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Abstract

Using the existence of infinite numbers k in the non-Archimedean ring of Robinson-Colombeau,
we define the hyperfinite Fourier transform (HFT) by considering integration extended to the
interval [—k, k]" instead of (—o0,00)". In order to realize this idea, the space of generalized
functions we consider is that of generalized smooth functions (GSF), an extension of classical
distribution theory sharing many nonlinear properties with ordinary smooth functions, like the
closure with respect to composition, a good integration theory, and several classical theorems
of calculus. Even if the final transform depends on k, we obtain a new notion that applies to
all GSF, in particular to all Schwartz distributions and to all Colombeau generalized functions
defined in [k, k], without growth restrictions. We prove that this FT generalizes several clas-
sical properties of the ordinary FT, and in this way we also overcome the difficulties of FT in
Colombeau’s settings. Differences in some formulas, such as in the transform of derivatives, re-
veal to be meaningful since they allow to obtain also non-tempered global solutions of differential
equations.
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1. Introduction: extending the domain of the Fourier transform

Fourier transform (FT) and generalized functions (GF) are naturally interwoven, since
the former naturally leads to suitable spaces of the latter. This already occurs even
in trivial cases, such as transforming a simple sound wave f(t) = Asin(2wwot), whose
spectrum must be, in some way, concentrated at the frequencies +wgy. Even the link
between constants and delta-like functions was already conceived by Fourier (see e.g. [42]).
Although different theories of generalized functions arise for different motivations, from
distribution theory of Sobolev, Schwartz [56, (59] up to Hairer’s regularity structures
[32], almost all these theories are usually augmented with a corresponding calculus of
FT, which can be applied to an appropriate subspace of generalized functions. Since the
beginning of distribution theory, it was hence natural to try to extend the domain of the
FT with less or even with no growth restrictions imposed. In fact, e.g., as a consequence
of these restrictions, the only solution of the trivial ODE ¢y’ = y we can achieve using
tempered distributions is the trivial one. We can hence cite in [21] [22] the definition of the
FT as the limit of a sequence of functions integrated on a finite domain, or [68] for a two-
sided Laplace transform defined on a space larger than that of tempered distributions,
and similarly in [3] for the directional short-time Fourier transform of exponential-type
distributions. In the same direction we can inscribe the works [2} [, [15], 87 52, 61, 58], 18]
19] on ultradistributions, hyperfunctions and thick distributions.

On the other hand, problems originating from physics, such as singularities and point-
source fields, also suggest us to consider alternative modeling, ranging from non-smooth
functions as test functions in the theory of distributions (see e.g. [66] and references
therein) to non-Archimedean analysis (i.e. mathematical analysis over a ring extending
the real field and containing infinitesimal and/or infinite numbers, see [31] 20]). In the
interplay between mathematics and physics, it is well-known that heuristically manipu-
lating non-linear pointwise equalities such as H? = H (H being the Heaviside function)
can easily lead to contradictions (see e.g. [8, [31]). This can make particularly difficult
to realize the strategy of [44], where the authors search for a metaplectic representation
from symplectic maps to symplectic relations. According to A. Weinstein (personal com-
munication, May 2019), this would require an algebra of generalized functions extending
the usual algebra of smooth functions and a FT acting on them with the usual inversion
formula and transforming the Dirac delta into 1. As we will see more diffusely in the fol-
lowing sections, this is not possible in the classical approach to Colombeau’s algebra, see
[11], 13], 48], B5]. We will only arrive at a partial solution of this problem where equalities
are replaced by infinitely close relations or by limits, see Cor. [7.10]and Thm. [7-4] Cor[7.7}
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6 A. Mukhammadiev et al.

To overcome this type of problems, we are going to use the category of generalized
smooth functions (GSF), see [25], 26| [43] [24) 27]. This theory seems to be a good can-
didate, since it is an extension of classical distribution theory which allows us to model
nonlinear singular problems, while at the same time sharing many nonlinear properties
with ordinary smooth functions, like the closure with respect to composition (thereby,
they form an algebra extending the algebra of smooth functions with pointwise product)
and several non trivial classical theorems of the calculus. One could describe GSF as a
methodological restoration of Cauchy-Dirac’s original conception of generalized function,
see [I6] [4T], 39]. In essence, the idea of Cauchy and Dirac (but also of Poisson, Kirchhoff,
Helmholtz, Kelvin and Heaviside) was to view generalized functions as suitable types of
smooth set-theoretical maps obtained from ordinary smooth maps depending on suitable
infinitesimal or infinite parameters. For example, the density of a Cauchy-Lorentz dis-
tribution with an infinitesimal scale parameter was used by Cauchy to obtain classical
properties which nowadays are attributed to the Dirac delta, cf. [39].

The basic idea to define a very general FT in this setting is the following: Since
GSF form a non-Archimedean framework, we can consider a positive infinite generalized
number k (i.e. k > r for all » € Ryg) and define the FT with the usual formula, but
integrating over the n-dimensional interval [—k, k]™. Although k is an infinite number
(hence, [—k,k]™ 2 R™), this interval behaves like a compact set for GSF, so that, e.g.,
on these domains we always have an extreme value theorem and integrals always exist.
Clearly, this leads to a FT, called hyperfinite FT, that depends on the parameter k,
but, on the other hand, where we can transform all the GSF defined on this interval
and these include all tempered Schwartz distributions, all tempered Colombeau GF, but
also a large class of non-tempered GF, such as the exponential functions, or non-linear
examples like 6% 0 §°, §% o H®, a, b € N, etc. Not all the properties of the classical FT
remain unchanged for this more general transform, but the final formalism still retains
the useful properties of the FT in dealing with differential equations. Even more, the new
formula for the transform of derivatives leads to discover also exponential solutions of
the aforementioned ODE gy’ = y. Since [I4] proves that ultradistributions and periodic
hyperfunctions can be embedded in Colombeau type algebra, this gives strong hints to
conjecture that the hyperfinite FT is very general, and it justifies the title of this article.

The structure of the paper is as follows. We start with an introduction into the setting
of GSF and give basic notions concerning GSF and their calculus that are needed for a first
study of the hyperfinite FT (Sec. . We then define the hyperfinite FT in Sec. 4| and the
convolution of compactly supported GSF in Sec.[3} In Sec. [f] we show how the elementary
properties of FT change for the hyperfinite FT. In Sec.[7]and Sec. [8] we respectively prove
the inversion theorem and that the embedding of a very large class of Sobolev-Schwartz
tempered distributions preserves their FT, i.e. that the hyperfinite FT commutes with
the embedding of Schwartz functions and tempered distributions. In this section, we also
recall the problems of FT in the Colombeau’s setting and how we overcome them. Finally,
in Sec. [9] we give several examples which underscore the new possibility to transform any
generalized function. Thanks to the developed formalism, which stresses the similarities
with ordinary smooth functions, frequently the proofs we are going to present are very
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simple and similar to those for smooth functions, but replacing the real field R with the
non-Archimedean ring of Robinson-Colombeau * R.

The paper is self-contained, in the sense that it contains all the statements required
for the proofs we are going to present. If proofs of preliminaries are omitted, we clearly
give references to where they can be found. Therefore, to understand this paper, only a
basic knowledge of distribution theory is needed.

2. Basic notions

2.1. The new ring of scalars. In this work, I denotes the interval (0,1] C R and we
will always use the variable ¢ for elements of I; we also denote e-dependent nets x € R’
simply by (z.). By N we denote the set of natural numbers, including zero.

We start by defining a new simple non-Archimedean ring of scalars that extends the
real field R. The entire theory is constructive to a high degree, e.g. neither ultrafilters
nor non-standard methods are used. For all the proofs of results in this section, see
[24], 25, 27, 26

DEFINITION 2.1. Let p = (p.) € (0,1]1 be a net such that (p.) — 0 as ¢ — 0% (in the
following, such a net will be called a gauge). Then

(i) Z(p) :={(pz*) | a € Rso} is called the asymptotic gauge generated by p.

(i) If P(e) is a property of € € I, we use the notation ¥’ : P(e) to denote 3gq €
IVe € (0,g0] : P(g). We can read V¢ as for & small.

(iii) We say that a net (z.) € R is p-moderate, and we write (z.) € R, if

3(J.) €Z(p): xc =0(J.) ase — 0T,
ie., if
IN e NV |z | < p .
(iv) Let (z.), (y-) € RT. Then we say that (z.) ~, (ye) if
V() €Z(p): wc=y. +O(J- ) as e — 0T,
that is if
Vn € NYe: |z, —y.| < pl (2.1)

This is a congruence relation on the ring R, of moderate nets with respect to
pointwise operations, and we can hence define

'R := Ryo/ ~p,

which we call Robinson-Colombeau ring of generalized numbers. This name is justi-
fied by [55] [10]: Indeed, in [55] A. Robinson introduced the notion of moderate and
negligible nets depending on an arbitrary fixed infinitesimal p (in the framework
of nonstandard analysis); independently, J.F. Colombeau, cf. e.g. [I0] and refer-
ences therein, studied the same concepts without using nonstandard analysis, but
considering only the particular gauge p. = ¢.
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We will also use other directed sets instead of I: e.g. J C I such that 0 is a closure
point of J, or I xN. The reader can easily check that all our constructions can be repeated
in these cases. We can also define an order relation on “R by saying that [z.] < [y.] if
there exists (z.) € R such that (z.) ~, 0 (we then say that (z.) is p-negligible) and
Te < ye + z. for € small. Equivalently, we have that x < y if and only if there exist
representatives [x.] = x and [y.] = y such that z. < y. for all e. Although the order <
is not total, we still have the possibility to define the infimum [z.] A [ye] := [min(z., y-)],
the supremum [z.] V [y.] := [max(z.,y.)] of a finite number of generalized numbers. See
[A7] for a complete study of supremum and infimum in “R. Henceforth, we will also use
the customary notation * R* for the set of invertible generalized numbers, and we write
2 < y to say that z < y and = — y € “R*. Our notations for intervals are: [a,b] =
{z € 'R | a <z < b}, [a,blg := [a,b] NR, and analogously for segments [x,y] :=
{z+r -(y—=)|re(0,1]} C’R" and [z, y]rn = [z,y] NR™. We also set C,=R,+i-R,
and "C := "R+~ ”F~2, where i = /—1. On the ’R-module "R" we can consider the natural
extension of the Euclidean norm, i.e. |[z.]] := [|zc|] € ’R, where [z.] € "R™.

As in every non-Archimedean ring, we have the following

DEFINITION 2.2. Let z € "R™ be a generalized number. Then

(i) =« is infinitesimal if |x| < r for all » € Rsg. If © = [z.], this is equivalent to
lim,_,o+ x| = 0. We write z = y if  — y is infinitesimal.

(ii) =« is finite if |x| < r for some r € Rxo.

(iil) x is infindte if |z| > r for all r € Rsq. If & = [z.], this is equivalent to lim,_,o+ |z.| =
+o0.

For example, setting dp := [p.] € ”ﬁ, we have that dp” € ”ﬁ, n € Nso, is an invertible

" = [p-"], which is necessarily a positive infinite

infinitesimal, whose reciprocal is dp~
number. Of course, in the ring ” R there exist generalized numbers which are not in any
of the three classes of Def. like e.g. x. = %sin (%)
DEFINITION 2.3. We say that x is a strong infinite number if |z| > dp~" for some r € R+,
whereas we say that x is a weak infinite number if |x| < dp~" for all r € Rs¢. For example,
x = —Nlogdp, N € N, is a weak infinite number, whereas if z. = p_! for e = %, k € Nso,

and z. = —log p. otherwise, then x is neither a strong nor a weak infinite number.

The following result is useful to deal with positive and invertible generalized numbers.
For its proof, see e.g. [31].

LEMMA 2.4. Let z € 'R. Then the following are equivalent:

(i)  x is invertible and x > 0, i.e. x > 0.
ii)  For each representative (x.) € R, of x we have V¢ : x. > 0.
P
(iii) For each representative (z.) € R, of x we have Im € NV : z. > p.
i) There exists a representative (x.) € R, of  such that Im € NYe : z. > p™.
p 5

2.2. Topologies on ’Rm. As we mentioned above, on the ’R-module "R™ we defined
|[zc]] := [|zc|] € “R, where [z.] € PR™. Even if this generalized norm takes values in “R, it
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shares some essential properties with classical norms:

x| =2V (—x)
lz| >0

[z =0=2=0
ly - =yl - ||

lz 4yl < |z| + |y
|| = lyl| < |z —yl.

It is therefore natural to consider on "R™ a topology generated by balls defined by this
generalized norm and the set of radii R~ of positive invertible numbers:

DEFINITION 2.5. Let ¢ € “R” then:
(i)  By(c) := {:r eR™ ||z —c| < r} for each r € "Rs.

(ii) BE(c) :={z € R" | |z — ¢| < r}, for each r € Ry, denotes an ordinary Euclidean
ball in R™ if ¢ € R™.

The relation < has better topological properties as compared to the usual strict order
relation a < b and a # b (that we will never use) because the set of balls {B,(c) | r €
”R>0 ceE "R”} is a base for a topology on ’R™ called sharp topology. We will call sharply
open set any open set in the sharp topology. The existence of infinitesimal neighborhoods
(e.g. r = dp) implies that the sharp topology induces the discrete topology on R. This
is a necessary result when one has to deal with continuous generalized functions which
have infinite derivatives. In fact, if f/(zo) is infinite, and we take only |z — x| < § € R,
we can have that f(z) is far from f(zp): only § ~ 0 sufficiently small surely implies
f(x) = f(xo), see [24, pag. 8]. Also open intervals are defined using the relation <,
ie. (a,b):={z€’R|a<z<b}.

2.3. The language of subpoints. The following simple language allows us to simplify
some proofs using steps that recall the classical real field R, see [47]. We first introduce
the notion of subpoint:

DEFINITION 2.6. For subsets J, K C I we write K Cg J if 0 is an accumulation point of K
and K C J (we read it as: K is co-final in J). Note that for any J Cq I, the constructions
introduced so far in Def. [2.1| u can be repeated using nets (x.).cs. We indicate the resulting
ring with the symbol * R”| J. More generally, no peculiar property of I = (0,1] will ever
be used in the following, and hence all the presented results can be easily generalized
considering any other directed set. If K Cy J, x € ”ﬁ"\J and o’ € ”ﬁ”|K, then z’ is called
a subpoint of x, denoted as x’ C =, if there exist representatives (e)eet, (2L)eck of x, 2’
such that 2. = z. for all € € K. In this case we write ' = x|k, dom(2’) := K, and the
restriction (—)|x : "R® —s "R™|k is a well defined operation. In general, for X C “R" we
set X|; = {z|; €’R"|, |z € X}.

In the next definition, we introduce binary relations that hold only on subpoints.
Clearly, this idea is inherited from nonstandard analysis, where co-final subsets are always
taken in a fixed ultrafilter.
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DEFINITION 2.7. Let z, y € ”ﬁ, L Cy I. Then we say

(i) x<py :<= x| <yl (the latter inequality has to be meant in the ordered
ring ’R|1). We read © <p, y as “x is less than y on L”.

(i) o <gy :< 3L CoI: z <p y. Weread x <g y as “x is less than y on
subpoints”.

Analogously, we can define other relations holding only on subpoints such as e.g.: =,
€L, €s, <s, =s, Cs, etc.

For example, we have
r<y < VLCyl: z<py
r<y < VLCyl: z<puy,

the former following from the definition of <, whereas the latter following from Lem.
Moreover, if P {x.} is an arbitrary property of z.. Then

-~ (VWe: P{ze}) < 3ILCoIVeeL: —P{a.}. (2.2)

Note explicitly that, generally speaking, relations on subpoints, such as <4 or =4, do
not inherit the same properties of the corresponding relations for points. So, e.g., both
=4 and <4 are not transitive relations.

The next result clarifies how to equivalently write a negation of an inequality or of an
equality using the language of subpoints.

LEMMA 2.8. Letxz, y € ’R. Then

(i) €y <= x>y
(i) =&y <<= x>y
(iii) x4y <= x>yorz<sy

Using the language of subpoints, we can write different forms of dichotomy or tri-
chotomy laws for inequality.

LEMMA 2.9. Letz, y € ’R. Then

(i) x<yorx>gy

(i) —(z >y and x <y)

(1)) x=yorx<gyorz>sy

(v) z<y => z<syorzx=y

(W) <5y < <5y orxr=5y.

As usual, we note that these results can also be trivially repeated for the ring ”ﬁ\ L- S0,

e.g., we have x £ y if and only if 3J Cg L : = >; y, which is the analog of Lem. [2.8]|(i)
for the ring "R|y.

2.4. Open, closed and bounded sets generated by nets. A natural way to obtain
sharply open, closed and bounded sets in R is by using a net (A¢) of subsets A. C R™.
We have two ways of extending the membership relation z. € A, to generalized points
[z.] € "R™ (cf. [B1] 25]).

DEFINITION 2.10. Let (A:) be a net of subsets of R™. Then
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(i) [A] == {[z] € "R* | VO : z. € A.} is called the internal set generated by the net
(A).

(ii) Let (zc) be a net of points of R™. Then we say that z. €. A., and we read it as
(xc) strongly belongs to (Ag), if

(i) V: x. € A..
(ii) If (2L) ~, (zc), then also z € A, for € small.

Moreover, we set (A.) := {[zc] € "R | z. €. A.}, and we call it the strongly
internal set generated by the net (A.).

(iii) We say that the internal set K = [A.] is sharply bounded if there exists M € "R
such that K C By(0).

(iv) Finally, we say that the (A.) is a sharply bounded net if there exists N € Rs¢ such
that V0eVr € A, : |z| < p N

Therefore, x € [A.] if there exists a representative [z.] = z such that x. € A, for ¢
small, whereas this membership is independent from the chosen representative in case
of strongly internal sets. An internal set generated by a constant net A, = A C R™ will
simply be denoted by [A].

The following theorem (cf. [51], 25] 27]) shows that internal and strongly internal sets
have dual topological properties:

THEOREM 2.11. Fore € I, let A CR" and let x. € R™. Then we have

(i)  [ze] € [Ac] if and only if Vg € Rao ¥V @ d(z., A.) < pl. Therefore [x.] € [A] if
and only if [d(z., A.)] = 0 € 'R.

