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Abstract. The need to describe abrupt changes or response of nonlinear sys-

tems to impulsive stimuli is ubiquitous in applications. Also the informal use
of infinitesimal and infinite quantities is still a method used to construct ideal-

ized but tractable models within the famous J. von Neumann reasonably wide

area of applicability. We review the theory of generalized smooth functions as
a candidate to address both these needs: a rigorous but simple language of

infinitesimal and infinite quantities, and the possibility to deal with continuous

and generalized function as if they were smooth maps: with pointwise values,
free composition and hence nonlinear operations, all the classical theorems of

calculus, a good integration theory, and new existence results for differential

equations. We exemplify the applications of this theory through several mod-
els of singular dynamical systems: deduction of the heat and wave equations

extended to generalized functions, a singular variable length pendulum wrap-
ping on a parallelepiped, the oscillation of a pendulum damped by different

media, a nonlinear stress-strain model of steel, singular Lagrangians as used

in optics, and some examples from quantum mechanics.
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1. Introduction: informal uses of infinitesimals and infinities in
applied mathematics

Even if infinitesimal numbers have been banished by modern mathematics, sev-
eral physicists, engineers and mathematicians still profitably continue to use them.
Usually, this is in order to simplify calculations, to construct idealized but notwith-
standing interesting models of physical systems, or to relate different parts of
physics, such as in passing from quantum to classical mechanics if ℏ is infinites-
imal. An authoritative example in this direction is given by A. Einstein when he
writes

1√
1− v2

c2

= 1 +
v2

2c2

√
1− h44(x) = 1− 1

2
h44(x) (1.1)

with explicit use of infinitesimals v/c≪ 1 or h44(x) ≪ 1 such that e.g. h44(x)
2 = 0.

More generally, in [22] Einstein writes the formula (using the equality sign and not
the approximate equality sign ≃)

f(x, t+ τ) = f(x, t) + τ · ∂f
∂t

(x, t) (1.2)

justifying it with the words “since τ is very small”; note that (1.1) are a particular
case of the general (1.2). Also P.A.M. Dirac in [19] writes an analogous equality
studying the Newtonian approximation in general relativity.

A certain degree of inconsistency appears also at the level of elementary topics,
e.g. in the deduction of the wave and heat equations, see e.g. [77]. For example,
if u(x, t) is the string displacement, then formula (1.2) is once again used e.g. “to
ignore magnitudes of order greater than ∂u

∂x”. This means that we need to have(
∂u
∂x

)2
= 0 to arrive at the final equation with an equality sign and not with some

kind of approximation ≃. But then the length of the string becomes

L =

ˆ b

a

√
1 +

[
∂u

∂x
(x, t)

]2
dx = b− a,

and it is clear that this necessarily yields that the function u is constant. It clearly
does not really help to use ≃ when we have a contradiction, but then to change
it into = when we need the final equation. It is for this type of motivations that
V.I. Arnol’d in [2] wrote: Nowadays, when teaching analysis, it is not very pop-
ular to talk about infinitesimal quantities. Consequently present-day students are
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not fully in command of this language. Nevertheless, it is still necessary to have
command of it.

A similar, but sometimes more troublesome, practice concerns the use of infinite
numbers. A typical example is given by Heisenberg’s uncertainty principle

∆px∆x ≥ ℏ
2
. (1.3)

It is frequently informally argued that if the position x is measured by a Dirac delta,
then ∆x ≈ 0 is infinitesimal; thereby, (1.3) necessarily implies that ∆px must be
an infinite number.

Another classical example of informal use of infinite numbers concerns Schwartz
distributions and their point values. Many relevant physical systems are in fact
described by singular Hamiltonians. Among them, we can e.g. list:

(i) Non smooth classical mechanics. For example, a classical particle (or a high-
frequency wave) moving through discontinuous media containing barriers or
interfaces where the Hamiltonian is discontinuous: see e.g. [7, 8, 17, 75, 40,
69, 72] and references therein.

(ii) Discontinuous Lagrangian in geometrical optics: see e.g. [47].
(iii) Nonlinear deformation in continuum mechanics, which includes non differen-

tiable stress-strain relations: see e.g. [76, 10].
(iv) The use of infinite quantities in quantum mechanics. An elementary example

is given by the solution of the stationary Schrödinger equation for an infinite
rectangular potential well (a case that cannot be formalized using Schwartz
distributions, see e.g. [25]).

This type of problems is hence widely studied from the mathematical point of view
(see e.g. [15, 53, 51, 73, 45, 44, 52]), even if the presented solutions are not general
and hold only in special conditions. In this sense, the fact that J.D. Marsden’s
works [55, 56] did not start a consolidated research thread to study singular Hamil-
tonian mechanics using Schwartz distributions, can be considered as a clue that the
classical distributional framework is not well suited to face this problem in general
terms.

A related problem concerns nonlinear operations on Schwartz distributions, which
can be simply presented as follows. Let A be an associative and commutative al-
gebra endowed with a derivation (satisfying the Leibniz rule). Then any element
H of A such that H · H = H is necessarily a constant, that is, H ′ = 0. Indeed,
(H2)′ = 2HH ′ and (H3)′ = 3H2H ′ . Now H = H2 = H3 , so this implies
2HH ′ = H ′ = 3HH ′ . Therefore, HH ′ = 0 and hence also H ′ = 2HH ′ = 0. Even
worse, we also recall that Dirac in [20] uses terms of the form

√
δ in his proposal

for the foundation of quantum mechanics.
There are obviously many possibilities to formalize this kind of intuitive reason-

ings, obtaining a more or less good dialectic between informal and formal thinking,
and nowadays there are indeed several rigorous theories of infinitesimals, infinities
and generalized functions. Concerning the notion of infinitesimal, we can distin-
guish two definitions: in the first one we have at least a ring R containing the
real field R and infinitesimals are elements h ∈ R such that −r < h < r for every
positive standard real r ∈ R>0. The second type of infinitesimal is defined using
some algebraic property of nilpotency, i.e. hn = 0 for some natural number n ∈ N
(therefore, in this case h cannot be trivially invertible and we cannot form infinities
as reciprocal of infinitesimals). For some ring R these definitions can coincide, but
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anyway they lead, of course, only to the trivial infinitesimal h = 0 if R = R is the
real field.

Mathematical theories of infinitesimals can also be classified as belonging to two
different classes. In the first one, we have theories needing a certain amount of non
trivial results of mathematical logic, whereas in the second one we have attempts to
define sufficiently strong theories of infinitesimals without the use of non trivial re-
sults of mathematical logic. In the first class, we can list nonstandard analysis and
synthetic differential geometry (also called smooth infinitesimal analysis, see e.g.
[3, 43, 49, 58]), in the second one we have, e.g., Weil functors (see [46]), Levi-Civita
field (see [71]), surreal numbers (see [14]), Fermat reals (see [27]), Colombeau’s
generalized numbers (see [13] and [21, 41] for a general survey). More precisely,
we can say that to work both in nonstandard analysis and in synthetic differential
geometry, one needs a formal control stronger than the one used in “standard math-
ematics”. Indeed, to use nonstandard analysis one has to be able to formally write
sentences in order to apply the transfer theorem. Whereas synthetic differential
geometry does not admit models in classical logic, but in intuitionistic logic only,
and hence we have to be sure that in our proofs there is no use of the law of the
excluded middle, or e.g. of the classical part of De Morgan’s law or of some form
of the axiom of choice or of the implication of double negation toward affirmation
and any other logical principle which do not hold in intuitionistic logic. Physicists,
engineers, but also the greatest part of mathematicians are not used to have this
strong formal control in their work, and it is for this reason that there are attempts
to present both nonstandard analysis and synthetic differential geometry reducing
as much as possible the necessary formal control, even if at some level this is tech-
nically impossible (see e.g. [42, 36], and [4, 5] for nonstandard analysis; [3] and [49]
for synthetic differential geometry).

On the other hand, nonstandard analysis is surely the best known theory of
invertible infinitesimals with results in several areas of mathematics and its appli-
cations, see e.g. [1]. Synthetic differential geometry is a theory of nilpotent in-
finitesimals with non trivial results of differential geometry in infinite dimensional
spaces.

Concerning mathematical theories of generalized functions, the difficulties stem-
med from dealing with the lacking of well-posedness in PDE initial value problems
led to a zoo of spaces of generalized functions. In an incomplete list we can men-
tion: Schwartz distributions, Colombeau generalized functions, ultradistributions,
hyperfunctions, nonstandard theory of Colombeau generalized functions, ultrafunc-
tions, etc. See e.g. [39] for a survey, and the International Conference on General-
ized Functions series, e.g. https://ps-mathematik.univie.ac.at/e/index.php?
event=GF2022.

Unfortunately, there is a certain lacking of dialog between the most used theory
of generalized functions, i.e. Schwartz distributions, and the actual use of gener-
alized functions in physics and engineering, where e.g. point values and nonlinear
operations are frequently needed, see e.g. [13].

In the present paper, we describe the main results of generalized smooth func-
tions (GSF) theory and some of its applications in applied mathematics. GSF are
an extension of classical distribution theory and of Colombeau theory, which makes
it possible to model nonlinear singular problems, while at the same time sharing
a number of fundamental properties with ordinary smooth functions, such as the

https://ps-mathematik.univie.ac.at/e/index.php?event=GF2022
https://ps-mathematik.univie.ac.at/e/index.php?event=GF2022
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closure with respect to composition and several non trivial classical theorems of
the calculus, see [31, 32, 29, 28, 54, 33]. One could describe GSF as a method-
ological restoration of Cauchy-Dirac’s original conception of generalized function
(GF), see [48]. In essence, the idea of Cauchy and Dirac (but also of Poisson,
Kirchhoff, Helmholtz, Kelvin and Heaviside) was to view generalized functions as
suitable types of smooth set-theoretical maps obtained from ordinary smooth maps
depending on suitable infinitesimal or infinite parameters.

The calculus of GSF is closely related to classical analysis, in fact:

(i) GSF are set-theoretical maps defined on, and attaining values in the non-

Archimedean ring ρR̃ of Robinson-Colombeau. Therefore, in ρR̃ we have in-
finitesimals, infinities and also a suitable language of nilpotent infinitesimals,
see Sec. 2, Sec. 3.

(ii) GSF include all Colombeau generalized functions and hence also all Schwartz
distributions, see Sec. 3.

(iii) They allow nonlinear operations on GF and to compose them unrestrictedly,
so that terms such as δ2(x) or even δ(δ(x)) are possible, see Sec. 3.

(iv) GSF allow us to prove a number of analogues of theorems of classical analysis:
e.g., mean value theorem, intermediate value theorem, extreme value theo-
rem, Taylor’s theorem, local and global inverse function theorem, integrals
via primitives, multidimensional integrals, theory of compactly supported
GF. Therefore, this approach to GF results in a flexible and rich framework
which allows both the formalization of calculations appearing in physics and
engineering and the development of new applications in mathematics and
mathematical physics. Some of these results are presented in Sec. 3.

(v) Several results of the classical theory of calculus of variations and optimal
control can be developed for GSF: the fundamental lemma, second variation
and minimizers, necessary Legendre condition, Jacobi fields, conjugate points
and Jacobi’s theorem, Noether’s theorem, see [50, 24].

(vi) The closure with respect to composition leads to a solution concept of dif-
ferential equations close to the classical one. In GSF theory, we have a non-
Archimedean version of the Banach fixed point theorem, a Picard-Lindelöf
theorem for both ODE and PDE, results about the maximal set of existence,
Gronwall theorem, flux properties, continuous dependence on initial condi-
tions, full compatibility with classical smooth solutions, etc., see Sec. 4.

As we will see in Sec. 5 and Sec. 6, using GSF theory, we have a rigorous theory of
infinitesimal and infinite numbers that can be used to develop mathematical models
of physical problems. On the other hand, it is also a flexible theory of GF that
can be used to model situations with singular (non smooth) physical quantities.
One of the main aim of this paper is to show that within GSF theory several infor-
mal calculations of physics or engineering now become perfectly rigorous without
detaching too much from the original deduction.

The structure of the paper is as follows: in Sec. 2, we introduce our new ring of

scalars ρR̃, the ring of Robinson-Colombeau. In Sec. 3, we define GSF as suitable
set-theoretical functions defined and valued in the new ring of scalars; we will also
see the relationships with Colombeau GF and hence with Schwartz distributions.
In Sec. 4, we see the Picard-Lindelöf theorem for singular nonlinear ODE involving
GSF. In Sec. 5, we see how to transform the classical deductions of the wave and heat
equations into formal mathematical theorems whose scope includes GSF. Finally, in
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Sec. 6 we see applications to non-smooth mechanics, an empirical non-linear stress-
strain model for steel, some applications in optics with discontinuous Lagrangians,
how to see the classical finite and infinite potential wells of QM within GSF theory.

The paper is a review of GSF theory, so it is self-contained in the sense that it
contains all the statements required for the proofs of Sec. 5 and Sec. 6. We also
introduce clear intuitions about the new mathematical objects of this theory and
references for the complete proofs. Therefore, to understand this paper, only a
basic knowledge of distribution theory is needed.

2. Numbers: The ring of Robinson-Colombeau

A natural method sometimes used in applied mathematics, mathematical physics
and engineering in order to deal with non differentiable functions at singularities is
to introduce a new parameter ε ∈ (0, 1] and to approximate the singular function
with a smooth one at distance d(ε) → 0+ as ε → 0+. Instead of dealing with
the non differentiable function, we then consider a different model substituting the
singular map with this ε-regularized version. For example, if N0,σ(t) is a Gaussian
with zero mean and standard deviation σ, then N0,ε and H(x) =

´ x
−∞N0,ε(t) dt

can be used to construct an approximate model of Dirac delta and Heaviside step
function. Of course, this method depends on the new parameter ε, which usually
has no physical meaning, so that the final claims are frequently assessed as ε→ 0+.
However, if the final solution is still a GF, e.g. the dynamics during a collision, the
limit as ε→ 0+ may not exist because certain derivatives become infinite.

Similarly, the values of this ε-regularized functions can be infinitesimal or infinite
quantities as ε→ 0+, e.g. N0,ε(0) → +∞, whereas all the calculations in this type
of model are meaningful only for a fixed ε ∈ (0, 1], where these values are still
classical real numbers, and hence they cannot be infinitesimal or infinite quantities.

The idea of the ring of Robinson-Colombeau is to create a simple and intuitively
clear mathematical setting where this informal idea is fully rigorous and where a
full language of infinitesimal or infinite numbers is available.

We can motivate the new ring of scalars as follows: Exactly as real numbers can
be seen as equivalence classes of sequences (qn)n∈N of rationals1, it is very natural to

consider a non-Archimedean extension of R defined by a quotient ring R̃ := R/ ∼,
where R ⊆ RI is a subset of all the functions I −→ R defined on I := (0, 1] which
is closed with respect to pointwise algebraic operations (i.e. R is an algebra). We
always call net any function in the independent variable ε, and we use for them
notations of the type (xε)ε∈I ∈ RI or simply (xε) := (xε)ε∈I . For simplicity and for
historical reasons, we consider I = (0, 1], corresponding to ε→ 0+, ε ∈ I, as in the
previous informal method. In this work, we will denote equivalence classes simply

by [xε] := [(xε)]∼ ∈ R̃. The basic problem is hence to understand when we have
to say that two nets (xε), (x

′
ε) ∈ R are equivalent (xε) ∼ (x′ε) (i.e. they are two

different representatives of the new generalized number [xε] = [x′ε] ∈ R̃) in order
to obtain a ring containing also infinitesimal and infinite numbers corresponding to
ordinary infinitesimal and infinite functions (nets) as ε→ 0+.

The following observation points to a natural way of achieving this goal. Let us

assume that [zε] = 0 ∈ R̃ and [Jε] ∈ R̃ is generated by an infinite net (Jε), i.e. such

1In the naturals N = {0, 1, 2, . . .} we include zero.
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that limε→0+ |Jε| = +∞. Then we would have

[zε] · [Jε] = 0 · [Jε] = 0

= [zε · Jε]. (2.1)

Finally, let us assume that

∀[wε] ∈ R̃ : [wε] = 0 ⇒ lim
ε→0+

wε = 0. (2.2)

Under these assumptions, (2.1) yields limε→0+ zε · Jε = 0, and hence

∃ε0 ∈ I ∀ε ∈ (0, ε0] : |zε| ≤
∣∣J−1

ε

∣∣ . (2.3)

Consequently, the nets (zε) representing 0, i.e. such that (zε) ∼ 0, must be domi-

nated by the reciprocals of every infinite number [Jε] ∈ R̃. It is not hard to prove
that if every infinite net (Jε) is in R, then (2.3) implies that the equivalence relation
∼ must be trivial:

∃ε0 ∈ I ∀ε ∈ (0, ε0] : zε = 0. (2.4)

This situation corresponds to the Schmieden-Laugwitz model, [70].
If we do not want to have the trivial model (2.4), we can hence either negate the

natural property (2.2) (this is the case of nonstandard analysis; see [16] for more
details) or to restrict the class of all the nets (Jε) generating infinite numbers in

R̃. Since we want to start from an algebra R ⊆ RI , a first natural idea is to fix an
infinitesimal net (ρε), ρε → 0+, and to consider the following class of infinite nets

I :=
{
(ρ−a

ε ) | a ∈ R>0

}
. (2.5)

and hence to consider the algebra R ⊆ RI containing nets (bε) ∈ RI bounded by
some (Jε) ∈ I. Therefore, the fixed net (ρε) yields a measure of the strongest

infinite nets representing numbers in R̃ = R/ ∼.
This idea is generalized in the following definition, where we take exactly (2.3)

as the widest possible definition of (zε) ∼ 0. More in depth details about these
basic notions and the omitted proofs as well can be found in [32, 31].

Definition 1. Let I := (0, 1] and ρ = (ρε) ∈ (0, 1]I be a net such that (ρε) → 0 as
ε→ 0+ (in the following, such a net will be called a gauge), then

(i) I(ρ) := {(ρ−a
ε ) | a ∈ R>0} is called the asymptotic gauge generated by ρ.

(ii) If P(ε) is a property of ε ∈ I, we use the notation ∀0ε : P(ε) to denote
∃ε0 ∈ I ∀ε ∈ (0, ε0] : P(ε). We can read ∀0ε as: “for ε small”.

