cq = aj + bi, where i and j are
the unique indexes such that αj = q = βi. Now, we have

x+ y = r + s+
∑
q∈O

cq · dtq.
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Finally, we have to enumerate all the orders in O \ {q ∈ O | cq = 0} in in-
creasing way

{q1, . . . , qK} = O \ {q ∈ O | cq = 0}

q1 > q2 > · · · > qK ≥ 1.

Therefore

x+ y = r + s+

K∑
k=1

cqk · dtqk

is the decomposition of x+ y. Applying the definition (1.7) of f we get

f(x+ y) = r ⊕ s⊕
K⊕
k=1

cqk � δtqk

f(x) + f(y) = r ⊕
N⊕
j=1

aj � δtαj ⊕ s⊕
M⊕
i=1

bi � δtβi =

= r ⊕ s⊕
⊕
q∈O

cq � δtq =

= f(x+ y).

For the product, we can proceed in a similar way:

x · y = rs+

M∑
i=1

rbi · dtβi +

N∑
j=1

saj · dtαj +
∑
i,j

ajbi · dtαj · dtβi .

Now, we can use the property (1.3) obtaining dtαj · dtβi = dt αjβi
αj+βi

. To

the resulting sum, we can apply the method used above to obtain the de-
composition of x · y, i.e. the sum of all the coefficients corresponding to
the same order, the deletion of the terms for which cq = 0 or q < 1 and,
finally, the ordering of the remaining summands. The proof proceed exactly
as above for the sum, noting that we also have to use (1.3) for the structure
(R,⊕,�,�(−), δt(−)), but in the reverse order with respect to the previous
application.

Finally, the inverse morphism is necessarily defined as

g

r ⊕ N⊕
j=1

aj � δtαj

 = r +
N∑
j=1

aj · dtαj .

Exactly as above, we can prove that g is indeed a morphism of ordered rings.
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2 The model

Surprisingly, the model of the previous list of axioms is quite simple. For
proofs and motivations related to this section, see [8].

We firstly need the following class of functions

Definition 2. We say that x is a little-oh polynomial, and we write x ∈ Ro[t]
iff

1. x : R≥0 −→ R

2. We can write

x(t) = r +

k∑
i=1

αi · tai + o(t) as t→ 0+

for suitable
k ∈ N

r, α1, . . . , αk ∈ R

a1, . . . , ak ∈ R≥0.

Hence, a little-oh polynomial x ∈ Ro[t] is a polynomial function with real
coefficients, in the real variable t ≥ 0, with generic positive powers of t, and
up to a little-oh function as t→ 0+.

Remark 3. Sometimes, but not always, we will use a notation like ht :=
h(t) for real functions of the real variable t. This permits to decrease the
number of parenthesis used in formulas and to leave the classical notation
f(x) for functions of the form f : •R −→ •R. Moreover, we will use a slight
modification of Landau’s little-oh notation: writing xt = yt + o(t) as t→ 0+

we will always mean

lim
t→0+

xt − yt
t

= 0 and x0 = y0.

In other words, every little-oh function we will consider is continuous as
t→ 0+.

We can now define:

Definition 4. Let x, y ∈ Ro[t], then we say that x ∼ y or that x = y in
•R iff x(t) = y(t) + o(t) as t → 0+. Because it is easy to prove that ∼
is an equivalence relation, we can define the quotient set •R := Ro[t]/ ∼.
Moreover, we define the standard part map as ◦(−) : x ∈ •R 7→ ◦x = x(0) ∈
R, and dta := [t ∈ R≥0 7→ t1/a ∈ R]∼ ∈ •R.
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Definition 5. Let A be an open subset of Rn, f : A −→ R a smooth
function. Define •A like in (1.4) (or, equivalently, as •A = Ao[t]/ ∼, where
Ao[t] is the set of little-oh polynomials taking values in the open set A) and
for x ∈ •A define

•f(x) := f ◦ x in •R.

In other words, using the notation [x]∼ ∈ •R for the equivalence class gen-
erated by x ∈ Ro[t] modulo the relation ∼ defined in Definition 4, we can
write the previous definition as •f([x]∼) := [f ◦ x]∼.

It is not hard to show that this is indeed a model for our axioms (see
[8]).

To see applications of this type of infinitesimals to elementary physics,
see [9]. For meaningful (standard) metrics on •R and for roots of (nilpotent!)
infinitesimals and their applications to fractional derivatives, see [12]. For the
foundation of differential calculus for functions more general than extensions
of ordinary smooth ones (like the previously mentioned f(x) = x+ dt), see
[11].

We finally underscore that the theory of Fermat reals can be developed
very far: every smooth manifold can be analogously extended using this
type of infinitesimals; more generally, this extension is applicable to every
diffeological space ([13]) obtaining a functor with very good preservation
properties; the category of diffeological spaces is cartesian closed ([13, 10])
and embeds the category of smooth manifolds, so that these Fermat exten-
sions can also be applied to infinite dimensional function spaces. For more
details, see [11, 7].

3 Infinitesimals and order properties

Like in other disciplines, also in mathematics the layout of a work reflects the
personal philosophical ideas of the authors. In particular, the present work
is based on the idea that a good mathematical theory is able to construct
a good dialectic between formal properties, proved in the theory, and their
informal interpretations. The dialectic has to be, as far as possible, in both
directions: theorems proved in the theory should have a clear and useful
intuitive interpretation and, on the other hand, the intuition corresponding
to the theory has to be able to suggest true sentences, i.e. conjectures or
sketch of proofs that can be converted into rigorous proofs.

In a theory of new numbers, like the present one about Fermat reals,
the introduction of an order relation can be a hard test of the excellence of
this dialectic between formal properties and their informal interpretations.
Indeed, if we introduce a new ring of numbers (like •R) extending the real
field R, we want that the new order relation will extend the standard one
on R. This extension naturally leads to the wish of findings a geometrical
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representation of the new numbers, according to the above principle of having
a good formal/informal dialectic.

For example, on the one hand in NSA the order relation on ∗R has the
best formal properties among all the theories of actual infinitesimals. On the
other hand, the dialectic of these properties with the informal interpretations
is not always good, due to the use of, e.g., an ultrafilter in the construction of
∗R. Indeed, in an ultrafilter on N we can always find a highly non constructive
set A ⊂ N (see e.g. Appendix B in [7]); any sequence of reals x : N −→ R
which is constant to 1 on A is strictly greater than 0 in ∗R, but it seems not
easy to give neither an intuitive interpretation nor a clear and meaningful
geometric representation of the relation x > 0 in ∗R. In fact, it is also
for motivations of this type that some approaches to give a constructive
definition of a field similar to ∗R have been attempted (see e.g. [16, 17, 18]
and references therein).

