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Abstract. We present the �rst steps of interaction spaces theory, a univer-
sal mathematical theory of complex systems which is able to embed cellular
automata, agent based models, master equation based models, stochastic or
deterministic, continuous or discrete dynamical systems, networked dynamical
models, arti�cial neural networks and genetic algorithms in a single notion. In
other words, each one of these models de�nes an interaction space, and dif-
ferent models yield di�erent interaction spaces. Therefore, interaction spaces
theory represent a common mathematical language that can be used to de-
scribe several complex systems modeling frameworks. This is the �rst step to
start a mathematical theory of complex systems. Every notion is introduced
both using an intuitive description by listing lots of examples, ranging from
urban growth to text mining, programming languages, biology and microeco-
nomics, and using a modern mathematical language.
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1. Introduction: why do we need a mathematical theory of complex

systems?

Throughout the history of science, several disciplines have considerably gained
from a sound mathematical foundation: quantum mechanics, continuum mechanics,
thermodynamics, medicine, biology, information science, economics, social sciences,
and urban studies, to name but a few. Indeed, the contribution of mathematics
to many disciplines can be considered a general process that occurs when the solu-
tion of problems requires the strongest notion of rational truth corroborated by a
meaningful validation.

At present, di�erent modeling methods are adopted to study complex systems
(CS): among the most used, we can cite, e.g., cellular automata (CA), see e.g. [42],
agent based models (ABM), e.g. [59], master equation based models, [50, 27], net-
worked dynamical systems, [46], arti�cial neural networks, [29, 41, 43], and ge-
netic algorithms, [6, 44]. However, there is no universal mathematical theory
of CS, i.e. a theory su�ciently powerful to range over all these systems, from
ABM to systems described by some type of di�erential equations, and, at the
same time, to produce meaningful general mathematical results applicable to large
classes of systems. The problem is well-known and discussed in literature: see
e.g. [30, 47, 10, 12, 13, 7, 20, 9, 51, 31, 18], where you can �nd both opinions in
favour or against the possibility of such a theory.

In this article, we introduce a new mathematical structure, called interaction
space (IS), having the property to include (i.e. to faithfully embed preserving their
original mathematical structure) in a single notion all the previously listed modeling
frameworks. In our opinion, such a founding mathematical theory could provide
great impact from the perspectives of a common language, precise de�nitions and
general results which would hence be applicable to all these settings (see [26, 18, 35]
for very similar viewpoints).

Other aims we have in mind are the following:

• A common mathematical language can be useful to precisely formulate problems
like bifurcations, phase transitions and critical phenomena, pattern formation
theory, ergodic theory, study of ABM as dynamical systems, etc. (see e.g. [13,
53, 21, 47] for similar problems).

• With our results on Markovian IS and power law for complex adaptive IS, we
show the possibility to prove general results applicable to large classes of CS, see
[22, 23].
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• The description of the dynamics of non-Markovian IS with a system of mean de-
rivative equations, represents a new important general mathematical result. This
demonstrates that using a modern mathematical setting, powerful mathematical
tools can be used to solve open problems, see [23].

• IS theory represents a proposal for a sound mathematical de�nition of ABM.
This de�nition would open the possibility to start a mathematical study of a
large family of these models (see e.g. [35] for a mathematical approach to the
dynamics of some types of ABM).

• In an IS we also have a language of cause-e�ect relations, where elementary
modeling-dependent cause-e�ect relations between interacting entities can be
composed into more complex cause-e�ect graphs. Using a suitable language of
multicategory theory, these cause-e�ect relations can be used both to model hi-
erarchies of complex systems and new general methods of arti�cial intelligence,
see e.g. [48, 24]. See also [3, 19, 8] for a similar point of view.

In other words, a mathematical theory of CS aims to link phenomenological studies
(e.g. estimates of power laws) to a modern mathematical theory, so that to make a
step further obtaining more general, clear and widely applicable results.

1.1. Other mathematical theories of complex systems. As far as we know,
only the following approaches claim to be mathematical theories of at least suitable
classes of complex systems:

(i) Kinetic theory for active particles, see [34, 2, 11, 5, 4] and references therein.
This approach is used to describe the dynamics of a large number of interact-
ing entities in living systems which are distributed over a network. Usually,
entities are homogeneously distributed within each node and the model pro-
vides a mesoscopic description, i.e. through the probability distribution over
the microscopic states. The mathematical methods are near to those of sta-
tistical mechanics and game theory.

(ii) Memory evolutive systems, see e.g. [14, 15, 33] and references therein. This
theory is mainly proposed as a possible foundation of biology. Deeply based
on category theory, it makes extensive use of limits and colimits of diagrams
to model evolving hierarchical category of living systems. Because of its
abstract approach, the scope of memory evolutive systems is probably very
general. In spite of this abstractness, it captures essential aspects of biological
organization and hence it could lead to concrete hypotheses which are capable
of being tested.

(iii) Universal dynamics, see [40, 36, 37, 38, 39, 54]. This approach is also based
on category theory, and claims to be a universal theory for every complex
system. The basic structure is elementary and given by a category with a
selected family of arrows, called fundamental. On the other hand, only lo-
cal Markovian dynamics in discrete time is considered because the dynamics
depends only on a �nite number of past times. A notion of locality and of
neighborhood is de�ned using composition of fundamental arrows. In partic-
ular, we underscore its applications in information science in [54, 38].

(iv) Networks and networked dynamical systems, see e.g. [46, 45]. Even if this
theory does not usually claim to be a universal mathematical theory of CS,
frequently it is one of the most e�ectively used point of view on CS. For
example, there is no general de�nition of CS nor of complex adaptive system
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within this theory, see e.g. [32, 17] for arguments supporting the idea that
network theory is insu�cient to model several interesting CS. Moreover, the
only network structure of a given model of a CS does not uniquely determine
this model, i.e. classical models of CS cannot be identi�ed with their network.
As we will see in Sec. 4.6, we could say that IS theory can be considered
as a more general and abstract version of this theory, even if it is actually
more near to hypergraphs or multicategories/operads, see e.g. [17, 32, 3, 19].
Indeed, in Sec. 4.6 we also prove that every networked dynamical system can
be faithfully embedded as IS.

All these theories, even when they claim to be universal, do not show clear relations
with the most used modeling approaches for CS. For this reason, one cannot state
that their theorems can be applied to a large family of these models. On the con-
trary, they present some limitations, like the mesoscopic, or discrete or Markovian
dynamics. Finally, in our opinion, the abstract approach used both in (ii) and (iii)
sometimes represents an impediment in their spreading in the scienti�c community
of CS modeling and in their practical implementation as a computational tool.

In the present work, we see that IS theory includes all classical models of CS and
have a clear cause-e�ect structure. This allows us in [22] to introduce a meaning-
ful mathematical notion of complex adaptive system by formalizing informal ideas
frequently used in modeling of CS.

It is important to note that the universality of IS theory allows one to be sure
that su�ciently general mathematical results have a satisfactorily range of appli-
cations for a diverse range of di�erent modeling frameworks of CS. For theorems
already going in this direction, see [23, 22]. Note that this does not force anyone to
switch to IS from his favorite CS setting, but it only establishes a general common
mathematical language for CS.

2. Intuitive description of interaction spaces and their dynamics

We �rst describe a generic IS by using only an intuitive approach and giving
several examples, exactly like agent based models (ABM) are frequently presented.
Secondly, we present a mathematical approach, clearly explaining why this mathe-
matics corresponds to the related intuitive description.

IS theory aims at modeling complex systems enclosed in the following general
frame:

2.1. Interacting entities and their state. The system is made by interacting
entities e ∈ E described by dynamical state variables xe(t) for tst ≤ t ≤ tend ≤ +∞.
Intuitively, an interacting entity is everything able to send or receive propagator
signals (of any type) to interact with other interacting entities. In general, we
think state variables as vectors made of several components. In case of stochastic
dynamics, we can think at the function of time xe(−) as a sample path followed by
the state of the entity e for some random elementary event ω, which encloses all
the stochastic events from which this dynamics depends on.

Examples of interacting entities are: agents of an ABM, a vehicle, a tra�c light
or the stretch of road between two following cars, advertisements in a street, goods
exchanged in a market, a whole population of individuals sharing common features
and interacting with other entities, words in a text, cells of a CA (even if in this
case the propagator signals are not considered in the CA model), etc.
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2.2. Interactions. These interacting entities are involved in interactions i ∈ I,
each one of a given type α, that can be described as a causally directed elementary
process in which a set of agent entities a1, . . . , an modify the state of a patient
entity p through a propagator entity r. We distinguish between the type α of the
interaction, which is usually a label useful to classify di�erent interactions, and
the interaction i = (a1, . . . , an, r, α, p) that includes all these information. The
propagator r can be thought of as a signal-entity activated by agents, and carrying
the cause-e�ect relation sent by agents a1, . . . , an to the patient p. We also think
that a subspace of the state space of the propagator r works as a resource space Ri

for the changing of the state of the patient p; we will see later why this is important
to de�ne CAS.
The general form of an interaction i is hence:

i : a1, . . . , an have an interaction α with p through r (2.1)

which will be also indicated with the notation

i : a1, . . . , an
r,α−−−−→ p (2.2)

or with a diagram as in Fig. 2.1. This is a sort of primitive cause-e�ect relation
(i.e. it depends on the constructed model of the considered CS), and our interest
lies more on the possible cause-e�ect graphs that can be built up by concatenating
these elementary relations. In other words, agents a1, . . . , an represent the sites of
information storage, and the communication topology of information �ows within a
system is explicitly given by propagators in cause-e�ect interactions such as (2.2).
See also Sec. 3.4.1 for polyadic interactions, as well as [17, 32, 3, 19] and references
therein for similar viewpoints.

