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FERMAT REALS: INFINITESIMALS WITHOUT LOGIC

PAOLO GIORDANO

Abstract. We review the theory of Fermat reals and Fermat extensions, a relatively new theory of
nilpotent infinitesimals which does not need any background in Mathematical Logic. We focus
on some differences from Nonstandard Analysis and Synthetic Differential Geometry using the
viewpoint of intuitive interpretation and applicability in Physics. Finally, we state some open
problems.
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1. IMAGINE A STUDENT...

Let me start with a short, fictitious, but hopefully meaningful story. Imagine a
student taking first year courses in Physics and Calculus. In Calculus she would see
something like
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C

However, in Physics she would frequently work with formulas similar to Einstein’s

formulas
1 2

v 1
— =1+ 202 V1—=ha(x)=1- §h44(x) (1.1

2
v
-

f(x,t+r)=f(x,t)+r-%(x,t), (1.2)

that explicitly use infinitesimals like v/c < 1,7 < 1 or hgq(x) < 1, such that, e. g.,
h44(x)2 = 0, see, €. g., [6] and [5]. Of course, our student asks herself whether the
two lecturers use the same ring of scalars or not. She senses that there are inconsist-
encies, and she can hence try to search for a solution to this clash of methodologies.
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However, some students frequently adopt solutions that refer to the fact that different
courses require different mentalities, and hence different answers according to differ-
ent professors. So, let us assume that our student starts to search on the Internet (and
also in the library...) for a method to address this inconsistency between intuition and
formal Mathematics. After a few steps, she finds that probably the difficulties can be
resolved studying Nonstandard Analysis (NSA, [1,17,23]) and Synthetic Differen-
tial Geometry (SDG, [2,20-22]). Our student begins to study these wonderful and
formally powerful theories, but since she has a great critical mind, she quickly finds
that these theories are not as intuitively clear as expected:

NSA: Let I € *R be an infinite number, where *R 2 R is the totally ordered field
of NSA. Therefore, we have |/| > n for all n € N. In NSA it is very easy
to prove that every finite number r € *R, i.e. such that r is not infinite, is
infinitely close to a standard real number °r € R, called its standard part.
The property of being infinitely close is denoted by r >~ °r and indicates that
r — °r is infinitesimal, i.e. |[r — °r| < % forall n € N,. Itis also very easy
to prove that —1 < sin(/) < 1 is a finite hyperreal, so that we get sin(/) ~
°sin(/). What is the intuitive meaning of this real number ° sin(/)? It could
be questioned whether this is an objection to NSA, or in fact to standard
real analysis based as it is on infinitary hypotheses common in Zermelo-
Fraenkel set theory. This is because the same question can be asked of a
real number / which is so large as to be inexpressible by even a computer the
size of the universe in the span of the total time allotted to our civilization.
If one cannot, even in principle, express such a real number 7, what could
possibly be the intuitive meaning of the value of the sine function at / ? Does
the usual geometrical interpretation with the unit circle of sin(/) = sin(J),
J = I mod 27z, work in this case?

NSA: Similarly to the extension R > *R, every subset X C R can be extended to
*X C *R. This extension operation has wonderful formal properties, since it
preserves all the logical operations. Let e € *R( be a non zero infinitesimal,
and [x] € *N be the integer part of x € *R. Then, it is not hard to prove
(see, e. g., [4,24] and references therein) that U := {X € N | [%] €*X}is
an ultrafilter on N, and using U it is possible to construct a non-measurable
set without using the axiom of choice. Connes [3] expressed the opinion
that the possibility of easily producing a non-measurable set by every non
zero infinitesimal shows that every example of infinitesimal in NSA is not
“completely knowable”. On the other hand, this possibility is used by Tao
[25] to prove the existence of non-measurable sets. The meaning of Connes’
criticism to NSA is hence largely debated; for a detailed analysis see the
recent paper [19].