(iii) We say that a net (xε) ∈ RI is ρ-moderate, and we write (xε) ∈ Rρ, if

∃(Jε) ∈ I(ρ) : xε = O(Jε) as ε→ 0+, (2.6)

i.e., if

∃N ∈ N ∀0ε : |xε| ≤ ρ−N
ε .

(iv) Let (xε), (yε) ∈ RI , then we say that (xε) ∼ρ (yε) if

∀(Jε) ∈ I(ρ) : xε = yε +O(J−1
ε ) as ε→ 0+,

that is if

∀n ∈ N ∀0ε : |xε − yε| ≤ ρnε . (2.7)
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This is a congruence relation on the ring Rρ of ρ-moderate nets with respect
to pointwise operations (i.e. the pointwise algebraic operations [xε] + [yε] :=
[xε + yε] and [xε] · [yε] := [xε · yε] are well-defined), and we can hence define

ρR̃ := Rρ/ ∼ρ, (2.8)

which we call Robinson-Colombeau ring of generalized numbers.

This name is justified by [67, 13]: Indeed, in [67] A. Robinson introduced the notion
of moderate and negligible nets depending on an arbitrary fixed infinitesimal ρ (in
the framework of nonstandard analysis); independently, J.F. Colombeau, cf. e.g. [13]
and references therein, studied the same concepts without using nonstandard anal-
ysis, but considering only the particular infinitesimal ρε = ε. Equivalence classes

of the quotient ring (2.8) are simply denoted with [xε] := [(xε)ε]∼ρ
∈ ρR̃.

Considering constant net xε = r ∈ R we have the embedding R ⊂ ρR̃. We define
[xε] ≤ [yε] if there exists (zε) ∈ RI such that (zε) ∼ρ 0 (we then say that (zε) is
ρ-negligible) and xε ≤ yε + zε for ε small. Equivalently, we have that x ≤ y if and
only if there exist representatives [xε] = x and [yε] = y such that xε ≤ yε for all ε.

A proficient intuitive point of view on these generalized numbers is to think at

[xε] ∈ ρR̃ as a dynamic point in the time ε → 0+; classical real numbers are hence
static points. This corresponds to the informal method presented just before Def. 1

above. Morever, we say that x = [xε] ∈ ρR̃ is near-standard if ∃ limε→0+ xε =: x◦ ∈
R.

Even though the order ≤ is not total, we still have the possibility to define the
infimum [xε] ∧ [yε] := [min(xε, yε)], the supremum [xε] ∨ [yε] := [max(xε, yε)] of a
finite amount of generalized numbers. Henceforth, we will also use the customary

notation ρR̃∗ for the set of invertible (we recall that x ∈ ρR̃ is invertible if ∃y ∈ ρR̃ :

x·y = 1) generalized numbers, and we write x < y to say that x ≤ y and x−y ∈ ρR̃∗,
i.e. if x is less of equal to y and x − y is invertible. The intervals are denoted by:

[a, b] := {x ∈ ρR̃ | a ≤ x ≤ b}, [a, b]R := [a, b] ∩ R. Finally, we set dρ := [ρε] ∈ ρR̃,
which is a positive invertible infinitesimal, whose reciprocal is dρ−1 = [ρ−1

ε ], which
is necessarily a strictly positive infinite number. It is remarkable to note that

x = [xε] ∈ ρR̃ is an infinitesimal number, i.e. |x| ≤ r for all r ∈ R>0, denoted by
x ≈ 0, if and only if limε→0+ xε = 0; similarly, x is an infinite number, i.e. |x| ≥ r
for all r ∈ R>0, if and only if limε→0+ |xε| = +∞. This intuitively clear result is
not possible neither in nonstandard analysis nor in synthetic differential geometry,
see [27, 36, 43].

The following result proves to be useful in dealing with positive and invertible
generalized numbers. For its proof, see e.g. [35].

Lemma 2. Let x ∈ ρR̃. Then the following are equivalent:

(i) x is invertible and x ≥ 0, i.e. x > 0.
(ii) For each representative (xε) ∈ Rρ of x we have ∀0ε : xε > 0.
(iii) For each representative (xε) ∈ Rρ of x we have ∃m ∈ N ∀0ε : xε > ρmε .
(iv) There exists a representative (xε) ∈ Rρ of x such that ∃m ∈ N ∀0ε : xε > ρmε .

One can clearly feel insecure in working with a ring of scalar which is not a totally
ordered field (i.e. it does not hold that x ≤ y or x ≥ y and we can have x ̸= 0 but

̸ ∃y ∈ ρR̃ : x ·y = 1). On the one hand, we can reread the list of results presented in
Sec. 1 to get a reassurance that these properties are actually not indispensable to
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obtain all these well-known classical results. On the other hand, using the notion
of subpoint (e.g. a meaningful case is given by a subpoint [xεn ] of [xε] which is
considered only on a sequence (εn)n∈N → 0+), see [59], we developed very practical
substitutes of both the field and the total order property.

2.1. Topologies on ρR̃n. A first non-trivial conceptual step is to consider ρR̃ as our

new ring of scalar. The natural extension of the Euclidean norm on the ρR̃-module
ρR̃n, i.e. |[xε]| := [|xε|] ∈ ρR̃, where [xε] ∈ ρR̃n, goes exactly in this direction. In

fact, even if this generalized norm takes values in ρR̃, and not in the old R, it shares
some essential properties with classical norms:

|x| = x ∨ (−x)
|x| ≥ 0

|x| = 0 ⇒ x = 0

|y · x| = |y| · |x|
|x+ y| ≤ |x|+ |y|
||x| − |y|| ≤ |x− y|.

It is therefore natural to consider on ρR̃n topologies generated by balls defined by
this generalized norm and a set of radii. A second non-trivial step is to understand
that the meaningful set of radii we need to have continuity of our class of generalized

function is the set ρR̃∗
≥0 = ρR̃>0 of positive and invertible generalized numbers:

Definition 3. We define

(i) Br(x) :=
{
y ∈ ρR̃n | |y − x| < r

}
for any r ∈ ρR̃>0.

(ii) BE
r (x) := {y ∈ Rn | |y − x| < r}, for any r ∈ R>0, denotes an ordinary

Euclidean ball in Rn.

The relation < has more beneficial topological properties as compared to the usual
strict order relation x ≤ y and x ̸= y (a relation that we will therefore never use)

due to the property that the set of balls
{
Br(x) | r ∈ ρR̃>0, x ∈ ρR̃n

}
is a base for

a topology on ρR̃n called sharp topology, and we call sharply open set any open set

in this topology. Therefore, A ⊆ ρR̃n is a sharply open set if for each a ∈ A there

exists a radius r ∈ ρR̃>0 such that Br(a) ⊆ A.

We also recall that the sharp topology on ρR̃n is Hausdorff and Cauchy complete, see
e.g. [32, 31]. A peculiar property of the sharp topology is that it is also generated
by all the infinitesimal balls of the form Bdρq (x), where q ∈ N>0. The necessity to
consider infinitesimal neighborhoods occurs in any theory containing continuous GF
which have infinite derivatives. Indeed, from the mean value theorem Thm. 27.(i)
below, we have f(x) − f(x0) = f ′(c) · (x − x0) for some c ∈ [x, x0]. Therefore, we

have f(x) ∈ Br(f(x0)), for a given r ∈ ρR̃>0, if and only if |x − x0| · |f ′(c)| < r,
which yields an infinitesimal neighborhood of x0 in case f ′(c) is infinite; see [30, 31]
for precise statements and proofs corresponding to this intuition. On the other
hand, the existence of infinitesimal neighborhoods implies that the sharp topology
induces the discrete topology on R; once again, this is a general result that occurs
in all the theories of infinitesimals, see [30].

A natural way to obtain sharply open, closed and bounded sets in ρR̃n is by using
a net (Aε) of subsets Aε ⊆ Rn. Once again, thinking at [xε] and (Aε) as a dynamic
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point and set as the time ε→ 0+, we have two ways of extending the membership

relation xε ∈ Aε to generalized points [xε] ∈ ρR̃n:

Definition 4. Let (Aε) be a net of subsets of Rn, then

(i) [Aε] :=
{
[xε] ∈ ρR̃n | ∀0ε : xε ∈ Aε

}
is called the internal set generated by

the net (Aε).
(ii) Let (xε) be a net of points of Rn, then we say that xε ∈ε Aε, and we read it

as (xε) strongly belongs to (Aε), if
(i) ∀0ε : xε ∈ Aε.
(ii) If (x′ε) ∼ρ (xε), then also x′ε ∈ Aε for ε small.

Moreover, we set ⟨Aε⟩ :=
{
[xε] ∈ ρR̃n | xε ∈ε Aε

}
, and we call it the strongly

internal set generated by the net (Aε).

Therefore, x ∈ [Aε] if there exists a representative [xε] = x such that xε ∈ Aε for
ε small, whereas this membership is independent from the chosen representative in
case of strongly internal sets: if [x′ε] = [xε] ∈ ⟨Aε⟩, then for ε sufficiently small both
representatives satisfy x′ε, xε ∈ Aε. An internal set generated by a constant net
Aε = A ⊆ Rn will simply be denoted by [A].

The following theorem shows that internal and strongly internal sets have dual
topological properties:

Theorem 5. For ε ∈ I, let Aε ⊆ Rn and let xε ∈ Rn. Then we have

(i) [xε] ∈ [Aε] if and only if ∀q ∈ R>0 ∀0ε : d(xε, Aε) ≤ ρqε. Therefore [xε] ∈ [Aε]

if and only if [d(xε, Aε)] = 0 ∈ ρR̃.
(ii) [xε] ∈ ⟨Aε⟩ if and only if ∃q ∈ R>0 ∀0ε : d(xε, Ac

ε) > ρqε, where A
c
ε := Rn\Aε.

Therefore, if (d(xε, A
c
ε)) ∈ Rρ, then [xε] ∈ ⟨Aε⟩ if and only if [d(xε, A

c
ε)] > 0.

(iii) [Aε] is sharply closed.
(iv) ⟨Aε⟩ is sharply open.
(v) [Aε] = [cl (Aε)], where cl (S) is the closure of S ⊆ Rn.
(vi) ⟨Aε⟩ = ⟨int(Aε)⟩, where int (S) is the interior of S ⊆ Rn.

For example, it is not hard to show that the closure in the sharp topology of a ball
of center c = [cε] and radius r = [rε] > 0 is

Br(c) =
{
x ∈ ρR̃d | |x− c| ≤ r

}
=

[
BE

rε(cε)
]
, (2.9)

whereas

Br(c) =
{
x ∈ ρR̃d | |x− c| < r

}
= ⟨BE

rε(cε)⟩.

The reader can be concerned with the fact that the ring of scalar ρR̃ is not a totally
ordered field. Besides the language of subpoints (see [59]) that allows one to proceed
alternatively when total order or invertibility properties are in play, the following
result is also useful:

Lemma 6. Invertible elements of ρR̃ are dense in the sharp topology, i.e.

∀h ∈ ρR̃∀δ ∈ ρR̃>0 ∃k ∈ (h− δ, h+ δ) : k is invertible.

This is even more important since our GSF are continuous in the sharp topology,
as we will see in the next section.
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3. Functions and distributions: generalized smooth functions

After the introduction of numbers, their sets and topologies, we introduce the
notion of function.

3.1. Definition of GSF and sharp continuity. Using the ring ρR̃, it is easy to
consider a Gaussian with an infinitesimal standard deviation. If we denote this
probability density by f(x, σ), and if we set σ = [σε] ∈ ρR̃>0, where σ ≈ 0, we
obtain the net of smooth functions (f(−, σε))ε∈I . This is the basic idea we are
going to develop in the following definitions and it corresponds to informal method
we explained just before Def. 1. We will first introduce the notion of a net of
functions (fε) defining a generalized smooth function of the type X −→ Y , where

X ⊆ ρR̃n and Y ⊆ ρR̃d. This is a net of smooth functions fε ∈ C∞(Ωε,Rd) that

induces well-defined maps of the form [∂αfε(−)] : ⟨Ωε⟩ −→ ρR̃d, for every multi-
index α ∈ Nn.

Definition 7. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized points.
Let (Ωε) be a net of open subsets of Rn, and (fε) be a net of smooth functions,
with fε ∈ C∞(Ωε,Rd). Then, we say that

(fε) defines a generalized smooth function : X −→ Y

if:

(i) X ⊆ ⟨Ωε⟩ and [fε(xε)] ∈ Y for all [xε] ∈ X.
(ii) ∀[xε] ∈ X ∀α ∈ Nn : (∂αfε(xε)) ∈ Rd

ρ.

Where the notation
∀[xε] ∈ X : P{(xε)}

means
∀(xε) ∈ Rn

ρ : [xε] ∈ X ⇒ P{(xε)},
i.e. for all representatives (xε) generating a point [xε] ∈ X, the property P{(xε)}
holds.

A generalized smooth function (or map, in this paper these terms are used as
synonymous) is simply a function of the form f = [fε(−)]|X :

Definition 8. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized points,
then we say that

f : X −→ Y is a generalized smooth function

if f ∈ Set(X,Y ) and there exists a net fε ∈ C∞(Ωε,Rd) defining a generalized
smooth map of type X −→ Y , in the sense of Def. 7, such that

∀[xε] ∈ X : f ([xε]) = [fε(xε)] . (3.1)

We will also say that f is defined by the net of smooth functions (fε) or that the
net (fε) represents f . The set of all these GSF will be denoted by ρGC∞(X,Y ).

Let us note explicitly that definitions 7 and 8 state minimal logical conditions
to obtain a set-theoretical map from X into Y which is defined by a net of smooth
functions such that all the derivatives still lie in our ring of scalars for condition
Def. 7.(ii). In particular, the following Thm. 9 states that in equality (3.1) we have
independence from the representatives for all derivatives [xε] ∈ X 7→ [∂αfε(xε)] ∈
ρR̃d, α ∈ Nn.
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Theorem 9. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized points.
Let (Ωε) be a net of open subsets of Rn, and (fε) be a net of smooth functions, with
fε ∈ C∞(Ωε,Rd). Assume that (fε) defines a generalized smooth map of the type
X −→ Y , then

∀α ∈ Nn ∀(xε), (x′ε) ∈ Rn
ρ : [xε] = [x′ε] ∈ X ⇒ (∂αfε(xε)) ∼ρ (∂αfε(x

′
ε)).

Note that taking arbitrary subsets X ⊆ ρR̃n in Def. 7, we can also consider GSF
defined on closed sets, like the set of all infinitesimals (which is also open, like in

all non trivial theories of infinitesimals), or like a closed interval [a, b] ⊆ ρR̃. We
can also consider GSF defined at infinite generalized points. A simple case is the
exponential map

e(−) : [xε] ∈
{
x ∈ ρR̃ | ∃z ∈ ρR̃>0 : x ≤ log z

}
7→ [exε ] ∈ ρR̃. (3.2)

The domain of this map depends on the infinitesimal net ρ. For instance, if ρ = (ε)
then all its points are bounded by generalized numbers of the form [−N log ε],

N ∈ N; whereas if ρ =
(
e−

1
ε

)
, all points are bounded by [Nε−1], N ∈ N. This

underscores the importance to choose different gauges ρ depending on our needs.
A first regularity property of GSF is the above cited continuity with respect to

the sharp topology, as proved in the following

Theorem 10. Let X ⊆ ρR̃n, Y ⊆ ρR̃d and fε ∈ C∞(Ωε,Rd) be a net of smooth
functions that defines a GSF of the type X −→ Y . Then

(i) For all α ∈ Nn, the GSF g : [xε] ∈ X 7→ [∂αfε(xε)] ∈ R̃d is locally Lipschitz
in the sharp topology, i.e. each x ∈ X possesses a sharp neighborhood U such

that |g(x)− g(y)| ≤ L|x− y| for all x, y ∈ U and some L ∈ ρR̃.
(ii) Each f ∈ ρGC∞(X,Y ) is continuous with respect to the sharp topologies in-

duced on X, Y .
(iii) f : X −→ Y is a GSF if and only if there exists a net vε ∈ C∞(Rn,Rd)

defining a generalized smooth map of type X −→ Y such that f = [vε(−)]|X .

3.2. Embedding of Schwartz distributions. Among the re-occurring themes of
this work are the choices which the solution of a given problem within our framework
may depend upon. For instance, (3.2) shows that the domain of a GSF depends on
the infinitesimal net ρ. It is also easy to show that the trivial Cauchy problem{

x′(t) = [ε−1] · x(t)
x(0) = 1

has no solution in ρGC∞(R,R) if ρε = ε because the solution is not moderate

e.g. at t = 1. Nevertheless, it has the unique solution x(t) =
[
e

1
ε t
]
∈ ρGC∞(R,R)

if ρε = e−
1
ε . Therefore, the choice of the infinitesimal net ρ is closely tied to

the possibility of solving a given class of differential equations in non infinitesimal
intervals (a solution in a suitable infinitesimal interval always exists, see Sec. 4).
This illustrates the dependence of the theory on the infinitesimal net ρ.

Further choices concern the embedding of Schwartz distributions: Since we need
to associate a net of smooth functions (fε) to a given distribution T ∈ D′(Ω) (e.g. T
can be any continuous non-differentiable function defined on Ω), this embedding
is naturally built upon a regularization process: this corresponds to the informal
method explained in Sec. 2. In our approach, this regularization will depend on an
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infinite number b ∈ ρR̃, and the choice of b depends on what properties we need
from the embedding. For example, if δ is the (embedding of the) one-dimensional
Dirac delta, then we have the property

δ(0) = b, (3.3)

We can also choose the embedding so as to get the property

H(0) =
1

2
, (3.4)

where H is the (embedding of the) Heaviside step function. Equalities like these
are used in diverse applications (see, e.g., [13] and references therein). In fact,
we are going to construct a family of structures depending on a linear embedding

of Schwartz distributions ιΩ : D′(Ω) −→ ρGC∞(c(Ω), ρR̃) (see below, Thm. 12).
The particular structure we need to consider depends on the problem we have to
solve. Of course, one may be more interested in having an intrinsic embedding
of distributions. This can be done by following the ideas of the full Colombeau
algebra (see e.g. [35]). Nevertheless, this choice decreases the simplicity of the
present approach and is incompatible with properties like (3.3) and (3.4).