Examples: a physical interaction between one particle p1 sending a signal s to
another particle p2, i = (p1, s, sendSignal, p2); or a �rm (agent) sending an ad-
vertisement (propagator) and hence changing the state of several people (patients);
a suitable set of goods in a market (agents) sending a signal (propagator) that
carries information useful for buyers (patients); a biological entity (agents) send-
ing a chemical signal (propagator) to another entity (patients) having receptors
able to recognize that signal; in a given text, an adjective a1 speci�es a name a2
hence changing its state as a patient p = a2, and the propagator r can measure
the amount of information speci�ed by the adjective a1; an object in an object ori-
ented program sending a message to another object; a single neuron has multiple
dendrites a1, . . . , an (inputs from other neurons), and sends electrical and chemical
signals r of type α to its unique axon p. In urban models, agents can be individuals
acting in the urban space (e.g. as builders or residents), patients can be lots of
terrain, propagator signals can be volumes and surfaces produced for di�erent uses
so that the state space of propagators is linked to the available surface and volume
at disposal, depending on the master plan (which represents the space of resources;
see [56, 57, 1]). Note that we can have more interactions acting on the same pa-
tient, such as in the case of a car and a pedestrian simultaneously approaching
another pedestrian. We also want to have a su�cient freedom in setting an IS as a
model of a complex system, so that, if needed, we can consider interacting entities
as mathematical idealized entities: for example, think at a collision between two
balls of steel b1 and b2, and the possibility to set as propagator the subbody of
the Cartesian product b1 × b2 actually involved in the collision. We can also be
interested in considering as ideally in�nite the speed of this propagator in case of
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elastic collision, so that the aforementioned subbody is ideally given by the single
point of contact.

2.3. Activation. An interaction i : a1, . . . , an
r,α−−−−→ p is occurring only if at

least one of the agents a1, . . . , an and its propagator r is active for that interac-
tion. Inded, in the state xe(t) of each interacting entity e there is always a time
dependent state variable xe(t)1,i =: acei (t) ∈ [0, 1] (for simplicity, think at the very
common case where acei (t) ∈ {0, 1} is a Boolean variable) indicating if, with respect
to the given interaction i, the entity e is active or not. Intuitively, if the interaction
i starts at time tsi , then at least one agent aj must be active with respect to i, i.e. it
can be involved in the interaction i, and we have ac

aj

i (tsi) ̸= 0. At the same starting
time tsi , agents activate the propagator r: acri (t

s
i) ̸= 0. The propagator r will take

a certain time tai − tsi to arrive at the patient p. If no other entity and interaction
stops r (in that case tai = +∞), r is still active at the arrival time, acri (t

a
i ) ̸= 0,

and activates the patient: acpi (t
a
i ) ̸= 0. See also Sec. 3.3 and Sec. 3.4 for a more

accurate formulation of these conditions.
Active agents can also be interpreted in biological terms as entities sending some
kind of chemical signal to patients entities having suitable receptors to recognize it;
in this description, propagators are entities carrying the signal. Therefore, agents
which are not already active in the initial condition of the system, can pass to an
active state as a consequence of an interaction (endogenous or exogenous). There-
fore, both from an intuitive and modelling point of view, the syntactic structure

i : a1, . . . , an
r,α−−−−→ p of an interaction and these activations state variables rep-

resent the elementary dynamics of the cause-e�ect signals that propagate in the
system. These signals compose themselves into complex cause-e�ect graphs, whose
study is one of the main interests in modeling CS.

Note that this dynamics of occurrence times and activation functions represents
a stronger formalism with respect to the usual cause-e�ect mathematical formaliza-
tion, as used e.g. for time series. Indeed, it is well-known that a simple conditioning
can fail to localize information, so that Shannon entropy and similar measures are
not able to measure information �ow, see e.g. [32] and reference therein.

Examples: in the above mentioned example about �rm's advertisement, only
buyers activated, in some way, for the advertised products will have a state modi�-
cation; it can also happen that an interaction of higher priority deactivate a buyer
with respect to the advertised product; only the biological entities having suitable
receptors are active for the corresponding interactions; a computer client is waiting
for a signal from a server before restarting a download, so that it can be activated
at a stochastic future time or deactivated by another program; a date in a text
can activate another speci�c word, such as one describing a illness; only software
objects with a suitable public state variable can receive a message to change that
variable; only hungry predators are active for hunting preys, and we can measure
in a fuzzy way 0 ≤ acei (t) ≤ 1 their degree of hungriness; a similar fuzzy activation
can also be useful in suitable models of Alzheimer disease.

Note that the property of the cause-e�ect relation (2.2) of being primitive can
also be understood in another way: even if agents a1, . . . , an are also intuitively
interacting to produce and activate the propagator r, in general we are not in-
terested to model this kind of more elementary interactions between agents (think
e.g. at the scattering of two particles or the elastic collision between two balls where
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we do not model the dynamics during the collision); in this case, this means that

in our model there are no interactions of the type j : ak1
, . . . , akm

s,β−−−−→ ah or

l : ah1 , . . . , ahl

u,γ−−−−→ r prior to i. This justi�es why i starts at time tsi and, at the
same time, the propagator is activated: acri (t

s
i) ̸= 0. In other words, interaction

between agents a1, . . . , an happens in a negligible time span with respect to all the
other timings happening in the system. On the contrary, if we are interested to
model the time used to activate r, we have to also consider interactions of the type

l : ah1
, . . . , ahl

u,γ−−−−→ r aiming at activating r.

2.4. Occurrence times. Once the propagator r arrives at a time tai , we say that
the interaction i is ongoing, in the sense that the state of the patient p can start
to change. If the interaction i is ongoing at the time toi , this can be instanta-
neous, i.e. a single time instant toi = tai , or continuous, i.e. belonging to an interval
toi ∈ [tai , t

a
i + δi]. Therefore, whereas the arrival times tai of an interaction i are

always single time instants, both the ongoing times toi and the starting times tsi
can be discrete (e.g. a discrete dynamical system, such as a CA) or continuous
(e.g. when agents continuously send the propagator r to the patient p or its state
xp(t) continuously changes in the interval [tai , t

a
i +δi], e.g. in a continuous dynamical

system). Depending on the considered system and on its model, all these times tsi ,
tai and toi can be deterministic or stochastic.

More precisely, we can hence think at them as sample paths tsi = tsi(t), t
a
i = tai (t)

and toi = toi (t) for tst ≤ t ≤ tend, with a suitable model-depending distribution.
We always have tsi(t) ≥ t (see Sec. 3.3), and tsi(t) can be thought of as the �rst
starting time of i after or at the present time t. Of course the interaction i can
occur multiple times in [tst, tend], and if tsi(t) = t we have that i is starting exactly
at t, otherwise that it will start at the time instant tsi(t) > t. See the precise Def. 6
and Def. 9. Similarly, toi (t) ≥ t can be thought of as the �rst ongoing instant of
time of i after or at t. The arrival time tai (t) can actually be de�ned as the �rst of
the ongoing times toi (t) (see Sec. 3.4). An inequality of the type tai (t) > t means
that the propagator r will arrive at a future time tai (t); we interpret t

a
i (t) = t as the

arriving at the present time t, and tai (t) < t as the statement that the propagator
arrived in the past at tai (t).

Therefore, if tsi(t) = t, then tsi(t) ≤ tai (t), i.e. if the interaction i starts at the
present time t, then it will arrive in a future time instant tai (t) ≥ tsi(t) = t (the
propagator cannot arrive in a past time instant tai (t) < tsi(t)).

The distributions of these times tsi , t
a
i , t

o
i model the timing of the system, and we

can always include the deterministic cases using suitable Dirac delta distributions,
i.e. using a trivial probability space.

Clearly, it is because of the universality properties of IS theory that we aim at
this generality.

Examples: an interaction where an agent chooses a shop on the basis of its infor-
mation about quality, prices, and goods availability, occurs at random times with a
suitable distribution (e.g. an exponential distribution whose rate re�ects the char-
acteristics of the shop) depending both on objective and subjective characteristics;
an interaction describing a house leasing occurs at random times depending on sev-
eral factors, e.g. the rate of birth, of marriage, of immigration, etc; the infection of
an organism by a virus depends randomly on the hosts encountered; if this virus
is considered as the propagator of the infection interaction, then it will arrive to
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the possible next organism after a random time depending on its aging; an excited
electron (agent) produces a photon (propagator) that, in a time depending on the
media, changes the state of another electron (patient) in a scattering interaction;
a word in a text can activate a corresponding mental notion in the reader; the
starting of a program randomly depends on the interaction of the user with the
program's interface.