NSA: The hyperreal field *R can be defined as a quotient field RN/ ~, where two
sequences (X;)neN ~ (¥n)neN are intuitively said to be equivalent if x, =
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yn on a large set of indexes n € N. To formalize this notion of “large subset
of natural numbers”, one can use the notion of ultrafilter U by saying that A
is large if A € U, where A C N. Let

P(4) = lim =)
n—>+oo n+1
be the density of A (in the case that this limit exists), see, e.g., [26]. The
density P(A) is usually interpreted as the finitely additive uniform probabil-
ity of picking a number from A. It is not hard to prove that

Ve>03S e U: P(S) <e.

Using this set of indexes S € N and any hyperreal x = [(x;)nen]~ € *R,
we can easily construct another sequence (y,),eN generating the same num-
ber, i.e. such that x = [(Vn)nen]~, but such that P [x, = y,] < 107199,
See [7,10].

NSA: Even if we consider a hyperreal x = [(x5)nen]~ € *R infinitely close to
a standard real number x >~ r € R, in general, it is not possible to prove
that limy— 400 X, = r. Only if *R is defined using a particular type of
ultrafilter, whose existence follows, for example, by assuming the continuum
hypothesis, we can prove that x, — r along a subsequence n € S € U. In
any event, even with the better case we can define an infinitesimal hyperreal
x = [(xn)neN]~ that goes to zero along S € U, but goes to +oo forn €
N\ S and such that P(S) < 107190 whereas P(N \ S) > 1 — 107100, See
[15].

SDG: In SDG we have nilpotent infinitesimals, i.e. numbers of a ring # € R such
that 4" = O for some n € N. Therefore, we do not have a field, but this
lacking is necessary for formulas such as (1.2). The order relation in the
ring of scalars R is only a partial order and not a total order, so that one
cannot deduce x = y from x < y and y < x. Moreover, in SDG for every
infinitesimal & both 7 > 0 and h < 0 hold. Our student does not understand
how to reconcile this order property with the tens of intuitive drawings of
infinitesimal objects she must reproduce in the study of Physics, in particular
since the length of every infinitesimal segment is positive and not negative.

SDG: SDG is so beautiful and powerful that it permits the development of several
differential geometry topics in a cartesian closed framework, i. e., not only for
ordinary smooth manifolds but also for infinite dimensional spaces such as
the space of all smooth functions between two manifolds. On the other hand,
it seems impossible to consider a physical theory dealing with a physical in-
finitesimal constant taken from the ring R of SDG (e. g., Planck’s constant to
study the relationships between Quantum and Classical Mechanics). Indeed,
in this theory it is only possible to prove that

——3heR: h~0,
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and this does not imply that infinitesimal numbers exist in the ring R, be-
cause SDG is incompatible with classical logic and admits models only in
intuitionistic logic, in which the logic law ——+A = A does not hold. These
models must be constructed using a non trivial amount of Topos theory which
has been judged by the best researchers in SDG as “more complicated” as
compared to other cartesian closed theories of manifolds. See [22].

Our imaginary student is even more confused. These are surely the most beautiful
theories of infinitesimals currently available in mathematics. Surely they are the most
formally powerful ones. However, shouldn’t it be possible to develop another con-
struction, perhaps less powerful, but simpler and always intuitively clear? Wouldn’t it
be possible to define a ring of numbers with infinitesimals within “standard mathem-
atics,” without it being necessary to have a deep background in Mathematical Logic?

Since Einstein wrote (1.2) exactly using an equality sign, if we want to be faithful
to his writings and intuition, we are forced to consider a ring with nilpotent infinites-
imals (let f(x,t) = t? att = 0 in (1.2) to deduce that, necessarily, 7> = 0). Can
we have a theory similar to SDG, but always intuitively clear, that is compatible with
classical logic and deals with easier models? Can we start from an ordinary smooth
manifold M and extend it with something like *M 2 M, similar to what we can do
in NSA, but with the addition of “nilpotent infinitely close new points”? Our final
aim would be to develop Differential Geometry also based on infinite dimensional
spaces like in SDG, so we can obtain a theory with new results and not only useful
and more elegant reformulations of well-known classical theorems. If our student’s
passion is still alive, after all these questions, the best we can hope for is that she try
her own solution. Indeed, this is a natural step, since two different languages (¢ — §
and informal infinitesimals) which describe a sufficiently large part of nature must
be strongly related to each other. Using only elementary analysis, after a couple of
decades and with the usual small amount of inspiration and a large amount of per-
spiration, she was successful in creating a new useful theory.

