
A NOTE ON SESSION III, THE MATHEMATICAL SIDE OF CAUSALITY,

AT THE TIME MACHINE FACTORY 2015

GÜNTHER HÖRMANN

This is a guide to a specific session at a conference called the Time Machine Factory 2015,
which took place at the University of Turin in 2015. We may refer to the online resources of
the session programme and material or videos of the talks. Before providing a brief summary of
some of the talks delivered in this session of the conference in Section 2 below, we sketch the basic
mathematical causality structures in Lorentzian geometry and some related issues of mathematical
general relativity in Section 1.

1. Aspects of causality in the spacetimes of mathematical general relativity

The mathematical description of general relativity is fundamentally differential geometric, but
also involves sophisticated methods from analysis, in particular when addressing the delicate ques-
tions of singularities or rigorous theories of wave propagation. Both of these issues are intimitely
coupled to the causality structure on a spacetime, hence depend more specifically on geometric
consequences of the possibility or conditions for non-existence of (almost) closed timelike curves.
The first subsection summarizes the primarily differential geometric set-up of causality conditions,
the second subsection then gives a very brief outlook on the analysis of partial differential equations
describing propagation or evolution phenomena in spacetimes with causality structures.

1.1. Causality in Lorentzian geometry.

1.1.1. Spacetimes and causality. As basic references for the notions discussed here, we refer to [26]
for the theory of general relativity and to [17] for smooth differential and Lorentzian geometry,
the classic advanced book on mathematical general relativity is [12].

Let (M, g) be a pair consisting of a connected smooth manifold M equipped with a symmetric
covariant 2-tensor field g, which is non-degenerate at every point and has index 1 (i.e., the tangent
space has a one-dimensional maximal subspace where the metric is negative definite). Such a
tensor field g is called a Lorentzian metric on M .

Let p ∈ M . A tangent vector v ∈ TpM is said to be spacelike, if gp(v, v) > 0 or v = 0. The
tangent vector v is called lightlike (or null), if gp(v, v) = 0 and v 6= 0, and it is called timelike, if
gp(v, v) < 0. A causal tangent vector is one that is either lightlike or timelike.

We suppose, in addition, that (M, g) is time-oriented by the existence and choice of a nowhere
vanishing continuous vector field V on M that is timelike at every point of M . The cone of causal
vectors in each tangent space TpM has two disjoint components, the one containing Vp ∈ TpM
defines the future-pointing causal tangent vectors at p. We define a spacetime to be a time-oriented
connected Lorentzian manifold (M, g).

Let I ⊆ R be an interval. A continuous, piecewise C1 curve γ : I → M is said to be a causal
curve, if the tangent γ̇(s) is causal in Tγ(s)M for almost every s ∈ I. The causal curve is said to
be future directed, if each tangent vector is future-pointing.

The most direct and classical implementation of time-travel would thus mean to have a timelike
curve γ with two distinct parameter values s1, s2 ∈ I such that γ(s1) = γ(s2), i.e., a closed timelike
curve. A spacetime (M, g) is said satisfy the chronology condition, if there exists no closed timelike
curve in M . A causal spacetime is a spacetime that possesses no closed causal curves. Clearly, a
causal spacetime is also chronological.
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The standard elementary example of a causal spacetime is of course Minkowski space, where
M = Rn+1 and g is the constant metric given in global Cartesian coordinates at the point (t, x) ∈
R× Rn as bilinear form corresponding to the diagonal matrix g(t,x) = diag(−1, 1, . . . , 1). A time
orientation is fixed by the constant vector field with value (1, 0) ∈ R× Rn at every point of M .

1.1.2. Causal relation and global hyperbolicity. Two points p, q in a spacetime M are said to be
causally related, denoted by p ≤ q, if p = q or there exists a causal future directed curve from p
to q. The causal past of q is defined as J−(q) := {x ∈M : x ≤ q} and the causal future of p is the
subset J+(p) := {y ∈M : p ≤ y}. For example, in Minkowski space, the causal past set J−(q) is a
closed cone with tip at q and extending toward negative time direction, whereas the causal future
set J+(p) is a closed cone with tip at p and extending toward positive time direction. We define
the chronological future I+(p) and the chronological past I−(q) in complete analogy with J+(p)
and J−(q), simply based on timelike future directed curves.