In SDG we have a preorder relation (i.e. a reflexive and transitive rela-
tion, which is not necessarily anti-symmetric) with very poor properties, if
compared with those of NSA. Nevertheless, the works developed in SDG (see
e.g. [15]) exhibits that meaningful results can be obtained also in the differ-
ential geometry of infinite dimensional spaces, even if the order properties
of the ground base ring are not so rich. Once again, the dialectic between
formal properties and their intuitive interpretations represents a hard test
for SDG too. E.g. it seems not so easy to interpret intuitively that every
infinitesimal h in SDG verifies both h ≥ 0 and h ≤ 0. The lack of a total
order, i.e. of the trichotomy law

x < y or y < x or x = y (3.1)

makes really difficult, or even impossible, to have a geometrical representa-
tion of the infinitesimals of SDG.

We want to start this section showing that in our setting there is a strong
connection between some order properties and some algebraic properties. In
particular, we will show that it is not possible to have good order properties
and at the same time a uniqueness without limitations in the first order
infinitesimal Taylor formula, i.e.

∃!m ∈ •R : ∀h ∈ D : f(h) = f(0) + h ·m, (3.2)

where f : R −→ R is smooth. We start observing that in •R the product of
two first order infinitesimals h, k ∈ D is always zero: h · k = 0 (see “Axiom,
cancellation laws”). In the following theorem, we can see that the property
h · k = 0 is a general consequence of the hypothesis to have a total order on
D. The idea of this theorem can be glimpsed at from the figure 3.1, where it
is represented that if we neglect h2 and k2, because we consider them zero,
then we have strong reasons to expect that also h · k will also be zero
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k

h

k2

h2

h · k

Figure 3.1: How to guess that h · k = 0 for two first order infinitesimals h, k ∈ D

From this picture comes the idea to find a formal demonstration based on
the implication

h, k ≥ 0 , h ≤ k =⇒ 0 ≤ hk ≤ k2 = 0

All these ideas conduct toward the following theorem.

Theorem 6. Let (R,≤) be a generic ordered ring and D ⊆ R a subset of
this ring, such that

1. 0 ∈ D

2. ∀h ∈ D : h2 = 0 and −h ∈ D

3. (D,≤) is a total order

then
∀h, k ∈ D : h · k = 0 (3.3)

This theorem implies that if we want a total order in our theory of infinites-
imal numbers, and if in this theory we consider D = {h |h2 = 0}, then we
must accept that the product of any two elements of D must be zero. For
example, if we think that a geometric representation of infinitesimals can-
not be possible if we do not have, at least, the trichotomy law, then in this
theory we must also have that the product of two first order infinitesimals
is zero. Finally, because in SDG property (3.3) is false, this theorem also
implies that in SDG it is not possible to define a total order (and not only
a preorder) on the set D of first order infinitesimals compatible with ring
operations.

Proof of Theorem 6:
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Let h, k ∈ D be two elements of the subsetD. By hypotheses 0, −h, −k ∈ D,
hence all these elements are comparable with respect to the order relation
≤, because, by hypotheses, this relation is total (i.e. (3.1) is true). E.g.

h ≤ k or k ≤ h.

We will consider only the case h ≤ k, because analogously we can deal with
the case k ≤ h, simply exchanging everywhere h with k and vice versa.

First sub-case: k ≥ 0. By multiplying both sides of h ≤ k by k ≥ 0 we
obtain

hk ≤ k2. (3.4)

If h ≥ 0 then, multiplying by k ≥ 0 we have 0 ≤ hk, so from (3.4) we have
0 ≤ hk ≤ k2 = 0, and hence hk = 0.
If h ≤ 0 then, multiplying by k ≥ 0 we have

hk ≤ 0. (3.5)

If, furthermore, h ≥ −k, then multiplying by k ≥ 0 we have hk ≥ −k2,
hence form (3.5) 0 ≥ hk ≥ −k2 = 0, hence hk = 0.
If, otherwise, h ≤ −k, then multiplying by −h ≥ 0 we have −h2 = 0 ≤ hk ≤
0 from (3.5), hence hk = 0. This concludes the discussion of the case k ≥ 0.

Second sub-case: k ≤ 0. In this case we have h ≤ k ≤ 0. Multiplying both
inequalities by h ≤ 0 we obtain h2 = 0 ≥ hk ≥ 0 and hence hk = 0.

Property (3.3) is incompatible with the uniqueness in a possible formula
like (3.2) framed in a ring R of Theorem 6. In fact, if a, b ∈ D are two
elements of the subset D ⊆ R, then both a and b play the role of m ∈ R in
for the linear function

f : h ∈ D 7→ h · a = 0 ∈ R.

So, if (3.2) applies to linear functions (or less, to constant functions), the
uniqueness part of this formula cannot hold in the ring R.

In the next section, we will introduce a natural and meaningful total
order relation on •R. Since we will also see that the order relation permits
to have a geometric representation of Fermat reals, we can summarize the
conclusions of this section saying that the uniqueness in (3.2) is incompatible
with a natural geometric interpretation of Fermat reals and hence with a
good dialectic between formal properties and informal interpretations in this
theory.

4 Order relation

From the previous sections one can draw the conclusion that the ring of Fer-
mat reals •R is essentially “the little-oh” calculus. On the other hand the
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Fermat reals give us more flexibility than this calculus: working with •R,
we do not have to bother ourselves with remainders made of “little-oh”, but
we can neglect them and use the useful algebraic calculus with nilpotent in-
finitesimals. Moreover, thinking the elements of •R as new numbers, and not
simply as “little-oh functions”, permits to treat them in a different and new
way, for example to define on them an order relation with a clear geometrical
interpretation.

First of all, let us introduce the useful notation

∀0t ≥ 0 : P(t)

and we will read the quantifier ∀0t ≥ 0 saying “for every t ≥ 0 (sufficiently)
small ”, to indicate that the property P(t) is true for all t in some right
neighborhood of t = 0 (recall that, by Definition 2, our little-oh polynomials
are defined on R≥0.), i.e.

∃ δ > 0 : ∀t ∈ [0, δ) : P(t)

The first heuristic idea to define an order relation is the following

x ≤ y ⇐⇒ x− y ≤ 0 ⇐⇒ ∃ z : z = 0 in •R and x− y ≤ z. (4.1)

More precisely, if x, y ∈ •R are two little-oh polynomials, we want to ask
locally that xt is less than or equal to yt, but up to a o(t) for t→ 0+, where
the little-oh function o(t) depends on x and y. Where it will be useful to
simplify notations, we will write “x = y in •R” instead of x ∼ y, and we will
talk directly about the elements of Ro[t] instead of their equivalence classes;
for example we can say that x = y in •R and z = w in •R imply x+z = y+w
in •R. The only notion of equality between little-oh polynomials is, of course,
the equivalence relation of Definition 4 and, as usual, we must always prove
that our relations between little-oh polynomials are well defined. Formally,
the idea (4.1) corresponds to the following

Definition 7. Let x, y ∈ •R, then we say

x ≤ y

iff we can find z ∈ •R such that z = 0 in •R and

∀0t ≥ 0 : xt ≤ yt + zt.