2.5. Neighborhood of an interaction. The occurrence of an interaction i and
its e�ects depend on the history of the state of a set of entities Ni(t) called the
neighborhood of the interaction. The neighborhood of the interaction i is intuitively
de�ned by all the active entities from which i takes the information it needs to
operate, and it can depend on time. The neighborhood of an interaction always
includes agent, patient and propagator entities whenever they are active for that
interaction.

Examples: if an agent is searching for a new house, only the information collected
in some order in its memory will a�ect its future decisions; only the state of the
cells belonging to the neighborhood can in�uence the future state of a given cell in a
CA; a given negation or an adjective in a text can in�uence only a few near verbs or
names; only the (random) objects in the visual �eld of a pedestrian may in�uence
its goal-oriented path; the information collected in a graphical user interface may
in�uence the possible starting of a given computer program.

2.6. Goods and resources. When an interaction i starts at tsi(t), a quantity
γi(t) := xr(t)2,i (called good) is (probabilistically) extracted from the resource
subspace Ri of the propagator r. In general, the evolution of the state variables
of the patient p depends on the extracted goods γi(t). In the space Ri we can
have a notion of zero resources Zi ⊆ Ri, so that if γi(t) ∈ Zi, then acpi (t) = 0,
i.e. the patient p is not active for i. This implies that the propagator does not
arrive at t, i.e. tai ̸= t because above we stated that acpi (t

a
i ) ̸= 0. If, for a given

set of interacting entities (a population) these resources cannot be zero, then other
entities in the population will try to manage this lacking of resources. This is a
�rst very rough explanation why the notions of goods and resources will be used to
de�ne CAS, see [22].

Examples: an excited electron (agent) produces a photon (propagator) that
changes the state of another electron (patient) in a scattering interaction, and goods
are related to the frequency of the photon. A speci�c adjective in a text sends more
goods to a given name than a less speci�c one. The input currents (propagator) of a
neuron are the signals (goods) that will be integrated to produce a suitable changing
of the output synapses. A developer decides to build a new house and produces as
signal the house's project, hold in the state of a suitable abstract propagator entity.
Starting from this project, the state of the building's plot will change in a suitable
amount of time, unless the municipal administration blocks the project (resources
are emptied). In general, a situation where the resources are exhausted before
the �nishing of the interaction, is an example where the propagator is deactivated
before the ending of the interaction, and hence also the patient will be deactivated.

2.7. Evolution equations. Every model of a CS has corresponding evolution
equations satis�ed by the state variables xp(t). These equations can be given by
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di�erential equations, possibly stochastic, or discrete ones; they can take into ac-
count memory e�ects (i.e. they are of non-Markov type) or not, and we need a
common language for all of them.
Let us consider a patient entity p ∈ E: every model of a CS considers a transi-
tion function fp responsible for the dynamics of the state xp(t). At the generic
present time instant t ∈ [tst, tend], we consider the �rst arrival time among all the
interactions in our system that started at t (i.e. such that tsi(t) = t):

t1(t) := t1 := inf {tai (t) | i ∈ I, tsi(t) = t}

(we read it as �t �rst�). Note that, intuitively, no event occurs in the interval (t, t1).
If t1 = +∞ this means that no more interactions occur after t, so we can assume
t1 < +∞.

Since more than one interaction can simultaneously act on the patient p dur-
ing the time interval [t1, t1 + ∆], we consider all of those interactions, i.e. all the
interactions whose propagator arrives in this interval

Ip(t) := {i ∈ I | t1(t) ≤ tai (t) ≤ t1(t) + ∆, pa(i) = p}.

Here ∆ ∈ R≥0 ∪ {+∞} is a model-depending interval of time representing when
the evolution equation de�ned by fp is solely responsible for the time change of the
state xp(t) (see also Rem. 1 below for examples and other intuitive interpretations
of ∆).

Note that we have to consider the evolution equation only if Ip(t) is not empty
because otherwise this would mean that among all the interactions acting on the
patient p, no one arrives in the interval [t1, t1 +∆].

Now, we can take into account all the non-Markovian dependencies by consider-
ing the state of the neighbourhood of p:

If ∃t′ ≤ t∃i ∈ I : pa(i) = p, t′ = tai (t
′), ε ∈ Ni(t

′), τ ∈ [t′, t] (2.3)

then np x(τ, ε) := xε(τ).

Explanation: If in a possible past time t′ ≤ t the propagator of an interaction
i ∈ I arrived at its patient p (i.e. t′ = tai (t

′)), we consider the state xε(τ) of every
interacting entity ε in the neighborhood Ni(t

′) for all the following times τ ∈ [t′, t]
(see also Rem. 1 below for examples and other intuitive interpretations of this
(possibly) non-Markovian behavior).

The general evolution equation for the patient p can now be stated as follows:
There exists an elementary event ω ∈ Ωp (in a suitable probability space modeling
the possible stochastic evolution of p governed by the evolution equation) such
that if t ∈ [tst, tend], t

1(t) < +∞ and Ip(t) is not empty, then for all s such that
t1 ≤ s ≤ t1 +∆ ≤ tend, we have

xp(s) = fp (ω, s, np xs) , (2.4)

where np xs denotes the neighborhood function considered only in the interval [t
1, s],

i.e.

np xs : τ ∈ [t1(t), s] 7→ np x(τ,−).

Remark 1.
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(a) In several cases (e.g. a discrete dynamical system like a CA, where ∆ = 1),
this ∆ can be thought of as a small interval of time with respect to the speed
at which the changing of the state xp(t) spread out in the system, and no other
interactions occur in (t1, t1 +∆).

(b) If, in an idealized system, the change of the state xp(t) spread instantaneously
in the whole system, then we have to set ∆ = 0 and all the interactions occur
instantaneously at t1.

(c) We will see below that in every continuous dynamical system where xp(t) is
described by a di�erential equation, we can set ∆ = tend − tst, because the
di�erential equation governs the evolution of p in the entire interval [tst, tend].
Therefore, in this case, ∆ is not small. However, in Sec. 4, we will see that
for this IS we have only one interacting entity p and only one interaction i
corresponding to the di�erential equation describing the system.

(d) Of course, the dependence on past states expressed by (2.3) is a very strong
one; however, think for example at the case where ε represents a malignant
tumor diagnosis for the patient p at the time t′ = tai (t

′), and all the subsequent
(τ ∈ [t′, t]) medical and psychological consequences on p of the state xε(τ) of
the neoplasm ε.

(e) Since the state xp(s) includes both the activation acpj (s) = xp(s)1,j (see Sec. 2.3)

and the goods γj(s) = xp(s)2,j (see Sec. 2.6), the evolution equations (2.4) have
to also include their dynamics:

acpj (s) = fp (ω, s, np xs)1,j ∀j ∈ I,

γj(s) = fp (ω, s, np xs)2,j ∀j ∈ I : p = pr(j).

Therefore, these equations also control the cause-e�ect dynamics represented
by activation states, and the dynamics of goods; the latter are important for
CAS (see [22]).

(f) We will see more precisely later how both continuous and discrete dynamical
systems can be equivalently described using an equation of the form (2.4).
Here, we only mention that an ordinary di�erential equation (ODE) of the
form x′

p(s) = F (s, xp(s)) for all s ∈ [tst, tend] can equivalently be written as

xp(s) = xp(tst)+
∫ s

tst
F (τ, xp(τ)) dτ =: fp

(
s, xp(−)|[tst,s]

)
. On the other hand,

if we have xp(k + 1) = F (k, xp(k)) for all k = 0, . . . , N and xp(0) = x0, then
we can de�ne fp(s, xp|[0,s]) stepwise by

fp(s, xp|[0,s]) :=


F (k, xp(k)) if s = k + 1

F (k − 1, xp(k − 1)) if s ∈ [k, k + 1) and k > 0

x0 if s ∈ [0, 1),

(2.5)

to reenter into the language of (2.4). Note that in both cases we consider a
dependence only on a suitable restriction of xp.

(g) We could explicitly admit that the intervals ∆ = ∆p(t) depend both on the
patient p and the time t. For example, we can admit that the evolution of xp(s)
is described by an ODE for some p or for certain times t, and by a discrete
dynamical system for other p or di�erent times t. However, this would result
in more cumbersome notations, and it will never be used in the present paper.

(h) Note that in the function np xs we have the dependence from all the interactions
i ∈ I that acted on p in the past. This dependence is expressed through the
states xε(τ) of entities in the neighborhood Ni(t

′). If the conditions (2.3)
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are never satis�ed, the evolution function fp simply does not depend on these
states.

(i) Only taking the closed interval [t1, t1+∆] we can consider the case ∆ = 0 and
the evolution istantaneosly occurring at t = t1.

(j) It is traditional in physics and mathematics to see that the state variables
satis�es some kind of equation attributed to some important scientist. A
minimal thinking allows us to say that it is ingenuous to believe that this
could happen for all possible complex systems. We are focusing more on a
universal mathematical language. CAS and the GEP could play the role of
this general law, see [22], but not in the simple form of an equation.

The following examples surely can be described in the previous intuitive for-
malism: a bouncing billiard ball; a pedestrian between two subsequent interactions
with other pedestrians or obstacles; the process of building a house after its starting
time and before its end; the internal evolution of a box in a �ow chart representing
a computer program; the patient p represents a company listed on the stock ex-
change, and ε represents another company selling the same type of product which
experienced a strong decreasing of its shares at time t′. The interacting entity ε
represents a neoplasm appearing in a person p at time t′ ≤ t but still interacting
with p at present time t. The last system is clearly non-Markovian, as one can see
comparing two di�erent samples paths where xε(t

′) = benign or x̄ε(t
′) = malignant.