(ii)  [xe] € (Ao) if and only if 3¢ € RsoV 1 d(z., AS) > pl, where AS := R"\ A..
Therefore, if (d(z., AS)) € R,, then [z.] € (Ac) if and only if [d(z., AS)] > 0.

(iii) [Ac] is sharply closed.

(iv) (A.) is sharply open.

(v) [Ac] = [cl(Ae)], where cl(S) is the closure of S C R™.

(vi) (A.) = (int(Ae)), where int (S) is the interior of S C R™.

For example, it is not hard to show that the closure in the sharp topology of a ball of
center ¢ = [c:] and radius r = [r.] > 0 is

B(0) = {zeR | jz—cl <r} = [BEle)] . (23)

whereas

B,(¢) = {a: R ||z — ¢ < r} = (BE (c.)).

2.5. Generalized smooth functions and their calculus. Using the ring ”i-':’, it is
easy to consider a Gaussian with an infinitesimal standard deviation. If we denote this
probability density by f(z,0), and if we set o0 = [o.] € ’Rs0, where o & 0, we obtain the
net of smooth functions (f(—,0:))eer- This is the basic idea we are going to develop in
the following
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DEFINITION 2.12. Let () be a net of open subsets of R™. Let X C 'R and Y - ’R? be
arbitrary subsets of generalized points. Then we say that

f: X — Y is a generalized smooth function
if there exists a net f. € C*(Q,R?) defining the map f : X — Y in the sense that
(i) X< (),
(ii)  f(Jze)) = [fe(ze)] €Y for all x = [z] € X,
(iii) (0*f-(x.)) € R? for all z = [z.] € X and all & € N".
The space of generalized smooth functions (GSF) from X to Y is denoted by "GC™(X,Y).

Let us note explicitly that this definition states minimal logical conditions to ob-
tain a set-theoretical map from X into Y and defined by a net of smooth functions
of which we can take arbitrary derivatives still remaining in the space of p-moderate
nets. In particular, the following Thm. states that the equality f([zc]) = [f-(zc)] is
meaningful, i.e. that we have independence from the representatives for all derivatives
[z € X — [0 f.(z.)] € "R%, a € N™.

THEOREM 2.13. Let X C 'R™ and Y C "R? be arbitrary subsets of generalized points. Let

f- € C®(Q,R?) be a net of smooth functions that defines a generalized smooth map of
the type X — Y. Then

(i) VaeN"W(z), (@) €RY: ] = [sl] € X = (0°fu(a2)) ~p (9°-(aL)).

(ii) FEach f € ’GC*(X,Y) is continuous with respect to the sharp topologies induced on
X, Y.

(iii) f:X — Y is a GSF if and only if there exists a net v. € C°(R™,R?) defining a
generalized smooth map of type X — Y such that f = [ve(—)]|x-

(iv) GSF are closed with respect to composition, i.e. subsets S C *RS with the trace
of the sharp topology, and GSF as arrows form a subcategory of the category of
topological spaces. We will call this category *GC™, the category of GSF. Therefore,
with pointwise sum and product, any space "GC™ (X, ”ﬁ) is an algebra.

The differential calculus for GSF can be introduced by showing existence and unique-
ness of another GSF serving as incremental ratio (sometimes this is called derivative @ la
Carathéodory, see e.g. [40]).

THEOREM 2.14 N(Fermat—Reyes theorem for GSF). Let U C 'R™ be a sharply open set,
let v = [ve] € ’R™, and let f € "GC*(U,’R) be a GSF generated by the net of smooth
functions f. € C*(Qc,R). Then

(i) There exists a sharp neighborhood T of U x {0} and a generalized smooth map
r € ’GC™(T,"R), called the generalized incremental ratio of f along v, such that

Y(z,h) €T : f(x+ hv) = f(x)+h-r(z,h).

(ii)  Any two generalized incremental ratios coincide on a sharp neighborhood of U x {0},
so that we can use the notation g—{}[m; h] :=7r(z, h) if (z,h) are sufficiently small.

(iii) We have %[1’; 0] = [gi (:175)} for every x € U and we can thus define df(x) - v :
5 (@) i= 51w 0] = |3 (22)| :0], so that 5 € "GC=(U,'R).
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Note that this result permits us to consider the partial derivative of f with respect to
an arbitrary generalized vector v € * R" which can be, e.g., infinitesimal or infinite. Using
recursively this result, we can also define subsequent differentials d’ f(x) as j—multilinear
maps, and we set d’f(x) - h? := d’f(x)(h,..5..,h). The set of all the j—multilinear
maps ("R™)7 —s *R? over the ring “R will be denoted by L7 (“R",’R%). For A = [A.(—)] €
LI ("R™,"R%), we set || A|| := [|A.|], the generalized number defined by the operator norms
of the multilinear maps A. € L7(R",R?).

The following result follows from the analogous properties for the nets of smooth
functions defining f and g.

THEOREM 2.15. Let U C “R™ be an open subset in the sharp topology, let v € 'R™ and f,

g:U— 'R be generalized smooth maps. Then

(2) o(f+g) _ of + 99

(i) 200 —p. % wreR

(iv) For each x € U, the map df(x).v = %(m) € 'R is *R-linear in v € "R"

(v) Let U C 'R and V. C "R% be open subsets in the sharp topology and let g €
PGC>(V,U), f € PGC>=(U,"R) be generalized smooth maps. Then for allz € V and
all v e "R, we have %(x) =df (g(x)) .%(z).

One dimensional integral calculus of GSF is based on the following
THEOREM 2.16. Let f € *GC*([a,b],"R) be a GSF defined in the interval [a,b] C 'R,

where a < b. Let ¢ € [a,b]. Then, there exists one and only one GSF F € *GC>([a,b],"R)
such that F(c) =0 and F'(z) = f(z) for all x € [a,b]. Moreover, if f is defined by the

net fo € C*°(R,R) and ¢ = [c.], then F(x) = [f::e fa(s)ds} for all x = [z.] € [a, b].
We can thus define

DEFINITION 2.17. Under the assumptions of Theorem we denote by fc(_) =
1 f(s)ds € 7GC>=([a, b],"R) the unique GSF such that:
0 fir=o
(ii) (fu(i) f) (z) = L [7 f(s)ds = f(z) for all x € [a,b].
All the classical rules of integral calculus hold in this setting:
THEOREM 2.18. Let f €~ng°°(U,”ﬁ) and g € PGC=(V,’R) be two GSF defined on
sharply open domains in ’R. Let a, b € 'R with a <b and ¢, d € [a,b] CUNV. Then
. d d d
W =t [t
(i) [Af=A['f vre'R
(iii) [f=[f+ ['F foralleeab]
. d c
(ZU) fcdf - fd f
() J. f=fd)— fle)
. d d
(wi) [fg=1fgli- ) fd
(vii) If f(x) < g(x) for all x € [a,b], then f:f < ffg.
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(viii) Let a, b, ¢, d € 'R, with a < b and ¢ < d, and f € "GC>([a,b] X [c,d],"R?). Then

d r? b9
g/a f(ﬂs)dT:/a af(T,s)dT Vs € [c,d].

THEOREM 2.19. Let f € rGC>(U, iﬁ) and ¢ € PGC®(V,U) be GSF defined on sharply
open domains in ‘R. Let a, b € ’R, with a < b, such that [a,b] C V, p(a) < ¢(b),
[p(a), p(b)] CU. Finally, assume that ¢([a,b]) C [p(a), p(b)]. Then

»(b) b
/ F(t)ydt = / Flo(s)] - ¢ (s)ds.
p(a) a

We also have a generalization of the Taylor formula:

THEOREM 2.20. Let f € "GC™(U, ”ﬁ) be a generalized smooth function defined in the
sharply open set U C "R%. Let a, b € "R% such that the line segment [a,b] C U, and set
h:=b—a. Then, for alln € N we have

. n J . n+1
(i) FKelab]: flath) =X", d /;!(a) W+ % CprtL

(ZZ) f(a —+ h) e Z?:O dj‘g!(a) . h] + % . fol(]. _ t)n dn+1f(a + th) . h,n+1 dt

Moreover, there exists some R € ”§>0 such that

SE@) 5 T
Vk € Br(0) 3 € [a,a + k] : f(a+k;):jz::o j! .kurm_k +1 (2.4)
(m.knﬂ :;,~/1(1_t)"d"+1f(a+tk)-k"“dtzo. 2.5)

! A

Formulas and correspond to a plain generalization of Taylor’s theorem for
ordinary smooth functions with Lagrange and integral remainder, respectively. Dealing
with generalized functions, it is important to note that this direct statement also includes
the possibility that the differential d"™ f(¢) may be an infinite number at some point.
For this reason, in and , considering a sufficiently small increment k, we get
more classical infinitesimal remainders d" ™' f(€) - k"1 ~ 0. We can also define right
and left derivatives as e.g. f'(a) := fi(a) := limzz% f'(t), which always exist if f €

*GC>([a, b],"R%).

2.6. Embedding of Sobolev-Schwartz distributions and Colombeau functions.
We finally recall two results that give a certain flexibility in constructing embeddings of
Schwartz distributions. Note that both the infinitesimal p and the embedding of Schwartz
distributions have to be chosen depending on the problem we aim to solve. A trivial
example in this direction is the ODE ¢y’ = y/de, y(0) = 1, which cannot be solved for
p = (&) (in a finite interval), but it has a solution for all ¢ € R if we consider another
gauge p = (e~/). As another simple example, if we need the property H(0) = 1/2,
where H is the Heaviside function, then we have to choose the embedding of distributions
accordingly. In other words, both the gauges and the particular embedding we choose have
to be thought of as elements of the mathematical structure we are considering to deal
with the particular problem we want to solve. See also [28] [46] for further details in this
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direction.

If o € D(R"), r € Ry¢ and & € R™, we use the notations r ® ¢ for the function = €
R" — T% “p (%) € R and z @ ¢ for the function y € R — ¢(y — x) € R. These notations
permit us to highlight that ® is a free action of the multiplicative group (Rg,, 1) on
D(R™) and @ is a free action of the additive group (Rsg,+,0) on D(R™). We also have
the distributive property r ® (z ® @) =rx S r © .

LEMMA 2.21. Let b € 'R be a net such that lim, o+ be = +00 and d € (0,1)r. There

exists a net (V) c; of D(R™) with the properties:

(i) supp(¥e) C Bi(0).

(ii)  Let w, denote the surface area of S"~1 and set ¢, = Z—Z forn>1and ¢; := 1.
Then 1.(0) = ¢, for alle € I. '

(iii) [ =1 foralle € 1.

(iv) Vo e N"3pe N: sup,cgn [0%Ue(2)] = O(2) as e — 07.

(v) VjeNYe: 1<|al<j= [2% . (z)dz=0.

(vi) Vn€RsoYe: [[| <1+n.

(vii) e is even for alle € I

(viii) Ifn = 1, then the net ()ecs can be chosen so that only —hold but f_Ooo e =
d.

Moreover, also 2 := bZ1 © 1. satisfies - and supp(ve) C By (0). For n =1,
the net (Yc).c; can be taken independently from e by setting v := F~YB), the inverse
Fourier transform of 8, where f € C™(R) is supported e.g. in [—1,1] and identically

equals 1 in a neighborhood of 0; in this case it satisﬁes - ,

Concerning embeddings of Schwartz distributions, we have the following result, where
c(Q) = {[ze] € [Q] | 3K € QY% : x. € K} is called the set of compactly supported
points in Q0 C R™. Note that ¢(Q) = {z € [Q] | z is finite, d(z,0Q) € Rso} (see Def. 2.2).

THEOREM 2.22. Under the assumptions of Lemma let Q@ C R™ be an open set and
let (¢%) be the net defined in Lemma m Then the mapping

1T e Q) = [(T*4l) (—)] €76 (c(R2),"R) (2.6)
uniquely extends to a sheaf morphism of real vector spaces
LD —GC®(c(-),"R),

and satisfies the following properties:

(i) Ifbe€’Rsg is a strong infinite number, then Lb|Coo(7) :C%®(=) — *GC>®(c(—),"R)
is a sheaf morphism of algebras and 1%(f)(x) = f(z) for all smooth functions
fec™(Q) and all x € Q;

(is) If T € &E'(Q) then supp(T) = stsupp(:4(T)), where

stsupp(f) = (42 €219 open, flo =0})’ (2.7)

for all f €7GC™(c(Q),"R).
(iii) Let b € "Rsg be a strong infinite number. Then [ [, 12(T)(z) - p(x) dz] = (T, ¢)
for all o € D(Q) and all T € D'(Q);
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(iv) * commutes with partial derivatives, i.e. 9 (1)(T)) = £, (9*T) for each T € D'()
and o € N.
(v)  Similar results also hold for the embedding of tempered distributions: setting

S(Q) = {T eD(Q)|IT SR : Tlo=T in D’(Q)} ,

we have
LT eS(Q) [(T x wg) \Q(—)} € "GC™(c(Q),"R),

where T € S8'(R™), T|q =T in D'(R), is any extension of T.

Concerning the embedding of Colombeau generalized functions (CGF), we recall that
the special Colombeau algebra on  is defined as the quotient G*(Q) := Ep (Q)/N*(Q)
of moderate nets over negligible nets, where the former is

En(Q) == {(uc) €C®(V)! | VK € QVa € N*3N € N : sup [0%u.(z)] = O(e~ )}

zeK
and the latter is

N3(Q) == {(u.) € C®(Q)! | VK € QVa € N"Vm € N : sup |0%u.(z)| = O(e™)}.
reEK

Using p = (¢), we have the following compatibility result (see e.g. [25]):

THEOREM 2.23. Let p = (¢). A Colombeau generalized function u = (u.) + N35(Q)4 €
G*(Q)¢ defines a GSF u : [z.] € () — [uc(z:)] € ’R4. This assignment provides a
bijection of G5(Q)? onto "GC™(c(2),"RY) for every open set  C R™.

EXAMPLE 2.24.

(i)  Letd €’GC™(c(R™),”’R) and H € "GC™(c(R),’R) be the 1>-embeddings of the Dirac
delta and of the Heaviside function. Then §(z) = 0™ ¢ (b-z), where ¥(x) := [t (x.)]
is called n-dimensional Colombeau mollifier. Note that d is an even function because
of Lem. We have that §(0) = ¢, b" is a strong infinite number and 6(z) = 0
if || > r for some r € Rs¢ because of Lem. (see Lem. for the
definition of ¢, € Rsp). If n = 1, by the intermediate value theorem (see [27]), §
takes any value in the interval [0, ] C ’R. Similar properties can be stated e.g. for
62(z) = b2-1p(b-x)2. Using these formulas, we can simply consider § € “GC>("R™,’R)
and H € "GC®("R,"R).

(ii)  Analogously, we have H(z) =1 if > r for some r € Rsg; H(z) =0 if x < —r for
some r € Ry, and finally H(0) = % because of Lem. By the intermediate
value theorem, H takes any value in the interval [0,1] C "R.

(iii) If n = 1, The composition §od € "GC ("R, ’R) is given by (§068)(z) = bt (b?(bx))
and is an even function. If |z| > r for some r € Rsq, then (6 o §)(x) = b. Since
(6 06)(0) = 0, again using the intermediate value theorem, we have that 6 o §
takes any value in the interval [0,6] C “R. Suitably choosing the net (i.) it is
possible to have that if 0 < z < ﬁ for some k € Ns; (hence z is infinitesimal),
then (§06)(z) = 0. If z = § for some k € Nsg, then  is still infinitesimal but
(600)(x) = b. Analogously, one can deal with compositions such as Hod and do H.
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5(0) T T T T

Fig. 1. Representations of Dirac delta and Heaviside function

See Fig. [I] for a graphical representations of 6 and H. The infinitesimal oscillations shown
in this figure can be proved to actually occur as a consequence of Lem. which
is a necessary property to prove Thm. [2.24(i)| see [27], 28]. It is well-known that the
latter property is one of the core ideas to bypass the Schwartz’s impossibility theorem,

see e.g. [31].

2.7. Functionally compact sets and multidimensional integration.

2.7.1. Extreme value theorem and functionally compact sets. For GSF, suit-
able generalizations of many classical theorems of differential and integral calculus hold:
intermediate value theorem, mean value theorems, suitable sheaf properties, local and
global inverse function theorems, Banach fixed point theorem and a corresponding Picard-
Lindelof theorem both for ODE and PDE, see [25] 26] 27] 46, 28].
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Even though the intervals [a,b] C* ﬁ, a, b € R, are not compact in the sharp topology
(see [24]), analogously to the case of smooth functions, a GSF satisfies an extreme value
theorem on such sets. In fact, we have:

THEOREM 2.25. Let f € QC“(X,”ﬁ) be a GSF defined on the subset X of 'R™. Let
0 # K = [K.] C X be an internal set generated by a sharply bounded net (K.) of compact
sets K, €@ R™ . Then

Im,M e KVz € K: f(m) < f(z) < f(M). (2.8)

We shall use the assumptions on K and (K.) given in this theorem to introduce
a notion of “compact subset” which behaves better than the usual classical notion of
compactness in the sharp topology.

DEFINITION 2.26. A subset K of “R" is called functionally compact, denoted by K &¢ ”ﬁ”,
if there exists a net (K.) such that

(i) K=[K]C R

(i) 3JR €’Rso: K C Br(0), i.e. K is sharply bounded.

(iii) Veel: K. €R".

If, in addition, K C U C ’R™ then we write K € U. Finally, we write [K.] € U if
and [K.] C U hold. Any net (K.) such that [K.] = K is called a representative of
K.

We motivate the name functionally compact subset by noting that on this type of sub-
sets, GSF have properties very similar to those that ordinary smooth functions have on
standard compact sets.

REMARK 2.27.

(i) By Thm. [2.11}(iii), any internal set K = [K.] is closed in the sharp topology and
hence functionally compact sets are always closed. In particular, the open interval
(0,1)C” R is not functionally compact since it is not closed.

(il) If H € R™ is a non-empty ordinary compact set, then the internal set [H]| is
functionally compact. In particular, [0, 1] = [[0, 1]r] is functionally compact.

(iii) The empty set § = ) € 'R.

(iv) ’R™ is not functionally compact since it is not sharply bounded.

(v)  The set of compactly supported points c¢(R) is not functionally compact because

the GSF f(z) = x does not satisfy the conclusion (2.8]) of Thm.

In the present paper, we need the following properties of functionally compact sets.

THEOREM 2.28.