Recall that z = 0 in •R is equivalent to zt = o(t) for t→ 0+. It is immediate
to see that we can equivalently define x ≤ y if and only if we can find x′ = x
and y′ = y in •R such that xt ≤ yt for every t sufficiently small. From this
it also follows that the relation ≤ is well defined on •R, i.e. if x′ = x and
y′ = y in •R and x ≤ y, then x′ ≤ y′. As usual, we will use the notation
x < y for x ≤ y and x 6= y.
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Theorem 8. The relation ≤ is an order, i.e. is reflexive, transitive and
anti-symmetric. It extends the order relation of R, and with it (•R,≤) is an
ordered ring. Finally the following sentences are equivalent:

1. h ∈ D∞, i.e. h is an infinitesimal

2. ∀r ∈ R>0 : −r < h < r.

Hence, an infinitesimal can be thought of as a number with standard part
zero, or as a number smaller than every standard positive real number and
greater than every standard negative real number. Thus, it has in this sense
the same property as an infinitesimal both in NSA and in SDG (in the latter
case with real numbers of type 1

n (n ∈ N>0) only).

Proof: It is immediate to prove that the relation is reflexive. To prove
transitivity, if x ≤ y and y ≤ w, then we have

∀0t ≥ 0 : xt ≤ yt + zt and ∀0t ≥ 0 : yt ≤ wt + z′t,

and these imply

∀0t ≥ 0 : xt ≤ yt + zt ≤ wt + zt + z′t,

showing that x ≤ w. To prove that it is also anti-symmetric, take x ≤ y and
y ≤ x, then we have

xt ≤ yt + zt ∀t ∈ [0, δ1) (4.2)
yt ≤ xt + z′t ∀t ∈ [0, δ2) (4.3)

lim
t→0+

zt
t

= 0 and lim
t→0+

z′t
t

= 0

because z and z′ are equal to zero in •R, i.e. are o(t) for t → 0+. Hence,
from (4.2) and (4.3), for δ := min{δ1, δ2} we have

−z
′
t

t
≤ xt − yt

t
≤ zt

t
∀t ∈ [0, δ)

and hence limt→0+
xt−yt
t = 0, that is x = y in •R.

If r, s ∈ R and r ≤ s as real numbers, then it suffices to take zt = 0 for
every t ≥ 0 in Definition 7 to obtain that r ≤ s also in •R. Vice versa, if
r ≤ s in •R, then for some z = 0 in •R we have

∀0t ≥ 0 : r ≤ s+ zt

and hence, for t = 0 we have r ≤ s in R because z = 0 and hence z0 = 0.
This proves that the order relation ≤ defined in •R extends the order relation
on R.
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The relationships between the ring operations and the order relation can
be stated as

x ≤ y =⇒ x+ w ≤ y + w

x ≤ y =⇒ −x ≥ −y
x ≤ y , w ≥ 0 =⇒ x · w ≤ y · w.

The first two are immediate consequences of the Definition 7. To prove the
last one, let us suppose that

xt ≤ yt + zt ∀0t ≥ 0 (4.4)

wt ≥ z′t ∀0t ≥ 0.

Then wt − z′t ≥ 0 for every t small and hence from (4.4)

xt · (wt − z′t) ≤ yt · (wt − z′t) + zt · (wt − z′t) ∀0t ≥ 0

from which it follows

xt · wt ≤ yt · wt + (−xtz′t − ytz′t + ztwt − ztz′t) ∀0t ≥ 0.

But −xz′ − yz′ + zw − zz′ = 0 in •R because z = 0 and z′ = 0 and hence
the conclusion follows.

Finally, we know (see “Axiom, ideals of infinitesimals”) that h ∈ D∞ if
and only if ◦h = 0 and this is equivalent to

∀r ∈ R>0 : −r < ◦h < r. (4.5)

But if, e.g., ◦h < r, then
∀0t ≥ 0 : ht ≤ r

because the function t→ ht is continuous, and hence we also have h ≤ r in
•R. Analogously, from (4.5) we can prove that −r ≤ h for all r ∈ R>0. Of
course, r /∈ D∞ if r ∈ R, so it cannot be that h = r.

Vice versa, if
∀r ∈ R>0 : −r < h < r

then, e.g., ht ≤ r+zt for t small. Hence, for t = 0 we have −r ≤ ◦h = h0 ≤ r
for every r > 0, and so ◦h = 0.

Example. We have e.g. dt > 0 and dt2 − 3 dt > 0 because for t ≥ 0
sufficiently small t1/2 > 3t and hence

t1/2 − 3t > 0 ∀0t ≥ 0.

From examples like these ones we can guess that our little-oh polynomials
are always locally comparable with respect to pointwise order relation, and
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this is the first step to prove that the trichotomy law holds. In the following
statement we will use the notation ∀0t > 0 : P(t), that naturally means

∀0t ≥ 0 : t 6= 0 =⇒ P(t),

where P(t) is a generic property depending on t.

Lemma 9. Let x, y ∈ •R, then

1. ◦x < ◦y =⇒ ∀0t ≥ 0 : xt < yt

2. If ◦x = ◦y, then(
∀0t > 0 : xt < yt

)
or

(
∀0t > 0 : xt > yt

)
or (x = y in •R)

Proof:
1.) Let us suppose that ◦x < ◦y, then the continuous function t ≥ 0 7→
yt − xt ∈ R assumes the value y0 − x0 > 0, hence is locally positive, i.e.

∀0t ≥ 0 : xt < yt

2.) Now let us suppose that ◦x = ◦y, and introduce the notations

xt = ◦x+

N∑
i=1

αi · tai + zt ∀t ≥ 0

yt = ◦y +
M∑
j=1

βj · tbj + wt ∀t ≥ 0

where x = ◦x +
∑N

i=1 αi · dt1/ai and y = ◦y +
∑M

j=1 βj · dt1/bj are the
decompositions of x and y (hence 0 < αi < αi+1 ≤ 1 and 0 < βj < βj+1 ≤ 1),
whereas w and z are little-oh polynomials such that zt = o(t) and wt = o(t)
for t→ 0+.
Case: a1 < b1. In this case the least power in the two decompositions is
α1 · ta1 , and hence we expect that the second alternative of the conclusion
is the true one if α1 > 0, otherwise the first alternative will be the true
one if α1 < 0 (recall that always αi 6= 0 in a decomposition). Indeed, let
us analyze, for t > 0, the condition xt < yt: the following formulas are all
equivalent to it

N∑
i=1

αi · tai <
N∑
j=1

βj · tbj + wt − zt

ta1 ·
[
α1 +

N∑
i=2

αi · tai−a1
]
< ta1 ·

 N∑
j=1

βj · tbj−a1 + (wt − zt) · t−a1


14



α1 +
N∑
i=2

αi · tai−a1 <
N∑
j=1

βj · tbj−a1 + (wt − zt) · t−a1 .