The terms agent, patient, propagator and members of a neighborhood are col-
lectively named roles of entities in an interaction. Of course, interacting entities
can play di�erent roles in di�erent interactions and more than one role in the same
interaction, e.g. a propagator of i can also be at the same time an agent of the
same interaction and a patient of another interaction j which triggers the goods of
i. Therefore, if we represent an interaction by means of a graph, like in �gure 2.2,
and connect two graphs when they share an entity, we obtain a network represent-
ing the mentioned causal �ows in the system. Note that this informal description
already allows for a practical implementation of simulated IS (see e.g. [55]).

The intuitive description above can be summarized by saying: in an interaction,
agents activate and the propagator and the goods are sent as a signal to modify the
state of the patient; the modi�cation depends on information collected from the
neighborhood of that interaction; the starting time and the speed of the signal of
the interaction can be stochastic. Occurrence of interactions is causally constrained
by logical conditions expressed by the activation of the entities. All the interac-
tions acting on patients cause the evolution of their state during su�ciently small
intervals with respect to the spreading of these changes in the system.

Finally note that if we aim to describe �a general CS�, terms such as interacting
entities, interactions, being active or not for an interaction, neighborhood as the set
of all the entities where an interaction takes all the needed information, occurrence
times and evolution equations seems very natural and necessary notions.

2.8. Dynamics of an interaction space. Similarly to an asynchronous CA, the
dynamics of a generic IS, is determined by the occurrence times tsi , t

a
i and toi (see

Sec. 2.4) of all the interactions i, and by the evolution equations (2.4), starting
from an initial state of the system:
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Figure 2.1. Representation of an interaction using a diagram.

Figure 2.2. Graphical representation of two interactions i :

r, p
r,α−−−−→ p and j : a, p

s,β−−−−→ r, where the interacting entity r
is at the same time agent and propagator of the �rst interaction i
and patient of the second interaction j. Using the agent a, we can
change the status of r and hence the goods γi(t) = xr(t)2,i of the
�rst interaction i.

(a) The system starts with a given initial value of all the states xe(tst) for each
interacting entity e ∈ E. Note that this includes the initial values of the
activation states acpi (tst) = xp(tst)1,i and of the goods γi(tst) = xp(tst)2,i (if
p = pr(i)) for any interaction i ∈ I.

(b) For each interaction i ∈ I, we have to provide the starting time tsi(tst) ≥ tst. If
the interaction i starts at t̄ := tsi(tst), we also have to provide the arrival time
tai (t̄) ≥ tsi(t̄) and the ongoing time toi (t̄) ≥ tai (t̄). These are modeling-depending
quantities, and frequently they are random variables depending on the state
of the neighborhood of i at t = tst, i.e. on the function ni x(tst, ε) := xε(tst)
for all ε ∈ Ni(tst). For an arbitrary time t ∈ [tst, tend], these occurrence times
can also depend on past time states ni x(t

′, ε) := xε(t
′) for all ε ∈ Ni(t

′) and
all t′ ∈ [tst, t].

(c) We compute the �rst arrival time t1. Assuming, for simplicity, that we have a
�nite number of interactions, this is given by

t1(tst) := t1 := min {tai (tst) | i ∈ I, tsi(t) = t} .

If t1 = tst, this means that at least one propagator instantaneously arrives at
tsi(tst) = tai (tst) = tst. Otherwise, t1 > tst and hence all the states remain
constant at xe(tst) for all t ∈ [tst, t

1) because only the evolution equations
(2.4) can change these states. If t1 = tai (tst) for some i ∈ I, the occurrence
times must coherently satisfy t̄ = tsi(t̄) ≤ t1 = tai (t̄) for some t̄ ≥ tst when i
actually started (t̄ = tsi(t̄)), ac

aj

i (t̄) ̸= 0 ̸= acri (t̄) for some agent aj and for the
propagator r of i, and acri (t

1) ̸= 0 ̸= acpi (t
1) for the patient p (see Sec. 2.3).

(d) If t1 < +∞, then this t1 is the �rst time corresponding to the arrival of some
propagator, and we can hence update the time as t = t1, in the sense that
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nothing occurred before. Using the evolution equations (2.4), we can change
the state xp(s) of all the patients of interactions i ∈ Ip(t

1) whose arrival time
tai ∈ [t1, t1 +∆].

(e) Because we have changed the state of these patient entities, we recursively
restart from the beginning with the new states xe(t) at t = t1 +∆.

(f) Note that if an interacting entity is never a patient of at least an interaction i
whose propagator actually arrives at some t = tai (t) ≤ tend, then its state xe(t)
will never change, because we can never apply the evolution equation (2.4). In
this case, the states xe of these kind of interacting entities work as constant
parameters of the system.

We can therefore say that mathematically solving an IS means setting the model by
deciding interacting entities and interactions, occurrence times, neighborhoods of
interactions, initial states xe(tst) and transition functions fp, and solve or simulate
the evolution equations for the states xp(−). For some models, the occurrence times
or the neighbourhoods can also be considered as unknowns of the study.

More generally, solving an IS means:

1) Mathematically solving it;
2) Validating the obtained results by comparison with independent real world data.
3) This comparison is based on a notion of truth which is accepted by a certain

community at a certain time.
4) This notion have to include understanding and showing frameworks where the

model can and where it cannot be applied (falsi�cation).
5) Careful checking that the model is applied only in validated settings.

3. Mathematical definition of IS

A mathematical de�nition of IS is a necessary step to start a mathematical
theory, and hence to prove general theorems in a clear way and using modern
and advanced mathematical instruments. We already started this process, e.g. by
showing a general master equation for Markov IS (see [23]), proving a systems of
mean derivative equations for the description of a general class of non-Markov IS,
[23], giving a very comprehensive de�nition of CAS (see [22]) and proving related
power laws, [22].

The usefulness of this mathematical formalization can also be inferred by think-
ing at the same basic notions of IS, with cause-e�ect elementary relations repre-
sented by interactions (2.2) and activation states. Indeed, these concepts allow one
to de�ne the notion of cause-e�ect graphs occurring in a system, and of hierarchical
functors that preserve such relations between pairs of di�erent IS. Therefore, this
direction of theoretical development, which we postpone to a subsequent article,
�nds potential applications in several CS such as the brain and more general in-
telligent systems, urban systems, the immune system, organisms in biology, social
systems, etc. and wherever the intelligibility of a system using cause-e�ect graphs
or a hierarchical description can be helpful, see e.g. [48, 24].

3.1. Interacting entities and interactions. Already in the informal description
of IS, it is clear that many components are needed to de�ne an IS: a set of entities,
a set of types of interactions, state maps, occurrence times, etc. For this reason,
using a nested approach, we introduce four structures that will de�ne the notion
of IS. In this way, instead of referring only to the complete notion of IS, we can
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also focus on only some of these structures and thereby considering more general
modeling settings.

De�nition 2. A system of entities and interactions EI = (E, tst, tend, T , I) is given
by the following data which satisfy the following conditions:

(i) A set E, called the set of interacting entities.
(ii) A time interval [tst, tend], with tst < tend ≤ +∞.
(iii) A �nite set T called the set of types of interactions.
(iv) A set I called the set of interactions satisfying the following condition: every

interaction i ∈ I can be written as i = (a1, . . . , an, r, α, p) for some type of
interaction α ∈ T , some entities a1, . . . an, r, p ∈ E, and where also n ≥ 0
depends on i.

Remark 3.

(a) We set Ei := {a1, . . . , an, r, p}, ag(i) := (a1, . . . , an), pa(i) := p and pr(i) :=
r to denote all the interacting entities involved in the interaction i, agents,
patient and propagator of i, resp. For example, if i = (a, b, b, α, b) ∈ I, where
a, b ∈ E and α ∈ T , this means (reading backwards) that pa(i) = b, the
interaction i is of type α, pr(i) = b, and ag(i) = (a, b), so that n = 2.

(b) What are naturally thought of as agents or patient can depend on a �xed frame
of reference: think e.g. at the interaction of collision between two particles and
a frame at rest with respect to one of the two, which can be naturally thought
of as the patient of the collision.

(c) There is no a priori limitation on the cardinality of the set E of interacting
entities, even though in several cases it is �nite.

(d) The system is studied in the time interval [tst, tend]; clearly, if tend = +∞, we
will use the notation [tst, tend] = [tst,+∞] to mean [tst,+∞).

(e) Generally speaking, the interactions are non Newtonian: they involve more
than one agent and they are, in general, not reversible, i.e. there is not an
action-reaction principle. For example, it does not seem useful to think as
Newtonian the non-colliding interaction of a pedestrian with an obstacle or the
interaction of a builder with a house under construction or of an object in an
object oriented programming language with another object: even if frequently
to each one of these interactions correspond another interaction as answer, in
general there is no useful way to say that the intensity (force) of the cause
interaction is the opposite of the intensity (force) of the reaction interaction.