(i) Let KC X C'R", f € GC™(X,’RY). Then K & 'R" implies f(K) & "R

(ii) Let K, H € ’R™. If KUH is an internal set, then it is a functionally compact set.
If KN H is an internal set, then it is a functionally compact set.

(isi) Let H C K & *R"™, then if H is an internal set. Then H & "R™.

As a corollary of this theorem and Rem. (2.27)) we get

COROLLARY 2.29. Ifa, be 'R and a < b, then [a,b] & ’R.
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Let us note that a, b € R can also be infinite numbers, eg.a=dp N, b=dp M or
a=—dp™N, b=dp ™ with M > N, so that e.g. [-dp~,dp~*] D R. Finally, in the
following result we consider the product of functionally compact sets:
THEOREM 2.30. Let K Es 'R" and H Ct 'R, Then K x H Cr PRt Ip particular, if
a; <b; fori=1,...,n, then [\ [a;, b;] € "R™.

Applying the extreme value theorem Thm. to the first derivative, we also have
the following

THEOREM 2.31. Leta, b€ ”ﬁ", a<b, fe ngOO([a,b],”ﬁ) be a GSF. Then

(i) Fcelab]: f(b) = fla)=(b—a) f'(c).
(ii)  Setting M := max.c[q5) | f'(c)| € 'R, we hence have Vx,y € [a,b] : |f(x) — f(y)] <
M|z —yl.
A theory of compactly supported GSF has been developed in [24], and it closely

resembles the classical theory of LF-spaces of compactly supported smooth functions.

2.7.2. Multidimensional integration. Finally, to define FT of multivariable GSF we
have to introduce multidimensional integration on suitable subsets of “R™ (see [27]).

DEFINITION 2.32. Let 1 be a measure on R and let K be a functionally compact subset
of "R™. Then, we call K p-measurable if the limit

W) = Tim [u(BF  (K.))] (2.9)
exists for some representative (K.) of K. Here m € N, the limit is taken in the sharp
topology on ‘R, and B®,.(A) := {x € R" : d(z, A) < r}.

Let K € ’R™. Let (£2.) be a net of open subsets of R, and (f.) be a net of continuous
maps f.: & — R. Then we say that
(fe) defines a generalized integrable map : K — 'R
if
(i) K C(Q) and [f(z.)] € R for all [z.] € K.
(i) V(ze), (2l) €RY: [we] = [al] € K = (fe(we)) ~p (fe(2)).
ff.K— 'R is such that

Vize] € Ko f([zc]) = [fe(ae)] (2.10)

we say that f is a generalized integrable function.

We will again say that f is defined by the net (f.) or that the net (f:) represents f. The
set of all these generalized integrable functions will be denoted by "GZ(K,’R).

E.g., if f = [f-(—)]lx € "GC>(K,’R), then both f and |f| = [|f-(—)|]|x are integrable
on K (but note that, in general, |f] is not a GSF).

In the following result, we show that this definition generates a correct notion of multi-
dimensional integration for GSF.

THEOREM 2.33. Let K C "R™ be u-measurable.

(i)  The definition of n(K) is independent of the representative (K.).
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(iii)

(iv)

(v)

(vi)
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There exists a representative (Kc) of K such that u(K) = [p(K:)].
Let (K.) be any representative of K and let f = [f-(—)]|x € "GZ(K,’R). Then

/fd,u:: lim [/ fedu} €’R
e m—00 ﬁpgb(Ks)

exists and its value is independent of the representative (K.).
There exists a representative (K.) of K such that

/deu= VK fadu] € 'R (2.11)

for each f = [f-(—)]|lx € "GZ(K,’R). From [2.11), it also follows that | [ fdu| <
fK |f] dps.

If K =TI [ai, bi], then K is A\-measurable (A being the Lebesgue measure on R™)
and for all for each f = [f-(—)]|x € "GZ(K,"R) we have

bl,s bn,s
/fd)\zl/ da:l.../ fe(xy, .. xn)dey,
K ai,e a

n,e

€’R (2.12)

for any representatives (a; ), (b;c) of a; and b; respectwely Therefore, if n = 1,
this notion of integral coincides with that of Thm. [2.16] and Def.[2.17. Note that
also directly implies Fubini’s theorem for this type of integrals.

Let K C "R"™ be A-measurable, where \ is the Lebesgue measure, and let ¢ €
'GC™(K,"R%) be such that o~ € "GC™(o(K),’R™). Then o(K) is A-measurable

and
/ fdx= / (f o @) [det(de)| dA
P (K) K

for each f € ”QI(w(K),"ﬁ).

In order to state a continuity property for this notion of integration, we have to introduce
hypernatural numbers and hyperlimits as follows

DEFINITION 2.34.

(i)

(i)
(iii)

’N := {[n.] € "R | n. € N Ve}. Elements of *N are called hypernatural numbers or
hyperfinite numbers. We clearly have N C ” N, but among hypernatural numbers we
also have infinite numbers.
p={(n:) ER, [n. € N Ve}.
A map x : ‘N — ’R, whose domain is the set of hyperfinite numbers °N is called a
(0—) hypersequence (of elements of “R) and denoted by (Tn) periys OF SImply (25,)r
if the gauge on the domain is clear from the context. Let o, p be two gauges,
:°N — ‘R be a hypersequence and [ € * R. We say that [ is the hyperlimit of
(zn)n as n— oo and ne °N, if

Vg e N3IM € °NVn € "Nspr ¢ |z, — 1] < dpl.
It can be easily proved that there exists at most one hyperlimit, and in this case it

is denoted by "lim .5 @n = [. Note that dp < % if n € N5 so that % +# 0 in the
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sharp topology. On the contrary “lim _,5 - = 0 because * N contains arbitrarily

1

€N n
large infinite hypernatural numbers.

The following continuity result once again underscores that functionally compact sets

(even if they can be unbounded from a classical point of view) behaves as compact sets
for GSF.

THEOREM 2.35. Let K c 'R™ be a p-measurable functionally compact set and f, €
’GC™(K,’R%) for alln € °N. Then, if the hyperlimit "lim, . fn(z) exists for eachx € K,

then the convergence is uniform on K and "lim .5 fn € "GC™(K, ”ﬁd). Finally

"lim fnda:n—/ "lim f, dz,. (2.13)
K K

ne’N ne’N

For the proof of this theorem see [27], and for the notion of hyperlimit see [47].

3. Convolution on "R"

In this section, we define and study convolution f#*g of two GSF, where f or g is compactly
supported. Compactly supported GSF were introduced in [24] for the gauge p. = €. For
an arbitrary gauge, we here define and study the notions needed for the HFT as well as
for the study of convolution of GSF.

DEFINITION 3.1. Assume that X C ﬂﬁ", Y C *R? and ferGC™ (X,Y), then

(i)  supp(f) :={z € X [|f (z)] > 0}, where (-) denotes the relative closure in X with
respect to the sharp topology, is called the support of f. We recall (see just after
Def. |2 n and Lem. [2.4]) that x > 0 means that z € ”R>0 is positive and invertible.

(i) For A C "R we call the set ext( ) ={zc’R|VaeA: |z—a|> 0} the strong
exterior of A. Recalling Lem. 2.4] if z € ext(A), then |z —a| > dp? for all a € A
and for some ¢ = ¢(a) € N.

(iii) Let H € ’R", we say that f € "GD (H,Y) if f € “GC®(“R™,Y) and supp (f) C H.
We say that f € ”QD("R", Y)if f € °GD(H,Y) for some H & ’R™. Such an I
is called compactly supported; for simplicity we set "GD(H) := "GD(H, "6) Note
that supp(f) is clearly always closed, and if f € "GD (H,Y’) then it is also sharply
bounded. However, in general it is not an internal set so it is not a functionally
compact set. Accordingly, the theory of multidimensional integration of Sec.
does not allow us to consider fsupp( n f even if f is compactly supported.

REMARK 3.2.

(i)  Note that the notion of standard support stsupp (f) as defined in Thm. and
the present notion supp (f) of support, as defined above, are different. The main
distinction is that stsupp (f) € R™ while supp (f) € “R". Moreover if we consider
a CGF f €GC>(c(€),’R%), then supp (f) N Q C stsupp (f).

(ii)  Since 6 (0) ’Rs¢ by the sharp continuity of 4,
i.e. Thm. [2.13|(ii), hence B, (0) C supp (d), whereas stsupp () = {0}. Example
2.24)l(1)| also yields that supp(d) C [—r,r]™ for all r € Rso.
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(iii) Any rapidly decreasing function f € S(R™) satisfies the inequality 0 < f(z) <
|z|~%, Vq € N, for |z| finite sufficiently large. Therefore, for all strongly infinite x,
we have f (z) =0 ie., f € "GD("R").

LEMMA 3.3. Let 0 # H & ’R™. Then ext (H) is sharply open.

Proof. If x = [x] € ext (H), we set d. := d(we, H:) where H = [H,| and () # H. € R"
for all € (because H # ). Then 3h, € H. : d. = d(x., he), we set h := [h.] € H and
|z — h| = [d] =: d > 0 because = € ext(H) and h € H. Now, by taking r := ¢ > 0,
we prove that B, (z) C ext (H). Pick y € B, (x), then for all a € H, we have |y —a| >

z—a|l—ly—z/>d—%>0. =

THEOREM 3.4. Let H € “R™ and fe ”QCOO(”FQ”,’@). Then the following properties hold:
(i)  f€’GD(H) if and only if flexe(rry = 0.

If fe*GD(H), z € 'R" and o € N", then:

(i) O0“f (xz) =0 for all x € ext(H).
(it1) If H C [—h,h]™ then 0% f(x) = 0 whenever x, > h or x, < —h for some p =
1,...,n.

(i) If H C[~h,h* C T, [ap,by], then

h h

by by
del...aZf(x) dxn—/dxl.../hf(x)dxn

Proof. |(1)i Assume that supp(f) C H and = = [z.] € ext(H), but f(z) # 0. This implies
that |f(x )| % 0 because always |f(z)| > 0. Consequently, Lem. [2.8] [2.8] yields | f(z)| > 0
for some L Co I. Applying Lem. [2.4] for the ring R|; we get |f(z)| >L dp? for some
g € Rso, ie. |fe(ze)| > p? for all € € L<.,. Define Z. := z. for all ¢ € L and Z, := z,,
otherwise, so that # := [Z.] € "R™ and |f(Z)| > dp?. This yields Z € supp(f) C H, and
hence |z — Z| > 0, which is impossible by construction because Z|;, = x|, and because of

Lem. 24
Vice versa, assume that f|ex () = 0 and take x = [z.] € supp(f) \ H. The property

Vg € Rug Vo @ d(z., H.) < p?

cannot hold, because for ¢ — +o0o Thm. would imply x € H = [H.]. Therefore,
for some ¢ € R~ and some L Cy I, we have d(x., H.) > p? for all ¢ € L. Consequently,
if a = [a.| € H where a. € H. for all ¢, we get d(z., a.) > d(.TIE, H.,)>plforalleel,
ie. x| € ext(H)|r. Applying Lem. 3 for the ring “R|, we get

B.(z)|r Cext(H)|L (3.1)

for some r € “Rsg. From z € supp(f), we get the existence of a sequence (zp)pen of
points of {z € "R™ | |f(x)| > 0} such that =, — = as p — +oo in the sharp topology.
Therefore, =, € B,(x) for p € N sufficiently large. Consequently, z,|; € ext(H)|; from

(3.1) and hence f(zp)|z = [(fe(2pe)).cp] = 0, which contradicts |f(z,)| > 0.
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Property follows by induction on |«| € N using Thm. We prove property
for the case x, > h, the other case being similar. We consider

Ty = (z1,. P xpo1,mp +dpY Tpin, .. 2) Vg €N
Then |2, — a| > |z, + dp? — a,| > dp? for all @ € [—h, h]™ DO H because x, > h > a,.
Therefore, z, € ext(H) and hence 0%f(Z,) = 0 from the previous The conclusion
now follows from the sharp continuity of the GSF 90¢f (Thm. .
The inclusion +(h, ..., h) € [~h,h]" C [[7_,[ap, b,] implies a, < —h and b, > h
forall p=1,...,n. Using Thm. we can write

by by, by b1 —h
/dwl.../f(m)dxn:/dxl.../ dxn_l/f(x)danr
ai QAn, ai an—1 An

by bn—1 +h

/ dz; ... / dz,_1 /f (z) da,+
a1 An—1 “h

by b1 ba

/ dz; ... / dz,_1 /f (z) day,.
a1 an_1 h

But if z,, € [ay,, —h] or x,, € [h,b,], then property yields f(x) = 0 and we obtain

b1 bn b1 b'n.—l h
/dxl/f(x) dxn:/dxl... / dxn,l/f(x) dz,,.
a an a Ap—1 —h

Proceeding in the same way with all the other integrals we get the claim. m

In particular, if 7" € £'(€2), then Thm. 3.4{(i)|implies that . (T) € *GD(*R™). Also observe
that f(z) = ez e {x € '"R| 3N € N: 2?2 > Nlogdp}, satisfies f(z) < 279 for all
infinite « and all ¢ € N. Therefore

VQeN: fe’GD ([-dp ?,dp9]).
Based on these results, we can define

DEFINITION 3.5. Let f € “GD("R™), then

/f::[~nf::/bldx1...7f(x)dxn (3.2)

An
where supp(f) C [],_[ap,bp]. This equality does not depend on a,, b, because of
Thim. BAw]

Note that we can also write (3.2]) as

by by, h h
/f = lim dzy .. /f (x) dz, = lim / day ... / f(x) dz, (3.3)
ap——00 h—+o00
bp—+00 ay an —h —h

p=1,..., n



24 A. Mukhammadiev et al.

even if we are actually considering limits of eventually constant functions. The limits of
the type written in (3.3]) are always taken in the sharp topology, e.g. the limit on the
right hand side of (3.3)) is [ € "R if

h
Vg € N3h € ‘RVh € "Ry, : /dxl.../f(q:) da, — 1| < dp?. (3.4)
h —h

Using this notion of integral of a compactly supported GSF, we can also write the value
of a distribution (T',¢) as an integral: let b € ‘R be a strong infinite number, Q C R”
be an open set, T € D'(Q) and ¢ € D(), with supp(p) C []}_,[a;, b;]r =: J. Then from
Thm. and Thm. we get

@9 = [ AO@-p)dr = [HO@ - pwax (35)
where the equalities are in ”E. A similar property can be proved if T € §'(Q2) and ¢ € S(Q)
(recall that then ¢ € "GD(“R™), see Rem. [3.X(iii))).

DEFINITION 3.6. Let f, g € “GC®("R™), with f € ﬂgD(iﬁn) or g € pgD(”§”)~. In the
former case, by Thm. [2.13(iv)| and Thm. forallz € R, f-g(x—-) € "gD("R") with
supp (f - g(x — -)) C supp(f) € "R™. Moreover, supp (f(z — ) - g) € = — supp(f) & "R™.
Similarly, we can argue in the latter case, and we can hence define

(f*9)( /f (x—y dy—/f (x—1y)g(y) dy Va e’R" (3.6)

Note that directly from Thm. and Def. it follows that f * g € “GC>®("R™). The
next theorems provide the usual basic properties of convolution suitably formulated in
our framework. We start by studying how the convolution is in relation to the supports
of its factors:

THEOREM 3.7. Let f, g € "QD(”ﬁ”). Then the following properties hold:

(i)  Let supp(f) C [~a,a]™, supp(g) C [~b,b]", a, b € "Rsq, and x € 'R"™. Set L, :=
[—a,a]™ N (z — [=b,b]™). Then

supp (f - g(x — H max(—a, x, — b), min(a, z, + b)] (3.7)

(fxg)(z) = /f (y) g (z —y) dy. (3-8)

(i) supp(f * g) C Supp(F) ¥ supp(g), therefore f « g € "GD(RM).
Proof. If [f(t)g(xz —t)| > 0, then t € supp(f) and x — ¢t € supp(g). Therefore,

supp (f - g(x — ) C [—a,a]™ N (z — [=b,b]™). As in the case of real numbers, we can say
that if ¢ € [—a,a]” N (x — [-b,b]"), then —a < ¢, < @ and —b < z, — ¢, < b for all
p = 1,...,n. Therefore, t, € [max(—a,z, — b), min(a, z, + b)]. Similarly, we can prove

that also L, C [—a,a]™ N (z — [~b,b]™). The conclusion (3.7) now follows from Def.
For completeness, recall that in general supp(f) and supp(g) are not functionally compact
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sets and our integration theory allows us to integrate only over the latter kind of sets.
This justifies our formulation of the present property using intervals.

. Since f and g are compactly supported, we have supp(f) C H and supp(g) C L for
some H, L & "R™. Assume that |(f * g)(z)| > 0. Then, by Thm. [2.1§(vii) Thm. 2.33(v)|
and the extreme value Thm. we get

0 <|(f*g)(x)] < AUH) - max|[(y)g(z —y)|

where A is the extension of the Lebesgue measure given by Def. Therefore, there
exists y € H such that 0 < A(H) - |f(y)g(x — y)|. This implies that y € supp(f) and
x —y € supp(g). Consequently, © = y + (x — y) € supp(f) + supp(g). Taking the sharp
closure we get the conclusion. Finally, supp(f) +supp(9) CH+ L =H+Land H+L &
’R™ because it is the image under the sum + of H x L (see Thm. and Thm. [2.28). =

Now, we consider algebraic properties of convolution and its relations with derivations
and integration:

THEOREM 3.8. Let f, g, h € ”QC‘X’(”ﬁ”) and assume that at least two of them are
compactly supported. Then the following properties hold:

(i) fxg=gxf.

(i) (f*g)xh=fx(gxh).

(iti) fx(h+g)=[f*h+[xg.

(i) frg=[f*7

(v) td(fxg)=0CDf)xg=[fx*(tDg) wheretd f is the translation of the function
f by t defined by (t® f) (x) = f(x —t) (see Sec. @)

(vi) 2 (fxg)= fp*g—f*—pforallp—l

(vii) If both f and g are compactly supported, then

/(f*g dx—(/f dm) (/g(m)dx).