Our student called the new ring of scalars *R the ring of Fermat reals, because
“Fermat would surely have liked it”. For more formal motivations concerning this
name, see [11, 12].

2. THE RING OF FERMAT REALS

We start from the idea that a smooth (€°°) function f : °*R — °R, where °*°R D R
is our new ring we have still to define, is actually equal to its tangent straight line in
the first order neighborhood, e. g., of the point x = 0. Formally, we wish to write

Yhe D: f(h)= f(0)+h-f'(0) (2.1
where D is the subset of *R which defines the above-mentioned neighborhood of
x = 0. The equality (2.1) can be seen as a first-order Taylor’s formula without

remainder because, intuitively, we think that h> = 0 for any 4 € D (indeed the
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property 42 = 0 defines the first order neighborhood of x = 0 in *R). These almost
trivial considerations lead us to understand many things: *R must necessarily be a
ring and not a field because in a field the equation 22 = 0 implies 4 = 0; moreover
we will surely have some limitation in the extension of some function from R to
*R. For example, we will necessarily have limitations in extending the square root
because, using this function with the usual properties, the equation 22 = 0 implies
|| = 0. On the other hand, we are also led to ask whether (2.1) uniquely determines
the derivative f/(0). Indeed, even if it is true that we cannot simplify by /&, we know
that the polynomial coefficients of a Taylor’s formula are unique in classical analysis.
In fact, we will prove that

AmeRYheD: f(h)= fO)+h-m, 2.2)

that is, the slope of the tangent is uniquely determined if it is an ordinary real number.
We will call formulas like (2.2) derivation formulas.

If we try to construct a model for the formula (2.2), a natural idea is to think our
new numbers in *R as equivalence classes [/] of usual functions # : R — R. In this
way, we may hope both to include the real field using classes generated by constant
functions, and that the class generated by /(¢) = ¢ could be a first order infinitesimal
number.

Remark 1. Sometimes, but not always, we will use a notation like i; := h(¢) for
real functions of the real variable 7. This makes it possible to decrease the number of
parenthesis used in formulas and to leave the classical notation f(x) for functions of
the form f : *R — °R.

To understand how to define this equivalence relation, we have to think of (2.1) in
the following sense:
f(he) ~ f(O) + hye - f7(0), (2.3)
where the idea is that we are going to define ~. If we think /4; “sufficiently similar to
t”, we can define ~ so that (2.3) is equivalent to
o S) = fO) —he - [7O) _

i
t—0t t

0’

that is,

x —
X~y <= lim L
t—>0+ 4
In this way, (2.3) is very near to the definition of differentiability for f at 0.
It is important to note that, because of de L’Ho6pital’s theorem, we have the isomorph-
ism

=0. 2.4)

C'R,R)/~ =~ Rx]/(x),
the left hand side is (isomorphic to) the usual tangent bundle of R and thus we obtain
nothing new. It is not easy to understand what set of functions we have to choose for
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X, y in (2.4) so as to obtain a non trivial structure. The first idea is to take continuous
functions at ¢ = 0, instead of more regular ones like €!-functions. In this way, we
see that, e. g., hg(f) = |t|'/* becomes a k-th order nilpotent infinitesimal because
h*+1 ~ 0. For almost all the results presented in this paper, continuous functions at
t = 0 work well. However, only in proving the non-trivial property