3.2. State spaces and activations. As we already intuitively explained in Sec. 2.1,
Sec. 2.3 and Sec. 2.6, each interacting entity is described by a state variable xe, of
which activation acei and goods γi are particular cases. Goods γi are taken from
a subspace γi ∈ Ri of the state space called space of resources of an interaction.
The main aim of the next de�nition is to specify, from the mathematical point of
view, the entire state space of an interacting entity e, and to underscore that both
activation and goods are state variables.

In the following, if X and Y are two sets, Y X denotes the space of all the
functions f : X −→ Y and for the values f(x) ∈ Y we can also sometime use the
notation fx ∈ Y . For the sake of clarity: if the index set J = {j1, . . . , jn} is �nite,
then the product of sets is

∏
j∈J Sj = Sj1 × . . .× Sjn .
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De�nition 4. Let EI = (E, tst, tend, T , I) be a system of entities and interactions.
A system of states S = (S,S, R, x) for EI is given by the following data which
satisfy the following conditions:

(i) For every interacting entity e ∈ E, a measurable space (Se,Se) called the
proper state space of the interacting entity e.

(ST) For each interacting entity e ∈ E and time t ∈ [tst, tend], a state function

xe(t) ∈ [0, 1]I ×
∏
i∈I

e=pr(i)

Ri × Se =: S̄e

• This means that xe(t) has three components: the �rst one xe(t)1 ∈ [0, 1]I is a
function xe(t)1 : I −→ [0, 1] and its evaluation at i ∈ I is denoted by acei (t) :=
xe(t)1,i ∈ [0, 1] and called activation of e for the interaction i at time t.

• The second component xe(t)2 is de�ned only if e = pr(i) is a propagator of
some interaction i (otherwise, it is not de�ned). Therefore, in general, if i :

a1, . . . , an
r,α−−−−→ p is an interaction, we set γi(t) := xr(t)2,i ∈ Ri, and call Ri

the space of resources of i. This state variable γi(t) is called goods of i.
• The third component xe(t)3 ∈ Se lies in the proper state space Se. Since we
use the speci�c notations acei (t) and γi(t) for the �rst two components, it is not
confusing using simply the classical notation xe(t) ∈ Se for the third one.

Remark 5.

(a) The property of the proper state space (Se,Se) of being a measurable space
is very weak, from the mathematical point of view, even if usually on a state
space there is a richer structure, e.g. Se = Rd for some d > 0 depending on
e ∈ E. Let us note explicitly that the state space is not time dependent.

(b) We say that the interaction i : a1, . . . , an
r,α−−−−→ p has a notion of zero re-

sources Zi (see Sec. 2.6) if
(i) ∅ ≠ Zi ⊆ Ri;
(ii) ∀t ∈ [tst, tend] : γi(t) ∈ Zi ⇒ acpi (t) = 0, i.e. whenever γi(t) ∈ Zi, the

patient p is not active for i, i.e. acpi (t) = 0.

The label (ST) recalls state function.

3.3. Clock functions. In the present section, we want to clarify that both the
starting time t ∈ [tst, tend] 7→ tsi(t) and ongoing time functions t ∈ [tst, tend] 7→ toi (t)
satisfy similar general properties.

Thinking at the dynamics of an IS presented in Sec. 2.8, we can understand that
this dynamics is event based, driven by starting and arrival times of propagators
of interactions. This is the concrete notion of time as it naturally plays in an IS.
Stating it di�erently: if we have an interaction sending a propagator at every ticking
of a clock, then �Time is what clock shows�, as Einstein is supposed to have said.
Conceptually, this is di�erent from the quantity t ∈ [tst, tend], which is only an
independent variable to mathematically manage functions such as t ∈ [tst, tend] 7→
tsi(t) ∈ [tst, tend] ∪ {+∞}.

We start by de�ning what are the set of time events T we consider in every IS.
We can think T as the stochastic values of an exponential distribution representing
the intensity of occurrence of a given interaction, see Sec. 3.5.1, or a time interval
[t1, t2] ⊆ [tst, tend] used to model a continuous dynamical system. Each one of these
T de�nes a clock function:
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De�nition 6. We say that T is a set of discrete or continuous time events (we
brie�y write T discr./cont.) if:

(i) T ⊆ [tst, tend] is the disjoint union of single instants tj for j ∈ N ⊆ N, or of
intervals [t1k, t

2
k] for k ∈ M ⊆ N.

(ii) Accumulation points of T lie only in its subintervals, i.e.

∀t ∈ T ′ ∃k ∈ M : t ∈ [t1k, t
2
k].

We recall that the set of accumulation points is de�ned by t ∈ T ′ if ∀δ ∈
R>0 ∃t̄ ∈ T ∩ (t − δ, t + δ) : t̄ ̸= t, i.e. it is the set T ′ of all the points that
can be arbitrarily approximated using points of T .

Moreover, we say that τ is a clock function if

(iii) τ : [tst, tend] −→ [tst, tend] ∪ {+∞}.
(iv) ∃T discr./cont. ∀t ∈ [tst, tend] : τ(t) = inf {s ≥ t | s ∈ T}.

We explain the motivations of this de�nition in the following

Remark 7.

(a) Written explicitly, condition (i) is T =
⋃

j∈N{tj} ∪
⋃

k∈M [t1k, t
2
k], and all these

unions are disjoint.
(b) Condition (ii) excludes situations such as T =

{
1± 1

n | n ∈ N>0

}
∪ {1} where

it is not clear whether at t = 1 an event occurs instantly or continuously.
(c) Condition (iv) can be interpreted saying that τ(t) is the next time event in

T after or at t. On the other hand, when we have τ(t) = t, we say that τ is
occurring at t: e.g. if tsi(t) = t, we say that the interaction i is starting at t;
if tsi(t) > t, we say that after t the interaction i will start the �rst time at the
time instant tsi(t).

(d) In �gure 3.1, we represented in red the clock function corresponding to the
discr./cont. time events T depicted in blue on the y-axis. In this T , at tst,
t1 and tend instantaneous events occur, whereas we have a continuous one in
[t11, t

2
1].

We have the following general results, which can be easily proved from the pre-
vious de�nitions.

Theorem 8. If τ is the clock function de�ned by the discr./cont. set of events T ,
then:

(i) ∃min(T ), max(T ) and τ(tst) = min(T ) ∈ T .
(ii) If max(T ) = tend, then τ(tend) = tend, otherwise τ(t) = +∞ for all t ∈

(max(T ), tend].
(iii) For all t, we have τ(t) ≥ t, and τ(t) = t if t ∈ T .
(iv) The function τ is non-decreasing, and hence τ(t) = inf {τ(s) | s ∈ [t, tend]}

for all t.
(v) If t2 ∈ T , t1 < t2 and (t1, t2)∩ T = ∅, then τ(t) = t2 for all t ∈ [t1, t2], i.e. τ

is constant and left-continuous in this interval.
(vi) If max(T ) = tend, then T = τ ([tst, tend]).
(vii) If max(T ) < tend, then T ∪ {+∞} = τ ([tst, tend]). Therefore, this and the

previous property show that the function τ uniquely determines the set of
events T as T = τ ([tst, tend]) \ {+∞}, so that we can equivalently work with
T or τ .
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Figure 3.1. An example of clock function.

3.4. Data to run an interaction. The previous section gives us the language to
formulate the intuitive statements we already introduced in Sec. 2.3, 2.4, 2.5. We
also want to show that the arrival time function t ∈ [tst, tend] 7→ tai (t) can be de�ned
as the minimal value of toi (t).

De�nition 9. Let EI = (E, tst, tend, T , I) be a system of entities and interactions,

and let S = (S,S, R, x) be a system of states for EI. Let i : a1, . . . , an
r,α−−−−→ p

be an interaction in I, then Di = (tsi , t
o
i ,Ni) are data to run i if:

(CF) tsi and toi are clock functions, called resp. starting times and ongoing times of
i.

Recalling that the set of values T o := toi ([tst, tend])\{+∞} is the set of discr./cont.
time events of the ongoing function toi , we de�ne the arrival times of i as follows:

• tai (t) := tj , if t
o
i (t) = tj is discrete (i.e. i occurs instantaneously at t = tj).

• tai (t) := t1k, if t
o
i (t) ∈ [t1k, t

2
k] ⊆ T o (i.e. i occurs continuously around t).

• tai (t) := +∞, if toi (t) = +∞ (i.e. i never occurs at t or after).

(SA) For all t ∈ [tst, tend], if t
s
i(t) = t, i.e. the interaction i ∈ I is starting at t,

then tst(t) ≤ tai (t). In other words, if i starts at tst(t) = t, then the propagator
cannot arrive before this starting time, i.e. tst(t) > tai (t) cannot happen.

We say that (ts, ta) are start-arrival events for i at t ∈ [tst, tend], if ts = tsi(t) = t ≤
ta = tai (t) < +∞. These data have to satisfy the following conditions:

(CE) ac
aj

i (ts) ̸= 0 for some j = 1, . . . , n, acri (ts) ̸= 0, acri (ta) ̸= 0 and acpi (ta) ̸= 0.

Finally, the neighborhood function Ni satis�es

(NE) Ei ⊆ Ni(t) for all t ∈ [tst, tend], i.e. the neighborhood Ni(t) always contains
the entities of i.

The labels (CF), (SA), (CE) and (NE) recall clock functions, start-arrival, cause-
e�ect and neighborhood respectively.