Therefore, let us consider the function

f(t) :=
N∑
j=1

βj · tbj−a1 + (wt − zt) · t−a1 − α1 −
N∑
i=2

αi · tai−a1 ∀t ≥ 0

We can write
(wt − zt) · t−a1 =

wt − zt
t

· t1−a1

and wt−zt
t → 0 as t → 0+ because wt = o(t) and zt = o(t). Furthermore,

a1 ≤ 1 hence t1−a1 is bounded in a right neighborhood of t = 0. Therefore,
(wt − zt) · t−a1 → 0 and the function f is continuous at t = 0 too, because
a1 < ai and a1 < b1 < bj . By continuity, the function f is locally strictly
positive if and only if f(0) = −α1 > 0, hence(

∀0t > 0 : xt < yt
)
⇐⇒ α1 < 0(

∀0t > 0 : xt > yt
)
⇐⇒ α1 > 0.

Case: a1 > b1. We can argue in an analogous way with b1 and β1 instead of
a1 and α1.
Case: a1 = b1. We shall exploit the same idea used above and analyze
the condition xt < yt. The following are equivalent ways to express this
condition

ta1 ·
[
α1 +

N∑
i=2

αi · tai−a1
]
< ta1 ·

β1 +
N∑
j=2

βj · tbj−a1 + (wt − zt) · t−a1


α1 +
N∑
i=2

αi · tai−a1 < β1 +
N∑
j=2

βj · tbj−a1 + (wt − zt) · t−a1 .

Hence, exactly as we have demonstrated above, we can state that

α1 < β1 =⇒ ∀0t > 0 : xt < yt

α1 > β1 =⇒ ∀0t > 0 : xt > yt.

Otherwise α1 = β1 and we can restart with the same reasoning using a2, b2,
α2, β2, etc. If N = M , i.e. the number of addends in the decompositions
are equal, using this procedure we can prove that

∀t ≥ 0 : xt = yt + wt − zt,

that is x = y in •R.
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It remains to consider the case, e.g., N < M . In this hypotheses, using
the previous procedure we would arrive at the following equivalent way to
express the condition xt < yt:

0 <
∑
j>N

βj · tbj + wt − zt

0 < tbN+1 ·
[
βN+1 +

∑
j>N+1

βj · tbj−bN+1 + (wt − zt) · t−bN+1

]

0 < βN+1 +
∑

j>N+1

βj · tbj−bN+1 + (wt − zt) · t−bN+1 .

Hence
βN+1 > 0 =⇒ ∀0t > 0 : xt < yt

βN+1 < 0 =⇒ ∀0t > 0 : xt > yt.

This lemma can be used to find an equivalent formulation of the order rela-
tion.

Theorem 10. Let x, y ∈ •R, then
1. x ≤ y ⇐⇒

(
∀0t > 0 : xt < yt

)
or (x = y in •R)

2. x < y ⇐⇒
(
∀0t > 0 : xt < yt

)
and (x 6= y in •R)

Proof:
1. ⇒: If ◦x < ◦y then, from the previous Lemma 9 we can derive that the
first alternative is true. If ◦x = ◦y, then from Lemma 9 we have(
∀0t > 0 : xt < yt

)
or (x = y in •R) or

(
∀0t > 0 : xt > yt

)
(4.6)

In the first two cases we have the conclusion. In the third case, from x ≤ y
we obtain

∀0t ≥ 0 : xt ≤ yt + zt, (4.7)

with zt = o(t). Hence, from the third alternative of (4.6) we have

0 < xt − yt ≤ zt ∀0t > 0

and hence limt→0+
xt−yt
t = 0, i.e. x = y in •R.

1. ⇐: This follows immediately from the reflexive property of ≤ or from the
Definition 7.

2. ⇒: From x < y we have x ≤ y and x 6= y, so the conclusion follows from
the previous 1.

2. ⇐: From ∀0t > 0 : xt < yt and from 1. it follows x ≤ y and hence x < y
from the hypotheses x 6= y.
Now we can prove that our order is total
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Corollary 11. Let x, y ∈ •R, then in •R we have

1. x ≤ y or y ≤ x or x = y

2. x < y or y < x or x = y

Proof:
1.) If ◦x < ◦y, then from Lemma 9 we have xt < yt for t ≥ 0 sufficiently
small. Hence, from Theorem 10 we have x ≤ y. We can argue in the same
way if ◦x > ◦y. Also the case ◦x = ◦y can be handled in the same way using
2. of Lemma 9.

2.) This part is a general consequence of the previous one. Indeed, if we have
x = y, then we have the conclusion. Otherwise we have x 6= y, and using
the previous 1. we can deduce strict inequalities from inequalities because
x 6= y.

From the proof of Lemma 9 and from Theorem 10 we can deduce the
following

Theorem 12. Let x, y ∈ •R. If ◦x 6= ◦y, then

x < y ⇐⇒ ◦x < ◦y.

Otherwise, if ◦x = ◦y, then

1. If ω(x) > ω(y), then x > y iff ◦x1 > 0

2. If ω(x) = ω(y), then

◦x1 >
◦y1 =⇒ x > y

◦x1 <
◦y1 =⇒ x < y.

This statement can be taken for an axiomatic definition of the order.
Using it, it is not hard to prove that the isomorphism of Theorem 1 preserves
also this order relation.

Example. The previous Theorem gives an effective criterion to decide whe-
ther x < y or not. Indeed:

1. first of all x < y is equivalent to 0 < y − x, so we can describe the
algorithm for the case 0 < x, x ∈ •R \ R, only. If the standard part
◦x 6= 0, then the order relation can be decided on the basis of this
standard part only. E.g. 2 + dt2 > 0 and 1 + dt2 < 3 + dt.