Proof. l We assume, e.g., that f € "GD( ”R”) Take h € ”R>0 such that supp(f) C
[—h, h]". By (.8) and Def. .5 we can write

h h
<f*g><x>:/dyl.../f@)g(x—y) dy..
h “h

We can now proceed as in the classical case, i.e. considering the change of variable z = z—y

(Thm. [2.19). We get

z1+h Tn+h
(f*9) (x) = / dz ... / f (@ —2)g(z) dz.
z1—h Tp—h

Taking the limit h — +oo (see (3.3) and (3.4))), we obtain the desired equality. Similarly,
we can also prove and

As usual, is a straightforward consequence of the definition of complex conjugate.
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The usual proof applies, in fact
10 (frg) (@) = (T r9) =)= [ TWale—t-y) dy
[ 1) tog @y dy=(+(tw9) @), (3.9)

Finally, the commutativity property |(i)|yields (t ® f)*xg = g * (¢t ® f) and applying (3.9)
grtof)=te(gxf)=ta(frg). _
Set h := f x g and take = € "R™. Using differentiation under the integral sign

(Thm. [2.1§(viii))) and Def. we get
) i) 0
ho = [ 1055 @ du= (1 55 ) @),
J P p

Oy
R

Using (i), we also have a%ph = a% xg.

To prove we show the case n = 1, even if the general one is similar. Let a,
b € ’Rsq be such that supp(f x ¢g) C [—a, a] (Thm. and supp(f) C [—b,b]. Then

a b
Jtso@ac= [ as [ e
Using Fubini’s Thm. [2.33(v)} we can write

/(f*g)(:v)d:v/bbf(y)/a oz — y)dedy

—a

:/bbf(y)/izg(Z)dZdy

-/ bbf(y) a [ ig(z) dz,

where we have taken a — +o0o or equivalently, considered any ¢ > a +b. =

Young’s inequality for convolution is based on the generalized Hélder’s inequality, on

the inequality UK fdu| < [ |f] dp (see Thm. [2.33(iv)]), monotonicity of integral (see

Thm. 2.1§(vii)) and Fubini’s theorem (see Thm.[2.33(v)]). Therefore, the usual proofs can
be repeated in our setting if we take sufficient care of terms such as |f(z)[? if p € "R>1:

DEFINITION 3.9. Let f € “GD("R™) and p € ”ﬁz1 be a finite number. Then, we set

/p
1l = ( / f(x)lpdw) & Rop.

Note that |f|P is a generalized integrable function (Def.[2.32)) because p is a finite number
Pe

(in general the power a¥ is not well-defined, e.g. (1/p¢) = pg_l/ps is not p-moderate).

On the other hand, Holder’s inequality, if ||f||, > 0 and ||g|l; > 0, is simply based on
monotonicity of integral, Fubini’s theorem and Young’s inequality for products. The latter
holds also in “R>( because it holds in the entire R>(, see e.g. [07].
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THEOREM 3.10 (Holder). Let f, € "GD("R™) and py, € ”ﬁzl forallk=1,...,m be such
that 37, - =1 and | fellp, > 0. Then

[T 7| < TII0selp.-
k=1

1 k=1

THEOREM 3.11 (Young). Let f, g € ”gD(”ﬁ”) and p, q, r € ”ﬁzl be such that the
equality © + ¢ =1+ holds and |||, llglly > 0. Then ||f * gll- < ||, llgllq-

In the following theorem, we consider when the equality (0 * f) () = f(z) holds. As we
will see later in Sec. 5| as a consequence of the Riemann-Lebesgue lemma we necessarily
have a limitation concerning the validity of this equality.

THEOREM 3.12. Let § be the ik, -embedding of the n-dimensional Dirac delta (Thm. .
Assume that f € "GC™("R™) satisfies, at the point x € "R™, the condition

Ir € Rsg3M,c € "Ry € B, (2)Vj € N: |d f (y)] < M, (3.10)
g is a large infinite number

i.e. in a finite neighborhood of x all its differentials djf(y) are bounded by a suitably
small polynomial Mc’ (such a function f will be called bounded by a tame polynomial

at z). Then (§  f) (x) = f(x).
Proof. Considering that §(y) = b™¢(by), where v is the considered n-dimensional Co-
lombeau mollifier and b is a strong infinite number. (see Example [2.24l|(i)]), we have:

(65 1) (@ /fx— Wy £ (@) [50) dy
dy

:/ (@ —y) = f (@) 0" (by) dy,
[~ ]

~ n
where 7 € YRy is the radius from (3.10)), so that supp(d) C [—ﬁ, ﬁ] since r € Rsg.

n
By changing the variable by = t, and setting H := [f%, %] we have

t
e -1@=[ (1(z=7)-r@)va
Using Taylor’s formula (Thm. [2.20(ii))) up to an arbitrary order ¢ € N, we get

/H(f(x_z) fle ) ) dt = / > o (—)a 0 f (x) ¥ (t) di+

0<|a|<q

/H(qil)!/ol(l—z)qd‘”lf (x—zZ) (—Z)qﬂzb(t) dzdt. (3.11)
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But [(i)| and of Lem. yield:

/Ht“z/z(t) dt = V[” )" t*9e (1) dt] = Utwg(t) dt} =0 V]a|<gq,
VoA

where we also used that bf—; > 1 for e sufficiently small because b > 0 is an infinite
number and 7 € Rsg. Consequently, in (3.11)) we only have to consider the remainder

R, (2) ;—/H(qim/l (1—2)7dotly (sz) <Z>q+1¢(t) dz dt

nrt )7 gt EY ot
b’1+1q—|—1 / / d f<x2b>t VY (t) dzdt.
_ br br " 2t t \/ﬁlt‘oo rb _
For all z € (0, 1)7and te H= [fﬁ,ﬁ} , we have |7| < |E| < ¥l < b — 1 ogpd
hence & — z£ € B,.(z). Consequently, assumption (3.10) yields detty ( %) < Meatt,

and hence

Mcit!
Ry @) < b s [ o) @
H

b\ T M .
() armn | lee]a

[_171]71

() Gty [ v

[-1,1]"

b\ 2M
<|{- )
~ \c (g +1)!
where we used|(i)|and |(vi)|of Lem. and % > 1. We can now let ¢ — 400 considering

that % > dp~* for some s € Ry, so that |R, (z)| — 0 and hence (d  f) (z) = f(z). m

ExAMPLE 3.13.

(i) If fo(z) = e b > dp~" and w € 'R satisfies [w| < dp~* with s < r (e.g. if w
is a weak infinite number, see Def. , tNhen ﬁ > dp~ "% and f,, is bounded
by a tame polynomial at each point = € “R. On the contrary, e.g. if b = dp~
|w] > dp~", then ﬁ < 1 and f, is not bounded by a tame polynomial at any
ze’R.

(ii) If f € “GC*("R™) has always finite derivatives in a finite neighborhood of a finite
point z € “R" (e.g. it originates from the embedding of an ordinary smooth func-
tion), and b > dp~¢, then it suffices to take M = 1 and ¢ = dp~?** to prove that f
is bounded by a tame polynomial at z. Similarly, we can argue if f is polynomially
bounded for # — oo and z € “R™ is not finite.

(iii) The Dirac delta §(x) = b™p(bx) is not bounded by a tame polynomial at z = 0.
This also shows that, generally speaking, the embedding of a compactly supported
distribution is not bounded by a tame polynomial. Below we will show that indeed

" and
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§ %0 # 8, even if we clearly have (6% 8) (z) = d(z) = 0 for all € “R" such that
|z| > r e R>0-~
(iv) If f € °GC*("R™) is bounded by a tame polynomial at 0, then since ¢ is an even

function (see Example [2.24][(1)), we have:
/5(33) f(z)dz = /6(0 —z)- f(x)dz = (f ) (0) = f(0). (3.12)

Finally, the following theorem considers the relations between convolution of distri-
butions and their embedding as GSF:

THEOREM 3.14. Let S € &' (R™), T € D'(R™) and b € "R be a strong positive infinite
number. Then for all p € ’D(R")'

(i) (S*T, ) = [ 1} (S)(x)-1ha (T)(y)-p(z+y) dzdy = [ (t&a(S) * e (T)) (2)-0(2) dz.
(i) Txep= LRT,(T)*@
Proof. |(1)i Using (3 , we have

(ST, ) = (S(x),(T(y), p(x +y))) = (S(z), / e (T) () p(x + y) dy)
— [ ($)@) [ D)@l + ) dye
_ / (18 (8) * 18 (T)) (2)0(2) dz;

note that the function = — [ &, (T)(y)¢(x + y) dy is (the embedding of) a compactly
supported smooth function, and that, in the last step, we used the change of variables
x = z — y and Fubini’s theorem.

For all z € ¢(R"), using again (3.5), we have (T x ) (z) = (T(y),¢(z — y)) =
J R (T —y)dy = (1§ (T) %) (2).
We note that an equahty of the type (%, (S x T) = 1%.(S) * 1%, (T) cannot hold because
otherwise we would have (%, [1x(8'*H)] = 1k, (1)*[tk. (6")xt%. (H)] and, using Thm. |3.§(ii)
this would imply ¢k, [1 % (8" * H)] = 1&.[(1 * 6’) « H]| and hence 1% (¢’ x H) = (1% ) %
H as distributions from the injectivity of t%,.. Considering their embeddings, we have
o (1) 5 (1 (07) % o (D)) = (1) % (1 (8) % e (8)) = (e (1) % e (67)) i (H) =
(thn (1) * 18 (8)) % Lha (H) = 0. In particular, at the term ¢}, (8) * & (§) we cannot apply
Thm. because 6U) () = p7+14pU) (bx). This also implies that ik, (5) * LRn( ) # & ()
because otherwise we would have 0 = t&,, (1)* (t&n (8) * 18 (8)) = thn (1)%t%.(8) = [0 = 1.

4. Hyperfinite Fourier transform

DEFINITION 4.1. Let k& € “Rsq be a positive infinite number. Let f € "GC™(K,’C),
we define the n-dimensional hyperfinite Fourier transform (HFT) Fi(f) of f on K :=
[k, k]" as follows:

k

k
w) :/f(x)e_m‘“’dx:/dxl.../f(xl,...,xn)e_i”""dxn, (4.1)
K k

—k
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WNhere x=(x1...25) € K and w = (w1 ...wp) €~”§". As usual, the product z-w on
’R™ denotes the dot product z-w = Z?Zl Tjw; € N” R. For simplicity, in the following we
will also use the notation "GC™ (X)) :="GC>(X,"C). If f € "GD(X) and supp(f) C K =
[—k, k]™, based on Def. we can use the simplified notation F(f) := Fi(f).

In the following, k = [k.] € * R-o will always denote a positive infinite number, and
we set K := [k, k]" & "R™.

The adjective hyperfinite can be motivated as follows: on the one hand, k& € 'R is
an infinite number, but on the other hand we already mentioned that GSF behave on
a functionally compact set like K as if it were a compact set. Similarly to the case of
hyperfinite numbers * N (see Def. , the adjective hyperfinite is frequently used to
denote mathematical objects which are in some sense infinite but behave, from several
points of view, as bounded ones.

THEOREM 4.2. Let f € "GC™ (K). Then the following properties hold:
(i) Letw=[w.] €’R" and let f be defined by the net (f.). Then we have:

k. ke
Fi (f) (w) = / dz;... / fe(zy,...,xp) e @ da, | = ﬁ(XKEfs)(ws)] Epé,
ke ke

where F : S(R™) — S(R™) is the classical FT, and xk. is the characteristic
function of K.

(ii) Yw € 'R™: |Fr(f)w)] < S |f(@)] dz = || fll1, so that the HFT is always sharply
bounded.

(iii) Fr :"GC™ (K) — *GC™®("R™).

Proof. For all w € “R" fixed, the map x € K + f (r) e~ % is a GSF by the closure
with respect to composition, i.e. Thm. Therefore, we can apply Thm.

To provem, we have to show that Fj(f) : “R" —» *C is defined by a net (Fr). €
C> (R™,C) (see Def. [2.12). We can naturally define such a net as

ke ke
(Fi). (y) == / dzy ... / fe(z1,...,2p) e ™Y de, VyeR™,
ke ke

and we claim it satisfies the following properties:

(@) [(Fr). (we)] € 'C, V [we] € "R™.
(b) V[we] € 'R"Va € N : (0% (F). (we)) € C,.

Claim @ is justified by |(i)| above. From |(i)|it directly follows In order to prove @,

we use the standard derivation under the integral sign to have

0% (Fi). (we) = / dzy ... / fe (21, ..., 2n) e 9 (—iz®) day,.

We can now proceed as above to prove [(b)] and hence the claim [(iii)} m
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4.1. The heuristic motivation of the FT in a non-Archimedean setting. Fre-
quently, the formula for the definition of the FT (e.g. for rapidly decreasing functions) is
informally motivated using its relations with Fourier series. In order to replicate a similar
argument for GSF, we need the notion of hyperseries. In fact, exactly as the ordinary
limit lim,en @y, is not well suited for the sharp topology (because of its infinitesimal
neighbourhoods) and we have to consider hyperlimits "lim, .5 a, (see Def. [2.34}f(iii)),

likewise to study series of a, € * 6, n € N, we have to consider

Z ap, =" lim Zane C
ne’N

Ne’N

pZan. ?lim_ Z an € C

pe Ne°N
ne’zZ

where °Z := "N U (—"N) - °R. The main problem in this definition is how to define the

hyperfinite sums Zg: MOn €7 C for arbitrary hypernatural numbers N, M € °N and
starting from suitable ordinary sequences (an ),y of “C. However, this can be done, and
the resulting notion extends several classical theorems, see [62].

Only for this section, we hence assume that f € "GD([~T,T]), T € "R, can be
written as a Fourier hyperseries

= pz cn€®™TL Yt e (—T,T),
ne’Z
where o is another gauge such that o. < pZ for all ¢ € N and for € small (so that R, C R,,
see Def. . Using Thm. to exchange hyperseries and integration, for each h € °Z,

we have
/f e 2T gt = e / 2t (n=h) 4t = 9T . ¢;,.

ne°Z

That is ¢, = 5= F(f) (2mL).

It is also well-known that, informally, if T is “sufficiently large”, then the Fourier
coefficients ¢,, “approximate” the FT scaled by % and dilated by 2x. Using our non-
Archimedean language, this can be formalized as follows: Let w = [w.] € * §7 and assume
that T' = [T.] is an infinite number, then setting h,, := [|w. - T:]] € "Z (where |—] is the
integer part function; note that here we use R, C R,), we have w, < hﬁf < w: + T%, o)
that hT“ ~ w because T is an infinite number. By Thm. F(f) is a GSF. Let a, b, ¢,
d E”ﬁ, with @ < ¢ < d < b, and set M := max,c[2ra,2x0) F (f) (w). Using Lem. we
can find ¢ € N such that ¢ —a > dp? and b—d > dp?. Assume that T is sufficiently large
so that the following conditions hold

1 M
—<d — =~ 0.
7= 7
Then, for all w € [¢, d], we have 7‘“ <w % <d+dp? < b, and T‘“ >w > ¢ > a, so that
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hTW, w € [a,b]. From the mean value theorem Thm. we hence have

#(1) (25 ) - F(7) 2m)| <

We hence proved that

<2 M 0
T— X U.
- T

JQENVT >dp @: ¢, ~ —]—'(f)(27rw).

Finally, note that since T is an infinite number, if h,, € Z, then necessarily w must be
infinitesimal; on the contrary, if w > r € R, then necessarily h,, € °Z \ Z is an infinite
integer number.

Therefore, with the precise meaning given above, the heuristic relations between
Fourier coefficients and HFT holds also for GSF.

5. The Riemann-Lebesgue lemma in a non-linear setting

The following result represents the Riemann-Lebesgue lemma in our framework. It imme-
diately highlights an important difference with respect to the classical approach since it
states that the HFT of a very large class of compactly supported GSF is still compactly
supported (see also Thm. for a classical formulation of the uncertainty inequality for

GSF).

LEMMA 5.1. Let H € "R" and f €"GD(H) be a compactly supported GSF. Assume that
f is uniformly bounded by a tame polynomial, i.e.

3C,b € "RogVa € HYj €N |d f(z)] < C - V. (5.1)
For all Nv,...,N, € N and w € ”ﬁ”, ifw{vl ...~ whn s invertible, then
1
FE)] < — el | (5:2)
Wyt wp” H
Therefore
Tim |F(f)(w)] =0 (5.3)

(see e.g. (3.4) for the definition of a similar limit). Actually, (5.2) yields the stronger
result:

3Q eN: F(f) €’GD (de,Q(O)) . (5.4)

Proof. Take any h € ”§>0 such that H C [—h,h]™. Let us apply integration by parts

Thm. at the p-th integral in (4.1]) (assuming that N, > 0):

h ep=h 1 h

/f —zw acd — _-];E}‘r) e—z’w-x 4 7 ) f( ) —iw-T dZEp
p p

—h

Tp=—h
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because Thm. yields f(z) = 0 if x, = £h. Applying the same idea with N, € N
repeated integrations by parts for each integral in (4.1)), and using Thm.|3.4{(iii), we obtain

F(f)w) = — .

Ny
wl .._..wn ZN1+"'+N7L

/ ANt LN f(x)eT e dp.
H

Claims and both follows from Thm. [2.33(iv)|and from the closure of GSF with
respect to differentiation, i.e. Thm. 2.14]

To prove (5.4), we first recall (2.3)), so that Bg,-<(0) & ’R™. Let C, b € "Rsg from
and A\(H) € ”ﬁ, where \ is the Lebesgue measure. Therefore, b < dp~ for some
R € N, and we can set @ := R+ 1. We want to prove the claim using Thm. SO
that we take w = (w1,...,wy,) € ext(By,-(0)). It cannot be |w| <s dp~ because this
would yield |w — a| = 0 for some a € By,-a(0); consequently, [w| > dp~® by Lem. E

It always holds max;—1,. ., |w;| > %|w|, ie. [maxj=1, n |wi|] > % [lwe|], where w; = [wic]
and we := |(wWie, - - . ,Wne)|. In general, we cannot say that |w,| = maxj=1 ., |w;| for some
p=1,...,n because at most this equality holds only for subpoints. In fact, set

.....

and let P C {1,...,n} be the non empty set of all the indices p = 1,...,n such that
L, Co I. We hence have |wp| =1, max;—1,.._, |wi| > %|w| > %dp*Q for all p € P, and

Wedpe P: €L, (5.5)

We apply assumption (5.1)) and inequality (5.2]) with an arbitrary N, = N € N, p € P,
and with N; = 0 for all j # p to get

FD@I<

<dp~t - dpN Q@ RCNH) = dpNTION(H).