(Vxe®R: x- f(x)=0) = Vxe®R: f(x)=0 (2.5)
we can see that it does not suffice to take continuous functions at ¢+ = 0. Another
problem, necessarily connected with the basic idea (2.1), is that the use of nilpotent
infinitesimals frequently leads to considering terms like hill S hi,”. For this type
of products, the first problem is to know whether hil1 S hi,” # 0 and what is the
order k of this new infinitesimals, that is, for what &k we have (hil1 S hf{’)k #£0
but (hil1 S, hi,” )e+1 = 0. We will have a good frame if we are able to solve these
problems starting from the order of each infinitesimal /; and from the values of the
powers i; € N. On the other hand, almost all the examples of nilpotent infinitesimals
are sums of terms of the form /() = %, with 0 < a < 1. These functions also have
very good properties in dealing with products of powers. It is for these reasons that

we shall focus our attention on the following family of functions x : R>p — R in the
definition (2.4) of ~.

Definition 2. We say that x is a little-oh polynomial, and we write x € R,[¢] iff

(1) x:Rso — R
(2) We can write

k
x(t)y=r+ Zai 1% 4o(t) as t—0F
i=1
for suitable

keN
r,ay,..., 0 € R
ai,...,ar € R>o.

Hence, a little-oh polynomial x € R,[¢] is a polynomial function with real coeffi-
cients, in the real variable + > 0, with generic positive powers of ¢, and up to a
little-oh function as t — 0. Simple examples of little-oh polynomials are the fol-
lowing: x(t) =14+t + tY2 4413 4 o(t) and x(¢) = 7 + o(1).

Definition 3. Let x, y € R,[¢]. Then we say that x ~ y or that x = y in *R
iff x; = y; + o(t) ast — 0. Because it is easy to prove that ~ is an equival-
ence relation, we can define the quotient ring *R := R,[¢]/ ~, where in R,[t] we
consider the pointwise ring operations. We will use the notation x = [x;] € *R for
the equivalence class generated by the little-oh polynomial 1 € R>9 — x; € R.
Moreover:
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(1) We define the standard part map as °(—) : x € *R+— °x = x(0) € R

(2) dtg :=[ta] € *Rforalla € Rso.

(3) Let x = [x¢], ¥ = [y¢] € °R. Then we say that x < y iff x # y and there
exists Z € R, [¢] such that

16 € Roo V2t € (0,68] 1 xr < yr + 24

z;=o() ast—0T.
(4) Let A € R” be an open subset, f € €°°(4, R) a smooth function. Define
* A like in (2.8) (or, equivalently, as *A = A,[t]/ ~, where A,[t] is the set
of little-oh polynomials taking values in A). For x € ®*A define

*f(x) = [f(x)] € °R.

Using these definitions, we have all we need to characterize rings like *R using the
following axioms.

Axiom 1 (decomposition). *R is a commutative ring with unity.

Every Fermat reals x € ®*R can be written, in a unique way, as

N
Xx=Cx+> o dig, (2.6)
i=1
where °x, o;, a; € R are standard reals, a; > az > -+ > ay > 1, a; # 0. The term
°x € Ris called standard part of x, and «; =: °x; its i -th standard part. Vice versa,
any writing of the type (2.6), which is called the decomposition of x, gives a Fermat
real, so thate.g. *R D Rand °r = r forall r € R.

Axiom 2 (base infinitesimals). The terms dt, verify the following properties
dtg - dtp = dt_an_

a+b

(dig)? = dta Vp € Ry Q@.7)
dty =0 VaeR<.

Therefore, among Fermat reals we also have nilpotent infinitesimals, like x =
3dt,, since x> = 27dt2 = 0. These are exactly the same type of infinitesimals

used by Einstein in form3ulas like (1.1). We will simply use the symbol dr for df;.
Intuitively speaking, looking at (2.7), we can also intuitively say that the greater is a
and the greater is the nilpotent infinitesimal d¢,. Our axiom on the total order relation
< will confirm this intuition. This relation should not be confused with the following
notion.