2. Otherwise, if the standard part ◦x = 0, we look at the order ω(x) and
at the first standard part ◦x1, which is the coefficient of the biggest
infinitesimals in the decompositions of x: because ω(x) > ω(0) = 0,
we have that x > 0 iff ◦x1 > 0. E.g. 3 dt2 > 0; dt2 > adt for every
a ∈ R; dt < dt2 < dt3 < . . . < dtk for every k > 3, and dtk > 0.
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4.1 Absolute value

Having a total order, we can define the absolute value

Definition 13. Let x ∈ •R, then

|x| :=
{
x if x ≥ 0

−x if x < 0

Exactly like for the real field R, we can prove the usual properties of the
absolute value:

|x| ≥ 0

|x+ y| ≤ |x|+ |y|
− |x| ≤ x ≤ |x|
||x| − |y|| ≤ |x− y|
|x| = 0 ⇐⇒ x = 0.

Moreover, also the following cancellation law is provable.

Theorem 14. Let h ∈ •R \ {0} and r, s ∈ R, then

|h| · r ≤ |h| · s =⇒ r ≤ s

Proof: In fact if |h| · r ≤ |h| · s then from Theorem 10 we obtain that either

∀0t > 0 : |ht| · r ≤ |ht| · s (4.8)

or |h| · r = |h| · s. But h 6= 0 so(
∀0t > 0 : ht > 0

)
or

(
∀0t > 0 : ht < 0

)
hence we can always find a t̄ > 0 such that |ht̄| 6= 0 and to which (4.8) is
applicable. Therefore, in the first case we must have r ≤ s. In the second
one we have

|h| · r = |h| · s

but h 6= 0, hence |h| 6= 0 and so the conclusion follows from “Axiom, cancel-
lation laws”.

4.2 Powers and logarithms

In this section we will tackle definition and properties of powers xy and
logarithms logx y. Due to the presence of nilpotent elements in •R, we cannot
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define these operations without any limitation. For example, we cannot
define the square root having the usual properties, like

x ∈ •R =⇒ √
x ∈ •R (4.9)

x = y in •R =⇒ √
x =
√
y in •R (4.10)

√
x2 = |x|

because they are incompatible with the existence of h ∈ D such that h2 = 0,
but h 6= 0 (nonetheless, it is possible to define arbitrary roots of our nilpotent
infinitesimals with sufficient good properties, see [12]). We can obtain a
property like (4.9) (i.e. the closure of •R with respect to a given operation)
only for smooth functions, because they have to take little-oh polynomials to
little-oh polynomials. Moreover, the Definition 5 states that to obtain a well
defined operation we need a locally Lipschitz function. For these reasons, we
will limit xy to x > 0 and x invertible only, and logx y to x, y > 0 and both
x, y invertible.

Definition 15. Let x, y ∈ •R, with x strictly positive and invertible, then

1. xy := [t ≥ 0 7→ xytt ]= in •R

2. If y > 0 and y is invertible, then logx y := [t ≥ 0 7→ logxtyt]= in •R.

Because of Theorem 10, from x > 0 we have

∀0t > 0 : xt > 0

so that the previous operations are well defined in •R because ◦x 6= 0 6= ◦y.
Directly from the definition of equality in •R (Definition 4) the usual prop-
erties follow:

(xy)z = xy·z

xy · xz = xy+z

xn = x · n. . . . . . ·x if n ∈ N
logx (xy) = y

xlogx y = y

log(x · y) = log x+ log y

logx (yz) = z · logx y

xlog y = ylog x.

About the monotonicity properties, it suffices to use Theorem 10 to prove
immediately the usual properties (where x, y and w are invertible)

z > 0 , x ≥ y > 0 =⇒ xz ≥ yz
z < 0 , x ≥ y > 0 =⇒ xz ≤ yz
w > 1 , x ≥ y > 0 =⇒ logw x ≥ logw y

0 < w < 1 , x ≥ y > 0 =⇒ logw x ≤ logw y
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Analogous implications, but with strict equalities, are true if we suppose
x > y.

Finally, it can be useful to state here the elementary transfer theorem for
inequalities, whose proof follows immediately from the definition of ≤ and
from Theorem 10:

Theorem 16. Let A be an open subset of Rn, and τ , σ : A −→ R be smooth
functions. Then

∀x ∈ •A : •τ(x) ≤ •σ(x)

iff
∀r ∈ A : τ(r) ≤ σ(r).

4.3 Solution of linear equation

In this section we want to face the existence problem concerning 1-dimensional
linear equations.

Theorem 17. If a, b, c ∈ •R and a < c < a+ b, then

∃x ∈ •R : 0 ≤ x ≤ 1 and a+ x · b = c

Proof: We can suppose a = 0, because a + x · b = c is equivalent to
x ·b = c−a. If ◦b 6= 0, then b is invertible and it suffices to set x := c

b to have
the conclusion. Otherwise, ◦b = 0 and hence also ◦c = 0. Let us consider
the decompositions of c and b

c =

k∑
i=1

◦ci · dtωi(c)

b =
h∑
j=1

◦bj · dtωj(b).

We have to find a number x = ◦x +
∑N

n=1
◦xn · dtωn(x) such that x · b = c.

Since a = 0, our hypotheses a < c < a + b becomes 0 < c < b, so that
∀0t > 0 : bt > 0 and hence for t > 0 sufficiently small, we can form the ratio
between the corresponding little-oh polynomials

ct
bt

=

∑k
i=1
◦ci · t

1
ωi(c)∑h

j=1
◦bj · t

1
ωj(b)

=
t

1
ω1(b) ·∑k

i=1
◦ci · t

1
ωi(c)

− 1
ω1(b)

t
1

ω1(b) ·∑h
j=1

◦bj · t
1

ωj(b)
− 1
ω1(b)

. (4.11)

Let us note that from c > 0 we have ◦c1 > 0, and ω(b) = ω1(b) ≥ ω(c) ≥ ωi(c)
because 0 < c < b. From (4.11) and (1.6) we have
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ct
bt

=

∑k
i=1
◦ci · t

1
ωi(c)

− 1
ω1(b)

◦b1 ·
(

1 +
∑h

j=2

◦bj
◦b1
· t

1
ωj(b)

− 1
ω1(b)

)

=
1
◦b1
·
k∑
i=1

◦ci · t
1

ωi(c)
− 1
ω1(b) ·

+∞∑
k=0

(−1)k ·

 h∑
j=2

◦bj
◦b1
· t

1
ωj(b)

− 1
ω1(b)

k

.

Writing, for simplicity, a	b :=
(

1
a − 1

b

)−1, we can write the previous little-oh
polynomial using the common notation with dta:

xt :=
ct
bt

=
1
◦b1

k∑
i=1

◦ci dtωi(c)	ω1(b)

+∞∑
k=0

(−1)k ·

 h∑
j=2

◦bj
◦b1

dtωj(b)	ω1(b)

k

.