Roughly speaking, the famous singularity theorems of general relativity show the existence of
black holes and the necessity of a big bang for a large class of “generic universes”. In addition to the
condition of causality, the proofs of these theorems depend in a crucial way on several constructions
involving causal geodesics. Recall that a curve γ in the spacetime (M, g) is a geodesic, if γ̇ is
parallel, i.e., Dγ̇ γ̇ = 0 holds. Here, D denotes the covariant derivative, or Levi-Civita connection,
induced by the Lorentzian metric g. In particular, the mentioned constructions required for the
singularity theorems rely on a positive answer to the question whether any two causally related
points p ≤ q, p 6= q in M can be connected by a causal geodesic curve from p to q. As it turns
out, an additional topological condition on the causal relation guarantees this desired property
and leads to the notion of a so-called globally hyperbolic spacetime (M, g), that is,
(i) (M, g) is causal,
(ii) for every p, q ∈M , the set J+(p) ∩ J−(q) is compact in M .

The classical form of the definition uses the strong causality condition in place of (i), that is,
it requires that there are no “almost closed curves” in M in the following sense: For every p ∈M
and for every neighborhood U of p there exists a neighborhood V of p with V ⊆ U and such
that no causal curve that starts and ends in V can leave U . The above variant of defining global
hyperbolicity is possible due to [4], where it is shown that (i) and (ii) imply that M is strongly
causal. As another interesting relationship with topology we may mention that the following can
be shown (cf. [20, Theorem 4.24]): A spacetime (M, g) is strongly causal, if and only if the family
of open sets {I+(p) ∩ I−(q) | p, q ∈M} is a basis for the manifold topology of M .

1.1.3. Cauchy hypersurfaces and metric splitting. A Cauchy hypersurface S in a spacetime M
is a subset S ⊂ M such that every inextendible timelike curve intersects S exactly once (see
[17, Chapter 14, Definition 28]). It was shown in [8] that global hyperbolicity of a spacetime is
equivalent to the existence of a Cauchy hypersurface S. Moreover, it follows that in this case M is
homeomorphic to R×S. A further refinement of this classical result on Cauchy hypersurfaces is the
so-called globally hyperbolic metric splitting, established in [3], which provides a characterization
of global hyperbolicity by a detailed “normal form description”: A spacetime (M, g) is globally
hyperbolic if and only if it is isometric with a spacetime (R × S, λ) such that λ = −θ dt2 + ρt,
where
(a) each {t} × S is a (smooth spacelike) Cauchy hypersurface,
(b) (ρt)t∈R is a smoothly parametrized family of Riemannian metrics on S,
(c) θ ∈ C∞(R× S) and positive.

1.1.4. Continuous causal curves. A continuous curve γ : [0, 1]→M is said to be causal, if for any
convex open subset U of M and s1, s2 ∈ [0, 1], s1 ≤ s2 with γ([s1, s2]) ⊂ U , we have γ(s1) ≤ γ(s2)
(relative U). It can be shown that continuous causal curves are, in fact, Lipschitz continuous
(see [2, pages 75-76] or [13, pages 365-366]), hence they are rectifiable and differentiable almost
everywhere. In particular, continuous causal curves may be parametrized by arclength. Global
hyperbolicity of a smooth spacetime (M, g) has been described in [6] in terms of compactness of
the set of causal curves connecting two causally related points and parametrized proportionally
to arclength on the interval [0, 1] with respect to the compact-open topology. Alternatively, the
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so-called C0-topology on the set of equivalence classes or images of (future directed) causal curves
is being employed instead (e.g. in [13,20,26]; see also the review article [22]).

Let C(p, q) be the set of all classes of continuous future directed causal curves from p to q
modulo continuously differentiable parameter transforms with positive derivative. As discussed
in [26, Section 8.3] (and in more detail in [21]), we may identify classes of curves in C(p, q) with
their images as subsets of M and it is easy to show that we obtain a basis for a topology τ on

C(p, q) by specifying O(U) := {λ̃ ∈ C(p, q) | the image of λ̃ is contained in U} for any open subset
U ⊆ M . The topology τ satisfies the Hausdorff separation axiom, if (M, g) is causal. In terms
of the topological space obtained in this way, we have the following characterization of global
hyperbolicity (see [26, Section 8.3], and [21] for the case of a continuous metric g):
A spacetime (M, g) is globally hyperbolic, if and only if
(i) (M, g) is causal and
(ii) for all p, q ∈M , the topological space (C(p, q), τ) is compact.