Axiom 3 (order of infinitesimals). The order w(x) =: a; (see (2.6)) can be in-
terpreted as the leading term in the decomposition and hence it has the following
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expected properties
w(x + y) < max [w(x), o (y)]
1 1 1
== + ’
ox-y) o) o)
whenever x, y are infinitesimals such that x + y # 0, respectively x - y 7 Q.

In the decomposition (2.6), the term «; =: w; (x) will be called the i-th order of x.
Directly from (2.6) it is not hard to prove that if k € N~ 1, then x¥ = 0 if and only if
w(x) < k. Nilpotent Fermat reals can be thought of as non zero numbers which are
so small that a suitable power of them gives zero.

Axiom 4 (ideals of infinitesimals). For a € R>o U {oo}, the set
Dg:={xe€’R|°x =0, w(x) <a+1}
is an ideal. Moreover, for k € Nx1, we have Dy = {x € *R | xk+1 = o}

We will simply use D for D;. The ideal Dy is, therefore, a perfect candidate for
the k-th order infinitesimal neighborhood of zero, with no k-th order Taylor formula
having a remainder, since xk+1 = 0. This is indeed the subject of the next

Axiom 5 (Taylor formulas). Set *RY ;= *Rx..4.. xR, then every ordinary
smooth function f € €% (A, R) defined on an open set A € R? can be extended to
the set

‘A= {x 'R |°x e A}, 2.8)
*f:%A—°R,
obviously obtaining a true extension, i.e., ®* f(x) = f(x) if x € A. Moreover, the
following Taylor formula
hio glil
Vhe D{: *f(x+h)= AL 2.9)
jv ox/
jeN9
ljl<k

holds, where x € A is a standard point, and Dd = Di x..% . xDy.

Therefore, smooth functions become exactly equal to polynomials of degree k
in the infinitesimal k-th order neighborhood x + Dj. In particular, f(x + k) =
f(x)+h- f(x)forh € D,i.e. every smooth function is equal to its tangent line in a
first order infinitesimal neighborhood. Einstein’s formulas (1.1) are particular cases
of this infinitesimal Taylor formula.

Axiom 6 (cancellation laws). Let hy, ..., hy € Do, i1,...,in € N, x € *°R, then
we have

(1) B ...~ hip = 0ifand only if Y7 _, % > 1.
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(2) x is invertible if and only if °x # 0.
(3) Ifx-r=x-s5in°R, wherer, s € Rand x # 0, thenr = s.

If you are scared of working in a ring instead of a field, these laws allow for
efficient work with this type of infinitesimals. If x is invertible, and proceeding like
in the case of formal power series, it is not hard to prove that

1 1 +o00 N o

Loy (Y%,

X °x A =D ( °x dta’)’
]=0 i=1

where the series is really a finite sum due to nilpotency.

Axiom 7 (total order relation). The ring of Fermat reals is totally ordered by the
relation <. This relation verifies the following properties: let x, y € °R, if °x # °y,
then

X<y < °x<°y.
Vice versa, if °x = °y, then
(1) If o(x) > w(y), then x > y if and only if °x1 > 0.
(2) If o(x) = (), then

°x1>°y1 = x>y
‘x1<°y1 = x<y.

The axiom gives an effective criterion to decide whether x < y or not. Indeed:

(1) firstof all x < y is equivalent to 0 < y — x, so we can describe the algorithm
for the case 0 < x, x € *R\ R only (from the first part of the previous axiom
it follows that < extends the usual order relation on R). If the standard part
°x # 0, then the order relation can be decided on the basis of this standard
partonly. e.g.2 4+ dtp > Oand 1 + df, < 3 + dr.

(2) Otherwise, if the standard part °x = 0, we look at the order w(x) and at the
first standard part °x;, which is the coefficient of the biggest infinitesimals
in the decompositions of x: because w(x) > w(0) = 0, we have x > 0 iff
°x1 >0.e.g.3dtp > 0; dt, > adt foreverya € R;0 < df < dtp < df3 <
... < dty forevery k.