(4.12)
As usual, the series in this formula is really a finite sum if it is interpreted in
•R, because D∞ is an ideal of nilpotent infinitesimals. Going back in these
passages, it is quite easy to prove that the previously defined x ∈ •R verifies
the desired equality x · b = c. Moreover, from the Definition 7 of order, and
from 0 ≤ c ≤ b, the relations 0 ≤ x ≤ 1 follow.

Let us note that we cannot have uniqueness of solutions, due to nilpo-
tency. For example, if a = 0, c = dt2 + dt and b = dt3, then x = dt6 + dt3/2
is a solution of a · x + b = c, but x + dt is another solution. Moreover, let
us note that this theorem is not in contradiction with the non Archimedean
property of •R (let a = 0 and b ∈ D∞) because of the inequalities that c
must verify to have a solution.

4.4 The skeleton group of •R

The skeleton group is a typical instrument used to study non-Archimedean
totally ordered rings. For the sake of completeness, we include here its
definition.

Definition 18. Let (R,+, ·, <) be a totally ordered ring, and define in it
the absolute value as usual. Let a, b ∈ R6=0, then we say

a� b :⇐⇒ ∀n ∈ N : n · a < b

and we will read it a is infinitely smaller than b. Moreover, we will say

a ∼ b :⇐⇒ ¬(|a| � |b|) and ¬(|b| � |a|).

The relation ∼ is an equivalence relation, and we will denote by

SR := {[a]∼ | a ∈ R6=0}
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the set of all its equivalence classes. Moreover, it is possible to prove that
the following definitions are correct:

[a]∼ · [b]∼ : = [a · b]∼
[a]−1
∼ : = [a−1]∼

[a]∼ < [b]∼ :⇐⇒ ∀n ∈ N : n|a| < |b|.
It is possible to prove that (SR, ·, <) is a totally ordered group, called

the skeleton group of R. This notion is naturally tied with the notion of
non-Archimedean field. Indeed, the skeleton group of the real field is trivial
SR = {[1]∼}, but it is not so for non-Archimedean fields, where we always
have Z ⊆ SR, and Q ⊆ SR in case R admits roots of positive elements.

The following theorem characterizes the skeleton group of the ring of
Fermat reals.

Theorem 19. Let a, b ∈ •R≥0, then we have:

1. b /∈ D∞ =⇒ (a� b ⇐⇒ a ∈ D∞)

2. b ∈ D∞ =⇒ (a� b ⇐⇒ a ∈ D∞ and ω(a) < ω(b))

3. a ∼ b ⇐⇒ ◦a, ◦b 6= 0 or ω(a) = ω(b)

4. It results
[a]∼ < [b]∼

if and only if

(a ∈ D∞ and b/∈ D∞) or (a, b ∈ D∞ and ω(a) < ω(b)) .

Therefore, the skeleton group of the ring of Fermat reals is {[1]∼} ⊕D∞/ω.
Proof: To prove 1, assume that ◦b 6= 0. If a� b, then it cannot be ◦a 6= 0,
because, otherwise, we would find n ∈ N such that n◦a > ◦b and na > b.
Therefore, a ∈ D∞. Vice versa, if ◦a = 0, then for every n ∈ N, we have
n◦a = 0 < ◦b and hence na < b, that is a� b.

If ◦b = 0 and a � b, then ◦a = 0 can be proved as before. Moreover,
from Theorem 12 it follows that it cannot be ω(a) > ω(b) because a > 0 and
these would imply a > b, whereas a < b from a � b. On the other hand, it
cannot be ω(a) = ω(b) because ◦a1 > 0 and hence n◦a1 >

◦b for a sufficiently
big n ∈ N. This would implies na > b, whereas a� b. Therefore, it must be
ω(a) < ω(b). Once again from Theorem 12 the opposite implication follows
directly.

To prove 3, let us assume ¬ (a� b) and ¬ (b� a) and ◦b = 0, analo-
gously we can proceed if ◦a = 0. From 2 we get that a /∈ D∞ or ω(a) ≥ ω(b).
The first case is impossible, because it implies b� a from 1. Therefore, we
obtain that a ∈ D∞ and ω(a) ≥ ω(b), and reverting the role of a, b we get
the conclusion.

Finally, property 4 follows directly from 1 and 2.
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4.5 Supremum and infimum

Obviously, the ring of Fermat reals is not Dedekind complete, and the typical
example of bounded set without a least upper bound is the set D∞ of all
the infinitesimals. However, a stronger notion of set bounded from above,
which works on every standard part and on the orders, may guarantee the
existence of “the” supremum for this kind of sets, that we will call strongly
bounded from above. A first idea, partially wrong, is to evaluate, for a given
set B ⊂ •R, the possibility to consider a recursive definition of the following
form. We start considering the supremum of the standard parts of numbers
in B:

s0 := sup {◦x |x ∈ B} .
If there are no number in B with s0 as standard part, then s := s0 is our
candidate for “the” least upper bound. Otherwise, we consider those numbers
having s0 as standard part:

B
◦
0 := {x ∈ B | ◦x = s0} ,

and the supremum of the corresponding orders:

σ1 := sup
{
ω1(x) |x ∈ B◦

0

}
if B

◦
0 6= ∅.

If there are no number in B◦
0 of order σ1, then s := s0+ dtσ1 is our candidate.

Otherwise, we continue the recursive process:

Bω
1 :=

{
x ∈ B◦

0 |ω(x) = σ1

}
s1 := sup {◦x1 |x ∈ Bω

1 } if Bω
1 6= ∅,

in this case s := s0 + s1 dtσ1 is our candidate. In general we will have:

B
◦
i := {x ∈ Bω

i | ◦x = si}
σi+1 := sup

{
ωi+1(x) |x ∈ B◦

i

}
if B

◦
i 6= ∅

Bω
i+1 :=

{
x ∈ B◦

i |ω(x) = σi+1

}
si+1 := sup

{◦xi+1 |x ∈ Bω
i+1

}
if Bω

i+1 6= ∅

s = s0 +
∑
i

si dtσi . (4.13)

The idea to define a stronger notion of set B, bounded from above, is, of
course, to select those sets B for which these least upper bounds exist.