If φ ∈ D(Rn), r ∈ R>0 and x ∈ Rn, we use the notation r ⊙ φ for the function
x ∈ Rn 7→ 1

rn · φ
(
x
r

)
∈ R. Our embedding procedure will ultimately rely on

convolution with suitable mollifiers. In fact, it is well-known that if φ ∈ D(Rn)
is a compactly supported smooth function and f ∈ C0(R,R) is only a continuous
function, then the net of smooth functions

(
ε−1 ⊙ φ

)
(which is called a mollifier)

behaves like the Dirac delta and the convolution f ∗
(
ε−1 ⊙ φ

)
is an ε-net of smooth

functions which regularizes singular points of f and converges to f as ε → 0+: it
is hence a good candidate to replace f as GSF. This is one of the basic ideas to
formalize the intuitive method presented just before Def. 1.

To construct the mollifiers which fully preserve smooth functions, we need some
technical preparations.

Lemma 11. For any n ∈ N>0 there exists some µn ∈ S(R) with the following
properties:

(i)
´
µn(x) dx = 1.

(ii)
´∞
0
x

j
nµn(x) dx = 0 for all j ∈ N>0.

(iii) µn(0) = 1.
(iv) µn is even.
(v) µn(k) = 0 for all k ∈ Z \ {0}.

We call Colombeau mollifier (for a fixed dimension n) any function µ that satisfies
the properties of the previous lemma. Concerning embeddings of Schwartz distri-
butions, the idea is classically to regularize distributions using a mollifier. The use
of a Colombeau mollifier allows us, on the one hand, to identify the distribution
φ ∈ D(Ω) 7→

´
fφ with the GSF f ∈ C∞(Ω) ⊆ ρGC∞(Ω,R) (thanks to property

(ii)); on the other hand, it allows us to explicitly calculate compositions such as
δ ◦ δ, H ◦ δ, δ ◦H (see below).

As a final preparation for the embedding of D′(Ω) into ρGC∞(c(Ω), ρR̃) we need
to construct suitable n-dimensional mollifiers from a Colombeau mollifier µ as given
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Figure 3.1. A representation of Dirac delta and Heaviside func-
tion. A Colombeau mollifier has a representation similar to Dirac
delta (but with finite values).

by Lemma 11. To this end, let ωn denote the surface area of Sn−1 and set

cn :=

{
2n
ωn

for n > 1

1 for n = 1.

Then let µ̃ : Rn → R, µ̃(x) := cnµ(|x|n). Since µ is even, µ̃ is smooth. Moreover,
by Lemma 11, it has unit integral and all its higher moments

´
xαµ̃(x) dx vanish

(|α| ≥ 1).
Schwartz distributions are naturally defined only on finite points of ⟨Ω⟩ (also

called compactly supported points), i.e. on the set

c(Ω) := {x ∈ ⟨Ω⟩ | ∃R ∈ R>0 : |x| ≤ R, d(x, ∂Ω) ∈ R>0}
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of finite points that remain sufficiently far from the boundary. This underscores an
important difference between this type of GF and GSF, since the latter can also be
defined on purely infinitesimal domains (note that Ω ⊆ c(Ω)) or on infinite points.

Theorem 12. Let (∅ ≠)Ω ⊆ Rn be an open set. Set

Ωε :=

{
x ∈ Ω | d(x,Ωc) ≥ ε, |x| ≤ 1

ε

}
and fix some χ ∈ D(Rn), χ = 1 on BE

1 (0), 0 ≤ χ ≤ 1 and χ = 0 on Rn\BE
2 (0). Take

κε ∈ D(Ω) such that κε = 1 on a neighborhood Lε of Ωε. Also, let b = [bε] ∈ ρR̃ be
an infinite positive number, i.e. limε→0+ bε = +∞. Set

µb
ε(x) := (b−1

ε ⊙ µ̃)(x)χ(x| log(bε)|) = bnε µ̃(bεx)χ(x| log(bε)|). (3.5)

Then the map

ιbΩ : T ∈ D′(Ω) 7→
[(
(κε · T ) ∗ µb

ε

)
(−)

]
∈ ρGC∞(c(Ω), ρR̃). (3.6)

satisfies:

(i) ιb : D′ −→ ρGC∞(c(−), ρR̃) is a sheaf-morphism of real vector spaces, i.e. if
Ω′ ⊆ Ω is another open set and T ∈ D′(Ω), then ιbΩ(T )|c(Ω′) = ιbΩ′(T |Ω′) and

ιbΩ is a linear injective map.

(ii) Any f ∈ C∞(Ω) can naturally be considered an element of ρGC∞(c(Ω), ρR̃) via
[xε] 7→ [f(xε)]. Moreover, ∀q ∈ N>0 ∀x ∈ c(Ω) :

∣∣ιbΩ(f)(x)− f(x)
∣∣ ≤ b−q.

(iii) If f ∈ C∞(Ω) and if b ≥ dρ−a for some a ∈ R>0, then ιbΩ(f) = f . In
particular, the embedding ιb preserves multiplication of smooth functions.

(iv) For any T ∈ D′(Ω) and any α ∈ Nn, ιbΩ(∂
αT ) = ∂αιbΩ(T ), i.e. ι

b
Ω preserves

partial derivatives of distributions.
(v) Let b ≥ dρ−a for some a ∈ R>0. Then for any φ ∈ D(Ω) and any T ∈ D′(Ω),[ ˆ

Ω

ιbΩ(T )ε(x) · φ(x) dx
]
= ⟨T, φ⟩ in ρR̃.

(vi) ιbRn(δ)(0) = cnb
n and if b ≥ dρ−a for some a ∈ R>0, then ι

b
R(H)(0) = 1

2 .

(vii) The embedding ιb does not depend on the particular choice of (κε) and (if
b ≥ dρ−a for some a ∈ R>0) χ as above.

(viii) ιb does not depend on the representative (bε) of b.

Whenever we use the notation ιb for an embedding, we assume that b ∈ ρR̃
satisfies the overall assumptions of Thm. 12 and of (iii) in that Theorem, and that
ιb has been defined as in (3.6) using a Colombeau mollifier µ for the given dimension.

Remark 13.

(i) Let δ, H ∈ ρGC∞(ρR̃, ρR̃) be the corresponding ιb-embeddings of the Dirac
delta and of the Heaviside function. Then δ(x) = b · µ(b · x) and δ(x) = 0 if
x is near-standard and x◦ ̸= 0 or if x is infinite because µ ∈ S(R). Also, by
construction of µb

ε, δ can be represented like in the first diagram of Fig. 3.1.
E.g., δ(k/b) = 0 for each k ∈ Z \ {0}, and each k

b is a nonzero infinitesimal.

Similar properties can be stated e.g. for δ2(x) = b2 · µ(b · x)2.
(ii) Analogously, we have H(x) = 1 if x is near-standard and x◦ > 0 or if x > 0

is infinite; H(x) = 0 if x is near-standard and x◦ < 0 or if x < 0 is infinite.
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(iii) Let vp( 1x ) ∈ D′(R) be the Cauchy principal value. If x = [xε] is far from the

origin, in the sense that |x| ≥ r for some r ∈ R>0. Then ιbR(vp(
1
x ))(x) =

1
x .

The behavior of the GSF ιbR(vp(
1
x ))(−) in an infinitesimal neighborhood of

the origin depends on the Colombeau mollifier µ. For example, if in Lem. 11

we add the linear condition
´ µn(x)

x dx = 0, then also ιbR(vp(
1
x ))(0) = 0.

3.3. Closure with respect to composition. In contrast to the case of distribu-
tions, there is no problem in considering the composition of two GSF. This prop-
erty opens new interesting possibilities, e.g. in considering differential equations
y′ = f(y, t), where y and f are GSF. For instance, there is no problem in studying
y′ = δ(y) (see Sec. 4).

Theorem 14. Let X ⊆ ρR̃n, Y ⊆ ρR̃d and Z ⊆ ρR̃k. If f ∈ ρGC∞(X,Y ) and
g ∈ ρGC∞(Y, Z), then g ◦ f ∈ ρGC∞(X,Z), i.e. GSF are closed with respect to
composition.

For instance, we can think of the Dirac delta as a map of the form δ : ρR̃ −→ ρR̃,
and therefore the composition eδ is defined in {x ∈ ρR̃ | ∃z ∈ ρR̃>0 : δ(x) ≤ log z},
which of course does not contain x = 0 but only suitable non zero infinitesimals. On

the other hand, δ ◦ δ : ρR̃ −→ ρR̃. Moreover, from the inclusion of ordinary smooth
functions (Thm. 12) and the closure with respect to composition, it directly follows

that every ρGC∞(U, ρR̃) is an algebra with pointwise operations for every subset

U ⊆ ρR̃n.

Example 15. The composition δ ◦ δ ∈ ρGC∞(ρR̃, ρR̃) is given by (δ ◦ δ)(x) =
bµ

(
b2µ(bx)

)
and is an even function. If x is near-standard and x◦ ̸= 0, or x is

infinite, then (δ ◦ δ)(x) = b. Since (δ ◦ δ)(0) = 0, by the intermediate value theorem

(see Cor. 26 below), we have that δ ◦ δ attains any value in the interval [0, b] ⊆ ρR̃.
If 0 ≤ x ≤ 1

2b , then (for a µ as in Fig. 3.2) x is infinitesimal and (δ ◦ δ)(x) = 0

because δ(x) ≥ bµ
(
1
k

)
is an infinite number. If x = k

b for some k ∈ N>0, then x is
still infinitesimal but (δ ◦ δ)(x) = b because µ(bx) = 0. A representation of δ ◦ δ is
given in Fig. 3.2. Analogously, one can deal with H ◦ δ and δ ◦H.

Similarly, we can define generalized functions of class ρGCk, with k ≤ +∞:

Definition 16. Let X ⊆ ρR̃n and Y ⊆ ρR̃d be arbitrary subsets of generalized
points and k ∈ N ∪ {+∞}. Then we say that

f : X −→ Y is a generalized Ck function

if there exists a net fε ∈ Ck(Ωε,Rd) defining f in the sense that

(i) X ⊆ ⟨Ωε⟩,
(ii) f([xε]) = [fε(xε)] ∈ Y for all x = [xε] ∈ X,
(iii) (∂αfε(xε)) ∈ Rd

ρ for all x = [xε] ∈ X and all α ∈ Nn such that |α| ≤ k.
(iv) ∀α ∈ Nn ∀[xε], [x′ε] ∈ X : |α| = k, [xε] = [x′ε] ⇒ [∂αfε(xε)] = [∂αfε(x

′
ε)].

(v) For all α ∈ Nn, with |α| = k, the map [xε] ∈ X 7→ [∂αfε(xε)] ∈ ρR̃d is
continuous in the sharp topology.

The space of generalized Ck functions from X to Y is denoted by ρGCk(X,Y ).

Note that properties (iv), (v) are required only for |α| = k because for lower length
they can be proved using property (iii) and the classical mean value theorem for
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Figure 3.2. A representation of δ ◦ δ

fε (see e.g. [32]). From Thm. 9 and Thm. 10.(ii) it follows that this definition of
ρGCk is equivalent to Def. 7 if k = +∞. Moreover, properties similar to (iii) and

Thm. 14 can also be proved for ρGCk.

Note that the absolute value function | − | : ρR̃ −→ ρR̃ is not a GSF because its
derivative is not sharply continuous at the origin; clearly, it is a ρGC0 function.

3.4. Differential calculus of GSF. In this section we show how the derivatives
of a GSF can be calculated using a form of incremental ratio. The idea is to prove
the Fermat-Reyes theorem for GSF (see [32, 30, 43]). Essentially, this theorem
shows the existence and uniqueness of another GSF serving as incremental ratio.
This is the first of a long list of results demonstrating the close similarities between
ordinary smooth functions and GSF.
In the present setting, the Fermat-Reyes theorem (also called Carathéodory defini-
tion of derivative) is the following.

Theorem 17. Let U ⊆ ρR̃n be a sharply open set, let v = [vε] ∈ ρR̃n, k ∈ N∪{+∞},
and let f ∈ ρGCk+1(U, ρR̃) be a ρGCk+1map generated by the net of functions fε ∈
Ck+1(Ωε,R). Then

(i) There exists a sharp neighborhood T of U × {0} and a map r ∈ ρGCk(T, ρR̃),
called the generalized incremental ratio of f along v, such that

∀(x, h) ∈ T : f(x+ hv) = f(x) + h · r(x, h).
(ii) Any two generalized incremental ratios coincide on a sharp neighborhood of

U × {0}, so that we can use the notation ∂f
∂v [x;h] := r(x, h) if (x, h) are

sufficiently small.

(iii) We have ∂f
∂v [x; 0] =

[
∂fε
∂vε

(xε)
]
for every x ∈ U and we can thus define df(x) ·

v := ∂f
∂v (x) :=

∂f
∂v [x; 0], so that ∂f

∂v ∈ ρGCk(U, ρR̃).

Note that this result allows us to consider the partial derivative of f with respect

to an arbitrary generalized vector v ∈ ρR̃n which can be, e.g., near-standard or
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infinite. Since any partial derivative of a GSF is still a GSF, higher order derivatives
∂αf
∂vα ∈ ρGC∞(U, ρR̃) are simply defined recursively.

As follows from Thm. 17.(i) and Thm. 12.(iv), the concept of derivative de-
fined using the Fermat-Reyes theorem is compatible with the classical derivative of
Schwartz distributions via the embeddings ιb from Thm. 12. The following result
follows from the analogous properties for the nets of smooth functions defining f
and g or directly from the Fermat-Reyes Thm. 17.

Theorem 18. Let U ⊆ ρR̃n be an open subset in the sharp topology, let v ∈ ρR̃n

and f , g : U −→ ρR̃ be generalized smooth maps. Then

(i) ∂(f+g)
∂v = ∂f

∂v + ∂g
∂v

(ii) ∂(r·f)
∂v = r · ∂f

∂v ∀r ∈ ρR̃

(iii) ∂(f ·g)
∂v = ∂f

∂v · g + f · ∂g
∂v

(iv) For each x ∈ U , the map df(x).v := ∂f
∂v (x) ∈

ρR̃ is ρR̃-linear in v ∈ ρR̃n.

(v) Let V ⊆ ρR̃d be open subsets in the sharp topology and h ∈ ρGC∞(V,U) be a

generalized smooth maps. Then for all x ∈ V and all v ∈ ρR̃d

∂ (f ◦ h)
∂v

(x) = df (h(x)) .
∂h

∂v
(x)

d(f ◦ h) (x) = df (h(x)) ◦ dh(x).

3.5. Integral calculus using primitives. In this section, we inquire existence

and uniqueness of primitives F of a GSF f ∈ ρGC∞([a, b], ρR̃). To this end, we shall
have to introduce the derivative F ′(x) at boundary points x ∈ [a, b], i.e. such that
x−a or b−x is not invertible. Let us note explicitly, in fact, that the Fermat-Reyes
Theorem 17 is stated only for sharply open domains.

The following result shows that every GSF can have at most one primitive GSF
up to an additive constant.

Theorem 19. Let X ⊆ ρR̃ and let f ∈ ρGC∞(X, ρR̃) be a generalized smooth

function. Let a, b ∈ ρR̃, with a < b, such that (a, b) ⊆ X. If f ′(x) = 0 for all
x ∈ int(a, b), then f is constant on (a, b). An analogous statement holds if we take
any other type of interval (closed or half closed) instead of (a, b).

Remark 20. From the Fermat-Reyes Thm. 17 and from Thm. 19, it follows that
the function i(x) := 1 if x ≈ 0 and i(x) := 0 otherwise cannot be a GSF on any
large neighborhood of x = 0. This example stems from the property that different
standard real numbers can always be separated by infinitesimal balls.

At interior points x ∈ [a, b] in the sharp topology, the definition of derivative
f (k)(x) follows from the Fermat-Reyes Theorem 17. At boundary points, we have
the following

Theorem 21. Let a, b ∈ ρR̃ with a < b, and f ∈ ρGC∞([a, b], ρR̃) be a generalized
smooth function. Then for all x ∈ [a, b], the following limit exists in the sharp
topology

lim
y→x

y∈int([a,b])

f (k)(y) =: f (k)(x).

Moreover, if the net fε ∈ C∞(Ωε,R) defines f and x = [xε], then f (k)(x) =

[f
(k)
ε (xε)] and hence f (k) ∈ ρGC∞([a, b], ρR̃).
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We can now state existence and uniqueness of primitives of GSF:

Theorem 22. Let k ∈ N∪{+∞} and f ∈ ρGCk([a, b], ρR̃) be defined in the interval

[a, b] ⊆ ρR̃, where a < b. Let c ∈ [a, b]. Then, there exists one and only one

generalized Ck+1 map F ∈ ρGCk+1([a, b], ρR̃) such that F (c) = 0 and F ′(x) = f(x)
for all x ∈ [a, b]. Moreover, if f is defined by the net fε ∈ Ck(R,R) and c = [cε],

then F (x) =
[´ xε

cε
fε(s)ds

]
for all x = [xε] ∈ [a, b].

Definition 23. Under the assumptions of Theorem 22, we denote by
´ (−)

c
f :=´ (−)

c
f(s) ds ∈ ρGC∞([a, b], ρR̃) the unique generalized smooth function such that:

(i)
´ c
c
f = 0

(ii)
(´ (−)

c
f
)′

(x) = d
dx

´ x
c
f(s) ds = f(x) for all x ∈ [a, b].

To consider a generalization of this concept of integration to GSF in several

variables and to more general domains of integration M ⊆ ρR̃d, see [32].
Example 24.

(i) Since ρR̃ contains both infinitesimal and infinite numbers, our notion of def-
inite integral also includes “improper integrals”. Let e.g. f(x) = 1

x for

x ∈ ρR̃>0 and a = 1, b = dρ−q, q > 0. Then

ˆ b

a

f(s) ds =

[ˆ ρ−q
ε

1

1

s
ds

]
= [log ρ−q

ε ]− log 1 = −q log dρ, (3.7)

which is, of course, a positive infinite generalized number. This apparently
trivial result is closely tied to the possibility to define GSF on arbitrary

domains, like F ∈ ρGC∞([a, b], ρR̃) in Thm. 22 where b is an infinite number
as in (3.7), which is one of the key properties allowing one to get the closure
with respect to composition.