Let us assume, e.g., that tsi(0) = 0 = tst and toi (t) = 1 for t ∈ [0, 1] and toi (t) = t
for t ∈ [1, 2]. We have tai (t) = 1 for all t ∈ [0, 2]. We can also have tsi(t) = 3 for
t > 0, i.e. after 0 the interaction i will start again at t = 3. Note that in this case
toi (1) = 1 < tsi (1) = 3 which simply means that i is ongoing at t = 1 and it will start
again at t = 3. Therefore, in general, the inequality tsi(t) ≤ toi (t) does not hold.
Moreover, tai (2) = 1 < 2, therefore the arrival function does not satisfy tai (t) ≥ t
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and hence it is not a clock function. On the other hand, note that at t = 0, we have
tsi(0) = 0, i.e. i starts at t = 0, and tai (0) = 1 > tsi(0). Therefore, also the inequality
tsi(t) ≤ tai (t) in general does not hold (compare this with (SA)).

Since we think at the activation state variable acei (t) = xe(t)1,i as a (possible)
stochastic path of our CS, from (NE) it follows that also Ni(t) ⊆ Et has to be
thought of as a (possible) stochastic set.

From the previous de�nition, we have the following

Theorem 10. In the previous assumptions, if t ∈ [tst, tend], we have:

(i) tai : [tst, tend] −→ [tst, tend] ∪ {+∞} is piecewise constant.
(ii) tai (t) ≤ toi (t).

(iii) If i : a1, . . . , an
r,α−−−−→ p is an interaction in I, and (ts, ta) ≥ t are start-

arrival events for i, then:
(i) ∃j = 1, . . . , n : aj ∈ Ni(ts).
(ii) r ∈ Ni(ts) and r, p ∈ Ni(ta).
(iii) If i has a notion Zi of zero resources, then γi(ta) /∈ Zi.

(iv) For all i ∈ I and t ∈ [tst, tend], there exists t′ ∈ [tst, t] such that tsi(t
′) = t′ ≤

tai (t
′), i.e. there exists a time t′ ≤ t when i started.

3.4.1. Simultaneous vector interactions. If two interactions i : a1, . . . , an
r,α−−−−→ p

and j : b1, . . . , bm
s,β−−−−→ q act on patients p, q and are simultaneous, i.e. they have

the same occurrence times clock functions tsi(−) = tsj(−) and toi (−) = toj (−), we
can de�ne a vector interaction (i, j) by simply considering as agents

ag(i, j) := (a1, . . . , an, b1, . . . , bm),

as patient pa(i, j) := (p, q), as propagator pr(i, j) := (r, s) and as type (α, β).
The activation maps of agents, propagator and patient are de�ned in a natural
way as ace(i,j)(t) := acei (t) · acej(t). The resource space of (i, j) is the product of

the resources of its components R(i,j) = Ri × Rj . Similarly, we can de�ne the
state space of the new patient entity pa(i, j) = (p, q) and the neighborhood. In
the particularly interesting case when the two interactions act on the same patient
p = q, we simply set pa(i, j) = p. At the end, we obtain a cause-e�ect simultaneous
interaction of the form

(i, j) : a1, . . . , an, b1, . . . , bm
(r,s),(α,β)−−−−−−−−−→ p, q.

It clearly depends on our modeling aims whether the interaction (i, j) already
lies in the set of all the interactions I of our system or if we are more interested in
de�ning a new IS using (i, j).

The previous construction can be repeated with a �nite number i1, . . . , ih of si-
multaneous interactions, so that we can describe arbitrary polyadic cause-e�ect re-
lations. Therefore, considering simultaneous interactions, we can naturally describe
a CS using cause-e�ect hypergraphs in a polyadic relationships, see e.g. [32, 3, 19].

3.5. Evolution equations. We refer to Sec. 2.7 for the motivations of the following
de�nitions:

De�nition 11. Let EI = (E, tst, tend, T , I) be a system of entities and interactions,
let S = (S,S, R, x) be a system of states for EI, and Di = (tsi , t

o
i ,Ni) the data to

run i, for each i ∈ I. Therefore

t1(t) := t1 := inf {tai (t) | i ∈ I, tsi(t) = t} ∀t ∈ [tst, tend],
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is the �rst arrival of all the interactions started at t. Note that t1 is the clock
function generated by the values of tai (t) for i ∈ I: in fact, tai is piecewise constant
(see Thm. 10.(i)), and by Def. 9 of tai , these values are at most countable. Moreover,
tai (t) ≥ t = tsi(t) by condition (SA) of Def. 9.
In this setting, a system EE = (∆, f,Ω,F , P ) for the evolution equations of EI, S
and (Di)i∈I is given by the following data which satisfy the following conditions.

• If the t1 < +∞ and p ∈ E, we �rst de�ne

Ip(t) := {i ∈ I | t1(t) ≤ tai (t) ≤ t1(t) + ∆, pa(i) = p} ∀t ∈ [tst, tend],

where ∆ ∈ R≥0 ∪ {+∞}.
• Then, we consider the state of the neighborhood of p ∈ E as the function np x
de�ned by:

If ∃t′ ≤ t∃i ∈ I : pa(i) = p, t′ = tai (t
′), ε ∈ Ni(t

′), τ ∈ [t′, t] (3.1)

then np x(τ, ε) := xε(τ).

These data have to satisfy the following conditions:

(i) (Ωp,Fp, Pp) is the probability space for the evolution of p ∈ E and the tran-
sition map fp(−, s,np xs)3 : Ωp −→ Sp is measurable for all s ∈ [tst, tend].

(EE) There exists ω ∈ Ωp such that if t ∈ [tst, tend], t1 < +∞, Ip(t) ̸= ∅ and
t1(t) ≤ s ≤ t1(t) + ∆ ≤ tend, then

xp(s) = fp (ω, s, np xs) , (3.2)

where

np xs : τ ∈ [t1(t), s] 7→ np x(τ,−).

Conditions (i) and (EE) mathematically clarify the intuition about the state vari-
able xp(s), which results as a (possible) stochastic path of our system. In other
words: by running a simulation of the system which follows the algorithm presented
in Sec. 2.8, we obtain as outcome a possible value of the state variables xp(s). The
label (EE) recall evolution equation.

To further illustrate these concepts, we can consider the following simple exam-
ples:

Example 12.

1) A person a is throwing a stone p: we can set the propagator r = p as the same
patient carrying in its resource state the information of the initial velocity v⃗0

and position x0 (hence in this example we have i : a
p,t−−−−→ p and γi(t) =

(x0, v⃗0)). We can also set acai (t) = acpi (t) = 1, and the starting time tsi de�ned
by T s := {tst}, so that tsi(t) = tst if t = tst and tsi(t) = +∞ otherwise. The
ongoing function toi is de�ned by T o := [tst, tend] and hence the arrival function
is tai (t) = tst (see also below Sec. 4 for an IS de�ned by an arbitrary ODE). In
the time interval [tst, tend] the transition function is of the form fp = fp(s, x0, v⃗0)
and gives the deterministic dynamics of the stone. In this case we have a trivial
space for stochastic evolution, i.e. |Ωp| = 1.

2) In a more �realistic� modeling of the same system, we can consider the initial
condition (x0, v⃗0) distributed as a 6-dimensional normal distribution, so that
we have Sr = Rj = R6 and γj(t) is this normal distribution for another initial
interaction with tsj = toj = taj = tst and corresponding to this random extrac-
tion of the initial condition with normal distributions. The transition function
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fp(s, tst, x0, v⃗0) = x0+v⃗0(s−tst)+
1
2 g⃗(s−tst)

2 is actually a deterministic function
depending on the randomly extracted initial values (x0, v⃗0) = (x0(ω), v⃗0(ω)) (no
additionally randomness is introduced after the stone has been thrown). The
probability space for the evolution of p is hence again trivial: |Ωp| = 1.

3) Let us consider a pedestrian p receiving at time tsi a signal r from a source a,
and starting to move in the direction γi ∈ R3, |γi| = 1, with a certain stochastic
deviation, both in the direction and in the magnitude of the velocity. We will
have fp(s, ω; t

s
i , γi) = x0 + v⃗(ω) · (t− tsti), where x0 is the position of p at time

tsi and where the expected value of v⃗ in the space (Ωp,Fp, Pp) is E(v⃗) = v0 · γi;
both v0 and x0 are taken from the proper state space Sp of the patient p.

4) Let i ∈ Ip(t) be an interaction starting at tsi(t) = t, arriving at tai (t) ≥ t and
ongoing in the interval [tai (t), t

2
k]. We can have t1(t)+∆ > t2k if∆ is small because

of other interactions simultaneously occurring in the interval [t1(t), t1(t) + ∆],
but, at the same time, we want that i continuously acts on p even after t′ :=
t1(t) + ∆. In order to model this kind of behaviour in the setting of IS, we
clearly have to coherently model the starting times so that tsi(t

′) = t′, e.g. using
a continuous time interval for tsi(−).