A first problem is that in (4.13) we can have infinite summands. For
example, if

B =

{
N∑
i=1

dtai |N ∈ N , 1 ≤ ai ≤ 1 +
1

i
∀i = 1, . . . , N

}
,
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then our idea (4.13) would get into

s = 0 + dt2 + dt1+ 1
2

+ dt1+ 1
3

+ . . . (4.14)

which has no meaning in our context.
A second problem is that our least upper bounds are unique only up

to infinitesimals of some order: we say that x, y ∈ •R are equal up to
an infinitesimal of k-th order, and we will write x =k y iff ◦x = ◦y and
ω(x − y) ≤ k. This notion finds several applications in the development of
the calculus on •R for functions defined on infinitesimal sets like Da (see [7];
for some application of this notion to the deduction of the wave equation,
see [9]), and this explain our quotation marks around some definite article.
For example if

B =

{
1− 1

n
|n ∈ N>0

}
,

then our recursive process stops at the first step, because B◦
0 = ∅. However,

our previous candidate s = s0 = 1 is surely an upper bound, but also 1− h,
where h is any strictly positive infinitesimal, is another upper bound. Note,
hence, that there is no least upper bound, exactly because there is no infimum
in D∞. Analogously, if

B =

{
1− 1

n
|n ∈ N>0

}
∪
{

1 + dt2− 1
n
|n ∈ N>0

}
,

then our recursive process stops at the second step, because Bω
1 = ∅. There-

fore, s = 1+ dt2 is an upper bound, but 1+ dt2−h, where h ∈ D, is a lesser
upper bound.

In the first definition we solve the problem (4.14).

Definition 20. Let B ⊆ •R, then we say that B is strongly bounded from
above if and only if there exists n ∈ N such that

Bω
n = ∅ or B

◦
n = ∅

and for every i ∈ N, the sets of real numbers{
ωi+1(x) |x ∈ B◦

i

}
,
{◦xi+1 |x ∈ Bω

i+1

}
are bounded from above.

Therefore, in the definition of set strongly bounded from above, we have
added the condition that our previous recursive process eventually stops. Let
us note, that our sets B◦

i and Bω
i are defined for every i ∈ N, even if they

can be empty (of course, the empty set can be bounded from above by every
real number).

In the second definition, we relax the uniqueness condition in the defini-
tion of supremum.
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Definition 21. Let B ⊆ •R, s ∈ •R and a ∈ R>0 ∪ {∞}, then we say that
s is a supremum of B up to Da if and only if the following conditions hold:

1. ∀x ∈ B : x ≤ s

2. ∀m ∈ •R : (∀x ∈ B : x ≤ m) , m ≤ s =⇒ m =a s

Theorem 22. For every set of Fermat reals, strongly bounded from above,
there exists a ∈ R>0 ∪ {∞} and a least upper bound up to Da.

Proof: Exactly as in the informal discussion above, we firstly consider the
case B◦

0 = ∅. This means that

∀x ∈ B : ◦x < s0,

and hence also x < s := s0. Moreover if m ∈ •R is an upper bound of B,
with m ≤ s, then ◦m ≤ ◦s. It cannot be ◦m < ◦s because, otherwise, we
would find a number x ∈ B such that ◦m < ◦x < ◦s, and this would imply
m < x. Therefore, ◦m = ◦s and we can set a =∞ to obtain our conclusion.

We can now suppose B◦
0 6= ∅ and therefore, we can consider the greatest

n ∈ N such that B◦
n 6= ∅. We set

s :=

{
s0 +

∑n−1
i=1 si dtσi + dtσn if Bω

n = ∅
s0 +

∑n
i=1 si dtσi if Bω

n 6= ∅.

In both cases it results x ≤ s by construction and by Theorem 12. Finally,
setting a = σn−1 we have the conclusion, once again using Theorem 12 and
proceeding as above.

5 Geometrical representation of Fermat reals

At the beginning of this article, we argued that one of the conducting idea in
the construction of Fermat reals is to maintain always a clear intuitive mean-
ing. More precisely, we always tried, and we will always try, to keep a good
dialectic between provable formal properties and their intuitive meaning. In
this direction we can see the possibility to find a geometrical representation
of Fermat reals.

The idea is that to any Fermat real x ∈ •R we can associate the function

t ∈ R≥0 7→ ◦x+

N∑
i=1

◦xi · t1/ωi(x) ∈ R (5.1)

where N is, of course, the number of addends in the decomposition of x.
Therefore, a geometric representation of this function is also a geometric
representation of the number x, because different Fermat reals have different
decompositions, see “Axiom, decomposition”. Finally, we can guess that,
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because the notion of equality in •R depends only on the germ generated by
each little-oh polynomial (see Definition 4), we can represent each x ∈ •R
with only the first small part of the function (5.1).

Definition 23. If x ∈ •R and δ ∈ R>0, then

graphδ(x) :=

{
(◦x+

N∑
i=1

◦xi · t1/ωi(x), t) | 0 ≤ t < δ

}
(5.2)

where N is the number of addends in the decomposition of x.

Note that the value of the function are placed in the abscissa position, so
that the correct representation of graphδ(x) is given by the figure 5.1. This
inversion of abscissa and ordinate in the graphδ(x) permits to represent this
graph as a line tangent to the classical straight line R and hence to have
a better graphical picture (see the following figures). Finally, note that if
x ∈ R is a standard real, then N = 0 and the graphδ(x) is a vertical line
passing through ◦x = x, i.e. they are “ticks on axis”.

0 4 8 12
0

50

100

150

√
t

t

Figure 5.1: The geometrical representation of dt2

The following theorem permits to represent geometrically the Fermat reals

Theorem 24. If δ ∈ R>0, then the function

x ∈ •R 7→ graphδ(x) ⊂ R2

is injective. Moreover if x, y ∈ •R, then we can find δ ∈ R>0 (depending on
x and y) such that

x < y

if and only if

∀p, q, t : (p, t) ∈ graphδ(x) , (q, t) ∈ graphδ(y) =⇒ p < q (5.3)
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Proof: The application ρ(x) := graphδ(x) for x ∈ •R is well defined because
it depends on the terms ◦x, ◦xi and ωi(x) of the decomposition of x. Now,
suppose that graphδ(x) = graphδ(y), then

∀t ∈ [0, δ) : ◦x+

N∑
i=1

◦xi · t1/ωi(x) = ◦y +

M∑
j=1

◦yj · t1/ωj(y) (5.4)

Let us consider the Fermat reals generated by these functions, i.e.

x′ : =

[
t ≥ 0 7→ ◦x+

N∑
i=1

◦xi · t1/ωi(x)

]
= in •R

y′ : =

t ≥ 0 7→ ◦y +

M∑
j=1

◦yj · t1/ωj(y)


= in •R

then the decompositions of x′ and y′ are exactly the decompositions of x
and y

x′ = ◦x+

N∑
i=1

◦xi dtωi(x) = x (5.5)

y′ = ◦y +
M∑
j=1

◦yj dtωj(y) = y. (5.6)

From (5.4) it follows x′ = y′ in •R, and hence also x = y from (5.5) and
(5.6).

Now suppose that x < y, then, using the same notations used above, we
have also x′ = x and y′ = y and hence

x′ = ◦x+

N∑
i=1

◦xi · t1/ωi(x) < ◦y +

M∑
j=1

◦yj · t1/ωj(y) = y′ in •R.