(ii) If p, q ∈ ρR̃, p < 0 < q and both p and q are not infinitesimal, then
´ q
p
δ(t) dt ≈

1. If p ≤ −r and q ≥ s where r, s ∈ R>0, then
´ q
p
δ(t) dt = 1.

Theorem 25. Let f ∈ ρGC∞(X, ρR̃) and g ∈ ρGC∞(Y, ρR̃) be generalized smooth

functions defined on arbitrary domains in ρR̃. Let a, b ∈ ρR̃ with a < b and [a, b] ⊆
X ∩ Y , then

(i)
´ b
a
(f + g) =

´ b
a
f +
´ b
a
g

(ii)
´ b
a
λf = λ

´ b
a
f ∀λ ∈ ρR̃

(iii)
´ b
a
f =
´ c
a
f +
´ b
c
f for all c ∈ [a, b]

(iv)
´ b
a
f = −

´ a
b
f

(v)
´ b
a
f ′ = f(b)− f(a)

(vi)
´ b
a
f ′ · g = [f · g]ba −

´ b
a
f · g′

(vii) If f(x) ≤ g(x) for all x ∈ [a, b], then
´ b
a
f ≤
´ b
a
g.

Let f ∈ ρGC∞(T, ρR̃) and φ ∈ ρGC∞(S, T ) be generalized smooth functions defined

on arbitrary domains in ρR̃. Let a, b ∈ ρR̃, with a < b, such that [a, b] ⊆ S,
φ(a) < φ(b) and [φ(a), φ(b)] ⊆ T . Finally, assume that φ([a, b]) ⊆ [φ(a), φ(b)].
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Then ˆ φ(b)

φ(a)

f(t) dt =

ˆ b

a

f [φ(s)] · φ′(s) ds.

For integration of several variables GSF, see [32].

3.6. Classical theorems for GSF. It is natural to expect that several classical
theorems of differential and integral calculus can be extended from the ordinary
smooth case to the generalized smooth framework. Once again, we underscore that
these faithful generalizations are possible because we do not have a priori limitations
in the evaluation f(x) for GSF.
We start from the intermediate value theorem.

Corollary 26. Let f ∈ ρGC∞(X, ρR̃) be a generalized smooth function defined on

the subset X ⊆ ρR̃. Let a, b ∈ ρR̃, with a < b, such that [a, b] ⊆ X. Assume that
f(a) < f(b). Then

∀y ∈ ρR̃ : f(a) ≤ y ≤ f(b) ⇒ ∃c ∈ [a, b] : y = f(c).

Using this theorem we can conclude that no GSF can assume only a finite number
of values which are comparable with respect to the relation < on any nontrivial
interval [a, b] ⊆ X, unless it is constant. For example, this provides an alternative
way of seeing that the function i of Rem. 20 cannot be a generalized smooth map.
We note that the solution c ∈ [a, b] of the previous generalized smooth equation y =
f(x) need not even be continuous in ε, see e.g. [32] for an explicit counter example.
This allows us to draw the following general conclusion: if we consider generalized
numbers as solutions of smooth equations, then we are forced to work on a non-
totally ordered ring of scalars derived from discontinuous (in ε) representatives. To
put it differently: if we choose a ring of scalars with a total order or continuous
representatives, we will not be able to solve every smooth equation, and the given
ring can be considered, in some sense, incomplete.

The next theorem deals with different version of the mean value theorem

Theorem 27. Let f ∈ ρGC∞(X, ρR̃d) be a generalized smooth function defined in

the sharply open set X ⊆ ρR̃n. Let a, b ∈ ρR̃n such that [a, b] ⊆ X. Then

(i) If n = d = 1, then ∃c ∈ [a, b] : f(b)− f(a) = (b− a) · f ′(c).
(ii) If n = d = 1, then ∃c ∈ [a, b] :

´ b
a
f(t) dt = (b− a) · f(c).

(iii) If d = 1, then ∃c ∈ [a, b] : f(b)− f(a) = ∇f(c) · (b− a).

(iv) Let h := b− a, then f(a+ h)− f(a) =
´ 1
0
df(a+ t · h).hdt.

Internal and bounded sets generated by a net of compact sets serve as a substitute
for compact subsets for GSF, as can be seen from the following extreme value
theorem:

Lemma 28. Let ∅ ≠ K = [Kε] ⊆ ρR̃n be an internal set generated by compact sets

Kε ⋐ Rn such that K is bounded, i.e. K ⊆ BR(0) for some R ∈ ρR̃>0. Assume

that α : K −→ ρR̃ is a well-defined map given by α(x) = [αε(xε)] for all x ∈ K,
where αε : Kε −→ R are continuous maps (e.g. α(x) = |x|). Then

∃m,M ∈ K ∀x ∈ K : α(m) ≤ α(x) ≤ α(M).
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Corollary 29. Let f ∈ ρGC∞(X, ρR̃) be a generalized smooth function defined in

the subset X ⊆ ρR̃n. Let ∅ ≠ K = [Kε] ⊆ X be as above, then

∃m,M ∈ K ∀x ∈ K : f(m) ≤ f(x) ≤ f(M). (3.8)

These results motivate the following

Definition 30. A subset K of ρR̃n is called functionally compact, denoted by

K ⋐f
ρR̃n, if there exists a net (Kε) such that

(i) K = [Kε] ⊆ ρR̃n

(ii) K is bounded, i.e. ∃R ∈ ρR̃>0 : K ⊆ BR(0)
(iii) ∀ε ∈ I : Kε ⋐ Rn

If, in addition, K ⊆ U ⊆ ρR̃n then we write K ⋐f U . Any net (Kε) such that
[Kε] = K is called a representative of K.

We motivate the name functionally compact subset by noting that on this type of
subsets, GSF have properties very similar to those that ordinary smooth functions
have on standard compact sets.

Remark 31.

(i) By Thm. 5.(iii), any internal set K = [Kε] is closed in the sharp topology.
Therefore, functionally compact sets are sharply closed and bounded subsets

of ρR̃n. In particular, the open interval (0, 1) ⊆ R̃ is not functionally compact
since it is not closed.

(ii) If H ⋐ Rn is a non-empty ordinary compact set, then the internal set [H] is
functionally compact. In particular, [0, 1] = [[0, 1]R] is functionally compact.

(iii) The empty set ∅ = ∅̃ ⋐f R̃.
(iv) R̃n is not functionally compact since it is not bounded.
(v) The set of finite points c(R) is not functionally compact because the GSF

f(x) = x does not satisfy the conclusion (3.8) of Cor. 29.

We also underscore the following properties of functionally compact sets.

Theorem 32. Let K ⊆ X ⊆ R̃n, f ∈ ρGCk(X, R̃d). Then K ⋐f R̃n implies

f(K) ⋐f R̃d.

As a corollary of this theorem and Rem. (31).(ii) we get

Corollary 33. If a, b ∈ R̃ and a ≤ b, then [a, b] ⋐f R̃.

Let us note that a, b ∈ R̃ can also be infinite numbers, e.g. a = dρ−N , b = dρ−M

or a = −dρ−N , b = dρ−M with M , N ∈ N>0, so that e.g. [−dρ−N ,dρM ] ⊇ R.
Therefore, despite very similar properties shared by functionally compact sets and
classical compact sets, the former can also be unbounded from the classical point
of view.
Finally, in the following result we consider the product of functionally compact sets:

Theorem 34. Let K ⋐f R̃n and H ⋐f R̃d, then K ×H ⋐f R̃n+d. In particular, if

ai ≤ bi for i = 1, . . . , n, then
∏n

i=1[ai, bi] ⋐f R̃n.

A theory of compactly supported GSF has been developed in [29], and it closely
resembles the classical theory of LF-spaces of compactly supported smooth func-
tions. It establishes that for suitable functionally compact subsets, the correspond-
ing space of compactly supported GSF contains all Schwartz distributions.



22 ALEKSANDR BRYZGALOV, KEVIN ISLAMI, AND PAOLO GIORDANO

Note also that any interval [a, b] ⊆ ρR̃ with b− a ∈ R>0, is functionally compact
but not connected: in fact if c ∈ (a, b), then both c + D∞ and [a, b] \ (c+D∞)
are sharply open in [a, b]. Once again, this is a general property in several non-
Archimedean frameworks (see e.g. [67, 43]). On the other hand, as in the case of
functionally compact sets, GSF behave on intervals as if they were connected, in
the sense that both the intermediate value theorem Cor. 26 and the extreme value
theorem Cor. 29 hold for them (therefore, f ([a, b]) = [f(m), f(M)], where we used
the notations from the results just mentioned).

We close this section with generalizations of Taylor’s theorem in various forms. In

the following statement, dkf(x) : ρR̃dk −→ ρR̃ is the k-th differential of the GSF f ,

viewed as an ρR̃-multilinear map ρR̃d× k. . . . . . ×ρR̃d −→ ρR̃, and we use the common

notation dkf(x) · hk := dkf(x)(h, . . . , h). Clearly, dkf(x) ∈ ρGC∞(ρR̃dk, ρR̃). For

multilinear maps A : ρR̃p −→ ρR̃q, we set |A| := [|Aε|] ∈ ρR̃, the generalized number
defined by the norms of the operators Aε : Rp −→ Rq.

Theorem 35. Let f ∈ ρGC∞(U, ρR̃) be a generalized smooth function defined in the

sharply open set U ⊆ ρR̃d. Let a, b ∈ ρR̃d such that the line segment [a, b] ⊆ U , and
set h := b− a. Then, for all n ∈ N we have

(i) ∃ξ ∈ [a, b] : f(a+ h) =
∑n

j=0
djf(a)

j! · hj + dn+1f(ξ)
(n+1)! · hn+1.

(ii) f(a+ h) =
∑n

j=0
djf(a)

j! · hj + 1
n! ·
´ 1
0
(1− t)n dn+1f(a+ th) · hn+1 dt.

Moreover, there exists some R ∈ ρR̃>0 such that

∀k ∈ BR(0) ∃ξ ∈ [a, a+ k] : f(a+ k) =

n∑
j=0

djf(a)

j!
· kj + dn+1f(ξ)

(n+ 1)!
· kn+1 (3.9)

dn+1f(ξ)

(n+ 1)!
· kn+1 =

1

n!
·
ˆ 1

0

(1− t)n dn+1f(a+ tk) · kn+1 dt ≈ 0. (3.10)

Formulas (i) and (ii) correspond to a plain generalization of Taylor’s theorem
for ordinary smooth functions with Lagrange and integral remainder, respectively.
Dealing with GF, it is important to note that this direct statement also includes
the possibility that the differential dn+1f(ξ) may be infinite at some point. For
this reason, in (3.9) and (3.10), considering a sufficiently small increment k, we get
more classical infinitesimal remainders dn+1f(ξ) · kn+1 ≈ 0.

The following definitions allow us to state Taylor formulas in Peano and in infini-
tesimal form. The latter has no remainder term thanks to the use of an equivalence
relation that permits the introduction of a language of nilpotent infinitesimals,
see e.g. [26, 27] for a similar formulation. For simplicity, we only present the 1-
dimentional case.

Definition 36. (i) Let U ⊆ ρR̃ be a sharp neighborhood of 0 and P , Q : U −→
ρR̃ be maps defined on U . Then we say that

P (u) = o(Q(u)) as u→ 0

if there exists a function R : U −→ ρR̃ such that

∀u ∈ U : P (u) = R(u) ·Q(u) and lim
u→0

R(u) = 0,

where the limit is taken in the sharp topology.
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(ii) Let x, y ∈ ρR̃ and k, j ∈ R>0, then we write x =j y if there exist representa-
tives (xε), (yε) of x, y, respectively, such that

|xε − yε| = O(ρ
1
j
ε ). (3.11)

We will read x =j y as x is equal to y up to j-th order infinitesimals. Finally,

if k ∈ N>0, we set Dkj :=
{
x ∈ ρR̃ | xk+1 =j 0

}
, which is called the set of

k-th order infinitesimals for the equality =j , and

D∞j :=
{
x ∈ ρR̃ | ∃k ∈ N>0 : xk+1 =j 0

}
which is called the set of infinitesimals for the equality =j .

Of course, the reformulation of Def. 36 (i) for the classical Landau’s little-oh is

particularly suited to the case of a ring like ρR̃, instead of a field. The intuitive
interpretation of x =j y is that for particular (e.g. physics-related) problems one
is not interested in distinguishing quantities whose difference |x − y| is less than
an infinitesimal of order j. In fact, if x =j y we can write xε = yε + rε with

rε → 0 of order at most ρ
1
j
ε . The idea behind taking 1

j in (3.11) is to obtain

the property that the greater the order j of the infinitesimal error, the greater
the difference |x − y| is allowed to be. This is a typical property in rings with
nilpotent infinitesimals (see e.g. [26, 43]). The set Dki represents the neighborhood
of infinitesimals of k-th order for the equality =j . Once again, the greater the order
k, the bigger is the neighborhood (see Theorem 37.(ix) below). Note that if x =j y,

then xε = yε+o

(
ρ

1
j −a
ε

)
for all a ∈ (0, 1/j]R. In particular, xε = yε+o (ρε) implies

x =1 y, whereas x =1 y yields only xε = yε + o
(
ρ1−a
ε

)
for all a ∈ (0, 1]R. Finally,

note that x =j y is equivalent to |x− y| ≤ Cdρ
1
j for some C ∈ R≥0.

Theorem 37. Let f ∈ ρGC∞(U, ρR̃) be a generalized smooth function defined in the

sharply open set U ⊆ ρR̃. Let x, δ ∈ ρR̃, with δ > 0 and [x− δ, x+ δ] ⊆ U . Let k, l,
j ∈ R>0. Then

(i) ∀n ∈ N : f(x+ u) =
∑n

r=0
f(r)(x)

r! ur + o(un) as u→ 0.
(ii) The definition of x =j y does not depend on the representatives of x, y.

(iii) =j is an equivalence relation on ρR̃.
(iv) If x =j y and l ≥ j, then x =l y. Therefore, Dnj ⊆ Dnl.
(v) If x =j y for all j ∈ R>0 sufficiently small, then x = y.
(vi) If x =j y and z =j w then x + z =j y + w. If x and z are finite, then

x · z =j y · w.
(vii) If x =j y, f ∈ ρGC∞([a, b], ρR̃), x, y ∈ [a, b], and f ′(c) is finite for all c ∈ [a, b],

then f(x) =j f(y).
(viii) ∀h ∈ Dkj : h ≈ 0.
(ix) Dmj ⊆ Dkj ⊆ D∞j if m ≤ k.

(x) Dkj is a subring of ρR̃. For all h ∈ Dkj and all finite x ∈ ρR̃, we have
x · h ∈ Dkj.

(xi) Let n ∈ N>0 and assume that j, k and f satisfy

∀z ∈ ρR̃ ∀ξ ∈ [x− δ, x+ δ] : z =j 0 ⇒ z · f (n+1)(ξ) =k 0. (3.12)
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Then, we have

∀u ∈ Dnj : f(x+ u) =k

n∑
r=0

f (r)(x)

r!
ur.

(xii) For all n ∈ N>0 there exist e ∈ R>0 such that e ≤ j, and ∀u ∈ Dne :

f(x+ u) =j

∑n
r=0

f(r)(x)
r! ur.

We shall use the nilpotent Taylor formula (xii) in Sec. 5 for the deduction of the
heat and wave equation for GSF; we therefore note here that the index e depends
on the GSF f : in that case, we say that the nilpotent Taylor formula of order n
holds for f on Dne. From (iv) it hence follows that it also holds on Dne′ for all
e′ ≤ e.

4. Differential equations: the Picard-Lindelöf theorem for ODE

As in the classical case, thanks to the extreme value Lem. 28 and the properties
of functionally compact sets K, we can naturally define a topology on the space
ρGCk(K, ρR̃d):

Definition 38. Let K ⋐f
ρR̃n be a functionally compact set such that K =

◦
K

(so that partial derivatives at boundary points can be defined as limits of partial
derivatives at interior points; such K are called solid sets). Let l ∈ N≤k and

v ∈ ρGCk(K, ρR̃d). Then

∥v∥l := max
|α|≤l
1≤i≤d

max
(∣∣∂αvi(Mni)

∣∣ , ∣∣∂αvi(mni)
∣∣) ∈ ρR̃,

where Mni, mni ∈ K satisfy

∀x ∈ K : ∂αvi(mni) ≤ ∂αvi(x) ≤ ∂αvi(Mni).

The following result permits us to calculate the (generalized) norm ∥v∥l using any
net (vε) that defines v.

Lemma 39. Under the assumptions of Def. 38, let [Kε] = K ⋐f
ρR̃n be any

representative of K. Then we have:

(i) If the net (vε) defines v, then ∥v∥l =
[
max |α|≤l

1≤i≤d

maxx∈Kε

∣∣∂αviε(x)∣∣] ∈ ρR̃;

(ii) ∥v∥l ≥ 0;
(iii) ∥v∥l = 0 if and only if v = 0;

(iv) ∀c ∈ ρR̃ : ∥c · v∥l = |c| · ∥v∥l;
(v) For all u ∈ ρGCk(K, ρR̃d), we have ∥u + v∥l ≤ ∥u∥l + ∥v∥l and ∥u · v∥l ≤

cl · ∥u∥l · ∥v∥l for some cl ∈ ρR̃>0.

Using these ρR̃-valued norms, we can naturally define a topology on the space
ρGCk(K, ρR̃d).

Definition 40. Let K ⋐f
ρR̃n be a solid set. Let l ∈ N≤k, u ∈ ρGCk(K, ρR̃d),

r ∈ ρR̃>0, then

(i) Bl
r(u) :=

{
v ∈ ρGCk(K, ρR̃d) | ∥v − u∥l < r

}
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(ii) If U ⊆ ρGCk(K, ρR̃d), then we say that U is a sharply open set if

∀u ∈ U ∃l ∈ N≤k ∃r ∈ ρR̃>0 : Bl
r(u) ⊆ U.

One can easily prove that sharply open sets form a sequentially Cauchy complete

topology on ρGCk(K, ρR̃d), see e.g. [29, 54].
The Banach fixed point theorem can be easily generalized to spaces of generalized

continuous functions with the sup-norm ∥− ∥0 (see Def. 38). As a consequence, we

have the following Picard-Lindelöf theorem for ODE in the ρGCk setting, see also
[23, 54].