For a proof that these axioms characterize the structure (°R, +, -, <, °(—), dt(—y) up
to isomorphisms of ordered rings, see [8]. For a proof that indeed in the ring *R these
axioms hold, see [11,12].

More advanced axioms are needed to deal with (quasi-standard) smooth functions
that are more general than extension ® f* of standard smooth functions f, e.g. like
the very simple g(x) = x + dt; see [10, 12] for more details. Clearly, we can define
the absolute value, powers and logarithms of invertible Fermat reals and generalize
their usual properties, [12]. We can also define meaningful metrics on *R and roots
of (nilpotent!) infinitesimals, and prove applications to fractional derivatives, [16].
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3. GEOMETRICAL REPRESENTATION

In our introductory fictitious story, our student was in search of a new theory
which, on the one hand, can resolve the inconsistency between the intuition of the
Physics’ course and the formal Mathematics of the Calculus course. On the other
hand, she was searching for a theory which is always intuitively clear. We can say
that our student is looking for a theory which can keep a good dialectic between prov-
able formal properties and their intuitive meanings. In this direction, we can see the
possibility to find a geometrical representation of Fermat reals.

The idea is that, to any Fermat real x € ®*R, we can associate the function

N
t€Rzp > x4+ ) °x -t/ e R 3.1)

i=1
where N is, of course, the number of addends in the decomposition of x. Therefore,
a geometric representation of this function is also a geometric representation of the
number x because different Fermat reals have different decompositions, see Axiom 1
(decomposition). equality in *R depends only on the germ generated by each little-
oh polynomial (see Definition 3), we can represent each x € *R using only the first

small part of the function (3.1).

Definition 4. If x € *R and § € R~¢, then

N
(OX—I-ZOxi ,tl/wi(x),t) l0<t < 5}

i=1

graphs (x) =

where N is the number of addends in the decomposition of x.

Note that the value of the function is placed in the abscissa position so that the
correct representation of graphg(x) is given by Figure 3.1.

This interchange of abscissa and ordinate in the graphg(x) makes it possible to
represent this graph as a line tangent to the classical straight line R and hence to have
a better graphical picture. Finally, note that if x € R is a standard real, then N = 0
and the graphg (x) is a vertical line passing through °x = x.

The following theorem makes it possible to represent the Fermat reals geometric-
ally.

Theorem 5. If § € R~, then the function
x € *R —> graphg(x) C R?

is injective. Moreover if x, y € °*R, then we can find § € R~ (depending on x and
v) such that x < y if and only if

Vp.q.t: (p,t) € graphg(x), (q,¢) € graphg(y) = p <gq. (3.2)
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dt

B3l

3
—dtig 1 (lta,rg

dt
—2dt 2dt
o /—dtgi/g# Tdt
. >
—2dtg —dts — %dtg

\ AL

FIGURE 3.1. Some first and higher order infinitesimals

For a proof of this theorem, see [11]. See Figure 3.2 for the meaning of condition
(3.2).

Ty

o~ S

FIGURE 3.2. Different cases in which x; < y;

4. COMPUTER IMPLEMENTATION

The definition of the ring of Fermat reals is highly constructive. Therefore, using
object oriented programming, it is not hard to write a computer code corresponding
to *R. We implemented a first version of this software using Matlab R2010b.

The constructor of a Fermat real is x=FermatReal (s, w, r), where s is the
n + 1 double vector of standard parts (s (1) is the standard part °x) and w is the
double vector of orders (w (1) is the order w(x) if x € *R \ R, otherwise w=1]
is the empty vector). The last input r is a logical variable and assumes the value
true if we want that the display of the number x is implemented using the Matlab
rats function for both its standard parts and orders. In this way, the number will be
displayed using continued fraction approximations and, therefore, in many cases, the
calculations will be exact. These inputs are the basic methods of every Fermat real,
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and can be accessed using the subsref, and subsasgn, notations x . stdParts,
x.orders, x.rats. The function w=orders (x) gives exactly the double vector
x.orders if x € *R\ R and 0 otherwise.