/H |ON f(2)| dw <p, n™ - dpNCCONA(H)

For N — +oo (in the ring p§|Lp), we hence have that F(f)(w) =L, 0. From (5.5)) we
hence finally get F(f)(w)=0. m

REMARK 5.2.

(i)  Considering that §(t) = b™(bt) and that ¢ is an even function (Lem. [2.21})(vii)]),

we have
F(6)(w) = / S(t)e M dt = / 5(0 —t)e M dt = (5*e*i<*>W) (0). (5.6)

We already know that if b/|w] is a strong infinite number, then the function f,(t) =
e~ is bounded by a tame polynomial. Consequently, using Thm. we have
F(0)(w) = fu(0) = 1; in particular, F(d)|r = 1.

(ii)  On the other hand (taking for simplicity ¢ := F~1(3), where 3 € C*(R) is sup-
ported e.g. in [—1, 1] and identically equals 1 in a neighborhood of 0, see Thm. 2.22),
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8 (t) = bty (bt) if n = 1, and hence for all ¢ € "R, we have

5(j)(t) — bj“qp(j)(bt) _ pitl. [dd; <2177 /ﬂ(l,)eibata: dx)]

- % [/(ibaax)jﬁ(aj)eibft’” dm]

b2]+1

590 < 5 [ lab @ e = c?p.
Thus, Dirac’s delta satisfies condition (5.1)) and hence
3Q € N: F(9) € "GD(Bg,-<(0)).

In the following, we will use the notation 1 := F(9).

(5.7)

(iii) The previous result also yields that f*é = f cannot hold in general since otherwise,
we can argue as in (5.6)) to prove that F(J)(w) =1 for all w € "R, in contradiction

with (5.7).

Inequality (5.2]) can also be stated as a general impossibility theorem (where we

intuitively think n = 1).

THEOREM 5.3. Let (R,<) be an ordered ring and G be an R-module. Assume that we
have the following maps (for which we use notations aiming to draw the interpretation

where G is a space of GF)
(=):G—G

/ G— R

(=) -exp,:G— G YweER
|—|:R— R.

These maps satisfy the following integration by parts formula

[#ew,=2 [ 1 e,

for all invertible w € R*, f € G, and

|rs| =|r|ls| Vr,s€ R

VfeG3C € RVYw € R*: ’/f-expw <C.

Then for all f € G and all N € Nsq there exists C = C(f, N) € R such that
el
jw|N°

Therefore, if 6 € G satisfies 0(5 N) <1 for some w € R and some N € N, then

’/6-expw <1

<

‘v’wER*:‘/f-expw
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Proof. For f € G, in the usual way we recursively define f(») € G using the map (—)" :
G — G. Taking formula (5.8) for N € N5 times we get [ f -exp, = ﬁv i N - exp,,-
Applying | — | and using (5.9)) and (5.10)) we get the conclusion (5.11]). m

Note that we can take R = “C and as G the set of all to f € °GD (H) satistying
to apply this abstract result to the case of Lem. This result also underscores that in
the case G = D'(R), R = R we cannot have an integration by parts formula such as
and where [ equals the usual integral for f € D(R). Once more, it also underscores that,
since holds in our setting, we cannot have f x 6 = f without limitations because
this would imply F(8)(w) = 1 for all w € “R.

EXAMPLE 5.4. Let f(z) = €® for all |x| < k, where k := —log(dp). The hyperfinite
Fourier transform Fj of f is

ek(lfiw) _ 67k(17iw) dp(iwfl) _ dp(lfiw)

‘F = =
k() ) 1= iw 1—iw
1 dp™  dp ~
= - — Yw € “R.
1—w < dp dp’“) “
Note that 1 —iw, w €7 ﬁ, is always invertible with the usual inverse %j::;, moreover,

dp™ = e™lo8dr and hence |dp*| = 1. Therefore, F(f)(w) is always an infinite complex
number for all finite numbers w. If w > dp~'~", r € Rxg, then F(f)(w) is infinitesimal
but not zero. Clearly, f ¢ "GD(K).

Considering Robinson-Colombeau generalized numbers, the Gaussian is compactly
supported:

LEMMA 5.5. Let f(z) = e for all x € "R™. Then f € "GD(B,(0)) for all strong
infinite numbers h € "Rsq. Moreover, F (f) = (2m)= f.

Proof. The function f satisfies the inequality 0 < f (z) < |x|”%, Vq € N, for |x| finite suf-
ficiently large. Therefore, for all strongly infinite x, we have f (x) =0 i.e., f € "GD("R™).
We first prove the second claim in dimension n = 1; denoting by F the classical Fourier
we have

dp—1
F(f)w) = ]:dpfl(f)(w) = / g e—fﬁz/?e—iwr da

—dp—1

ool
€ 2 .
= / e z /26 e dx

—pz!

- 2 ) ~ 2
= / e T /2T g 4 F (e_“ /2) (we) +/
—pz"

+oo
- . too
= \/2776_“’6/2—2/

pe!

ZMf(w)—Z[/p

pt
€ 2 . X
e " /2(:’ e dx]

e % /26 1wszda{|

+oo

_ 2 _i .
e 7 /26 uuga,dx:| )
-1
€

z2
rtoo — I

2
1/ e dz

Using L’Hopital rule we can prove that lim,_,o+ "

= 0 for all ¢ € N, conse-
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quently Up—tﬁo e~ /2gmiwen dx} =0 in"R. In dimensionn > 1, we directly calculate using
Fubini’s theorem:

6. Elementary properties of the hyperfinite Fourier transform

In this section, we list and prove elementary properties of the HFT.

THEOREM 6.1. (see Sec. [2.6] for the notations ® and &) Let f € "GC™ (K) and g :
‘R™ — *C. Then

(i) Fr(f+9)=Fe(f)+Frlg) if g € "GC™(K).
(ii)  Fi (bf) = bFy (f) for all b€ C.
(iti) Fi (f) = =10 Fp(f), where —1of is the reflection of f, i.e. (=10 f) (z) := f (—z).
(iv) Fr(=lof)=-1oF(f) B
(v) Fr(tog) =t 0O Fu(g) for all t € Rsg such that tk is still infinite and g|x €
"GC™(K), glix € ’GC(tK). Here, tog is the dilation of f, i.e. (tog) (z) := g (tz).
(vi) Let k> h > 0 be infinite numbers, s € [—(k:—h) k—nh]", f € °GD([—h,h]™). Then
Fe(s@ f)=e RN =e R () =T OF(),
In particular, if h > dp™P, k > dp~9, p, ¢ € Rso, ¢ > p, and s € ¢(R™), then
€ [~(k—h),k —h|". In particular, R" C [~(k — h),k — h]"™.
(vii) Fi, (e f) = 5@ Fi (f) for all s € 'R™.
(viii) Let w € ‘R™ and o € N"\ {0}. Forp =1,...,|a|, define By = (Bpq) =y, €N"
with
Bo =«

Bpi1 = (0,.7271,0, By, — L, Bpjpt1s- - Bpn) if jp :=min{q | Bpq > 0}.
Finally, for all f € 'GC>®(K) and j =1,...,n, set

Alk,f(u)) = [f(l')e_ix'w} r1=k

r1=—k
k k
A f(w) / dz; .. / de;_q / dejyr .. / [f(:z:)eﬂz“’]:jik dz,,.
—k —k - —k
Then, we have
Fk (8jf) =iwjFr (f)+Auf Vi=1,...,n (6.1)
la|—1
Fie (0°f) = (iw) Fi () + > (iw)* P2 A (971 ). (6.2)

p=0
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In particular, if
f(xla"'amjflakvmj%*l):f(xlv"wxj*lv_kvmj%*l):O VI’GK, (63)

then

Fi (05 f) = iw; Fi (f) -

(ix) %}'k (f) = —iFi (zjf) forallj=1,...,n

(x) If f € "GD(K) or g € "GD(K), then Fi (f xg) = Fr (f) Fr(g). Therefore, if
f €’GD("R™) and g € "GD("R™), then F (f *g) = f(f)f(g).

(xi) Fr(s®g) =s o Fe (g9) for all invertible s € Rso such that is infinite, g|lx €
GC®(K) and glxc/s € "GC=(K/5).

Proof. Properties |(1)| can be proved like in the case of rapidly decreasing smooth
functions. For we have

Fr(sd f)(w)=Fp (f(x—3) /f r—s)e T dx
k k
= / dzy ... / fz—s)e ™ dx,.
—k —k
Considering the change of variable x — s = u we have
k—s1 k—snp
Fr(s® f)(w) =e / duy ... / f(u) e ™% du,.
—k—s1 —k—sn

Finally, considering that k > h and s € [-k+h,k—h|™® we have k—s; > h, —h > —k—s;
and k+s; > hforalli=1,...,n, so that
h

h
/ du; .. / f(w) e ™ du, = / dul/f(u) e du,
—k—s1 —k—sp —h —h
k
/k

from Def. [3.5]since f € "GD([—h, h]"™).
is immediate from the Def.
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To prove using integration by parts formula, we have
k

w)—IZajf(x *”‘“dx—/dxl /3]” ye ' da,,

—k

k
dzy... [ f(2)(—iw;) e ™ do,+
/

k k k k
/ d.]jl N / dxj_l / d$j+1 ce. / [f(x)e*i%w} i;zlik dl‘n
—k —k —k —k

= iw; Fi (f) (@) + Ajrf ().
Therefore, by applying this formula with 0, f instead of f, we obtain

Fi (0;0pf) () = —wjwpFi(f)(w) + iw; Api (f) (W) + Aji (Opf) (w).
Proceeding similarly by induction on |af, we can prove the general claim.

To prove we use Thm. [2.1§(viii)} i.e. derivation under the integral sign:

k k
8(3)J Fi (f) (w) = ai] ( dzy ... / f(x)e = dxn)

\
?‘T\w

k k
k k 5
:_/ dxl..._/kawj (f (z)e ™) day,
k
= [ dzy... | —iz;f(z)e ¥ day,
[r]
= —iFk (z;f) (w)

/ _m”/f y) dy dx.

Considering the change of Varlable x —y =t and using Fubini’s theorem, we have

/ e / fy)g(t) dydt = IZ e f (y) dy / e~ g (1) dt

K

= Fi (f) (@) Fi (9) (w).
Finally, we prove

Filsoa) @) =7 (5o (1)) )= ey (2) 5
K
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Considering the change of variable £ =y we have
k/s k/s
—iT-w - dz —isy-w
/3 9(;)87: / dyl.../g(y)e v dyn
K —k/s —k/s
B / g(y)e = dy = Fis (9) (sw)
K/s

=[50 Fiss (9)] ().

We will see in Sec. @that the additional term in plays an important role in finding
non-tempered solutions of differential equations (like the exponentials of the trivial ODE
y = y). We also note that condition is clearly weaker than asking f compactly
supported. For example, setting

1) = 5 [ @) ey = £ @) layma] - g )+ f () Ly

then f := f — [; satisfies (6.3).

7. The inverse hyperfinite Fourier transform

We naturally define the inverse HFT as follows:
DEFINITION 7.1. Let f € GC™ (K), the inverse HFT is

F (@)= g [ @) e a (7.1)
K

for all 2 € “R™. As we proved in Thm. we have F; ! :7GC™ (K) — "GC™® (‘R™). We
immediately note that the notation of the inverse function JF, ! is an abuse of language
because the codomain of Fj, is larger than the domain of F ! (and vice versa). When
dealing with inversion properties, it is hence better to think at

Filic i= (Ol o Fi : /60 (K) — "GC> (K)
Filllk == (=)|k o Fy 1 :°GC® (K) — *GC™ (K) .
We will see in Sec. [9] that lacking this precision can easily lead to inconsistencies.

Note that
@m)" F o (f) = Fr(=1o f) = =1o Fn(f), (7.2)

where —1¢ denotes the reflection (—1¢ g) (z) := g(—2x).

7.1. The Fourier inversion theorem. Our main goal is clearly to investigate the rela-
tionship between HFT and its inverse HFT, i.e. to prove the Fourier inversion theorem for
the HFT. Three important results used in the classical proof of the Fourier inversion theo-
rem are: the application of approximate identities for convolution defined by Gaussian like
functions (see [43, Lem. 4.3] for a similar result), Lebesgue dominated converge theorem
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(we can replace it with Thm. , and the translation property of FT. In our setting,
the last property corresponds to Thm. which works only for compactly supported
GSF. A first idea could hence to avoid proving the inversion theorem firstly at the origin
and then employing the translation property, but to prove it directly at an arbitrary
interior point y € K using approximate identities obtained by mollification of a Gaussian
function. Unfortunately, this idea does not work: in fact, if g(z) := (27‘(’)_”/2€_§, then
our approximate identity would be the mollification G, := % ® g, where we think p €’ N,
p — +00. We would also need a function g, such that F [g,(—,y)] (z) = (27)"/2G,(y—x),
ie. gp(—,y) := e (7). (pog). The first problem is that supp (g,(—,y)) C Bpap-1(0) 1 ‘R
as p — +00. In an integral of the type [, Fi(f)(w)gp(w,y) dw we would therefore need k
non-p-moderate (see below, Def. to contain all the support of g,(—,y). On the other
hand, we would also need ﬂlimpepﬁ gp(w,y) = W@iy“" , and it is not hard to prove
that |g,(w,y) — W@iy'w\ < dp? if p > Cykdp—9/? for some Cy € Rs, and this implies
that £ must be p-moderate.

The idea for a different proof starts from the following calculations (for n = 1):
7l = [ fae o= | [ pae ]
K KE
= | [t e = [ v s 0],

where xk_ is the characteristic function of K, := [—ke, k.|, and F is the classical Fourier
transform. Consequently, if we take another positive infinite number h = [h.] € R and
set H := [—h,h], H. := [—he, h.], then

1 1

F A ) = 5

T JH
1 ) .

o | [ @7 (e s @)

27
= [77 (. F ue 1)) (we)]
= [(F )+ xac 2) )]

e |F (ue.f2) (@) dw

We now compute

L _ 1 4 1o 1
F (@) = 5= [ e = 5o [ e o = Zhes(hs),

where S(z) = % fil cos(zt) dt is the smooth extension of % at ¢ = 0. Therefore, we
can write

FED) @) = [ Lsthly - o)) de. (7.3)

KT
For n > 1, we similarly have

1
F N xm)(2) = —eS(zihic) e hneS (2nhne) =2 67 (2), (7.4)
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and
FOUFD) () = /K 53y — ) - f() da. (7.5)

We call the GSF (h is an infinite number) 6} Dirichlet delta function (recall that the
delta sequence (d;;);,cy converges to 6 in D', see e.g. [6]). In fact, these calculations lead
us to consider the so-called Dirichlet sifting theorem

+oo
i ) on(x) f(2) = £(0), (7.6)
heR

which holds for any f € D(R) (see e.g. [0, pag. 34]). Formula also justifies why
we considered another infinite number h; moreover, in the following proof, we will see
that the use of the functionally compact set K instead of fj;o allows us to avoid any
limitation on the GSF f.

We first need the following results:

LEMMA 7.2. For all sharply interior points y € IO(, we have

hgrf_loo/;(éh(y—m)dx =1

Here, the limit is in the sharp topology, i.e.
Vg € N3h € "RVh € "Rsj, : ’/ 5,’;(y—x)dx—1‘ < dp.
- K
Proof. We actually prove the case n = 1, since n > 1 is similar. From y = [y.] €

K = (—k,k), we can take the representative (y.) so that —k. < y. < k. for all e.
We have [ 0} (y — z)da = {% ffze S (he(ye — 2)) dx] With the change of variables

a’ = he(ye — @), we get

h ke heye+heke

€

7/ S (he(ye — o)) do = / S

T J k. heye—heke

—+o00 haya“l’haks
s+ s+ s
hayafhaka —0o0 +oo

heye+heke
S+7r+/ S.
sysfh ke +oo

Note that heye + heke > 0 and h.y. — hek. < 0 because —k. < y. < k.. In general, if

0<a<bora<b<0, we have
/bs /b sina ”+/b 0Y g,
a a xz a a Yy

11 bdy 2 2
< =
ol lal Jo y? lal (b

A= N

2=

‘ cosy
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In our cases, this yields

+oo )
fo oo 8= i
heye+heke |heye + h5k5|

heye—heke 2
[ |
— o0 |h€ys - hsks|

(recall that —k. < y. < k.). Therefore

fso-

as h — +o0o because —k <y < k. m

2 2 .
|hy+h/<;| |hy — hk|

Now, we have to deal with estimations of the convolution (7.5) on the “tails”, i.e. arbi-
trarily near y:

LEMMA 7.3. Let K C X C ’R" and f € "GC>(X).Then for all 6 € ”§>0 such that
Bs(y) € K, we have:

(1) limpioo ff;g Sy —z) - f(z)de =0=limp— 400 fykM oy — ) - f(z)dz.
(ii)  limp— oo (f,:l (FulH) W) = [ opy —2) - f(2) dx) = 0.
As above, the limits are in the sharp topology.

Proof. Fory<a<b<kor —k<a<b<y, we first consider

/(5h — ) )dx—/ iwf(x)dx

y—x

) e
= % <[ COZSZf (y — %)]:zizz + /hzyhza 008(2)% [f(yz_i)] dz) (17

The first summand in (7.7)) yields

[ O

fla)
hy — ha
_l@l 1 el 1
- b ly—qd h ly—0
The second summand in (7.7 yields

/h " acos(z)% [f(y_i)] dz = —/h . acos(z)w dz (7.9)

= ‘— cos(hy — ha) + cos(hy — hb) hyf(b) ’

y—hb z y—hb hz
hy—ha _z
—/ cos(z)f(yizh) dz. (7.10)
hy—hb Z

If hy —hb < z < hy — ha, then -k < a < y— % < b < k, so that |f' (y— 2)| <

maxex |f/(2)] = My € “R (note that this step would not be so trivial if we had to let
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k — +00). Consequently, from the mean value theorem applied to ([7.9)

hy—ha ! _z M

/ cos(z)M dz| < (b—a) —

hy—hb hz Iq
for some ¢ € [hy — hb, hy — ha] (note that a < b implies hy — ha > hy — hb). In the first
case we assumed, i.e. y < a < b < k, we have hy — ha < 0, so that |{| = —¢ > ha — hy,
and hence (b —a) - % < (b—a)- ha]\flhy In the second case —k < a < b < y, we have
€| = ¢ > hy — hb, and hence (b —a) - 47 < (b — a) - ;%% The last term in (7.10) can

be estimated as

hy—ha _Z
/ ! cos(z)f(y72h) dz
h z

y—hb

hy=ha q, 1 1
< M, A _
= O/hyhb 22 O(hy—hb hy—ha>’

where My := max,cx |f(z)| € ’R. Applying these estimates with a = —k and b=y — §
(so that the second case holds), we get
v —k 1 —-8)] 1 — 0+ k)M

-k

ho ly+k h 5 ho

My (1 1

h (5 - y+k)
<3]\40< 1 1) (y—d+ k)M
~  h \Jy+kl o hé '
For h — +o00, this proves the first part of Once again, note that if h = kK — 400, in
general the term w -+ 0; it is hence important that k is fixed and only h — 4o0.
Similarly, we can estimate the other integral in|(i)|for a = y + 6 and b = k (the first case
holds) obtaining

k
| s @)

+d

My 1 1 (k—y—90)M
< 3= Z v
_3h <|y—kz|+(5>+ % — 0

as h — +oo.