Theorem 41. Let t0 ∈ ρR̃, y0 ∈ ρR̃d, α, r ∈ ρR̃>0. Let F ∈ ρGCk([t0 − α, t0 + α]×
Br(y0),

ρR̃d). Set M := max
t0−α≤t≤t0+α

|y−y0|≤r

|F (t, y)|, L := max
t0−α≤t≤t0+α

|y−y0|≤r

|∂yF (t, y)| ∈ ρR̃ and

assume that

α ·M ≤ r,

lim
n→+∞

αnLn = 0, (4.1)

where the limit in (4.1) is clearly taken in the sharp topology. Then there exists a

unique solution y ∈ ρGCk+1
(
[t0 − α, t0 + α], ρR̃d

)
of the Cauchy problem{

y′(t) = F (t, y(t))

y(t0) = y0.
(4.2)

This solution is given by

y = lim
n→+∞

Pn(y0)

P (y)(t) : = y0 +

ˆ t

t0

F (s, y(s)) ds ∀t ∈ [t0 − α, t0 + α],

and for all n ∈ N satisfies ∥y − Pn(y0)∥0 ≤ αM
∑+∞

k=n
αnLn

n! and ∥y − y0∥0 ≤ r.

Finally, we have the following Grönwall-Bellman inequality in integral form:

Theorem 42. Let α ∈ ρR̃>0. Let u, a, b ∈ ρGCk
(
[0, α], ρR̃

)
and assume that

∥a∥0 · α < N · log
(
dρ−1

)
for some N ∈ N. Assume that a(t) ≥ 0 for all t ∈ [0, α],

and that u(t) ≤ b(t) +
´ t
0
a(s)u(s) ds. Then

(i) For every t ∈ [0, α] we have

u(t) ≤ b(t) +

ˆ t

0

a(s)b(s)e
´ t
s
a(r) dr ds.

(ii) If b(t) ≤ b(s) for all t ≤ s, i.e. if b is non-decreasing, then for every t ∈ [0, α]
we have

u(t) ≤ b(t)e
´ t
0
a(s) ds.

Finally, the following theorem considers global solutions of homogeneous linear
ODE:
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Theorem 43 (Solution of homogeneous linear ODE). Let A ∈ ρGC∞([a, b], ρR̃d×d),

where a, b ∈ ρR̃, a < b, and t0 ∈ [a, b], y0 ∈ ρR̃d. Assume that∣∣∣∣ˆ t

t0

A(s)ds

∣∣∣∣ ≤ −C · log dρ ∀t ∈ [a, b], (4.3)

where C ∈ R>0. Then there exists one and only one y ∈ ρGC∞([a, b], ρR̃d) such that{
y′(t) = A(t) · y(t) if t ∈ [a, b]

y(t0) = y0
(4.4)

Moreover, this y is given by y(t) = exp
(´ t

t0
A(s)ds

)
· y0 for all t ∈ [a, b].

In general, the solution of a differential equation in a non-Archimedean setting is
defined on an infinitesimal neighborhood of the initial condition. This is a general
fact of every non-Archimedean theory having at least one positive and invertible
infinitesimal h. If fact, the Cauchy problem{

y′ = − t
1+y · 1

h

y(0) = 0
(4.5)

has solution y(t) = −1 +
√

1− t2

h which is defined and smooth only in the infin-

itesimal interval (−
√
h,

√
h). Moreover, we have that limt→±

√
h y

′(t) = +∞ (in

the sharp topology) and this clearly shows that the solution cannot be extended.
However, very general sufficient conditions to have non-infinitesimal domains can
be proved, considering e.g. the case where the right hand side F in (4.2) is an ordi-
nary smooth function, or when we extend the theory of Picard iterations Pn to an

infinite natural number n = [nε] ∈ ρR̃, nε ∈ N, see [54]. We also finally state that a
very general Picard-Lindelöf theorem can also be proved for PDE, see [33, 34, 18].

5. Formal deductions corresponding to informal reasonings

In the previous sections, we reviewed GSF theory and we hope we persuaded the
reader that a meaningful and sufficiently complete theory containing infinitesimal
and infinite numbers is possible. This non-Archimedean theory does not require
any background in mathematical logic, has clear connections with the usual stan-
dard calculus, is intuitively clear, but also solves non trivial problems such as the
possibility to consider generalized functions with infinite derivatives, making non-
linear operations on Schwartz distributions and sharing several results of ordinary
smooth functions.

Now, the framework of GSF theory allows one to formalize several informal
reasonings with the intuitive use of infinitesimal and infinite numbers we can find
in physics, engineering and even in mathematics. The main goal is absolutely
not the empty searching for the mathematical rigour, but the learning of the true
rules of infinitesimal calculus instead of unclear foggy explanations and, mainly, the
flexibility to create new and simpler mathematical models of real-world problems.
As a trivial example, using the Taylor formula with nilpotent infinitesimals Thm. 37,

if v2

c2 ∈ D1j , we can write (1.1) as 1/
√

1− v2/c2 =j 1 + v2

2c2 for all j ∈ R>0 and

Einstein calculations remain essentially unchanged. In the next sections, we will
see that this method not only allows one to obtain a rigorous version of the usual
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informal deductions of the heat and wave equations, but that these same proofs
show the validity of these equations for GSF, opening new applications for example
to optics of different materials and geophysics.

A frequently underestimated consequence of seeing generalized functions, e.g. any
Schwartz distribution T , as set-theoretical functions is that pointwise values T (x0)
are now always well-defined. Therefore, non-linear boundary value problems are
now conceivable (see e.g. (4.2)), and this is a solution of a non trivial drawback of
Schwartz theory having important consequences for mathematical modeling.

5.1. Derivation of the heat equation for GSF. In this section, we derive the
heat equation in a similar way to [77, 27], with the difference that here we extend
the applicability to GSF and not only to smooth functions. Let (e⃗1, e⃗2, e⃗3) denotes

the standard basis of R3, so that any vector a ∈ ρR̃3 is of the form a = λ1 · e⃗1 +
λ2 · e⃗2 + λ3 · e⃗3 for λ1, λ2, λ3 ∈ ρR̃. In the following, a symbol of the form δy ∈ ρR̃
intuitively means that the infinitesimal increment δy is associated to the variable
y.

Let us consider a body B ⊆ ρR̃3 represented by a solid set, i.e. B =
◦
B, so that

values of GSF on the boundary of B can be computed as limits of values at interior
points. We consider the following GSF:

• ϱ : B → ρR̃ (mass density) ,

• c : B → ρR̃ (heat capacity),

• k : B → ρR̃ (thermal conductivity coefficient).

Note that we do not make any assumptions on the favoured directions of these
functions on their domain B. This assumption corresponds to the isotropy condition
for B. The next GSF we need represents the temperature of the body B at each

point x ∈ B and time t ∈ [0,∞) and is denoted by u : B × [0,∞) → ρR̃.
We choose an interior point x ∈

◦
B and an infinitesimal volume V ⊂ ρR̃3 of the form

V = V (x, δx̄) = {y ∈ ρR̃3| − δxi ≤ 2(y − x) · e⃗i ≤ δxi ∀i = 1, 2, 3}, (5.1)

where δxi ∈ ρR̃>0 and δx̄ := (δx1, δx2, δx3). Such a set is said to be an infinitesimal
parallelepiped if δv := δx1 · δx2 · δx3 ≈ 0, that is, if the corresponding volume is

infinitesimal. Note that since x ∈
◦
B, we have ∃δx̄ ∈ ρR̃3

>0 : V = V (x, δx̄) ⊆ B,
and hence we can view V as the subbody of B corresponding to the infinitesimal
parallelepiped centered at x with sides parallel to the coordinate axes. This subbody
interacts thermally with its complement CV := B \ V and with external heat
sources. In this type of deductions, the physical part frequently consists, from the
mathematical point of view, in physically meaningful definitions or assumptions
corresponding to physical principles or constitutive relations. For example, we
now recall Fourier’s law, which states that during the infinitesimal time interval δt
the heat QCV,V flowing perpendicularly to the surface of V defines the exchange
between V and CV , and this yields the following

QCV,V := QCV,V (x, t, δt, δx̄) (5.2)

= δt ·
3∑

i=1

δsi · [k(x+ δ⃗hi) ·
∂u

∂xi
(x+ δ⃗hi, t)− k(x− δ⃗hi) ·

∂u

∂xi
(x− δ⃗hi, t)],

(5.3)
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where δ⃗hi :=
1

2
δxi · e⃗i ∈ ρR̃3 and δsi :=

∏
j ̸=i δxj ∈

ρR̃. Note explicitly that QCV,V

depends on x, t, δt, δxi. The heat exchange of V due to thermal interactions with
external sources is given by the expression

Qext,V := Qext,V (x, t, δt, δx̄) = F (x, t) · δv · δt, (5.4)

where F (x, t) : B → ρR̃ is a GSF representing the intensity of the thermal sources.
The total heat is QCV,V + Qext,V and it corresponds to the increment u(x, t +
δt) − u(x, t) of the temperature of V and hence to an exchange of heat with the
environment Qenv,V that reads

Qenv,V := Qenv,V (x, t, δt, δx̄) = [u(x, t+ δt)− u(x, t)] · c(x) · ϱ(x) · δv, (5.5)

= QCV,V +Qext,V . (5.6)

We now want to apply the first order nilpotent Taylor formula Thm. 37.(xii), at
(5.2) and (5.5), i.e. at the GSF k, ∂u

∂xi
(−, t) and u(x,−). From (xii) and (iv) of

Thm. 37, if these formulas hold respectively on D1e′ , D1e′′ and D1ē, then they
also hold on D1e, where e = min(e′, e′′, ē, j). We choose our infinitesimals in such
a way that δv · δt ∈ D1e, δt · δsi · (δxi)2 =j 0 and (δt)2δv =j 0. Using these
infinitesimals, second order terms using nilpotent Taylor formula Thm. 37.(xi) in
(5.2) and (5.5) will not give a contribution if we use the equality =j . We will
see later that infinitesimals δt and δxi satisfying all the needed conditions actually
exist.
This allows us to rewrite (5.2) and (5.5) as follows

QCV,V =j div[k · grad(u)](x, t) · δv · δt, (5.7)

Qenv,V =j c(x) · ϱ(x) ·
∂u

∂t
(x, t) · δv · δt. (5.8)

Note that the calculations with the nilpotent Taylor formula to get (5.7) correspond
to the divergence theorem. From (5.7), (5.4) and (5.8) we therefore get that the
equality Qenv,V =j QCV,V +Qext,V is equivalent to

c(x) · ϱ(x) · ∂u
∂t

(x, t)δtδv =j [div[k · grad(u)](x, t) + F (x, t)] δtδv. (5.9)

More precisely: (5.6) implies (5.9), and the latter implies the former but with =j

replacing =. The following theorem allows us to cancel the nilpotent factor δtδv in
(5.9):

Theorem 44. Let x, r, s ∈ ρR̃, |x| ≥ dρq, j ∈ R>0. Assume that x · r =j x · s
and 1

j − q =: 1
k > 0. Then r =k s. Vice versa, if r =k s, and x is finite, then

x · r =k x · s.

Proof. Assume that x · r =j x · s. Then |xr − xs| ≤ Cdρ
1
j , with C ∈ R≥0. Then ,

|r − s| = |x| · |r − s| · 1

|x|
≤ C · dρ

1
j

dρq
= C · dρ

1
j −q = Cdρ

1
k since 1

k = 1
j − q. For the

second part of the conclusion, x finite means |x| ≤ K ∈ R>0, so that |r−s| ≤ Cdρ
1
k

implies |xr − xs| ≤ KCdρ
1
k . □

This derivation is summed up in the following Lemma which we just have proven.
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Lemma 45. Let B ⊆ ρR̃3, B =
◦
B, and consider the GSF ϱ, c, k : B → ρR̃, u,

F : B× [0,∞) → ρR̃. Take a point (x, t) ∈
◦
B× [0,∞) and define V , QCV,V , Qext,V

and Qenv,V as in (5.2), (5.4), (5.5), where the infinitesimals δt, δxi ∈ ρR̃>0 satisfy

δv · δt ∈ D1e, δt · δsi · (δxi)2 =j 0, (δt)2δv =j 0 (5.10)

δv · δt ≥ dρq,
1

k
=

1

j
− q,

and where the first order nilpotent Taylor formula for k, ∂u
∂xi

(−, t) and u(x,−) holds
in D1e. Then the following are equivalent:

(i) Qenv,V =j QCV,V +Qext,V ,

(ii) c(x) · ϱ(x) · ∂u
∂t

(x, t) =k div[k · grad(u)](x, t) + F (x, t).

Note that this result corresponds to the usual informal derivation, but it is now
stated as a formal theorem where the use of nilpotent infinitesimals and the corre-
sponding Taylor formula is now precise.

The next natural steps thus concern the existence of infinitesimals satisfying
(5.10) and how to obtain a true equality = in the final heat equation for GSF.

Conditions (5.10) hold if e.g. we choose δt = dρ
1
3e and δxi = dρ

1
5e (recall that e ≤ j

and note that these infinitesimals depend on j); thereby, it easily follows that we
can take q = q(j) = 14

15j and hence k = k(j) = 15j.

Finally, assume that Qenv,V (x, t, δt, δx̄) = QCV,V (x, t, δt, δx̄) + Qext,V (x, t, δt, δx̄)
holds at (x, t) and for all infinitesimals δt, δx̄. Thereby (using simplified notations)

Qenv,V =j QCV,V +Qext,V ∀j ∈ R>0. (5.11)

Lemma 45 yields the heat equation with equality up to order k(j) = 15j. If we now
let j → 0+, then also k(j) → 0+ and hence Thm. 37.(v) proves the heat equation
with =.

Even if it is true that the full equality = implies =k(j) in the heat equation,
the opposite implication (i.e. that (ii) above but with = instead of =k, implies (i)
above with = instead of =j) cannot be proved simply by reversing the previous
steps because we would arrive at (5.11) with infinitesimals δt = δt(j), δx̄ = δx̄(j)
satisfying (5.10) that would depend on j: taking j → 0+ in (5.11) would not get
anything meaningful because δt(j), δx̄(j) → 0.
The final result is then stated as follows:

Theorem 46. Let B ⊆ ρR̃3, B =
◦
B, and consider the GSF ϱ, c, k : B → ρR̃, u,

F : B× [0,∞) → ρR̃. Take a point (x, t) ∈
◦
B× [0,∞) and define V , QCV,V , Qext,V

and Qenv,V as in (5.2), (5.4), (5.5). Finally assume that Qenv,V (x, t, δt, δx̄) =
QCV,V (x, t, δt, δx̄) + Qext,V (x, t, δt, δx̄) holds at (x, t) and for all infinitesimals δt,
δx̄. Then

c(x) · ϱ(x) · ∂u
∂t

(x, t) = div[k · grad(u)](x, t) + F (x, t). (5.12)

Moreover, if these conditions hold at all points x ∈
◦
B, then equation (5.12) holds

on the entire B because B =
◦
B.

5.2. Derivation of the wave equation for GSF. In this section, we derive the
wave equation in a similar way to [77, 27], with the difference that we extend its
applicability to GSF and not only to smooth functions. Consider a string with
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given equilibrium position located on an interval [a, b] ⊆ ρR̃ for a, b ∈ ρR̃, a < b. Let
this string now make small transversal oscillations around its equilibrium position.

The position st ⊆ ρR̃2 of the string is always represented by the graph of a curve

γ : [a, b] × [0,∞) → ρR̃2. Furthermore, we set γxt := γ(x, t), st := {γxt ∈ ρR̃2 |
a ≤ x ≤ b} for all t ∈ [0,∞). The curve γ is supposed to be injective with respect
to x ∈ (a, b), i.e. γx1t ̸= γx2t for all t ∈ [0,+∞) and all x1, x2 ∈ (a, b) such that
x1 ̸= x2; therefore, the order relation on (a, b) implies an order relation on the
support st. For all pairs of points p = γxpt, q = γxqt ∈ st on the string at time t,
we can define the subbodies [p := {γxt | xp ≤ x ≤ b}, p] := {γxt | a ≤ x ≤ xp}
and [p|q] := {γxt | xp ≤ x ≤ xq} corresponding to the parts of the string after the
point p ∈ st, before the same point and between the points p, q ∈ st. Clearly, every
subbody of the form p] exerts a force on every other subbody it is in contact with,

i.e. [p|q] and p]. Moreover, the force F⃗ (A,B) ∈ ρR̃ exerted by the subbody A on
the subbody B satisfies the following equalities:

F⃗ ([p|q], p]) = F⃗ ([p, p]) (5.13)

F⃗ ([q, [p|q]) = F⃗ ([q, q]) (5.14)

F⃗ (p], [p|q]) = −F⃗ ([p|q], p]), (5.15)

for all pairs of points p, q ∈ st and time t ∈ [0,∞). The third equation (5.15)
corresponds to the action-reaction principle.