The function dt (a), where a is a double, constructs the Fermat real dz,. Because
we have overloaded all the algebraic operations, like x+y, x*y, x-y, —x, x==y,
x "=y, x<y, x<=y, x "y, we can define a Fermat real, e. g., using an expression of
the form x=2+3xdt (2) -1/3«dt (1), which corresponds to

x=FermatReal ([2 3 -1/3],[2 1],true).

We have also implemented the function y=decomposition (x), which gives
the decomposition of the Fermat real x, abs (x), log (x),exp (x), isreal (x),
isinfinitesimal (x), isinvertible (x).

The ratio x/y has been implemented for x and y infinitesimals and y ~=0, or in
case y is invertible. Finally, the function y=ext (f, x), corresponds to ® f(x) and
has been implemented using the evaluation of the symbolic Taylor formula of the
inline function f.

The functions x “p, sgrt (x) and nthroot (x, n) have been implemented both
for x infinitesimal or invertible using the formulas derived in [16].

Using these tools, we can easily find, e. g., that

in(/df3 + 24 2 1096 1234
sin Eh 2 _ i+ diy — 2 diy + 00 g 1 120
cos(Y/—4dr) 3 27878 " 913

The Matlab source code is freely available under open-source license, and can be
requested from the author of the present paper.

5. APPLICATIONS AND DEVELOPMENTS

The simplicity of the ring of Fermat reals permits an easy extension of this ap-
proach along different directions.

We can see many informal uses of infinitesimals in Physics with this new point
of view. Frequently, these informal calculations can be faithfully repeated using
*R, without any changes. This can be thought of as a partial proof that this theory
provides a meaningful way to help us solve our modeling problems without forcing us
to completely change our methodological approach. Formalizing these physical mod-
els is a good way to learn the properties of Fermat reals. On the other hand, working
in a rigorous mathematical theory of infinitesimals allows us to gain a great formal
power and to discover the physical meaning of several informal approximations. For
example, in [11] it is proven that the wave equation is equivalent to a suitable con-
dition of infinitesimal oscillations of a string. Other elementary examples have also
been developed in [11]: the deduction of the heat equation, a study of the electric
dipole, the Newtonian limit in relativity, the curvature of a smooth curve, the area of
the circle and volumes of revolution, the stretching of a spring and others.
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The theory of Fermat reals is strongly inspired by SDG and, indeed, it can be
deeply developed to consider infinitesimal methods that are valid in both finite and
infinite dimensional spaces. Every smooth manifold M can be extended using this
type of infinitesimals analogously to what we have previously shown for the exten-
sion °*R D R, and obtaining a smooth embedding *M 2> M. More generally, this
extension is applicable to every diffeological space [18] obtaining a functor with very
good preservation properties. The category of diffeological spaces is cartesian closed
and embeds the category of smooth manifolds, so that these Fermat extensions can
also be applied to infinite dimensional function spaces. In this framework, we can
define tangent vectors of the space M as smooth maps of the form¢ : D — * M, i.e.
as infinitesimal linear curves traced on ®* M. We can also intrinsically define the sum
of two tangent vectors as the diagonal of the infinitesimal parallelogram generated by
these tangent vectors. We can prove that a vector field can be defined as an infinites-
imal smooth transformation of the space * M into itself,i.e.as V : D — *M *M such
that V(0) = leps. We can define infinitesimal integral curves and prove their exist-
ence even in infinite dimensional spaces of functions such as €*°(*M,*N). These
are only a few examples from a very long ongoing project. For more details, see
[10,13,14].

6. OPEN PROBLEMS AND IDEAS

The following describes some open problems and ideas for the interested reader to
undertake. Please feel free to contact the author to obtain more feedback, considering
that some of these ideas are being investigated within the ongoing projects P25116-
N25 and P25311-N25 of the Austrian Science Fund FWF.