The claim is proved considering ((7.5) and n

Finally, we have the Fourier inversion theorem:

THEOREM 7.4. Let K C X C’R"™ and f € "GC™ (X). Then for all sharply interiory € K,
we have

im 7t (Fu() () = lim Fi (F () () = f(y). (7.11)

h—+o0
Proof. To link the integrals of the previous Lem. with f(y), we use the Fermat-Reyes
Thm. for any § € "Rs¢ sufficiently small such that Bs(y) C K C X, we can write
flx)=fly)+ @y —2)f'[y;y — «] for all x € [y — 0,y + 0]. Therefore

y+o y+4
/ 5i(y—x)-f(x)dm:/ Shy — ) (f(9) + (y — ) lyy — a]) da

-4 y—30

y+0 y+0
—1w [ Sy-o)des [ sinlhy - ) lysy - o] do.
y—34 T Jy—s
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Consequently

y+o y+6
| -a) f@d - [ s

1
S 725M157
-4 y—6 m

where M5 := maxyepy—sy+o) | f'[25y — ]| € ’R. Considering ({7.5)), we have

k
F (FelF) W) — F) / Ay —a)da < Losanst

y=4 k
‘/k Sy ) f@)de+ [ Gy -a) - fo)do

y+4

—f(y)/_yk_éf?i( —w)do— f / 5Ly — o)

Take the limit both for A — +o00 and for § — 0T in this inequality, considering that the
left hand side does not depend on 4. Using Lem. [7.3] we obtain

=0.

lim
h—4o0

FUF) /5h — )

Finally, Lem. [7.2] yields limj, s~ f(y f 5 (y — :1:) dz = f(y) and this proves the first
part of the clalm To prove the second equahty in , we use the general equalities

@r)"Ft(9) = Fu(—=1og) Vg €’GC™(H) (7.12)
@m)"FH(f) = 1o Fu(f)  Vf €'GC(K). (7.13)

Applying with g = Fr(f)|a, we get
(2m)"F (Fi(f)) = Fu(=1 o Fi(f)). (7.14)

Consequently, using and (7.14), we get (2m)"Fn(F; ' () = Fu((2m)"F;, () =
Fu(=1o Fi(f)) = 2m)"F  (Fi(f))- =

One way to summarize the meaning of this version of the Fourier inversion theorem is as
follows: If for a smooth function g € C*°(R), we want to define

“+00 ] h )
/ g(w)e™ dw = lim g(w)e™™ dw,
h—+oco —h

— 00
we can assume some sufficiently strong behavior of g at +00, e.g. that g is rapidly decreas-
ing. On the one hand, this is only a sufficient condition deeply linked to the limitations
of the Lebesgue integral, as the function g(z) = Smxﬂ shows. On the other hand,
shows that this type of limit exists (in the sharp topology) for all the GSF of the form
g = Fr(f), where f is an arbitrary GSF and k € ‘R is any fized infinite number. Indeed,
Thm. is strongly related to the Dirichlet delta, as already shows. In other words,
a key idea of the present work is to consider the HFT }'h_l(f) for arbitrary f € "GC*(H),
and to take the limit for h — 400 only in the Fourier inversion theorem.

We can also state the Fourier inversion theorem using a strong equivalence relation
instead of a limit. For this aim, we need the following notions:
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DEFINITION 7.5. If o is a gauge smaller than p, and we write o < p*, i.e. if
JReRoVe: 0. < pf,

then we have R, C R, and we can hence consider the set of p-moderate numbers in “R:
Ri= {[xg] € R (z.) € Rp}.

Let 9p := [p:] € € "R denotes the generalized number in "R defined by the net (pe). If z,
Yy € R we say that = is equal up to p to y, and we write x =, y, if

VgeN: |z —y| <9pl.
We say that o is an auxiliary gauge of p, and we write o < p, if

3Q e NVg e NVs: 08 < pl. (7.15)

*

Finally, we say that k € "R is p-immoderate, and we write k > dp~* if
VQeN: k>dp @

REMARK 7.6.

(i)  Clearly, ” Ris a subring of ° R but in general it is not isomorphic to ” R because the
notion of equality ~, in "R is generally stronger than the one ~, in * R. However,
if [xe]s € °R and [z, €7 R denotes the equivalence classes generated by the net
(xze) € R,, then the map

L: [z, €'R e [2] € /R
is surjective and “injective up to p”, i.e. t«(x) = ¢(y) implies & =, y. Similarly, we
can define
FEPGC®(X,Y):=> X C'R, Y C'R, Vo € XVaeN": 9°f (z) € 'R,
and the map j : “GC™(X,Y) — "GC™ ((X), t(Y)) defined by j(f)(¢(x)) := o(f(x))
is surjective and satisfies j(f) = j(g) if and only if f(z) =, g(z) for all z € X.
. 1/e 1 —1/e s

(il) o1 :=pe’", 02 = exp(—ﬁ) and o3, 1= exp(—p: '") are all auxiliary gauges of p,
kj = aj_l and — log k3 are p-immoderate numbers. On the other hand, if o is an
arbitrary gauge, and p. := —log(o.)™!, then o < p.

COROLLARY 7.7. Let 0 < p and k > 0p~™*. Let f € °GC™(X), with K C X. Then for

all h € °R sufficiently large, we have

Fi L Fe(D) ) =p Fu (FHD) ) =5 F()
for ally € K N*R.

Proof. From Thm. (with o in the role of p), we have that for all h € R sufficiently
large

\FH (Fi(F) (v) — f(y)] < do@ < pt

for all ¢ € N from ((7.15). Note that y € K N " R and k > dp~* imply y € K (in the
o-sharp topology). m

The following result allows one to have independence from k or both k and h.
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COROLLARY 7.8. If f € ”QD(”&), there eists k € "R infinite such that
. 1 _ . —1 _
i FH(FE) () =, tim Fu (FHH) () = f)

forally e K.
COROLLARY 7.9. Let H € ’R™ and f €"GD(H). Assume that
3C,b € RsgVa € HYj eN: |/ f(z)| < C -
Then
FYFEMN @) =FFNH) W =1rfy) VyeH.

Proof. See the Riemann-Lebesgue Lem. 5.1} which guarantees that also F(f) is compactly
supported. m

In the following result, we summarize some properties of Dirichlet delta function:
COROLLARY 7.10. Let K C X C ”ﬁ”, f €7GC>=(X). Then, the following properties hold:
(i) SR =6t-..m.. -6} forallh € 'R positive infinite number; N
(it)  Fp ' (Fu(f) = Fu (Fi'(f) = [, 00y — ) - fx)dz =: 6} =4 f for all h € 'R

positive infinite number;

(iii) limy oo (65 51 f) (y) = f(y) for ally € K;
(i) limpoioo [7, 87(2) f(2)dz = £(0) if 0 € K;
(v)  limp_ oo ffk o (x)de =1;
(vi) limpiao [0 87 (x) da = limy oo f3 67(x) dz = 0 for all § € (0,1];
(vii) limpsyoo Fi (6F) =1 and F;, ' (1) = 67 for all h € 'R positive infinite number-.
Ifo < p, and k € ”ﬁ, ]€~>> dp~*, then in the previous properties we can replace the limits
with =, and with h € °R suﬁciently large.

Proof. For ., see . For |(v), see Lem. . For -, see Lem. . 7.3} Property |(iv) m is
exactly Th A withy =0 and conmdermg ; the same for To prove the first

equality of use |( mWIth f(x) = e~%; for the second one, simply compute F,~ L)
and use for n = 1. Finally, [(ii)| can be proved as in ([7.5]). =

7.2. Parseval’s relation, Plancherel’s identity and the uncertainty principle.
THEOREM 7.11. Let h € "Rsq be an infinite number and set H = [—h,h]". Let f €
"GC™ (K) and g € *GC™ (H). Then

(i) g Fr(f) (W) g (W) dw = [ f(2) Fn(g) (z) dz.

(i)  Frlrx :"GC(K) — "GC™(K) is an injective homeomorphism such that
VferGC™(K)3g € "GC™(K) : hlir}} Frlg) = f. (7.16)
—+oo

(#ii) Recalling that —1 o f is the reflection of f, we have limp_ oo Frlu(Frlx(f)) =
(2m)" (Lo f) and iy o0 Fy i (Fi i () = (27) " (—1 0 ).

(w)  (Parseval’s relation) (210)" [, f§ = limp— 100 [f Fn ( ).Fk( ).

(v)  (Plancherel’s identity) (2m)" [ |f| = limp s yoo [5 [Fn ( DIE.

('Ui) fog—hmh—>+OOfK]:h )‘Fk ( )
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In the assumptions of Cor. we can also write all the relations involving limp_ 4 oo
using =, instead. Finally, using Thm. we can also take the limit under the integral
stgn.

Proof. follows from Def. and Fubini’s theorem.
In order to prove (i)} we assume Fi(f) = Fi(g), so that F, ' (Fu(f)) = F,, ' (Fx(g))

and hence f = g on K by the inversion theorem (Thm. . The equality on the entire
K follows by sharp continuity. If f € "GC™(K), set g := F; ' (f)|x € "GC™(K), then
(7.16) follows again from the Fourier inversion theorem.

To prove using we have
Fr (Fr(f) = Fn (Fe(=1o (=10 f))) = Fn(-1oFr(-1o f)) =
@m)"Fn (F (=10 f)) = (2m)" (=10 f)

as h — +oo.

To prove use |(1)| with F (g) instead of g, then Thm. and finally

Plancherel’s identity is a trivial consequence of
Finally, follows from |(i){ and the inversion theorem (Thm. . n

We close this section with a proof of the uncertainty principle:
THEOREM 7.12. If ¢ € "GD("R), then

(i) If¢ e’GD(H)N"GD(K), then

/ WP |F () () dw = / WP |F () @) dw = / W |F (1) @) dw

H
i) (2210 @) de) (fo? |F ) @) dw) = Helal F@)..

Proof. Properties and of Thm. imply that also ¢/ € *GD(H). Therefore,
Plancherel’s identity Thm. yields

| W= [ 1FwP.

But |[F(¢)]° = w? |F(®)|* from Thm. because ¢ is compactly supported and
hence Ay = 0. Therefore

o b w2 W% dw
[t =5 [ @R @ (717)

At the same result we arrive considering K instead of H. Finally, we apply Def. of
integral of a compactly supported GSF, which yields independence from the functionally
compact integration domain.

To prove inequality we assume that ¢ € "GD(K); using integration by parts, we
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get:
/xmd/(x) dz = /_,1 z(z) (z) da
= @], - [ v (50 + @) s
— [ [#@ + 007 da.
Consequently

/|w(x)|2 dz = —2Re (/ J;w(x)w’(x)dx>
<2 ’Re (/ xw(x)z//(x)dx)‘
< 2/ ‘xd)(z)m‘ de.

Where we used the triangle inequality for integrals (see Thm. [2.33(iv)]). Using Cauchy-
Schwarz inequality (see Thm. , we hence obtain

(/ () dx)2 <4 (/ ()7 @) dx)Q
<4 (/:& ek d:c) (/ ! (@) d:c) .

From this, thanks to (7.17) and Plancherel’s equality, the claim follows. m

Note that if [|¢]2 € “R is invertible, then also ||F())||2 is invertible by Plancherel’s
equality, and we can hence write the uncertainty principle in the usual normalized form.

EXAMPLE 7.13. On the contrary with respect the classical formulation in L?(R) of the
uncertainty principle, in Thm. we can e.g. consider ¥ = § € "GD("R), and we have

1
/x25(x)2 dz = {/ 2202 (box)? da

where ¢(z) = [1he(z.)] is a Colombeau mollifier and b = [b.] € “R is a strong infinite

number (see Example 2.24)). Since normalizing the function e +— b2t (b.z)? we get an ap-

proximate identity, we have lim,_,o+ fil 22624 (b.x)* dz = 0, and hence [ 2?§(z)? dz =~ 0

is an infinitesimal. The uncertainty principle Thm. [7.12] implies that it is an invertible

infinitesimal. Considering the HFT 1 = F(§) € “GD("R), we have

T 3
/wzl(w)2 dw > / w?dw = 2% vr € Ryp.

T

Consequently, [w?1(w)?dw is an infinite number.
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8. Preservation of classical Fourier transform

It is natural to inquire the relations between classical F'T of tempered distributions and
our HF'T.

Let us start with a couple of exploring examples:
i)  Fr(l)(w) = ffk 1-e @@ dy = ffk cos(zw) dz. If L Cp I and w|, is invertible (see
Sec. for the language of subpoints), then Fy(1)(w) =, QSinfdik‘”); if w =g, 0, then
Fir(1)(w) = 2k. Classically, we have 1 = 274.

(ii)  Since classically we do not have infinite numbers such as k, the example above leads
us to the following idea

F(1-1) = F(F(8)) = 27 (=1 0 8) = 270.

Note that if f € "GC*(K), then (f - 1) (w) = f(w) for all finite points w € K. We
therefore call f -1 the finite part of f. The same idea works for €?*® and hence also
for sin, cos.

(iii) Let us now consider ¢ - 1:

F(-1)(w) = / 5(2)F(5)(x)e ™ da.

We recall that integrating against  yields the evaluation of the second factor at 0
only if the latter is bounded by a tame polynomial at 0 (see Example [3.13}f(iv)).
But the function  — F(8)(x)e~*** is bounded by a tame polynomial at x = 0 for
all w, and we get F(0-1)(w) = 1.

These exploratory examples lead us to the following

THEOREM 8.1. Let f € ’GC™(K), and assume that Fi(f) is bounded by a tame polyno-
mial at w € "R™. Then F(f - 1)(w) = Fr(f)(w).

Proof. Tt suffices to apply Thm.
F( 0w = [F@F@)@e = da
— [s@)F (£ @) da
= /5(x)fk (f) (z +w)de = Fp (f) (w).

Since a%j [Fr(f)] (w) = —iFi(z; f)(w), we have the following sufficient condition for
Fi(f) being bounded by a tame polynomial at w € “R™:

THEOREM 8.2. Letb € ”§>0 be a large infinite number, and let f € "GC™ (K) be uniformly
bounded by a tame polynomial at K, i.e.

_ A b
dM,ce’RVye KVj e N: ‘djf(y)| <M -, - is a large infinite number.  (8.1)
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Then for allw € "ﬁ", the HFT Fi(f) is bounded by a tame polynomial at w. In particular,
every f € S(R™) satisfies condition (8.1), and hence

F(H)=F(f 1) =tz (), (8:2)
where f € S(R™) is the classical FT of f.

Proof. Up to the use of equivalent norms for the j-th differentials, for a suitable constant
C € Rsg, we have

_ h
WE) )| < | 2T ).

|h|<j

Therefore, using Thm. [6.1i(ix)| we get

R )| < € max |7 ()] < C s [ o @) da
[h]<j |h|<j

< CMcj/ |2 dz =: M.
K
If f € S(R™), then |djf(y)| € R,sothatif b > dp™", r € Ry, it suffices to take c = dp™""*
where 0 < s < r to have that (8.1) holds. The last equality in (8.2) is equivalent to say

that fRn e W dy = fK f(x)e~ @ dz, which can be proved as for the Gaussian, see
Lem. [5.5]

We can now consider the relations between ¢%, (T) and F, (4. (T')) when T € S'(R™).
A first trivial link is given by the so-called equality in the sense of generalized tempered
distributions: For all ¢ € S(R™), from ({3.5) we have

/%dﬂwz@w%ﬂﬂ@z/%dﬂ@

Using the previous Thm. [8.2| we get ¢ = F(p) (identifying a smooth function with its
embedding). Consequently

(T = [ th(T F (tha(T)) ¢ Vg € S(R™M). (8.3)
[ tettre= [ deze - |

In Colombeau’s theory, this relation is usually written 1%, (T) =¢.q. F (tha (T)).

In the following result, we give a sufficient condition to have a pointwise equality
between the HFT of (%, (T) and T

THEOREM 8.3. Let b € "Rsq be a large infinite number and T € S'(R™). Then
Fio(tgn (T)) (@) = g (T) ().

Moreover, if Fi.(t%.(T)) is bounded by a tame polynomial at w € ’ﬁ”, then
F (g (T) - 1)(w) = 1 (T) (w)

Proof. For simplicity of notation, we use ¢ := 1}.. Let 1(x) = [1(z.)] be an n-dimensio-
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nal Colombeau mollifier defined by b, and set K. := [—ke, kc]™; we have

F(T) @) = | /K (T(y), e — y))e= i dx]
- :<T<y>, [ eta = gemie dxﬁ
= [(@w).y @ bewo))]

= [(Tw), y © 6.) ()]
(), Yelw= — )] = u(T)(w).

Finally, using Thm. we have the second part of the claim. m

For example, Fr((H))(w) = ¢(H)(w) = o(m — ivp(1)). Assuming that w is far from
the origin, i.e. [w| > 7 € Rsg, we have ((H)(w) = md(w) — i i (vp(L))(w) = 0 — L=
Fr(L(H))(w) (the equality ¢&(vp(1))(w) = L follows from Thm. because |w| > r €

R>0). However, note that the latter steps cannot be repeated if w ~ 0.

8.1. Fourier transform in the Colombeau setting. Only in this section we assume
a very basic knowledge of Colombeau’s theory.