We can now define the tension T⃗ at the point γxt ∈ st and time t ∈ [0,∞) as

T⃗ (x, t) := F⃗ ([γxt, γxt]). (5.16)

Consider now the infinitesimal subbody [x|x + δx] := [γxt|γx+δx,t] ⊆ st located at
time t between the points γxt ∈ st and γx+δx,t ∈ st, and defined by the first order
infinitesimal δx ∈ D1j , δx > 0. We have an action on this infinitesimal subbody

due to mass forces of linear density G⃗ : [a, b] × [0,∞) → ρR̃2 that allows us to
represent Newton’s law as follows:

ρ · δx · ∂
2γ

∂t2
= F⃗ (γxt], [x|x+ δx]) + F⃗ ([γx+δx,t, [x|x+ δx]) + G⃗ · ϱ · δx, (5.17)

where ϱ : [a, b] × [0,∞) → ρR̃2 is the linear mass density, and all functions, unless
stated otherwise, are evaluated at (x, t) ∈ (a, b)× [0,∞).
The contact forces appearing in Newton’s law are caused by the interaction of the
infinitesimal subbody with other contacting subbodies along the border ∂[x|x +

δx] = {γxt, γx+δx,t} ⊆ ρR̃2. Using now relations (5.14) and (5.15) with q = γx+δx,t

and p = γxt, so that [p|q] = [x|x+ δx], we see by (5.17) that

ρ · δx · ∂
2γ

∂t2
= −F⃗ ([x|x+ δx], γxt]) + F⃗ ([γx+δx,t, γx+δx,t]) + G⃗ · ρ · δx. (5.18)

By (5.13), the definition of tension (5.16) and inserting it in (5.18), we obtain

ρ · δx · ∂
2γ

∂t2
= −F⃗ ([γxt, γxt]) + F⃗ ([γx+δx,t, γx+δx,t]) +

−→
G · ρ · δx

= −T⃗ (x, t) + T⃗ (x+ δx, t) + G⃗ · ρ · δx. (5.19)
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Note that, up to now, we have not used neither the small oscillation nor the transver-

sal oscillation hypothesis of the force G⃗. As for the latter, it can be introduced with
the assumption

G⃗(x, t) · e⃗1 = 0 ∀x, t, (5.20)

where (e⃗1, e⃗2) are the axial unit vectors. Let now φ(x, t) denote the non-oriented

angle between the tangent unit vector t⃗(x, t) := ∂γ
∂x (x, t)/

∣∣∣∂γ∂x (x, t)∣∣∣ (a subsequent

assumption will guarantee that t⃗ always exists) at the point γx,t and the x-axis,

i.e. the unique φ(x, t) ∈ [0, π] ⊆ ρR̃ defined by

t⃗(x, t) = cos(φ(x, t))e⃗1 + sin(φ(x, t))e⃗2. (5.21)

Setting (γ1, γ2) = γ for the two components of the curve γ, from this equality
directly follows

∂γ1
∂x

sinφ =
∂γ2
∂x

cosφ (5.22)

The small oscillation hypothesis can then be formalized with the assumption that
this angle φ(x, t) is a first order infinitesimal (in the following Thm. 47, we will
assume a weaker assumption), i.e.

φ(x, t) ∈ D1j ∀x, t. (5.23)

This allows us to recreate the classical derivation in the most faithful possible way.
Furthermore, in the standard proof of the wave equation, only curves of the specific
form γxt = (x, u(x, t)) are considered (this implies that the tangent unit vector
t⃗(x, t) always exists). The Tayor-formula for nilpotent infinitesimals Thm. 37.(xi)
yields sin(φ) =j φ ∈ D1j and cos(φ) =j 1 (note that assumption (3.12) holds

for any j and k for both sin(x) and cos(x)), and hence
∂γ2
∂x

=j φ from (5.22).

Therefore,

(
∂γ2
∂x

)2

=j 0 and the total length of the string becomes

L =

ˆ b

a

√
1 +

[
∂γ2
∂x

(x, t)

]2
dx =j b− a ∀t ∈ [0,∞). (5.24)

Following Hooke’s law, this allows us to assume that the tension is of constant

modulus T = |T⃗ (x, t)| that is neither depending on the position x nor on the time
t, i.e.

T⃗ (x, t) = T · t⃗(x, t) ∀x ∈ (a, b)∀t ∈ [0,∞). (5.25)

Note that, as a second part of the hypothesis about nontransversal oscillations of

the string, we have that the tension T⃗ is parallel to the tangent vector. We then
project equation 5.19 to the y-axis and obtain

ρ · δx · ∂
2u

∂t2
= −T · t⃗(x, t) · e⃗2 + T · t⃗(x+ δx, t) · e⃗2 + G⃗ · e⃗2 · ρ · δx

= −T · sin(φ(x, t)) + T · sin(φ(x+ δx), t) +G2 · ρ · δx

= T ·
[
∂u

∂x
(x+ δx, t) cos(φ(x+ δx, t))− ∂u

∂x
(x, t) cos(φ(x, t))

]
(5.26)

+G2 · ρ · δx, (5.27)

where G2 = G⃗ · e⃗2 is the second component of G⃗. Now, assume that the first
order Taylor formula for ∂u

∂x (−, t) holds on D1e, with e ≤ j, and take δx ∈ D1e,
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δx ≥ dρq (e.g. δx = dρ
1
2e+

1
2 ). Then, cos(φ(x + δx, t)) =j 1 =j cos(φ(x, t)) and

∂u
∂x (x+ δx, t)− ∂u

∂x (x, t) =j
∂2u
∂x2 (x, t)δx, and from (5.26) we hence get

ρ · δx · ∂
2u

∂t2
=j T

∂2u

∂x2
(x, t)δx+G2 · ρ · δx.

We can now use the cancellation law Thm. 44 to cancel out the δx obtaining

ρ
∂2u

∂t2
=k T

∂2u

∂x2
(x, t) +G2ρ, (5.28)

for 1
k = 1

j − q.

Can we take j → 0+ (and hence k → 0+) in (5.28)? Actually no, because all this
deduction depends on the small oscillations assumption (5.23), and the only φ ∈ D1j

for all j is φ = 0, i.e. the string is not oscillating at all. In order to underscore that
this classical deduction of the wave equation leads to an approximate equality only,
we generalize the previous proof in the following

Theorem 47. Let a, b ∈ ρR̃, with a < b, γ : [a, b]×[0,∞) → ρR̃2, ρ : [a, b]×[0,∞) →
ρR̃, G⃗, T⃗ : [a, b]× [0,∞) → ρR̃2 be GSF, and let T ∈ ρR̃ be an invertible generalized
number such that both T and 1

T are finite. Suppose that γ(x, t) = (x, u(x, t)) for

all x, t, and let t⃗(x, t) be the unit tangent vector to γ. Assume that at least an
approximate version of Hooke’s law and the second Newton’s law

T⃗ (x, t) =j T · t⃗(x, t), (Hooke)

ρ · δx · ∂
2γ

∂t2
(x, t) = T⃗ (x+ δx, t)− T⃗ (x, t) + G⃗ · ρ · δx, (II Newton)

hold for every point (x, t) ∈ (a, b) × [0,∞) and for an infinitesimal δx = dρq such
that δx ∈ D1e, where the first order Taylor formula for ∂u

∂x (−, t) holds on D1e and

e ≤ j. Finally, let φ(x, t) be the non-ordered angle between t⃗(x, t) and the x-axis,

and suppose that
∂φ

∂x
(x, t) ≥ dρp, φ(x, t) < π

2 . Then we have:

(i) If ρ(x, t) · ∂
2u

∂t2
(x, t) =j T · ∂

2u

∂x2
(x, t)+G2(x, t) ·ρ(x, t), then cos3(φ(x, t)) =h 1,

where 1
h = 1

j − p− 2q.

(ii) If cos3(φ(x, t)) =j 1, then ρ(x, t) ·
∂2u

∂t2
(x, t) =k T · ∂

2u

∂x2
(x, t)+G2(x, t) ·ρ(x, t),

where 1
k = 1

j − q.

For example, the assumption of (ii) holds if φ(x, t) ∈ Dkȷ̂ and
(k+1)

2 ȷ̂ = j. Finally,
if φ(x, t) ∈ D3j for all x, t, and b− a is finite, then length(γ(−, t)) =2j b− a.

Proof. As usual, if the arguments of a function are missing, we mean they are
evaluated at (x, t).
(i): Projecting (II Newton) on e⃗2 and using (Hooke) and (5.21) we get

ρδx
∂2u

∂t2
= T sin(φ(x+ δx, t))− T sin(φ(x, t)) +G2ρδx.

Therefore, the assumption of (i) implies

T sin(φ(x+ δx, t))− T sin(φ(x, t)) +G2ρδx =j T
∂2u

∂x2
δx+G2ρδx.
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Since δx ∈ D1e and e ≤ j, we can use the first order Taylor formula with ∂u
∂x (−, t)

to get

T sin(φ(x+ δx, t))− T sin(φ(x, t)) +G2ρδx =j

Tδx

[
∂u

∂x
(x+ δx, t)− ∂u

∂x
(x, t)

]
+G2ρδx.

Multiply by 1
T (which is finite, see Thm. 44) and use (5.22) considering that

φ(x, t) < π
2 to obtain

[sin(φ(x+ δx, t))− sin(φ(x, t))] δx =j [tan(φ(x+ δx, t))− tan(φ(x, t))] δx.

Using the cancellation law Thm. 44 with 1
k := 1

j − q, this yields

sin(φ(x+ δx, t))− sin(φ(x, t)) =k tan(φ(x+ δx, t))− tan(φ(x, t)).

We can use the first order Taylor formula Thm. 37.(xi) both with sin(φ(−, t)) and
tan(φ(−, t)) because e ≤ j and hence δx ∈ D1e ⊆ D1j ⊆ D1k (note that the
derivatives of these functions are always finite because φ(x, t) < π

2 )

δx · cos(φ) · ∂φ
∂x

=k δx
1

cos2(φ)
· ∂φ
∂x

.

Simplifying by δx · ∂φ∂x ≥ dρq+p, we obtain cos(φ) =h
1

cos2(φ) , where
1
h := 1

k −p−q =
1
j − p− 2q. Since cos2(φ) is finite, using Thm. 44 we obtain the conclusion.

(ii): It suffices to invert all the previous steps starting from cos3(φ) =j 1 and
considering that we always have to multiply by finite numbers. Only in the last
step we need to simplify by δx and hence we switch from =j to =k.

From Taylor formula with Peano remainder Thm. 37.(i) we have cos3(φ) =(
1− φ2

2 + o(φ3)
)3

= 1− 3
2φ

2 + o(φ3). If φ ∈ Dkȷ̂, then |φk+1| ≤ Cdρ
1
ȷ̂ and hence

φ2 ≤ Cdρ
2

(k+1)ȷ̂ = Cdρ
1
j and

∣∣cos3(φ)− 1
∣∣ = ∣∣ 3

2φ
2 + o(φ3)

∣∣ ≤ C̄dρ
1
j . Note that

this property includes the classical case φ ∈ D1j , but also e.g. φ ∈ D2j−1,1.
Finally, assume that φ(x, t) ∈ D3j for all x, t. From Taylor formula sin(φ) =j

φ−φ3

6 and cos(φ) =j 1−φ2

2 . Therefore, (5.22) yields φ−φ3

6 =j
∂u
∂x

(
1− φ2

2

)
. Taking

the square and considering that φ4 =j 0, this implies φ2 =j

(
∂u
∂x

)2 (
1− φ2

)
. Multi-

plying both sides by 1+φ2 and using again that φ4 =j 0 we obtain
(
∂u
∂x

)2
(x, t) =j

φ2(x, t) for all x, t. The mean value theorem Thm. 27.(ii) and Thm. 37.(vii) yield

length(γ(−, t)) =

√
1 +

(
∂u
∂x

)2
(c, t) · (b − a) =j

√
1 + φ2(c, t) · (b − a) for some

c ∈ [a, b]. The Taylor formula with Peano remainder applied to the function
√
1 + x

gives length(γ(−, t)) =j b − a + b−a
2 φ2(c, t) + o(φ), which implies the conclusion

because
∣∣ b−a

2

∣∣φ2(c, t) ≤ Cdρ
1
2j . □

This theorem suggests the following comments and potential applications:

(i) It highlights that the wave equation is intrinsically approximated because it
implies cos3(φ) =h 1, which is necessarily only an approximated relation.

(ii) It is formulated as a general mathematical theorem depending on two as-
sumptions corresponding to physical laws.

(iii) In our deduction, we do not conclude by “magically” transforming approxi-
mate equalities ≃ into true equalities = or neglecting little-oh terms despite
keeping true equalities.
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(iv) The validity of the wave equation for GSF can find possible applications in
geophysics. In seismology, we have for example elastodynamical oscillations
after earthquakes or simply the elastodynamical properties of materials that
have a rapid change in density like the seabed or earth’s crust. This leads to
the seismological base equations of elastodynamics with a special case being
the isotropic wave equation where the setting of GSF could be used to treat
the special case with non-smooth coefficients. A motivation for this topic can
be found in [6, 9].

(v) Other potential applications can also be considered in global seismology,
where one is dealing with seismic wave propagation. In fact, hyberbolic PDE
in global seismology do have generalized functions as coefficients, together
with a singular structure created by geological and physical processes. These
processes are supposed to behave in a fractal way. In the so-called seismic
transmission problem, we want to diagonalize a first order system of PDE
and then transform it to the second order wave equation. This requires us
to differentiate the coefficients, which means that even though the original
model medium varies continuously, coefficients that are (highly) discontinu-
ous will naturally appear in this procedure. A possible way to deal with this
is to embed the fractal coefficients into GSF or in a Colombeau algebra. See
e.g. [37].

(vi) We can finally think at using GSF in mathematical general relativity, where
one considers wave equations on Lorentzian manifolds with non-smooth met-
ric, i.e. non-smooth coefficients in the corresponding wave equation, see for
example [38]. Colombeau generalized functions is already a tool used to prove
local well-posedness of the wave equation in space times that are of conical
type. Cosmic strings are e.g. objects that can be treated within this the-
ory. There has even been a generalization of this result to a class of locally
bounded space-times with discussion of a static case and an extension to non-
scalar equations. Similar applications can hence be considered using GSF,
because of their better properties with respect to Colombeau theory.

6. Examples of applications

Nature is made up of different bodies, having boundaries and frequently inter-
acting in a non-smooth way. Even the simple motion of an elastic bouncing ball
seems to be more easily modeled using non-differentiable functions than classical C2

ones, at least if we are not interested to model the non-trivial behavior at the col-
lision times. Therefore, the motivation to introduce a suitable kind of generalized
functions formalism in a mathematical model is clear, and this would undoubt-
edly be of an applicable advantage, since many relevant systems are described by
singular mathematical objects: non-smooth constraints, collisions between two or
more bodies, motion in different or in granular media, discontinuous propagation
of rays of light, even turning on the switch of an electrical circuit, to name but a
few, and only in the framework of classical physics. In this section we show several
applications of the theory of GSF we reviewed above.

We will not consider mathematical models of singular dynamical systems at the
times when singularities occur. Indeed, this would clearly require new physical
ideas, e.g. in order to consider the nonlinear behavior of objects or materials for the
entire duration of the singularity. Like in every mathematical model, the correct



INFINITESIMAL AND INFINITE NUMBERS IN APPLIED MATHEMATICS 35

point of view concerns J. von Neumann’s reasonably wide area of applicability of
a mathematical model, i.e. the range of phenomena where our model is expected
to work (see [78, pag. 492]). Therefore, it is not epistemologically correct to use
the theory described in the present article to deduce a physical property of our
modeled systems when a singularity occurs. Stating it with a language typically
used in physics, we consider physical systems where the duration of the singularity
is negligible with respect to the durations of the other phenomena that take place
in the system. Mathematically, this means to consider as infinitesimal the dura-
tion of the singularities. As a consequence, several quantities changing during this
infinitesimal interval of time have infinite derivatives. We can hence paraphrase
the latter sentence saying that the amplitude (of the derivatives) of these physical
quantities is much larger than all the other (finite) quantities we can estimate in the
system. However, this is a logical consequence of our lacking of interest to include
in our mathematical model what happens during the singularity, constructing at
the same time a beautiful and sufficiently powerful mathematical model, and not
because these quantities really become infinite. Thereby, it is not epistemologi-
cally correct to state that, e.g., if a speed is infinite at some singularity, this means
that we must use relativity theory: on the contrary, relativity theory is exactly a
modeling setting where infinite speeds are impossible!

On the other hand, the aforementioned “wide area” is now able to include in
a single equation the dynamical properties of our modeled systems, without being
forced to subdivide into cases of the type “before/after the occurrence of each
singularity”. Which can be considered as not reasonable in several cases, e.g. in the
motion of a particle in a granular medium or of a ray of light in an optical fiber.

Finally, note that remaining far from the singularity (from the point of view of
the physical interpretation), is what allow us to state that in several cases this kind
of models are already experimentally validated.

Moreover, the applications we are going to present always end up with an ODE.
Existence and uniqueness of the solution is therefore guaranteed by Thm. 41.
Clearly, if an explicit analytic solution is possible, this is preferable, but this is
a rare event, and frequently we have to opt for a numerical solution, usually simply
solving the corresponding ε-wise ODE, for several values of sufficiently small ε. This
mean that we are considering numerical solutions of our differential equations as
empirical laboratories helping us to guess suitable properties and hence conjecture
on the solutions. In principle, these properties must be justified by corresponding
theorems. From this point of view, the fact that GSF share with ordinary smooth
functions a lot of classical theorems (such as the intermediate value, the extreme
value, the mean value, Taylor theorems, etc.) is usually of great help. For example,
pictures of Heaviside’s function and Dirac’s delta in Fig. 3.1 are clearly obtained in
the same way by numerical methods, but their properties can be fully justified by
suitable theorems, see e.g. Rem. 13.(i) and (ii) or Example 15.

Finally, we already saw in Sec. 3.2 that if µ is a 1-dimensional Colombeau molli-

fier, and δ is the ιb-embedding of the Dirac delta, then δ(x) = bµ(bx) for all x ∈ ρR̃.

Thereby, the Heaviside function is H(x) =
´ x
c
δ(t) dt =

´ bx
bc
µ(t) dt, for all x ∈ ρR̃

and all c ∈ ρR̃ sufficiently far from 0, i.e. such that c < r < 0 for some r ∈ R<0.
If the oscillations in an infinitesimal neighborhood of 0 shown in Fig. 3.1 have no
modelling meaning, one can easily implement e.g. a non-decreasing Heaviside-like
function by smoothly interpolating the constant functions y = 0 and y = 1 in
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the intervals (−∞, aε]R and [bε,+∞)R, where a = [aε] < 0 < b = [bε] are chosen
depending on the model requirements.

By looking at the examples of this section, some readers may argue that it is
already know how to solve these problems the classical way. However, we can reply
as follows:

(i) No other mathematical theory of GF allows one to write non linear operations
such as those presented in the following, e.g. see (6.1), (6.9), the general
Euler-Lagrange equation (6.4) without limitations thanks to the closure with
respect to composition, i.e. Thm. 14.

(ii) If one thinks that treating informally GF suffices for applications, the formal
calculations starting from H ·H = H and arriving at δ = 0 we presented in
Sec. 1 are an embarrassing drawback that needs a clear solution.

(iii) We already tried to convince the reader that the natural idea to insert a new
parameter ε ∈ (0, 1], regularizing the singularities and then taking ε → 0+

sometimes does not work because the limit may not exist in the class of
smooth functions.

(iv) The lacking of an intuitively clear theory of infinitesimal and infinite quanti-
ties represents a missing useful language to construct simple models, as clearly
stated by V.I. Arnol’d in [2], see also Sec. 1. This has also clear disadvantages
in teaching.