6.1. Infinities and nilpotent infinitesimals

Almost every theory of actual infinitesimals is usually well coupled with a corres-
ponding theory of infinite numbers. In the case of a field, this coupling is naturally
provided by the reciprocal function. These infinitely large numbers can be fruitfully
applied to the formulation of integrals as infinite sums, limits at infinite points, hyper-
finite subdivisions of the real line, studies of singularities, and generalized functions,
to cite only a few. Of course, in the case of nilpotent infinitesimals, the trivial pos-
sibility that infinities are reciprocals of infinitesimals does not hold because, in that
case, h? = 0 would imply 4 = 0. Is there some meaningful way to bypass the im-
possibility to have infinities as reciprocals of nilpotent infinitesimals? What property
of multiplication of numbers should be weakened to allow a coexistence between
these infinities and nilpotent infinitesimals? Is the corresponding formalism suffi-
ciently easy to use and intuitively meaningful? Can these infinities be used to define
a suitable class of generalized functions? Hint: the reciprocal of 4 = [t] € *R is
necessarily generated by ¢ € R=.g — ¢! € R.



78 PAOLO GIORDANO

6.2. Weil functors and infinitesimals whose product is not zero

In the ring *R, the product of any two first order infinitesimals &, k € D is zero:
h -k = 0. As proved in [11, Theorem 24] this is a general consequence of the total
order property, but having infinitesimals /4, k such that 72 = 0 = k%> and h-k # 0
would be useful for studying the double tangent bundle (see [20]). An idea to explore,
inspired by rings like R[z, s]/{t> = 0,52 = 0), can be roughly stated as “two first
order infinitesimals (/;); and (ks)s have a non zero product (h; -ky); s if they depend
on two independent variables ¢ and s”. A possible formalization of this idea can be
sketched in the following way. Instead of little-oh polynomials, let us consider maps
of the form x : RY; — R (v depending on x) such that

k
x(ty,...,.ty) =r+ Zozj -tflj S +o(t) +...+o(ty), 6.1)
Jj=1

Now the analogue of the equality in *R is that x ~ y if and only if x and y are
both defined on the same domain RY ) and x(t1,...,ty) = y(t1,....ty) + o(t1) +
...+ o(ty) as tp — 0T for all k. This idea seems positive for two reasons: first,
if we define a new ring in this way, considering only the subring of all the maps
Ro[ti] which only depend on one variable ¢;, we obtain a ring ®*R[#;] isomorphic to
the present *R. Second, if we consider h(t1,) := 11 and k(t1,12) := t2, then we
have h2 ~ 0 and k2 ~ 0, but not & - k ~ 0. Of course, from [11, Theorem 24]
it follows that every subring *R[#;] is totally ordered, but the entire ring cannot be
totally ordered. Assuming that this new class of little-oh polynomials works as a
sufficiently good theory, is there a good representation of every Weil functor using
this new ring? For a representation of a subclass of Weil functors using *R, see [9].

6.3. Perturbation theory

Several classical methods used in perturbation theory seem to simplify if we take
the small perturbation parameter ¢ as a non zero nilpotent infinitesimal in the ring
of Fermat reals, i.e. if ¢ € ’IR#), e" = 0. For example, we can more easily use
the nilpotency property of ¢ instead of using big-oh asymptotic estimates; we can
also take advantage of exact Taylor formulas in *R, i.e. with nilpotent infinitesimal
increments and no remainder. More generally, we can use finite sums in the ring
*R instead of a (convergent or formal) power series, and we can also take advantage
of the existence of arbitrary roots of nilpotent infinitesimals (see [16]). Do these
properties permit an easier calculus of classical perturbation methods?

6.4. Example in (elementary) Physics

If you have an example, or even only an idea, of how to use the ring of Fermat in
(elementary) Physics, please feel free to contact the author. We are planning to write
a textbook with an introduction to this ring and its first properties and applications.
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Even in the case of a new example in elementary Physics, your name will be clearly
cited as the author of the example. For examples in this direction, see [11].
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