Assume that Q@ C R™ is an open set. The algebra G2 () of tempered generalized
functions was introduced by J.F. Colombeau in [1I] for Q@ = R™ and in [50] on arbitrary
open sets, in order to develop a theory of Fourier transform. Since then, there has been
a rapid development of Fourier analysis, regularity theory and microlocal analysis in this
setting.

DEFINITION 8.4. The G2(Q2) algebra of Colombeau tempered GF (trivially generalized by
using an arbitrary gauge p) is defined as follows:

EX(Q) = {(uc) €C™(Q)" |Va eN"3IN e N:

sup (1+ o)™ |07 (2)| = 0<p;N>} ,

NE(Q) := {(u:) €C®()' |Va eN"Ip e NVm €N :
sup (1 + |a]) ™ [0%us (2)] = ow)} ,
€N

G7(Q) := E2(Q/NZ ().

Colombeau tempered GF can be embedded as GSF, at least if the internal set [Q] is
sharply bounded. We first define

DEFINITION 8.5. Let X C ’R". Then

N
"GEF(X) = {u €/GCT(X) [ Va eN'3N eNVr € X : |0%u(w)| < m}

For the proof of the following result, see e.g. [31, Prop. 1.2.47].
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THEOREM 8.6. Let Q C R™ be an n-dimensional box, i.e. a subset of the form Iy x...x I,
where each I is a finite or infinite open interval in R. A Colombeau tempered GF u =
(us) +N2(Q) € G5(Q) defines a GSF u : [z.] € [Q] — [uc(x.)] € “C. This assignment
provides an algebra isomorphism G2 () ~"GCX°([€Y]).

Integration of a CGF u = [u.] € G*(2) over a standard K € Q can be defined e-wise
as [ u(z) da = [ [, ue (x) dz] € ’R. Similarly we can proceed for [;, u if u is compactly
supported and 2 C R™ is an arbitrary open set. On the other hand, to define the Fourier
transform, we have to integrate tempered CGF on the entire R™. Using this integration of
CGPF, this is accomplished by multiplying the generalized function by a so-called damping
measure @, see e.g. [35]:

DEFINITION 8.7. Let ¢ € S(R™) with [, ¢ =1, [z, 2%¢(x)dz = 0 for all a € N™ \ {0},
and set ¢ (z) == p. ® p(x) = p-"p(p-'z). Let u = [u.] € G,(R™). Then ug := [u-p.],
Jow w(x) dgt = [, up da = [ [ ue(2)Pz(x) da] € C, where . denotes the classical FT.
In particular,

Fotwe)i= [ e = | [ e unwpe i

Fi(u)(z) == (27r)_”/ e u(w) dpw = [(ZW)_" /n e u. (w) s (w) dw] )

As aresult, although this notion of Fourier transform in the Colombeau setting shares
several properties with the classical one, it lacks e.g. the Fourier inversion theorem,
which holds only at the level of equality in the sense of generalized tempered distri-
butions [11, 13} 48], see also (8.3)). See also [60] for a Paley-Wiener like theorem. In other
words, we only have e.g. Fp(0%u) =g.q. i'*lw*Fp(u), il F*5(0%) =ga. 1F*5(u),
FeF*ou =gt.d. F*pFeu, where Fy(u) denotes the Fourier transform with respect to
the damping measure. Moreover (ir(T),v¥) ~ (Fpir(T),v) for all T € S'(R) and all
¥ € S§(R), where tr(T) is the embedding of Thm. Intuitively, one could say that the
use of the multiplicative damping measure introduces a perturbation of infinite frequen-
cies that inhibit several results that, on the contrary, hold for the HFT. On the other
hand, HFT lies on a better integration theory that allows us to integrate any GSF on
the functionally compact set K. The only possibilities to obtain a strict Fourier inversion
theorem in Colombeau’s theory, are the approach used by [49], where smoothing kernels
are used as index set (instead of the simpler ¢ € I') and therefore the knowledge of infinite
dimensional calculus in convenient vector spaces is needed, or [54} [7], which are based on
the Colombeau space G(S(R)), but where the imbedding of §’(R) is more complicated.

Finally, the following result links the HFT with the FT of tempered CGF as defined
above.

THEOREM 8.8. Let u € "GC°(R™) be a tempered CGF (identified with the corresponding
GSF). Finally, let ¢ € S(R™) be a dumping measure. Then

Fo(u) = Flu-o((=)-dp)] = Flu- F(p)((—) - dp)] -
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Proof. Def. (8.7) yields

where, in the last equality, we applied (8.2). =

9. Examples and applications

In this section we present an initial study of possible applications of the HFT. Our
main aim is to highlight the new potentialities of the theory. For example, thanks to the
possibility of applying the HFT also to non-tempered GF, the next deductions are fully
rigorous, even if they correspond to the frequently used statement: “proceeding formally,
we obtain...”. We also note that the FT is often used to prove necessary conditions: if the
solution y satisfies a given differential equation, then necessarily y = ... In the following,
we propose an attempt to also reverse this implication, even if this depends on a suitable
extenszbzlzty property: If the HFT of the given differential equation holds on some space,
e.g. K x ”R>0, then it also holds on the entire "R x ”R>0 We discuss some sufficient
conditions for this property to hold, but a thorough study of this condition is out of the
scope of the present work.

9.1. Applications of HFT to ordinary differential equations.

The simplest ODE. We first consider the following, apparently trivial but actually
meaningful, example:

y/ =Y, y(O) =c, y€GC™ ([_kvk})v ceﬂﬁ, (9'1)

where k = —log (dp). Since we do not impose limitations on the initial value ¢, this simple
example clearly shows the possibilities of the HFT to manage non tempered generalized
functions. Applying the HFT to both sides of (9.1) and using the derivation formula
(6.1), we get

Fi (y) = Ay + iwF (y) - (9:2)

Set for simplicity A, (w) := A1y (w) = y(k)e* —y(—k)e’* and note that the function
A, does not depend on the whole function y but only on the two values y(£k). We get
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Fi (y) (w) = 2u) and applying the Fourier inversion Thm. we obtain

T—iw
y(z) = lim F, ! (Ay ()

h—>~4o00 1—iw

) (z) Vzrek. (9.3)
Using the initial condition in (9.1)), we have

h
y(0) = lm F' (A“‘”)) 0= tm [ 2u)

dw=c. 4
1—w h—+oo J_p 1 —iw e (94)

Clearly, e.g. by separation of variables, (9.1 necessarily yields y(z) = ce® for all x €
[—k, k]. Therefore, y (k) = ce™ 180 = 5oy (=k) = ce8 Y = cdp and A, (w) = cdp™ 1~

cdp™*1 because dp™ = e~ v,

Vice versa, take a, b € "ﬁ, and set
AZ,I;(W) =a-e Y _p. ™ wwerR.
We also assume the following compatibility conditions on a, b:

k

o = limy, 40 Fy ! (Af*_”i:’)) (k)

(9.5)

k

b=limy_, 400 Fy (ﬁafﬁﬁ) (—k)

We will see in Rem. (1)| that actually these conditions overdetermine a, b. Set

R -1 (As,b(‘*’)> .S
y(x) == lim F, T (r) €’R Vz €K, (9.6)

where we also assumed that the limit in exists. Consequently, and ([9.5)) imply
A’;’b(w) = Aj;y(w). Now, apply Fi, to both sides of and use Thm. m, Thm.
to get

Fr()(w) = Fi (hgrfoo Fit (W)) (w) (9.7)
= i (fhl (Allkyz(:j))) (w) (9.8)
=, lim 7" (Fk (All’“_yz(:j))) (w) (9.9)
= Al%y;:j) Vw € K. (9.10)

Note that in we used Fubini’s theorem to exchange JF, ' with Fj. We can now
reverse all the calculations leading us to the necessary condition (9.3]) to obtain
Fiy)(w) = Fe(y)(w) VYw € K. (9.11)

We would like to apply Fj to both sides of and then take lim;,_, .. However, to
make this step, we need equality to hold for all w € “R because h — +o00, h € ’R.
We therefore assume that can be extended from K to the entire ‘R (note that both
sides of are GSF defined on “R):

Feli = Fr()l g = Fily) = Fu(y) on R. (9.12)
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This is the aforementioned extensibility property for the ODE y' = y. Under this assump-
tion, we can apply the Fourier inversion Thm. to obtain y(z) = y/(z) for all z € K,
and hence y = ¢ by continuity. We can simply, and more generally, state the extensibility
property saying: if the HF'T of the differential equation holds in K for the function y,
then it holds everywhere.

REMARK 9.1.

(i)  Since y(x) = y(0)e®, compatibility conditions imply a = y(0)eF and b =
y(0)e~*. If y(0) is invertible, we obtain a = be?*. Therefore, overdetermine
the constants a, b.

(ii)  Using the notion of hyperseries we already mentioned in Sec. (see [62]), we can
say that if both Fy(y) and Fy(y’) can be expanded in Taylor hyperseries (we can
say that they are real hyper analytic), i.e. if for some @ € K and for all w € "ﬁ, we
have

M) (o
Fel)w) =Y W@ gy

n!

ne’N
1\ (n) @
Al ="y DOITE gy
nE"N '

then (9.12)) holds, because (9.11)) yields Fy(y)™ (@) = Fi(y')™ (@) for all n € N.

Even if this ODE is the simplest one, we want to underline our deductions with the
following statements:

THEOREM 9.2. If k= —logdp, y € "GC(K), Ay := Ay and y' =y, then
1 (A, (w) .

li == K.

im F, <1—iw)(z) Vo €

The sufficient condition deduction corresponds to the following

THEOREM 9.3. Let a, b € ”ﬁ, and set

A’;yb(w) =a-e " _p. e v erR

Vre K3 lim F ! Bus) (z) =: y(z) € "R
hotoo” P\ 1 —idw - ’

Assume the compatibility conditions (9.5)) and the extensibility property for the ODE

y =y, i.e. (9.12). Then

{y’ =yonK
. AF L (w
y(0) = limp—s 100 ffh l"fi(w) dw.

We finally underscore that:

(a) In the classical theory, the lacking of the term Aj,y(w) does not allow one to obtain
the non-tempered solution for ¢ # 0: in other words, if Ajxy = 0, then (9.4) implies
that necessarily ¢ = 0.
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(b) In the previous deduction, it is clearly important that the HFT can be applied to
all the GF of the space "GC™ (K).

(¢) Compare with Example to note that if ¢ > r € Ry, then in we are
considering the inverse HFT of a GSF which always takes infinite values for all finite
w. Clearly, this strongly motivates the use of a non-Archimedean framework for this
type of problems.

(d) All our results, in particular the inversion theorem (Thm. [7.4)), hold for an arbitrary
infinite number k. In this particular case, we considered k of logarithmic type to get
moderateness of the exponential function.

General constant coefficient ODE. Let us consider an arbitrary n-th order constant
(generalized) coefficient ODE

any™ + . ary +agy =g, y,9 €'GC([~k,H]), a; €'R, n €Nz (9.13)

Note that simply assuming to have a solution y defined on the infinite interval [—k, k],
already yields an implicit limitation on the coeflicients a; € ‘R. In fact, the equation

f— d—lpy = 0 has solution y(z) = y(0)e*/%, which is defined only if 2 < —Ndplogdp ~
0 for some N € N. Consequently, its domain will never be of the type [—k, k] unless
y(0) = 0. By applying the HFT to both sides of equation , the differential equation
is converted into the algebraic equation

P-Fi(y) + Ay = Fr (9), (9-14)

where
P(w) =) aj(iw),
j=0

and A, (w) is the sum of all the extra terms in Thm. |6.1(viii), which in this case becomes
n J
Ay(w) := Zaj . Z(iw)j_pAlky(p_l)(w) Yw € "R.
Jj=1 p=1
Note that the function A, depends on the points yP) (k) for p=0,...,n— 1. Assuming
that P(w) is invertible for all w € K, from (9.14) and the inversion theorem (Thm. [7.4),
we get

y(z) = lim F,* (W’) (z) VzeK. (9.15)

h—+oo

Proceeding as in the previous example, i.e. using again the inversion theorem (Thm. 7
the differentiation formula and assuming suitable compatibility and extensibility
conditions, we can actually prove that yields a solution of . For a generaliza-
tion to GSF of the usual results about n-th order constant generalized coefficient ODE,
see [45].

Airy equation. A simple example of a non-constant coefficient linear ODE is given by
the Airy equation

u'(z) —x-u(z) =0, wue’GC(—k,k],"R). (9.16)
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By applying the derivative formulas Thm. [6.1j(viii){and Thm. [6.1{(ix), we get
W Fr, (u) + wAipu — iA g’ — Ff (u) = 0.
Let us now set A, (w) := wApu (w) —iApu (w), Yw € ’R. Once again, the function A,
depends on the points u (k) and ' (k).
Fi (u) — iw? Fy, (u) = Ay, (9.17)
Equation (9.17)) is a first order non-constant coefficient, non-homogeneous generalized
ODE with respect to the variable w. We can solve it e.g. by considering the integrating

— . 3
factor u (w) := elo —iz%dz = o—it% Then, the solution of (9.17)) is given by
Jom (2) dz + ¢ fo
'LW3
Iz (W) e

where ¢ := Fi(u)(0) € "R. Finally, we apply the inversion theorem (Thm. and
substitute A, (w) to recover the original function

w@) = lim Fp (fo Mg)d”C) (@)

(2) dz+ ¢

Fi (u) (w) = Vw € ’R,

h—+o00

Ay (z)d g 3
= lim F,! (fo — () Z) (z)+ lim E/ cos (w +wx> dw
h—+o00 e~ % h—+oco T Jq 3

h w3 w . .3
= lim QL/ ez(wH_T) / e_z(kz+7) (zu (k) —iu' (k)) dz dw
—h 0

h—+oo 27
1 h i wx w? ¥ —i(—kz 22 .
— lim —/ i +3)/ e k+3)(zu(*k)*zu/(*k))d2dw
h—+o0 2 J_, 0
c [t w3
+ lim 7/ Cos (—i—wx) dw Vz e K. (9.18)

If we assume that u(£k) = 0, then we get the first Airy function u(z) = ¢- Ai(z) because
the absolute values of the other two integrals are bounded by |u'(£k)| ffh Jy dzdw =0.
For example, if (a,)nen is the sequence of negative zeros of Ai(x), then we can consider
any —k. := a,. < —pz! to get that k is a strong infinite number, and hence Ai(+k) =0
because 0 < Ai(k) < exp(—%k‘?’/z) = 0, see e.g. [I} [63]. Moreover, the classical theory
[1, 63] yields that u(z) = aAi(z) + bBi(z), where a, b € "R, and Bi(z) is the second Airy

function:
1 +o0 t3 t3
Bi(z) = ;/0 {exp (—3 + xt) + sin (3 + :ct) } dt.

Now, let (b,)nen be the sequence of negative zeros of Bi(z), and consider —k, := b,,_ >
—log p=t. We have that Bi(—k) = 0, but Ai(—k) is invertible because the two Airy
functions differ in phase by 7/2 as z — —oo. Therefore, the condition u(—k) = 0 implies
a = 0 and hence u(z) = bBi(z). Moreover, u(k) € 'R is a well-defined infinite number
because k < log dp. We explicitly note that Bi(z) is of exponential order as z — 400 and
hence it is not a tempered distribution, so that classically we cannot obtain this solution.

On the other hand, the solution presented here is only partially satisfactory because we
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were not able to extract the second Airy function from (9.18]), but we used the classical
theory to express u(x) as a linear combination of Ai(z) and Bi(z).

9.2. Applications of HFT to partial differential equations.

The wave equation. Let us consider the one dimensional (generalized) wave equation

0%u » 0%u ~ e ~
92 c FIok c€R, ue€’GC™([—k, k] x "R>0), (9.19)
where c is positive and invertible, and subject to the initial conditions at ¢t = 0
’U/(—, 0) = f7 atu(_a 0) =49, (920)

Where f, g € “GC*("R). As usual, we directly apply the HFT F; with respect to the
variable z to both sides and then apply the derivation formula of Thm. |6.1{viii)| to the

right hand side
0?u 9 0?u
7 (5) =7 ()
2
3‘27;;2(11) = WA F (u) + iwApu + Ay (Opu) .

Note that also the Ajg-terms refer to the variable x, but the result is a function of .
More precisely, set

Ay (w,1) = iwAig (u(—, 1)) W) + Ay, (Bpu(—, 1)) (). (9.21)

The function A, does not depend on the whole functions v and J,u but only on its
boundary values: u (+k, —) and d,u (+k, —), which are functions of ¢. Hence, we get

0% F) =~

87]1:2(@(% =)+ P Fi (u) (w, =) = Ay(w,—) VYw €’R. (9.22)
We obtain, for each fixed w, a constant (generalized) coefficient, non-homogeneous, second
order ODE in the unknown Fj, (u) (w, —). Clearly, (9.22) already highlights a difference
with the classical FT, where A, = 0. To solve equation (9.22)), we can use the standard

method of variation of parameters to get

Fi(u)(w, t) = da(w)tS(cwt) + di(w) cos(cwt)+

tS(cwt)/1 Ay (w, s) cos(cws) ds— (9.23)
cos(cout)/1 sAy(w, 5)S(cws) ds, (9.24)

S(z) := / cos(zs) ds. (9.25)

2/,

More precisely, in the previous step we applied the general theory of linear constant
generalized coefficient, non-homogeneous ODE developed in [45], which generalizes the
classical theory proving that the space of all the solutions is a 2-dimensional "ﬁ’—module,
generated in this case by tS5(cwt) and cos(cwt), and translated by a particular solution of
([9:22). Explicitly note that every function in is a smooth function or a GSF and
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that S(z) = % if z € R is invertible. We also note that (0.24) and (9.20) imply that
the functions dq, ds are given by

dy (@) = Fo(f)(w) — /O s (w, 8)S(cws) ds (9.26)

da(w) = Fi(g)(w) —1—/0 Ay (w, s) cos(cws) ds. (9.27)

They hence depend on the functions f, g of the initial conditions (9.20)), but also on the
unknown function u because of (9.21)). Finally, applying the inversion theorem (Thm. [7.4),
for all the interior points € K and all t € "R>¢, we get

h—+oco

u(z,t) = lim {]:hl (da(w)tS(cwt) + di1(w) cos(cwt)) (z, t)+
! (tS(cwt) /lt Ay (w, s) cos(cws) ds) (z,t)—
Fit (cos(cwt) /j sAy(w, 5)S(cws) ds> (m,t)}.