(v) GSF theory allows us to treat GF as if they were smooth with a lot of shared
properties and results. A consequence of this is the possibility to recog-
nize rigorous and clear deduction starting from informal ones and discovering
their real range of applications, frequently including new GF, see Sec. 5 for
examples in this direction.

(vi) The literature recognizes that dealing with non-differentiable Lagrangians in
optics as if they were smooth, see e.g. [79], leads to a theory with a lot of
incorrect steps, see Sec. 6.4.

(vii) Also the authors of [11] recognize that their justifications of several steps in
the treatment of finite and infinite step potential in QM is not completely
clear and better mathematical deductions are needed, see Sec. 6.5.

(viii) The lacking of infinitesimal and infinite quantities in the understanding of
Heisenberg uncertainty principle, see Sec. 6.6, allows one to understand this
principle only at an intuitive level, and this can be surely judged as a draw-
back.

Summarizing these motivations, we can say that GSF theory justifies the use of
several informal calculations with GF and non-smooth functions, and infinitesimal
or infinite quantities, or to understand the behaviour of solution near singulari-
ties. This is already a positive feature because it justifies the freedom of applied
mathematicians, physicists and engineers in this kind of calculations. It also opens
the possibility to learn a rigorous mathematical theory of these notions, and this
proved to be useful in several fields when the foundational problems are particularly
insidious, like in QM, continuum mechanics, thermodynamics, medicine, biology,
information science, economics, social sciences, and urban studies, to name but a
few. It is clear that when problems get deceitful, models based on a strong theory
reduce uncertain steps and allow to acquire a more secure knowledge.



INFINITESIMAL AND INFINITE NUMBERS IN APPLIED MATHEMATICS 37

Figure 6.1. Oscillations of a pendulum wrapping on a parallelepiped

6.1. Singular variable length pendulum. As a first example, we want to study
the dynamics of a pendulum with singularly variable length, e.g. because it is
wrapping on a parallelepiped (see Fig. 6.1; see [57] for a similar but non-singular
case, and [63] for a similar problem of jumps in the Lagrangian, but without the
explicit use of infinitesimals and generalized functions).

The pendulum length function is therefore Λ(θ) = H(θ0 − θ)L1 + L2, where H
is the (embedding of the) Heaviside function. We always assume that L1, L2 ∈
ρR̃>0 are finite and non-infinitesimal numbers. From this it follows that for all θ,

H(θ0 − θ) > dρ−L2

L1
≈ −L2

L1
and hence that also Λ(θ) > dρ is invertible. The kinetic

energy is given by:

T (θ, θ̇) =
1

2
mθ̇2Λ(θ)2. (6.1)

The potential energy (the zero level being the suspension point of the pendulum)
is:

U(θ) = −mgΛ(θ) cos θ −mg(1−H(θ0 − θ))L1 cos θ0. (6.2)

Let us define the Lagrangian L for this problem as

L(θ, θ̇) := T (θ, θ̇)− U(θ). (6.3)

The equation of motion is assumed to satisfy the Euler–Lagrange equation, see also
[24], and can be written as:

∂L

∂θ
=

d

dt

∂L

∂θ̇
. (6.4)

Thereby

d

dt

∂L

∂θ̇
=

d

dt

∂

∂θ̇

(
1

2
mθ̇2Λ(θ)2

)
=

d

dt

(
mθ̇Λ(θ)2

)
= mΛ(θ)2θ̈+2mθ̇Λ(θ)Λ̇(θ), (6.5)
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where Λ̇(θ) := d
dtΛ(θ(t)). From (6.2), the left side of the Euler–Lagrange equation

(6.4) reduces to

∂L

∂θ
=
∂T

∂θ
+
∂(−U)

∂θ
= mθ̇2Λ(θ)Λ′(θ) +mgΛ′(θ) (cos θ − cos θ0)−mgΛ(θ) sin θ,

(6.6)
where

Λ′(θ) =
d

dθ
(H(θ0 − θ)L1 + L2) = −δ(θ0 − θ)L1, (6.7)

and δ is the Dirac delta function. We then obtain the following equation of motion:

mθ̇2Λ(θ)Λ′(θ)+mgΛ′(θ) (cos θ − cos θ0)−mgΛ(θ) sin θ = mΛ(θ)2θ̈+2mθ̇Λ(θ)Λ̇(θ).
(6.8)

Taking into account that Λ̇(θ) = Λ′(θ)θ̇, we finally obtain the equation of motion
for the variable length pendulum:

θ̈ + θ̇
Λ̇(θ)

Λ(θ)
− g

Λ̇(θ)

θ̇Λ(θ)2
(cos θ − cos θ0) +

g

Λ(θ)
sin θ = 0. (6.9)

Note in (6.9) the nonlinear operations on the Schwartz distribution Λ, on the GSF
θ and the composition t 7→ Λ(θ(t)). Before showing the numerical solution of (6.9),
let us consider the simplest case of the dynamics far from the singularity and that
of small oscillations. The former, as we mentioned above, is the only physically
meaningful one.

6.1.1. Description far from singularity and small oscillations. For simplicity, let us
consider the simplest case θ0 = 0. Furthermore, we consider that the pendulum is

initially at rest and starts its movement at t1 ∈ ρR̃. The initial conditions we use
are hence: {

θ(t1) = θ1;

θ̇(t1) = 0,
(6.10)

with θ1 < 0. Assuming that at some time t3 ∈ ρR̃ we have θ(t3) > 0, by the inter-

mediate value theorem for GSF, there exists t2 ∈ ρR̃ where we have the singularity,
i.e. θ(t2) = 0 and the length of the pendulum smoothly (in the sharp topology)
changes from L1 +L2 to L2 after the rope touches the parallelepiped. This change
happens in an infinitesimal interval, because by contradiction it is possible to prove
that if Λ(θ) ∈ (L2, L1 + L2), then |θ| ≤ −1

log dρ ≈ 0.

Definition 48. Let x, y ∈ ρR̃. We say that x is far from y if |x− y| ≥ dρa for all
a ∈ R>0. More generally, we say that x is far from y with respect to the class of

infinitesimals I ⊂ ρR̃, if |x− y| ≥ i for all i ∈ I.

For example, if |x| ≥ r for some r ∈ R>0, then x is far from 0, but also the
infinitesimal number x = −1

k log dρ (k ∈ R>0) is far from 0; similarly, the infinitesimal

x = −1
k log log dρ if far from 0 with respect to all the infinitesimals of the type −1

h log dρ

for h ∈ R>0.
If θ is far from 0 and b ≥ dρ−a, a ∈ R>0, then |bθ| ≥ dρ−a|θ| ≥ dρ−a/2 ≥ 1.

Therefore, H(−θ) ∈ {0, 1} and hence Λ̇(θ(t)) = 0. Equation (6.9) becomes

θ(t) is far from 0 ⇒

{
θ̈ + g

L1+L2
sin θ(t) = 0 if θ(t) < 0,

θ̈ + g
L2

sin θ(t) = 0 if θ(t) > 0.
(6.11)
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If we assume that θ(t1) = θ1 < 0 and θ(t3) > 0 are far from 0, the sharp continuity

of θ yields the existence of δ1, δ3 ∈ ρR̃>0 such that

∀t ∈ [t1, t1 + δ1) ∪ (t3 − δ3, t3] : θ(t) is far from 0

∀t ∈ [t1, t1 + δ1) : θ(t) < 0 (6.12)

∀t ∈ (t3 − δ3, t3] : θ(t) > 0

(and hence t2 /∈ [t1, t1 + δ1) ∪ (t3 − δ3, t3] because θ(t2) = 0). Assuming that t1, t3
are far from t2, without loss of generality we can also assume to have taken δi so
small that also t1 + δ1 and t3 − δ3 are far from t2.

We now employ the non Archimedean framework of ρR̃ in order to formally
consider small oscillations, i.e. θ1 ≈ 0. We first note that we cannot only assume θ1
infinitesimal, because if θ1 is not far from 0 then our solution will not be physically
meaningful. However, we already have seen that we can take θ1 far from 0 and
infinitesimal at the same time, e.g. θ1 = −1

log dρ . In other words, θ1 is a “large”

infinitesimal with respect to all the infinitesimals of the form dρa. Let ϑ1, ϑ3 be
the solution of the linearized problems{

ϑ̈1 +
g

L1+L2
ϑ1 = 0, t1 ≤ t < t1 + δ1

ϑ̇1(t1) = 0, ϑ1(t1) = θ1
(6.13){

ϑ̈3 +
g
L2
ϑ3 = 0, t3 − δ3 < t ≤ t3

ϑ̇1(t3) = θ̇(t3), ϑ1(t3) = θ(t3),

i.e. ϑ1(t) = θ1 cos (ω(t− t1)), ω :=
√

g
L1+L2

, and ϑ3(t) = θ(t3) cos (ω
′(t3 − t)) −

θ̇(t3)
ω′ sin (ω′(t3 − t)), ω′ =

√
g
L2

. We want to show that θ(t) ≈ ϑi(t) at least in an

infinitesimal neighborhood of t1 and t3 exactly because θ1 ≈ 0. For simplicity, we
proceed only for ϑ1, the other case being similar. For any t ∈ [t1, t1 + δ1), we have

that θ(t) < 0 is far from 0 from (6.12), and hence θ̈+ g
L1+L2

sin θ(t) = 0 from (6.11).
Recalling the initial conditions, we obtain

θ(t1 + h)− θ1 = −ω2

ˆ t1+h

t1

sin θ(s) ds ∀h ∈ (0, δ1).

Similarly, integrating (6.13), we get

ϑ1(t1 + h)− θ1 = −ω2

ˆ t1+h

t1

ϑ(s) ds ∀h ∈ (0, δ1).

Using Taylor Thm. 35 at t1 with increment h of these integral GSF, we obtain

θ(t1 + h)− ϑ(t1 + h) = −ω2
{
sin θ1 − θ1 + h cos θ1 · θ̇(t1)− hϑ̇1(t1) + h2R(h)

}
=

= −ω2
{
sin θ1 − θ1 + h2R(h)

}
,

where R(−) is a suitable GSF. Thereby, θ(t1 + h) − ϑ(t1 + h) ≈ −ω2h2R(h) ≈ 0
for all h ≈ 0 sufficiently small because sin θ1 ≈ θ1 since θ1 ≈ 0.

Since each t ∈ [t1, t1 + δ1) ∪ (t3 − δ3, t3] is far from t2, we can also formally join
the two solutions ϑi using the Heaviside’s function:

θ(t) ≈ ϑ1(t) +H(t2 − t) (ϑ3(t)− ϑ1(t)) ∀t ∈ [t1, t1 + h) ∪ (t3 − h, t3]. (6.14)

For the epistemological motivations previously stated, this infinitesimal approxi-
mation cannot be extended to a neighborhood of t2.
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Figure 6.2. 8 times re-scaled solution (violet line) in radians and
its derivative in rad/s (at θ = θ0 = π/40 rad we can see a corner
point). Parameters used: L1 = 0.4 m, L2 = 0.2 m, g = 9.8 m/s2.

We close this section noting that all these deductions can be repeated using any

GSF H ∈ ρGC∞(ρR̃, ρR̃) satisfying for all x far from zero H(x) = 1 if x > 0 and
H(x) = 0 if x < 0.

6.1.2. Numerical Solution. The numerical solution of equation (6.9) has been com-
puted using Mathematica Solver NDSolve (see [80]). Initial conditions we used
are: {

θ(0) = 0 rad,

θ̇(0) = 1 rad/s.
(6.15)

The graph of θ(t), and its derivative θ̇(t), based on the Mathematica definitions of
H(x) and δ(x) (see [81]) are shown in Figure 6.2.

In Figure 6.3, we show the second derivative graph. Directly from (6.9) and (6.7)

we can prove that when θ(t) = θ0, θ̈(t) is an infinite number and hence θ̇(t) has a
corner point. Because of the classical Mathematica implementation of H and δ we
can say that these graphs represent the solution far from the singularities.

6.2. Oscillations damped by two media. The second example concerns oscil-
lations of a pendulum in the interface of two media. Since we are not interested
at the dynamics occurring at singular times (i.e. at the changing of the medium),
this can be considered only a toy model approximating the case of a very small but
sufficiently heavy moving particle.

We hence want to model the system employing a “jump” in the damping coeffi-
cient β, i.e. a finite change occurring in an infinitesimal interval of time, see Fig. 6.4.
Since the frictional forces acting in this case are not conservative, it is well-known
that the Euler-Lagrange equations cannot be assumed to describe the dynamics of
the system and we have to use the D’Alembert principle, see [24] for details.
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Figure 6.3. 8 times re-scaled solution in radians (violet line) and
its second derivative in rad/s2

Figure 6.4. Simple pendulum moving in two media

The kinetic energy is given by:

T (θ̇) =
1

2
mθ̇2Λ2, (6.16)

and the potential energy (the zero level is the suspension point of the pendulum)
is:

U(θ) = −mgΛcos θ. (6.17)

In case of fluid resistance proportional to the velocity, we can introduce the gener-
alized forces Q as:

Q(θ̇) = −rΛ2θ̇, (6.18)

where r is a proportional coefficient depending on the media. Let’s define the
Lagrangian L as

L(θ, θ̇) := T (θ̇)− U(θ). (6.19)

We hence assume that the equation of motion for this non-conservative system is
given by the D’Alembert’s principle, i.e.

d

dt

∂L

∂θ̇
− ∂L

∂θ
= Q. (6.20)
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Figure 6.5. Solution θ of (6.22) (blue line). For comparison,
the violet line is the case β = const. = β1. Used parameters:
β1 = 0.0064 (air), β2 = 0.3859 (water), θ0 = π/40 rad, Λ = 0.6 m,
g = 9.8 m/s2.

Inserting (6.16), (6.17) and (6.18) into (6.20) we obtain the following equation of
motion:

mΛ2θ̈ +mgΛ sin θ = −rΛ2θ̇. (6.21)

By introducing the damping coefficient β(θ) := r(θ)/(2m) (we clearly assume that

the mass m ∈ ρR̃ > 0 is invertible) we obtain the classical form of the equation of
motion for damped oscillations:

θ̈ + 2β(θ)θ̇ +
g sin θ

Λ
= 0. (6.22)

If the pendulum crosses the boundary between two media with damping coeffi-
cients β1 and β2, we can model the system using the Heaviside function H:

β(θ) = β1 + (H(θ + θ0)−H(θ − θ0)) (β2 − β1), (6.23)

where θ = ±θ0 are the angles at which we have the changing of the medium
(singularities).

The numerical solution of (6.22) with β defined by (6.23) and initial conditions
(6.15) is presented in Fig. 6.5. The numerical solution has been computed us-
ing Mathematica Solver NDSolve, but with an implementation of the Heaviside’s
function H corresponding to Thm. 12, i.e. as represented in Fig. 3.1.

We also include the graphs of the angular frequency θ̇ (which shows corner points)

and of the angular acceleration θ̈ (which shows “jumps”, i.e. infinite derivatives at
singular times, as we can directly see from (6.22) and (6.23)).

6.3. Non linear strain-stress model. In this section, we want to show how to
construct a mathematical model starting from an empirical function (the strain-
stress relation for a steel sample) and representing it as a GSF. Starting from
Newton’s second law, we hence arrive at a single nonlinear equation describing the
behaviour of the steel sample. Since the empirical function is not differentiable at
the end of the linear part, the use of GSF is therefore essential.
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Figure 6.6. First derivative θ̇ of the solution of (6.22) (blue line).
The case with β = const = β1 is also shown for comparison (violet
line). Note the corner points at the singular moments, for example
at t = 0.083 s (scaled in the right figure).

Figure 6.7. Second derivative θ̈ of the solution of (6.22) (blue
line). The case with β = const = β1 is also shown for comparison
(violet line). Note the “jumps” at the singular moments, for ex-
ample at t = 0.083 s (scaled in the right figure). The infinitesimal
oscillations are caused by the embedding as GSF of the Heaviside
function.

The strain-stress curve we consider is shown in Fig. 6.8.
We recall that stress can be defined as σ = F

S0
, where F is the force applied to the

sample, and S0 is the initial cross-section of the cylindrical sample. The strain ε
is usually introduced as ε = L−L0

L0
, where L0 is the unstressed length and L is the

length after force application. In order to reproduce the experimental dependence
of Fig. 6.8 we considered the parameters d = 0.37mm for the diameter of the steel
cilinder, and L0 = 2.2m for the unstressed length of the sample. Thus, during the
elastic behaviour (linear part) we have a Young’s modulus E = σ

ε = 2.13 · 1011 Pa,
a stiffness k = ES0

L0
= 10423 N

m , and hence the magnitude of the linear part of the

force is given by Fl(x) = kx. For the nonlinear part of the empirical law, we use the
Mathematica built-in function NonlinearModelFit, see [82]. The result is shown in
Fig. 6.9.
The resulting expression is
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Figure 6.8. Strain-stress empirical model of the steel (see [62]).

Figure 6.9. Non-linear part modelling of the strain-stress curve
using the NonlinearModelFit. The dots are values extracted from
the original data.

a1 = 1.5 · 103 a5 = −9.9 · 104 a9 = −1.8 · 109

a2 = 3.9 a6 = 2.8 · 106 a10 = 4.8 · 109
a3 = 3.0 a7 = −4.4 · 107 a11 = −5.1 · 109

a4 = 1.0 · 102 a8 = 3.8 · 108
Table 1. Coefficients used in non-linear part Fn of the force.

Fn(x) = a1 exp(a2x)+a3 cos(a4x)+a5x+a6x
2+a7x

3+a8x
4+a9x

5+a10x
6+a11x

7,
(6.24)

where the coefficients ak are given in Tab. 1.
Using the Heaviside function, we can hence write the force F acting on the steel

sample as

F (x) = −Fl(x)− (Fn(x)− Fl(x))H(x− x0), (6.25)

and it is represented in Fig. 6.10. Note that the negative sign is due to the fact
that the force is directed opposite to the elongation of the sample; moreover, x0 =
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Figure 6.10. Recomputed strain-stress model.

Figure 6.11. The solution x(t) of equation 6.26 with initial con-
ditions x(0) = 0.0m,ẋ(0) = 15 m

s (blue line) in comparison with
the solution in the linear setting for x(0) = 0.0m, ẋ(0) = 5 m

s (vi-
olet line).