We apply Theorem 10 obtaining that locally x′t < y′t, i.e.

∃ δ > 0 : ∀t ∈ [0, δ) : ◦x+

N∑
i=1

◦xi · t1/ωi(x) < ◦y +
M∑
j=1

◦yj · t1/ωj(y).

This is an equivalent formulation of (5.3), and, because of Theorem 10, it is
equivalent to x′ = x < y′ = y.

Example. In figure 5.2 we have the representation of some first order in-
finitesimals.
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Figure 5.2: Some first order infinitesimals

The arrows are justified by the domain R≥0 of the function (5.1), so that the
representing lines have a first point and a direction. The smaller is α ∈ (0, 1)
and the nearer is the representation of the product α dt to the vertical line
passing through zero, which is the representation of the standard real x = 0.
Finally, recall that dtk ∈ D if and only if 1 ≤ k < 2.

If we multiply two infinitesimals we obtain a smaller number, hence one
whose representation is nearer to the vertical line passing through zero, as
represented in the figure 5.3

Figure 5.3: The product of two infinitesimals

In figure 5.4 we have a representation of some infinitesimals of order greater
than 1. We can see that the greater is the infinitesimal h ∈ Da (with
respect to the order relation ≤ defined in •R) and the higher is the order of
intersection of the corresponding line graphδ(h).

Finally, in figure 5.5 we represent the order relation on the basis of Theorem
24.

Intuitively, the method to see if x < y is to look at a suitably small neigh-
borhood (i.e. at a suitably small δ > 0) at t = 0 of their representing lines
graphδ(x) and graphδ(y): if, with respect to the horizontal directed straight
line, the curve graphδ(x) comes before the curve graphδ(y), then x is less
than y in the ring •R of Fermat reals.
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Figure 5.4: Some higher order infinitesimals

Figure 5.5: Different cases in which xi < yi

6 Computer implementation

The definition of the ring of Fermat reals is highly constructive. Therefore,
using object oriented programming, it is not hard to write a computer code
corresponding to •R. We realized a first version of this software using Matlab
R2010b.

The constructor of a Fermat real is x=FermatReal(s,w,r), where s is the
n+1 double vector of standard parts (s(1) is the standard part ◦x) and w is
the double vector of orders (w(1) is the order ω(x) if x ∈ •R \ R, otherwise
w=[] is the empty vector). The last input r is a logical variable and assume
value true if we want that the display of the number x is realized using
the Matlab rats function for both its standard parts and orders. In this
way, the number will be displayed using continued fraction approximations
and therefore, in several cases, the calculations will be exact. These inputs
are the basic methods of every Fermat real, and can be accessed using the
subsref, and subsasgn, notations x.stdParts, x.orders, x.rats. The
function w=orders(x) gives exactly the double vector x.orders if x ∈ •R\R
and 0 otherwise.

The function dt(a), where a is a double, construct the Fermat real dta.
Because we have overloaded all the algebraic operations, like x+y, x*y, x-y,
-x, x==y, x~=y, x<y, x<=y, x^y, we can define a Fermat real e.g. using
an expression of the form x=2+3*dt(2)-1/3*dt(1), which corresponds to
x=FermatReal([2 3 -1/3],[2 1],true).

We have also realized the function y=decomposition(x), which gives the
decomposition of the Fermat real x, abs(x), log(x), exp(x), isreal(x),
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isinfinitesimal(x), isinvertible(x).
The function plot(t,x) shows the curve (5.2) at the given input t of

double, and the logical function v=eqUpTo(k,x,y) corresponds to x =k y.
The ratio x/y has been implemented using the formula (4.12), if x and

y are infinitesimals and y~=0, or the formula (1.6) if y is invertible. Finally,
the function y=ext(f,x), corresponds to •f(x) and has been realized using
the evaluation of the symbolic Taylor formula of the inline function f.

Using these tools, we can easily find, e.g., that

sin( dt3 + 2 dt2)

cos(−dt4 − 4 dt)
= dt3 + 2 dt2 −

1

2
dt 6

5
+

5

6
dt.

This corresponds to the following Matlab code:
>‌> x=dt(3)+2*dt(2)

x =
dt_3 + 2*dt_2

>‌> y=-dt(4)-4*dt(1)
y =
-dt_4 - 4*dt

>‌> g=inline(’cos(y)’)
g =
Inline function: g(y) = cos(y)
>‌> f=inline(’sin(x)’)
f =
Inline function: f(x) = sin(x)

>‌> decomposition(ext(f,x)/ext(g,y))
ans =
dt_3 + 2*dt_2 + 1/2*dt_6/5 + 5/6*dt
Up to now, this code has been written only to show concretely the possi-

bilities of the ring •R. On the other hand, it is clear that it is possible to write
it with a more specific aim. For example, like in case of the Levi-Civita field
([4, 19]) possible applications of a specifically rewritten code can be in auto-
matic differentiation theory. Let us note that, even if the theory of Fermat
reals applies to smooth functions, a full treatment of right and left deriva-
tives is possible ([7]), so that the theory can be applied consistently also to
piecewise smooth functions. Finally, the use of nilpotent elements permits
to fully justify that every derivative estimation of a computer function ([19])
reduces to a finite number of algebraic calculations.

The Matlab source code is freely available under open-source license, and
can be requested to the author of the present article.

7 Conclusions

Actual infinitesimals has been used, and are still used, to discover non trivial
truths of the real world. Historically, standard ε−δ calculus took the place of
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infinitesimals and, probably, it is a more general way to face the problems of
calculus, keeping at the same time a very good intuitive interpretation. Be-
cause they are both good instruments to solve real-world problems, it seems
natural to conjecture that there could be a strict relation between actual
infinitesimals and potential infinitesimals of standard calculus. In fact, sev-
eral authors tried to reduce the rigorous construction of actual infinitesimals
using the standard calculus. The first powerful solutions have been NSA
and SDG, but a discussion about their intuitive meaning or about their con-
straints started (see e.g. [3, 6, 2]). For example, some researchers state the
impossibility to draw infinitesimals of NSA because from any non zero in-
finitesimal is possible, without using the axiom of choice, to construct a non
measurable set (see [5, 7]). We have seen that a rigorous definition of a ring
of actual infinitesimals having very good intuitive interpretation is possible.
In particular, in this paper we have studied the total order relation in the
ring •R of Fermat reals and see that a geometrical representation is possible.
Being highly constructive, we implemented the ring •R using Matlab object
oriented programming, so that it is possible to foresee potential useful ap-
plication in automatic differentiation theory, formal solution of differential
equations or in perturbation theory.
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