Following the usual calculations, the first summand yields the following generalizations
of the d’Alembert formula

x+ct
u(e,t) = 5=+ fr e+ o [ gl da's

2c —ct

Jim {2th (tS(cwt) /1 Ao, 5) cos(cws) ds) (2, )

h+o0
Fo (cos(cwt) /0 A (@, 5)S(cws) ds) (z, t)} (9.28)

for all the interior points z € Kandallt e ”§>0 such that = + ¢t € K (note that in
and (| we have the term Fj and k is fixed, so that the usual calculations can
be adapted 1f T j: cte K ). Note explicitly that - does not yield a uniqueness result
because A, depends on u (+k, —) and d,u (£k, —) (see (9.21))). This proves the following

THEOREM 9.4. Let f, g € ”QCOO([—k,k]) and assume that u € ”gcw([—k,k] X “Rsq)
is a solution of the wave equation subject to the initial conditions . Then
necessarily u(z,t) satisfies relation at all interior points x € K and all t e ”R>0
such that = + ct € K. In particular, zf we also assume that u (£k, —) = 0 = Oyu (£k, —),
we get the usual d’Alembert solution, and if in addition we take f =0, g =6, we get the
wave kernel u(z,t) = 5 [H(z + ct) — H(z — ct)].

Now, we want to see how to revert the previous steps to obtain a sufficient condition.
Given GSF F, F_, G4, G_ € "GC™("R>¢), set for all w € 'R and all ¢ € "R>

A (w,t) = iw (Fy(t)e” ™ — F_(£)e™*) + (Gi(t)e ™ — G_(t)e'* ) (9.29)
Let W (z,t) be the function defined by the right hand side of (9.28) with A% instead of
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Ay, ie. for all (z,t) € K x pﬁzo

W!E(:L‘,t) =

DN | =

x+ct
fla—ct)+ St +5 [ o)+

lim { 2F; ! (tS(cwt) /j Ak (w, s) cos(cws) ds> (z,t)—

h—+o00
2F; ! <cos(cwt) /1 t sAK (w, 8)S(cws) ds) (z,t)} (9.30)

(we are clearly implicitly assuming that such limit exists, which is, on the other hand a
necessary condition of the previous deduction). We assume the compatibility conditions

Fy(t) = Wh(k,t), F_(t) = WE(=k,t)
Gy(t) = 0. WE(k,t), G_(t) =0, WE(—Fk,1) (9.31)

(as usual, we will see that they are redundant because having a solution of the DE
imply further restrictions on these functions). Finally, set u(x,t) := W (z,t) € ’R for all

(x,t) € K x pﬁzo- Conditions (9.31)) and (9.29) imply
AR (W, 1) = iwAqg (u(—, 1) (W) + A, (pu(—, 1)) (W), (9.32)

which is an important equality to reverse all the previous steps. In fact, applying Fj to
both side of the equality u(z,t) = Wk (z,t) we get

T+ct
Fi (u) (w,t) = Fg (; [flz—ct)+ f(z+ct)] + i/ g(x')dx’) (w,t)+

2¢ Jo—ct
Fr (;LHTOO{ 2F; ! (tS(cwt) /1 t A (w, ) cos(cws) ds) —
25, ! <cos(cwt) /1 t sAX (w, 5)S (cws) ds) (;v,t)}) (w, t). (9.33)

The first summand can be written as

x+ct

Fi (; (2 —et) + fla +ct)] + %/ o(z) dx’) (w, 1) =

—ct

= F ( lim F;* (da(w)tS(cwt) + dy (w) cos(cwt))> (w, t).

h—+o00

As above, we can exchange Fj and limy_, o, because of Thm. Consequently, ap-
plying the Fourier inversion Thm. [7:4] we obtain

Fi(u)(w, t) = do(w)tS(cwt) + di (w) cos(cwt)+

tS(cwt)/l Ak (w, 5) cos(cws) ds— (9.34)
cos(cwt) /t sAk (w,8)S(cws) ds,

which holds for all interior point w € K and for all ¢t € pﬁzo- Reversing the previous
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calculations, we arrive at

82]:k (U)
ot2
Now, we can substitute (9.32)) and use the derivation formula of Thm. to get
0*u 5 0*u . S

We finally assume the extensibility property for the wave equation: If the HFT of the

wave equation holds on K x“R>g, then it also holds on R x “R>¢. This allows us to apply

Fr ! to both sides and use again the Fourier inversion theorem:

_ 0% _ 02y ~
it (7(w)) =eom (7 (5m))  mem

0%u 0%u
1 ﬁ_l A [ — 2 1 F_l F —_—
th}LlOO " ( * (atQ >)(x,t) ¢ hgr}rloo h ( i (8$2)> (®9)

0%u 0%u
g ) =¢ 5

forallz € K and all t € ﬁzo, and hence also for all x € K by continuity. It is important
to note that equation ((9.35) implies the usual compatibility conditions (see e.g. [36] for
similar calculations) for ¢t < 2k/c:

F(0) = f(k), FL(0)=g(k), F{(0)=c"f"(k)

F_(0) = f(=k), F.(0)=g(=k), F"(0)=cf"(~k)

g(k —ct) —cf'(k —ct) = Fi(t) — cG4(t)

g(—k+ct) +ef (=k+ct) = F(t) + G4 (1)
Therefore, conditions ([9.31)) over-determine the functions Fy and G+ which hence cannot
be freely chosen. In particular, if f, g € GD([—a,a]), and we take Fy = Gx = 0,

(w,t) + AW’ F, (u) (w, t) = Ai(w, t).

z,1) (9.35)

then Ak (w,t) = 0, the solution u(x,t) = W¥(z,t) consists only of the classical part of
d’Alembert formula, and hence u(+k,t) = 0 = dyu(£k,t) for some k € "R sufficiently
large and for all ¢ € [0, £=2].

This proves the following

THEOREM 9.5. Let f, g € "GC®(—k,k]), Fy, F_, G4, G_ € "GC®("Rx). Define Ak
as in (9:29), WE as in (9.30) (assuming that the corresponding limy,_, o exists) and
u(z,t) == Wk(x,t) for all (x,t) € K x "Rsq. Assume the compatibility conditions (9.31]),
and the extensibility property: If Fy, (%) =c2F (%) holds in K x pﬁzo, then it also
holds on "R x ”ﬁzo. Then u satisfies the wave equation on K X ”ﬁzo. In particular, if
Fy =Gy =0, then u also satisfies the initial conditions (9.20)). Finally, if Fx = G1 =0
and f, g € "GD([—a,al), then the conditions u(£k,t) = 0 = Oyu(+k,t) hold for some
k € 'R sufficiently large and for all t € [0, k:a], and u is given by the usual d’Alembert
formula.

Explicitly note that even the last case, F. = G+ =0 and f, g € “GD([—a, al]), includes

for f and g a large class of GSF, e.g. non-linear operations F((6%))%)g<,< of Dirac delta
0<p<P
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and its derivatives, such that F (0) = 0.

The Heat equation. Let us consider the one dimensional (generalized) heat equation
ou o2 0%u
8t 2

(where a € ”§>(), t< — 2k2 log (dp), N € Nsg) and subject to the initial conditions at
t=0

u € "GC([—k, k] X "R>0), (9.36)

u(—,0) = f, (9.37)
where f € "GC™([—k, k]). Applying, as usual, the HFT with respect to the variable x to
both sides of (9.36) and Thm. [6.1kviii)| we get

OF (u) _

9 —a?W? F (u) + iwAjpu + Ay, (Ogu) .

For all w € ”ﬁ, set
Ay (w,t) = iwAqg (u(—, 1) + Arg (Opu(—,1)).
Therefore, we get
ot
Solving (9.38)) with the integrating factor p (t) :: e@W? Jodt = ga’w’t (which is well-
defined if w € K because we assumed that ¢ < — -7 log (dp)), we have
fot e tA (w, 1) dt + c(w)
ea?w?t
where ¢(w) := Fi, (u) (w,0) = Fr(f)(w) € R, so that
t
Fi (u) (w,t) = e~ / eI (w,t) dE+ Fy(f)(w)e 0w

(w, =) + a®wFp (u) (w, =) = Ay (w,—)  Vw € "R (9.38)

T (u) (w,1) =

)

0
:e—azwzt/teazwzm (w, t) dt + Fi(f)(w)F (26“/»6 4a§t>(w,t)

et [, (w0 dt+ FL(D@F (HE @) (02)

0

t
—Wf/ewm (w,8)dt + Fi (f + H) (w0, 1),

0

where H(z) := 2@3/%6_& is the heat kernel (which, in our setting, is a compactly
supported GSF). Finally, applying the inversion theorem (Thm/7.4]) and the convolution

formula Thm. we get

t
w(at) = (f » HO)(8) + Ft [ oot / PN () dt | (2 8). (9.39)
0
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Asusual, if A, (w, t) equals zero, we obtain the classical solution. This proves the following

THEOREM 9.6. Let f € *GC™®([—k, k]), and assume that u € "GC>([—k, k] X "Rxq) is a
solution of the heat equation , where a € ‘R, t < —ﬁ log (dp), N € N<q, subject
to inétial conditionN. Then necessarily u(x,t) satisfies at all interior points
z € K and allt € "R>q. In particular, if we also assume that u(xk, —) = 0 = Oyu(xk, —),
we get the usual solution, and if in addition we take f = 0§, then we get the heat kernel

z2
u(x,t) = H(x) = 2a\1/7ﬁe_m'

It is now clear how one can proceed to obtain a sufficient condition for the heat
equation similar to Thm. [9.5] and for this reason, we omit it here.

Laplace’s equation. Actually, we show this example only for the sake of completeness,
but we present here only a preliminary study. Let us consider the one dimensional Laplace

equation
0?u  J*u ~ N
where N € N+, and subject to the boundary conditions at y = 0
u(—,0)=f, 0Oyu(—,0)=0, (9.41)
u(£k,—) =0, Oyu(xk,—) =0, (9.42)

where f € "GC™([—k, k]). Set Y := [0,— X logdp] C ’R. By applying the HFT with
respect to  and Thm. [6.1viii)| the problem is converted into

P Fi (u) 2
because of (9.42). The general solution of (9.43) is
Fre(u)(w,y) = di(w)e? + da(w)e™™,

where the functions dy, do satisfy Fi(f)(w) = di(w) + dao(w) and 9yFy(u)(w,0) =
Fi (Oyu(—,0)) (w) = 0 = wdi (w) — wdz(w) because dyu(—,0) = 0. Since the set of invert-

ible numbers in ’R is dense in the sharp topology, we hence have
1
di(w) = da(w) = §~7:k(f)(w)-

Note that e**¥ is well defined for all w € K and all y € Y = [0, —% log dp]. Finally,
applying the inversion theorem (Thm. , we get

u(z,y) = Fi (Fr(f) - cosh(wy)) (,y) (9.44)

lim
h—+o00
for all (z,y) € K x Y. Note that a term of the type F; ! (cosh(wy)) cannot be considered
if h € ’R is sufficiently large and y is invertible because cosh(+hy) would yield a non

p-moderate number. Consequently, we cannot transform the product in (9.44]) into a
convolution.

THEOREM 9.7. Let f € "GC™(K), N € Nso, and set Y := [O,—%logdp]. Assume
that u € *GC°(K x Y) is a solution of the Laplace equation subject to the boundary
conditions (9.41)). Then necessarily u(x,y) satisfies relation (9.44) for all (x,y) € K xY.
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In particular, if f = & then instead of F, * (Fi(f) - cosh(wy)) in (9.44) we can take
Fi ' (1 cosh(wy)).

It is well-known that if f € C* is a classical smooth function, and , has
a classical solution, then f is necessarily an analytic function (see [33] and e.g. [34]).
Assuming that the classical Hadamard result [33] can be extended to GSF, this would
not exclude the case f = ¢, which can be proved to be an analytic GSF.

To reverse the previous steps, assume that

fe€’GD(H), H & 'R
3C,B € "RV¥z € HYj €N ; ‘f(j)(m)‘gC-Bj. (9.45)

Note that if f € C* is an ordinary smooth function and C, B € R, assumption
implies f € C¥(H NR), i.e. f is real analytic. Moreover, for the sake of clarity, finally
note that f € CY(H NR) N’GD(H) implies only f(z.) ~, 0 for all [x.] ¢ H, but it does
not imply f = 0.

The previous assumptions and the Riemann-Lebesgue Lem. [5.]1] - yield that also F(f) is
compactly supported in ” R. Define

u(z,y) = hEI—&I-loo F L (F(f) - cosh(wy)) (z,y) Vre KVyeY. (9.46)

Since F(f) - cosh(wy) is compactly supported in ’R and satisfies the assumptions of
Riemann-Lebesgue Lem. we have that also u(—,y) is compactly supported in ’R. We
hence assume to have considered k sufficiently large so that

u(xk,—) = 0= O,u(xk, —). (9.47)

We now proceed in the usual way:

Fi (u) (w) = Fi < lim .7-' (F(f) 'cosh(wy))) (w)

h—4o0
= T Fi (7 (FU) - coshlen) (&)
= T B (B (F() - cosh(n) ()
= F(f)(w) - cosh(wy) (9.48)
for all w € K and all y € Y. Since iwAy, (u(—,y)) + Ayy, (Oxu(—,y)) = 0, from we

can revert the previous calculations to obtain

0u 0%u .
Fi(G) e+ 7 (55 @ =0 MwpeRxy.  ©.49)

Once again, we assume that our solution u satisfies the extensibility property, i.e. that
implies that the same equation holds on ‘R x Y. A final application of the Fourier
inversion Thm. yields that u satisfies (9.40)). Setting y = 0 in we obtain the
first boundary condition in (9.41)). Finally,

Oy (Fi7H (F(f) - cosh(wy))) = F; " (F(f) - wsinh(wy))
converges for h — +oo for all fixed y € Y because F(f) - wsinh(wy) is compactly sup-
ported (see (3.3)). Since Y is functionally compact, Thm. implies that the conver-
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gence of these partial derivatives is actually uniform on Y. Consequently dyu(z,0) =
limps 400 Oy (]-'h_l (F(f) - cosh(wy))) ‘y:O =0.
THEOREM 9.8. Assume that f satisfies and that for all x € K, y € Y :=
[0, — % log dp]

3 lim .7-'}?1 (F(f) - cosh(wy)) (z,y) =: u(z,y).

h—+oco
Finally, assume that u satisfies the extensibility property on KXY for the Laplace equation
and k is sufficiently large so that (9.47)) holds. Then u satisfies the Laplace equation (9.40))
and the boundary conditions (9.41) and (9.42]).

9.3. Applications to convolution equations. Consider the following convolution
equation in y
g=1[*y, (9.50)

where we assume that y, g € "GC™(K) and f € "GD(’R). As in the classical theory, we
apply the convolution Thm. [6.1[x)| to get

Fi(9) = F (f) Fr (y) -

Assuming that F (f) (w) is invertible for all w € K, the inversion thereom (Thm. [7.4)
yields

Fi(9)
F(f)
For example, to highlight the differences with the classical theory, let us consider the
convolution equation (6’ + d) * y = ¢ with y(—1) = 0. We have g = §, and f = & + 0
so that F(f) = iwl + 1, where as usual 1 = F3 (8). Since 1(w) € ‘R, the quantity
iwl(w) + 1(w) is always invertible, and hence we obtain

R s

iwl+1
It is easy to prove that y(t) +y'(t) = F ' (1|x) (t) = 5= ffk et dt = ES(kt) (see (9.25))
and hence y(t) = e"t% fil S(kx)e® dx e.g. for all log(dp) <t < —log(dp). Therefore

y(t):hgrfoof;l( >(t), vt € K.

) (t), VteK.

y(®) ze_t/_l}'_l (1]x) (s)e® ds%e_t/_lé(s)es ds = e~ H(b),

for all t € K which are far from the origin, i.e. such that [¢| > r € Ry for some .

10. Conclusions

In the introduction of this article, we motivated the natural attempts of several authors
to extend the domain of some kind of Fourier transform. The HF T presented in this paper
can be applied to the entire space of all the GSF defined in the infinite interval [—k, k]™.
These clearly include all tempered Schwartz distributions, all tempered Colombeau GF,
but also a large class of non-tempered GF, such as the exponential functions, or non-linear
examples like 6% 0 6%, 6% 0 H®, a, b € N, etc.
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We want to close by listing some features of the theory that allow some of the main

results we saw:

(i)

(i)

(iii)

The power of a non-Archimedean language permeates the whole theory since the
beginning (e.g. by defining GF as set-theoretical maps with derivatives that can
possibly take infinite values or in the use of sharp continuity). This power turned
out to be important also for the HFT: see the heuristic motivation of the FT in
Sec. Example [7.13] about application of the uncertainty principle to a delta
distribution, or the HFT of exponential functions in Example [5.4] and in Sec. [0}
The results presented here are deeply founded on a strong and flexible theory of
multidimensional integration of GSF on functionally compact sets: the possibility
to exchange hyperlimits and integration has been used several times in the present
work; the possibility to compute e-wise integrals on intervals is another feature used
in several theorems and a key step in defining integration of compactly supported
GSF.

It can also be worth explicitly mentioning that the definition of HFT is based on
the classical formulas used only for rapidly decreasing smooth functions and not on
duality pairing. In our opinion, this is a strong simplification that even underscores
more the strict analogies between ordinary smooth functions and GSF. All this in
spite of the fact that the ring of scalars ” R is not a field and is not totally ordered.
Important differences with respect to the classical theory result from the Riemann-
Lebesgue Lem. and the differentiation formula (6.1)). In the former case, we
explained these differences as a general consequence of integration by part formula,
i.e. of the non-linear framework we are working in, see Thm. [5.3] The compact
support of the HFT 1 of Dirac’s delta reveals to be very important in stating and
proving the preservation properties of HFT, see Sec. |8 Surprisingly (the classical
formula dates back at least to 1822), in Sec. |§|we showed that the new differentiation
formula is very important to get out of the constrained world of tempered solutions.
Finally, Example of application of the uncertainty principle, further suggests
that the space “GC*(K) may be a useful framework for quantum mechanics, so as
to have both GF and smooth functions in a space sharing several properties with
the classical L?(R™).
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