0.033 according to Fig. 6.10. Thus, the position x of the steel sample satisfies the
differential equation

ẍ− F (x)

m
= 0. (6.26)

Once again, note that the GSF F is nonlinear and the term F (x(t)) is a composition
of GSF.
Far from the singularity x = x0, the validity of (6.26) can also be seen using the
conservation of the mechanical energy. In fact, if x is far from x0, in the sense that
x ≤ x1 for some x1 ∈ R<0, then F (x) = −Fl(x) and we are in the zone of Hooke’s

law; we thus have the potential energy: U(x) = kx2

2 . Similarly, if x ≥ x2 for some

x2 ∈ R>0, then F (x) = −Fn(x) and U(x) = a1

a2
exp(a2x) +

a3

a4
sin(a4x) +

a5

2 x
2 +

a6

3 x
3 + a7

4 x
4 + a8

5 x
5 + a9

6 x
6 + a10

7 x7 + a11

8 x8. Therefore, far from the singularity,
the conservation of the mechanical energy is equivalent to (6.26).

Clearly, the nonlinear behaviour depends on the initial conditions: if x(0) =
0.0m and ẋ(0) = 5 m

s , we remain in the linear setting, whereas for x(0) = 0.0m,
ẋ(0) = 15 m

s we enter into the nonlinear one, see Fig. 6.11.
See also [13, 64, 65, 66] for more complete models of this type in the setting of
Colombeau theory.
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6.4. Discontinuous Lagrangians in optics (Snell’s law derivation). A typi-
cal example where one would like to use the usual results of calculus despite dealing
with non differentiable functions, is geometrical optics at the interface of two media,
where usually the Lagrangian function is not smooth. It is well-know, e.g., that
the rigorous derivation of Snell’s law is a paradigmatic example, see e.g. [79]. The
main aim of this section is to show the features of the nonlinear calculus of GSF by
deriving Snell’s law for plane stratified media from the classical Fermat’s principle.
For example, in the following deduction, the refraction index n(x) can be any GSF,
e.g. the embedding of a locally integrable function. For more general versions of
Snell’s law in different media, see e.g. [12, 68]. For the classical deduction where the
refraction index n(x) and the light path x = x(s) are C2 functions, see e.g. [47, 61].

We assume that we are considering a body B := ⟨Bε⟩ ⊆ R3 represented by the
strongly internal set generated by the net Bε ⊆ R3, and that our light path satisfies
the classical Fermat principle, i.e. the path of light between two given points P ,
Q ∈ B is the one which minimizes the travel time. In order to mathematically state
this principle for GSF, we introduce the space of paths (see [50, 24] for details):

ρGC∞
bd(P,Q) := {r ∈ ρGC∞([0, 1], B) | r(0) = P, r(1) = Q} , (6.27)

and the travel time functional

T [r] :=
1

c

ˆ 1

0

n(r) dr :=
1

c

ˆ 1

0

n(r(s)) |ṙ(s)| ds ∀r ∈ ρGC∞
bd(P,Q). (6.28)

As usual, c is the speed of light in vacuum, and n ∈ ρGC∞(B, ρR̃≥0) is the refraction
index of the media B we are considering. The Fermat principle hence implies that
the light path r ∈ ρGC∞

bd(P,Q) is a weak extremal of the travel time functional
T [−], i.e. it satisfies

δT (r;h) :=
d

dx
T [r + xh]

∣∣∣∣
x=0

= 0 ∀h ∈ ρGC∞
bd(0, 0). (6.29)

Note that, since in (6.27) we consider only paths r ∈ ρGC∞([0, 1], B) valued in the
strongly internal set B = ⟨Bε⟩, Thm. 5 implies

∀h ∈ ρGC∞
bd(0, 0) ∃δ ∈

ρR̃>0 ∀x ∈ (−δ, δ) : r + xh ∈ ρGC∞([0, 1], B),

and therefore, it is correct to consider the derivative in (6.29). Physically this means
that we are considering only paths which lay completely inside the body B = ⟨Bε⟩.
The weak extremal condition (6.29) is equivalent to the Euler-Lagrange equations

(see [50]) for the Lagrangian (r, v) 7→ L(r, v) := n(r)
√
v · v ∈ ρGC∞(B × ρR̃3, ρR̃).

We use the notation L(r, v) = L(r1, r2, r3, v1, v2, v3) for the variables of L. We also
explicitly note the nonlinear operations in this Lagrangian, and the composition

n(r(s)) of GSF. We use the customary notations v⃗(s) := dr
ds (s) ∈ ρR̃3, v(s) :=

|v⃗(s)| ∈ ρR̃, and L[r](s) := L(r(s), v⃗(s)). We hence get

d

ds

(
∂L

∂vj
[r](s)

)
=
∂L

∂rj
[r](s), ∀j = 1, 2, 3, ∀s ∈ [0, 1]. (6.30)
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We always assume that the frame of reference is chosen so that the light path

satisfies v(s) ∈ ρR̃>0. Calculating the derivatives ∂L/∂vj and ∂L/∂rj in Euler-
Lagrange equations, we get

∂L

∂vj
(r, v) = n(r)

vj√
v · v

∂L

∂rj
(r, v) =

∂n

∂rj
(r)

√
v · v,

for all (r, v) ∈ B × ρR̃3 and all j = 1, 2, 3. Substituting in (6.30), we obtain the
eikonal equation

d

ds

(
n(r(s))

v⃗(s)

v(s)

)
= ∇n(r(s))v(s), ∀s ∈ [0, 1]. (6.31)

We now consider the case of a plane stratified media, i.e. where n changes only

along one direction k⃗ ∈ ρR̃3, |⃗k| = 1, so that

∇n(r(s)) ∥ k⃗ ∀s ∈ [0, 1]. (6.32)

For simplicity, where it is clear, we omit the evaluation at s. Thus, the cross

product of the two vectors ∇n(r) and k⃗ is k⃗ × ∇n(r) = 0 = k⃗ × ∇n(r)v. Using

(6.31) we get k⃗× d
ds (n(r)

v⃗
v ) = 0, and hence d

ds (k⃗×n(r(s))
v⃗(s)
v(s) ) = 0 for all s ∈ [0, 1],

i.e. the function s ∈ [0, 1] 7→ k⃗ × n(r(s)) v⃗(s)v(s) ∈ ρR̃3 is a constant C⃗ ∈ ρR̃3. Taking

its magnitude C = |C⃗|

∀s ∈ [0, 1] : C = |⃗k| |n(r(s))|
∣∣∣∣ v⃗(s)v(s)

∣∣∣∣ sinφ(s),
where φ(s) is the angle between k⃗ and v⃗(s) = dr

ds (s). We proved Snell’s law for
GSF:

Theorem 49. Let Bε ⊆ R3, B := ⟨Bε⟩, P , Q ∈ ⟨Bε⟩, n ∈ ρGC∞(B, ρR̃≥0). Assume
that r ∈ ρGC∞

bd(P,Q) is a weak extremal of the travel time functional (6.28), i.e. it

satisfies (6.29). Set v⃗(s) := dr
ds (s) ∈ ρR̃3, v(s) := |v⃗(s)| ∈ ρR̃ and assume that

v(s) > 0 for all s ∈ [0, 1]. Then the eikonal equation (6.31) holds. Moreover, if

∇n(r(s)) ∥ k⃗, where k⃗ ∈ ρR̃3, |⃗k| = 1, and φ(s) is the angle between k⃗ and v⃗(s),then
the quantity n(r(s)) · sinφ(s) is constant for all s ∈ [0, 1].

6.5. Finite and infinite step potential. Models of quantum mechanics such as
the potential well or the step potential with finite or infinite walls are clear and sim-
ple examples showing features of various quantum mechanical effects, see e.g. [11].
However, the mathematics of such models is not very clear sometimes, see again
e.g. [11, pag. 34-40, pag. 68] and authors’ comments about mathematical rigour.
Once again, in this section we see how the formalism of GSF theory allows one
to completely recover a mathematically and physically clear proof by formalizing
the intuitive steps of [11, pag. 68]. We consider the step-potential problem, where
the high of the potential can be any finite or infinite generalized number; a similar
approach can be used for the rectangular potential wells.

In the following, we write x ≪ 0 if ∃r ∈ R<0 : x < r, and similarly for x ≫ 0,
and we simply say that x is far from 0. The step function potential for the one-

dimensional stationary Schrodinger equation is a GSF U ∈ ρGC∞(ρR̃, ρR̃) such that
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U(x) =

{
0 x≪ 0,

U0 x≫ 0,
(6.33)

where U0 ∈ ρR̃>0 is an arbitrary generalized number (finite or infinite). For example,
U(x) = H(x) ·U0 satisfies these conditions. However, as stated in [11, pag. 34], this
is actually an idealized model of the potential, and we cannot say it is a physically
meaningful model for infinitesimal x ≈ 0 (similarly to what we have already seen
e.g. in Sec. 6.1 for the singular variable length pendulum).

The system satisfies the stationary Schrodinger’s equation[
− ℏ2

2m

d2

dx2
+ U(x)

]
ψ(x) = Eψ(x), (6.34)

where ℏ is the Planck’s constant, m ∈ R>0 the mass of the particle, E the energy,
and ψ(x) the wave function. Using Thm. 43, we can state that there exists a

ψ ∈ ρGC∞(ρR̃, ρR̃) satisfying (6.34). Repeating exactly the usual calculations, for
x≪ 0 we have:

ψ(x) =
1√
k1

(
A1e

ik1x +A2e
−ik1x

)
, (6.35)

where k1 :=
√
2mE/ℏ2 and A1, A2 ∈ ρR̃ are undefined constants. For x ≫ 0, we

have:

ψ(x) =
1√
k2

(
B1e

ik2x +B2e
−ik2x

)
, (6.36)

where k2 =
√
2m(E − V0)/ℏ2, B1, B2 ∈ ρR̃ are undefined constants. As stated in

[11, pag. 68], in order to find these constants, we need some mathematically careful
steps to justify the corresponding initial conditions. Take any standard real number

η ∈ R>0 and integrate (6.34) on [−η, η] ⊆ ρR̃ to get

dψ

dx
(η)− dψ

dx
(−η) = 2m

ℏ2

ˆ η

−η

[U(x)− E]ψ(x) dx. (6.37)

As in [11, pag. 68], we assume that

U(x)− E is finite for all finite x ∈ ρR̃ (6.38)

dψ

dx
(η) is finite for all η ∈ R>0. (6.39)

From (6.37) and the first of these assumptions, we obtain∣∣∣∣dψdx (η)− dψ

dx
(−η)

∣∣∣∣ ≤ 4m

ℏ2
· C · η

for some C ∈ R>0 (coming from (6.38)), i.e.

lim
η→0+

η∈R>0

∣∣∣∣dψdx (η)− dψ

dx
(−η)

∣∣∣∣ = 0. (6.40)

Similarly, from (6.39) and the fundamental theorem of calculus for GSF Thm. 25.(v),
we have

|ψ(η)− ψ(0)| =
∣∣∣∣ˆ η

0

dψ

dx
(x) dx

∣∣∣∣ ≤ C̄ · η,
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Figure 6.12. The fist derivative (left) and the second derivative
(right) of the wave function ψ in an infinitesimal neighborhood of
0 (blue lines). Green lines are the same derivatives for x ≪ 0 and
x≫ 0.

for some C̄ ∈ R>0 (coming from (6.39)), and hence

lim
η→0+

η∈R>0

|ψ(η)− ψ(0)| = 0. (6.41)

Recall that from Thm. 10.(ii) and Thm. 17 it directly follows that both ψ(x) and

its derivative dψ
dx (x) are GSF, and hence they are continuous in the sharp topology

at each point x ∈ ρR̃. Stated explicitly at x = 0, this means that

∃ lim
x→0
x∈ ρR̃

dψ

dx
(x) =

dψ

dx
(0),

∃ lim
x→0
x∈ ρR̃

ψ(x) = ψ(0),

and these are different than (6.40) and (6.41), where η ∈ R>0. Indeed, balls Bη(c) ⊆
ρR̃, for radii η ∈ R>0, generate a different topology on ρR̃ (called Fermat topology,
see e.g. [31, 32]). See Fig. 6.12 for an intuitive diagram of the solution ψ in an

infinitesimal neighborhood of x = 0: whereas dψ
dx (η) is continuous for η → 0,

η ∈ R>0, it is well-known (see [11]) that the same property does not hold for the
second derivative. In Fig. 6.12, the green lines represents the solution for x≪ 0 or
x≫ 0, and the blue one the GSF function ψ = [ψε(−)] (we actually represented ψε

for ε sufficiently small); we therefore have to think as infinitesimal the differences
between blue and green lines, and hence as infinite the second derivative at x = 0.

From (6.35), (6.36) and (6.40), (6.41) we obtain that the constants are uniquely
determined by the system{

(A1 +A2) = (B1 +B2)

k1 (A1 −A2) = k2 (B1 −B2)
(6.42)

6.6. Heisenberg uncertainty principle. We close this section of applications by
mentioning how we can use infinitesimal and infinite numbers and GSF theory to
fully justify the most frequent example of the Heisenberg uncertainty principle.
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We do not have sufficient space here to present a complete list of result about
the so called hyperfinite Fourier transform (see [60]), but we can surely present the
main ideas:

(i) Since in the ring ρR̃ we have infinite numbers k ∈ ρR̃>0, e.g. k = dρ−1, and
since every GSF is always integrable on a functionally compact set of the form

K := [−k, k]n ⊆ ρR̃n, we can simply define the hyperfinite Fourier transform

Fk (f) of any f ∈ ρGC∞(K, ρC̃) as

Fk (f) (ω) :=

ˆ

K

f (x) e−ix·ω dx =

kˆ

−k

dx1 . . .

kˆ

−k

f (x1, . . . , xn) e
−ix·ω dxn. (6.43)

(ii) The main feature of this transform is that, despite the fact that essentially
all the usual classical properties of the Fourier transform can be proved for

Fk (f), it is well-defined for all GSF f ∈ ρGC∞(K, ρC̃), even if they are not
of tempered type. Clearly, this allows one to use the Fourier method to find
non-tempered solutions of differential equations. For example, let f (x) = ex

for all |x| ≤ k, where k := − log (dρ). The hyperfinite Fourier transform Fk

of f is

Fk (f) (ω) =
1

1− iω

(
dρiω

dρ
− dρ

dρiω

)
∀ω ∈ ρR̃.

Therefore, Fk(f)(ω) is always an infinite complex number for all finite num-
bers ω and hence the non-Archimedean language is essential here.

(iii) The set supp (f) := {x ∈ X | |f (x)| > 0}, where (·) denotes the relative clo-
sure in X with respect to the sharp topology, is called the support of f . Let

H ⋐f
ρR̃n be a functionally compact set (see Def. 30), we say that f ∈ ρGD (H)

if f ∈ ρGC∞(ρR̃n, ρC̃) and supp (f) ⊆ H. Such an f is called compactly sup-
ported.

We can now state the uncertainty principle (see [59] for the proof):

Theorem 50. If ψ ∈ ρGD(ρR̃), then
(´

x2 |ψ (x)|2 dx
)(´

ω2 |F (ψ) (ω)|2 dω
)

≥
1
4∥ψ∥2∥F(ψ)∥2.

On the contrary with respect the classical formulation in L2(R) of the uncertainty
principle, in Thm. 50 we can e.g. consider ψ = δ ∈ ρGD(ρR̃), and we have

ˆ
x2δ(x)2 dx =

[ˆ 1

−1

x2b2εµε(bεx)
2 dx

]
where µ(x) = [µε(xε)] is a Colombeau mollifier and b = [bε] ∈ ρR̃ satisfies b ≥ dρ−a

for some a ∈ R>0 (see embedding Thm. 12). Since normalizing the function ε 7→
b2εµε(bεx)

2 we get an approximate identity, we have limε→0+
´ 1
−1
x2b2εµε(bεx)

2 dx =

0, and hence
´
x2δ(x)2 dx ≈ 0 is an infinitesimal. The uncertainty principle Thm. 50

implies that it is an invertible infinitesimal. Considering the HFT 1 := F(δ), we
have ˆ

ω21(ω)2 dω ≥
ˆ r

−r

ω2 dω = 2
r3

3
∀r ∈ R>0.

Consequently,
´
ω21(ω)2 dω is an infinite number.
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7. Conclusions

In all the presented examples, the model describes some kind of singular dynam-
ical system including abrupt changes, impulsive stimuli, nonlinear discontinuities,
infinite barriers, etc. This kind of problems are ubiquitous in applied mathematics,
essentially because the real world is made of different bodies, having boundaries
and frequently interacting in a non-smooth way. In constructing a model for these
systems is hence important to achieve mathematical simplicity but, at the same
time, a physical reasonably high faithfulness of description.

On the one hand, the use of infinitesimal and infinite numbers has always been
a method to simplify a given problem. Unfortunately, frequently this technique
remains only informal, using “sufficiently small quantities” or “taking the limit
for ε → 0”, and then transforming approximated equalities into true ones. As
motivational thoughts, these remain wonderful methods. In our examples, we tried
to show that a corresponding simple and intuitively clear mathematical theory of
these infinitesimal and infinite quantities is possible. Surprisingly, this theory allows
one to arrive at very similar, but clear and rigorous, thoughts. Therefore, the risk
of doing mistakes is quite lower, and its teaching is also way more clear.

On the other hand, physical systems with singularities are naturally represented
by non-smooth functions. We presented a theory that allows one to deal with such
functions as if they were smooth, thanks to a lot of properties that GSF share with
ordinary smooth functions. This is as generalized functions are still informally used
in physics and engineering, despite the fact that Schwartz theory of distributions
is quite old nowadays. Using GSF theory, we can therefore state that the searched
mathematical simplicity in models of singular systems, possibly with a clear use of
infinitesimal or infinite quantities, is really achievable.
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[37] Hörmann, G., V. de Hoop, M., Geophysical modelling with Colombeau functions: Microlocal

properties and Zygmund regularity, In Nonlinear Algebraic Analysis, eds. A. Delcroix, M.

Hasler, J.-A. Marti, V. Valmorin, Cambridge Scientific Publishers, Cambridge, 2004. See also
https://arxiv.org/abs/math/0104007
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