5) Def. 11 states minimal conditions satis�ed by a large class of CS. However, it
could be also very interesting to consider IS where at time t1(t)+∆ =: t′ explic-

itly occur the starting times of feedback interactions j : p, n1, . . . , nk
rj ,fb−−−−−→

nh, where {n1, . . . , nk} ⊆ Ni(t
′) are entities in the neighborhood of i. Since

tsj(t
′) = t′ and the transition function fnh

depends also on the state xp(t
′′) of p,

we can say that this is still a particular case of the dynamics described in (e) of
Sec. 2.8.

3.5.1. Stochastic generation of clock functions. We already speci�ed in Sec. 2.4
and Sec. 3.3 that the clock functions tsi(t), t

o
i (t) can be thought of as sample paths

generated by model depending distributions. This can be done using the following
procedure:

(i) For each interaction i ∈ I, we consider the state of the neighborhood of i
de�ned as

If ∃t′ ≤ t : t′ = tai (t
′), ε ∈ Ni(t

′), τ ∈ [t′, t] (3.3)

then ni x(τ, ε) := xε(τ).

In general, all the probability distributions of the occurrence times depend
on this neighborhood function, i.e. on the history of the interaction i.

(ii) At each time t, we have to decide whether i will start after or at t in a discrete
time tj or a continuous time interval [t1k, t

2
k]. Even if, in principle, this can

also be decided randomly, usually it is a model-related choice.
(iii) Starting from the previous step and using a model-depending probability

distribution T s
i (−; ni x) on the space [t, tend] depending on ni x, we can extract

either a sample of the form tj ∈ [t, tend] or a pair

(t1k, t
2
k) ∈

{
(t1, t2) ∈ [t, tend] | t1 < t2

}
(note in both cases the interval [t, tend]). In the �rst case we set tsi(t) = tj ,
and in the second one we set tsi(t

′) = t′ for all t′ ∈ [t1k, t
2
k].

(iv) At each t such that tsi(t) = t (i.e. i starts at t), using a model-depending
probability distribution T a

i (−; ni x, t
s
i(t)) on the space [tsi(t), tend], depending

also on the previous random value tsi(t) ∈ [t, tend], we extract the value of
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Symbol Meaning

E set of interacting entities
[tst, tend] time interval

T set of types of interactions
I set of interactions i = (a1, . . . , an, r, α, p)

Ei := {a1, . . . , an, r, p} interacting entities in the interaction i
ag(i) := (a1, . . . , an) agents of i

pa(i) := p patient of i
pr(i) := r propagator of i

Table 1. Summary of Def. 2 of system of entities and interactions
EI = (E, tst, tend, T , I).

Symbol Meaning Condition

acei (t) activation map ac e
i (t) ∈ [0, 1]

Ri Resources of i
γi(t) goods of the interaction i γi(t) ∈ Ri

state variable xe(t) and proper state space Se ∀e ∈ E : xe(t) ∈ Se

Table 2. Summary of Def. 4 of system of state spaces and acti-
vation maps S = (S,S, R, x).

tai (t). Clearly, this could depend on the speed of the propagator r = pr(i).
We recall that tai (−) takes only discrete values and is not a clock function,
see Thm. 10.

(v) Finally, using a model-depending probability distribution T o
i (−; ni x, t

a
i (t)) on

the space [tai (t), tend], depending also on the previous random value tai (t) ≥
tsi(t) = t, we extract either if the interaction i is instantaneously occurring at
tj = tai (t) or a sample pair (t1k, t

2
k) ∈

{
(t1, t2) ∈ [tai (t), tend] | t1 < t2

}
. In the

�rst case we set toi (t) = tj , whereas in the second one we set toi (t
′) = t′ for all

t′ ∈ [t1k, t
2
k].

(vi) Clearly, by considering trivial probability distributions, the previous method
also includes the deterministic generation of occurrence times.

3.6. Interaction spaces.

De�nition 13. An interaction space I = (EI,SA, I, T F) is given by considering
all the previously de�ned systems:

(i) A system of entities and interactions EI = (E, tst, tend, T , I).
(ii) A system of state spaces SA = (S,S, R, x) for EI.
(iii) Data Di = (tsi , t

o
i ,Ni) to run each interaction i ∈ I.

(iv) A system EE = (∆, f,Ω,F , P ) for the evolution equations of EI, S and
(Di)i∈I .



22 PAOLO GIORDANO

Symbol Meaning Condition

tsi(t) starting time (CF)
toi (t) ongoing time (CF)
tai (t) arrival time (SA), (CE)
Ni(t) neighborhood of i at time t (NE): Ei ⊆ Ni(t)

Table 3. Summary of Def. 9 of data to run an interaction D = (tsi , t
o
i ,Ni).

Symbol Meaning Condition

∆ time of evolution ∆ ∈ R≥0 ∪ {+∞}
(Ωp,Fp, Pp) probability space for the evolution of p
fp(ω, s, np xs) transition function of p (EE)

Table 4. Summary of Def. 11 of system for the evolution equa-
tions EE = (∆, f,Ω,F , P ).

After a �rst look, one can actually recognize that the previous de�nitions essen-
tially represent the introduction of several mathematical notations, and that the
important conditions are only a few, as it is clari�ed in tables 1, 2, 3 and 4.

4. Classical models for complex systems as interaction spaces

We can now explain how classical models for complex system can be embedded
as interaction spaces. Of course, these embeddings are injective: e.g. if two CA are
equal when viewed as IS, then they are necessarily equal as CA.

Even if in this section we do not always mathematically prove and detail the
corresponding embeddings, in our opinion it is clear that the following ways to
include these classical models as IS are su�ciently detailed to allow a reconstruction
of the initial model from the corresponding IS. We also see that the IS structure
allows one to consider several interesting generalizations of these classical models
of CS.

4.1. Continuous dynamical systems. Assume that the considered system is
described by a system of ODE x′(s) = F (s, x(s)) ∈ Rn for s ∈ [tst, tend] starting
from a given initial state x0 ∈ Rn at t = tst (we also recall that any higher order
ODE can always be transformed into an equivalent system of �rst order ODE). We
can think at an IS having a single entity p with an initial state xp(tst) = x0. At
t ≥ tst the dynamics of this IS must be ruled by an evolution equation faithfully
corresponding to this ODE.

The following is only one possible way of seeing a dynamical system as an IS, and
several other embeddings are possible as well, e.g. because a dynamical system does
not have intrinsic notions of activations, goods, neighborhood, etc. However, we
will see that these additional notions naturally inspire interesting generalizations.

We therefore set E = {p}, tst < tend ≤ +∞, T = {ds} which means �dynamical

system�, I = {(p, p,ds, p)} i.e. p
p,ds−−−−−→ p, xp(t) ∈ [0, 1]I × {0}I × Rn. Since

there is only one interaction, in the following we omit the index i. We set trivial
activations and goods: acp(t) := 1, γ(t) := 0 for all t. Occurrence times: ts de�ned
by T s := {tst}, so that ts(t) = tst if t = tst and ts(t) = +∞ otherwise; to de�ned
by T o := [tst, tend], i.e. t

o(t) = t for all t; Therefore, the arrival time is given by
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ta(t) = tst for all t. Neighborhood: N (t) = {p}. Conditions (CF), (SA), (CE) and
(NE) trivially hold. For the evolution equation, we set ∆ = tend − tst, and we have
t1(t) = tst if t = tst and t1(t) = +∞ otherwise, so that Ip(tst) = {i} and Ip(t) = ∅
for t > tst because t1(t) = +∞ ≤ ta = tst ≤ t1(t) + ∆ = +∞ is impossible. If
(τ, ε) lies in the domain of the neighborhood function np x (i.e. if the conditions
p = pa(i), t′ = tai (t

′), ε ∈ Ni(t
′), τ ∈ [t′, t] hold for some t′ ≤ t and i ∈ I (see (2.3)),

then necessarily t′ = tst and ε = p, so that

np x : τ ∈ [tst, t] 7→ xp(τ) ∈ Rn,

where we considered only the nontrivial speci�c state space Sp := Rn. For a deter-
ministic dynamics, we consider a trivial probability space Ωp = {0}. Finally, the as-
sumptions of (EE) are t1(t) < +∞ (so that t = tst) and t1(t) ≤ s ≤ t1(t)+∆ ≤ tend
(i.e. tst ≤ s ≤ tend) and the evolution equation must be xp(s) = fp(s,np xs), where
the restricted neighborhood function is np xs : τ ∈ [tst, s] 7→ xp(τ) ∈ Rn, i.e. it is
xp(−)|[tst,s]. As we already anticipated in Rem. 1.(f), if we assume that x′

p(s) =

F (s, xp(s)) for all s ∈ [tst, tend], where F ∈ C0([tst, tend]×U,Rn) is a continuous func-
tion and U ⊆ Rn is an open set, we can de�ne fp(s, y) := y(tst) +

∫ s

tst
F (τ, y(τ)) dτ

for all s ∈ [tst, tend] and for all y ∈ C0([tst, tend], U) to have that this ODE is satis�ed
if and only if xp(s) = xp(tst) +

∫ s

tst
F (τ, xp(τ)) dτ = fp

(
s, xp(−)|[tst,s]

)
. Moreover,

fp uniquely determine F as F (t, x) = d
dsfp(s, x)|s=t and this yields the injective

embedding from the data (F, x0) describing the continuous dynamical system to
this IS starting from xp(tst) = x0.

4.2. Discrete dynamical systems. If the dynamical system is described by a
recursive equation of the form x(k + 1) = F (k, x(k)) ∈ Rn for all k = 0, . . . , N
and x(0) = x0 ∈ Rn, we can set the IS as above, changing only the evolution
equation as described in (2.5), where we can think at xp(−) : {0, . . . , N} −→ Rn as
an arbitrary function. Therefore, the transition function fp uniquely determine the
values VF := {F (k, y) ∈ Rn | k ∈ {0, . . . , N}, y ∈ Rn} which de�ne all the possible
orbits of the given discrete dynamical system. Therefore, this gives an embedding
of the data (VF , x0) into this IS.

It is natural to think at generalizations of the form:

• Initial interaction with a starting entity s ∈ E which is responsible for setting
the initial condition x0.

• Introducing a non-trivial dynamics of goods in a suitable space of resources
(e.g. described by another dynamical system) corresponds to coupled dynami-
cal systems.

• We can also consider several levels of non-Markovian dynamical systems taking
less trivial occurrence times or neighborhoods. For example, if tsi(t) < tai (t) and a
previous interaction j ∈ Ip(t

a
i (t)) returns the state xp(t

′) back to a previous value
xp(t

′ − τD) at some t′ < tai (t), then we have a delay dynamical system x′(s) =
F (s, x(s − τD)), see e.g. [16]. We can also consider a nontrivial neighborhood
and couple the dynamical system with the past dynamics of another interacting
entity.

• Considering a nontrivial probability space for the evolution of p, we can also
describe as IS any stochastic dynamical system.
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• If the system experiences abrupt changes (i.e. in�nite derivatives), like in colli-
sions, we can similarly describe it as an IS by taking as F a generalized smooth
function, see e.g. [25].

4.3. Synchronous and asynchronous cellular automata. To embed CA as
IS, we clearly set cells with their state space as interacting entities. Depending
on the type of cellular automaton, we can have either local or global interactions
i, the latter possibly acting on only a subset of cells. Even if in classical CA we
can set as always active every cell, in more advanced CA we can think at inserting
the activation acei (t) as a state variable of some cell (see e.g. [56]). Every local
interaction has the same type of neighborhood, which corresponds to that of the
cell in the CA structure. In every local interaction, agents are all the cells in the
neighborhood, and the patient corresponds to the cell on which the interaction acts.
Global interactions can be seen as having only one agent that equals the patient
on which they act. The dynamics can be synchronous at times tsi(t) = toi (t) =
tai (t) = tst + k if tst + k ≤ t < tst + k + 1, k ∈ N, whereas asynchronous dynamics
corresponds to more general occurrence times. Transition functions fp correspond
to the mathematical functions de�ning the state change of the cellular automaton.
In more advanced CA, interactions may also depend on a suitable space of resources
and goods (see e.g. [56]), on continuous state space with stochastic, non-Markovian
or time-dependent rules. Even if every CA can also be seen as a discrete dynamical
system, the setting as IS we are considering here allows one to preserve also the other
structures of the automaton, such as neighborhoods and asynchronous dynamics,
having in this way an embedding.

4.4. Agent based models. For ABM, we refer to the mathematical de�nition
given in [59]. Although agents naturally correspond to interacting entities of IS, we
have to consider that frequently ABM are identi�ed with the corresponding imple-
mentation in an (object oriented) programming language, and the corresponding
mathematical formalization is not always considered. In that case, the state space of
an agent can also include its behavioral rules or methods, implemented as computer
codes. Since IS is a mathematical theory, such methods have to be associated to
a corresponding mathematical function, but this is clearly always possible because
the semantic of every programming language always has a corresponding mathe-
matical theory. More generally, even in case of mathematically formalized ABM,
behavioral rules and methods are exactly transition functions in the language of IS.
The environment itself, see e.g. [59], has to be considered as an interacting entity.
Neighborhoods are de�ned by all the entities (agents or environment) from which
the methods (interactions) take the information they need to operate. Note that,
in case another agent is not contained in this neighborhood, it is completely hidden
for the interactions of the considered agent. Since an interaction is of the form

i : a1, . . . , an
r,α−−−−→ p, in general interactions are only of local nature, depending

on the agents a1, . . . , an, p, on r, α, and on the cause-e�ect relations with other
agents. The dynamics is naturally asynchronous, depending on the signals r sent
between agents: these correspond to propagator entities whose speed has to be
modeled only in particular cases.

4.5. Master equation based models. In [23], we prove that the dynamics of a
Markovian IS is described by a master equation. Any Markov model can be seen
as a particular case of one of these Markovian IS. Therefore, this includes several
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models used in synergetics, [52, 49, 50, 58]. Usually, additional structures such as
propagators, starting, arrival and ongoing times, neighborhoods, etc. are not used
in these descriptions.

4.6. Networked dynamical systems. For this kind of model of CS, see e.g. [46].
For all time t ∈ [tst, tend], let Gt = (Vt, Lt) be a graph with set of vertices/nodes
Vt and set of edges/links Lt. Every node e ∈ Vt has a state xe(t) belonging to a
space Se. This corresponds to an IS where interacting entities are all the nodes of
the network plus unordered pairs of vertices (here, for simplicity, we consider only
non-directed networks)

E :=
⋃

t∈[tst,tend]

Vt ∪ {{e1, e2} | e1, e2 ∈ Vt}.

The network can be easily formalized considering {0, 1}-valued interactions between
nodes and corresponding to the adjacency matrix Gt: At each time t, we de�ne an
interaction il := (l, 1, matr, l) for each pair l = {e1, e2} ∈ E, with ag(il) = pa(il) = l
(and an abstract/trivial propagator), and where at each time t

fl(t) =

{
1 l ∈ Lt

0 otherwise

We activate only Vt, i.e.

acei (t) = 1 ⇐⇒ e ∈ Vt. (4.1)

Each node interacts only with adjacent nodes (which is hence the neighborhood) and
the transition functions correspond to the functions that update the state of each
node, and can hence come, e.g., from the solution of suitable di�erential equations.
As it is well known, the update algorithm can be synchronous or asynchronous, and
as such it has to be implemented as the times of an IS. Similarly, one can embed
as IS networked dynamical systems based on hypergraphs.

The setting (4.1) clearly states that the activation function is trivial in a net-
worked dynamical system. We can hence state that IS allows one to implement
a more detailed cause-e�ect structure using the activation function. Also prop-
agators, and hence the spaces of resources, are not used in this formalization of
networked dynamical systems as IS. On the other hand, we could say that IS can
be seen as networked (stochastic) dynamical systems over a cause-e�ect weighted
directed network with abstract weights given by propagators.

4.7. Arti�cial neural networks. As in the previous case, interacting entities are
the neurons of the network. The structure of the network and the neighborhoods
can be formalized, in the language of IS, using the adjacency matrix as above.
The state of each neuron includes the values of the input variables, the bias for
each one of these inputs, the activation function, the property of being a start or
an end node. State space of propagators include the weights of the links. State
space of neurons could also include the property of being active with respect to
a change of the inputs or a change of the weights associated to its input links.
The most important interactions depend on the type of learning and, in general,
have propagators (and hence weights) as patient entities. In case of supervised
or reinforcement learning, pairs of examples can be seen as stochastic goods of
suitable propagators. We can also have neurons as patients if the learning algorithm
changes their activation functions. The dynamics is in general synchronous. If one
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is interested in computation times of activation functions, propagators times can
also be considered.

4.8. Genetic algorithms. The population of candidate solutions (phenotypes)
with their state space (genotype) are the interacting entities. Stochastic inter-
actions are clearly the core of these models. Mutation, crossover, inversion and
selection operators can be easily implemented as �tness depending interactions of
an IS. The algorithm is synchronous, but asynchronous versions can also be im-
plemented, e.g. by considering more �tted populations as single interacting entities
that spread out their genetic code over the entire set of interacting entities. In this
case, propagators can be considered, with their times. In this generalization, the
introduction of suitable neighborhoods is also relevant.

5. Conclusions and future developments

The present paper represents only the �rst necessary starting point to even
imagine a mathematical theory of CS, i.e. the creation of a common universal
mathematical language. The universality of IS theory allows one to be sure that
su�ciently general mathematical results have a satisfactorily range of applications
for a range of di�erent modeling frameworks of CS. For theorems already going in
this direction, see [23, 22]. Note that this does not force anyone to switch to IS
from his favorite CS setting.

A precise mathematical universal language also provides the necessary setting to
try a formalization of concepts such as that of CAS, of hierarchy of CS, of functors
preserving cause-e�ect relations, etc., see [22] for a mathematical de�nition of CAS
by following the idea of Zipf's principle of least e�ort, [60], and [24] for ideas about
applications of these notions to a new approach to arti�cial intelligence.

Note that the embedding results we showed are not related in any way to uni-
versal machines: we do not restrict to recursive functions and, �rst of all, the em-
beddings are constructed by considering particular cases of IS without mentioning
what kind of functions they are able to process.

On the contrary, we already noted that the universality of IS theory also includes
several interesting generalization of well-known modeling frameworks for CS. In [56,
57, 55], we already applied this point of view by considering a strong generalization
of the notion of CA for the practical motivations of creating validated models
of urban growth and vehicular tra�c. IS theory actually originated from these
practical models, and from the observation that we actually were considering a
very general setting applicable to a large class of CS.
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