1.1.5. Singularity theorems. The celebrated singularity theorems by Hawking and Penrose essen-
tially prove timelike or null geodesic incompleteness of any spacetime satisfying a standard energy
condition (involving the effect that gravity attracts masses), global hyperbolicity (or a compara-
bly strong causality condition), and some form of initial condition (implementing the fact that
the universe is expanding) or boundary condition (existence of so-called future trapped surfaces,
e.g., related to collapsing stars). Timelike geodesic incompleteness means the existence of an
inextendible timelike geodesic curve γ : [0, b[→ M , i.e., there is a sequence of parameter values
sn → b such that the sequence of image points (γ(sn))n∈N does not converge in M ; similarly
for null geodesic incompleteness. Inextendible timelike geodesics are interpreted as evidence for a
singularity in the sense of a big bang (past directed) or big crunch (future directed). The existence
of inextendible null geodesics related to a trapped surface are an indication for a black hole.

1.2. Analysis of partial differential equations on spacetimes and gravitational waves.

1.2.1. Wave equations and a more general notion of global hyperbolicity. In a broad sense, well-
posedness of Cauchy problems for wave equations can also be considered a “good causality prop-
erty” of a theory, since this includes that physical fields are propagating into all of space and are
determined from appropriate initial conditions.

The wave operator 2 on the spacetime (M, g) is defined as the semi-Riemannian Laplacian ∆g

correspoding to the Lorentzian metric g, i.e., 2f = ∆gf = div(grad f) for a scalar function f onM .
Recall that the semi-Riemannian gradient is defined by the requirement that g(grad f, v) = df(v) =
v(f) holds for vector fields v on M , while div v is the contraction in the covariant differential Dv,
a tensor field of type (1, 1), of its “new” covariant slot with its “original” contravariant slot. We
will use the notion of wave equation on a spacetime (M, g) for partial differential equations on M
that are of the form Pu = f , where the differential operator can be written as P = 2+Q with Q
of order 1 or 0.

One of the fundamental consequences for analysis on a globally hyperbolic spacetime is that
we always have global well-posedness of (distributional) Cauchy problems for wave equations
with initial data given on spacelike Cauchy hypersurfaces (cf. [1]). Furthermore, the following
observation is immediate: If (M, g) is a globally hyperbolic spacetime and M ∼= R × S as in
the metric splitting characterization described above, then 2 is a strictly hyperbolic 2nd-order
differential operator with respect to level sets isomorphic to {t}× S. Here, we use the notion of a
strictly hyperbolic differential operator on a manifold in the sense of [10, Definition 23.2.3].

It is interesting to mention here a different point of view, namely, if P is an arbitrary strictly
hyperbolic 2nd-order differential operator P on a manifold M , then we have a semi-global1 well-
posedness result for (distributional) Cauchy problems with initial data on level sets in [10, Theorem
23.2.4] and, furthermore, there exists a Lorentzian metric g on M such that the principal part of
P coincides with that of 2 (cf. [10, Section 24.1]). However, one can easily give examples showing

1i.e., valid on relatively compact open subsets,
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that strict hyperbolicity of 2 on M does not imply global hyperbolicity of the spacetime (M, g)
(e.g., delete a single point from Minkowski space).

In [7] it has been suggested to replace the standard definition of global hyperbolicity by the
requirement of well-posedness for wave equations, in particular, in the realistic situations where
the Lorentzian metric fails to be smooth on all of M . The view has been advocated that a
“singularity” of a spacetime should be manifest as an obstruction to the Cauchy development of
the physical fields in that spacetime, which is different from the standard notion of singularity
as an “obstruction to the extension of geodesics”. In this spirit, a spacetime (M, g) is called 2-
globally hyperbolic, if there exists a C1 spacelike hypersurface S ⊂ M with unit future pointing
(continuous) normal vector field ξ such that M \ S is the disjoint union of two open (connected)
subsets M+ and M−, ξ points from M− to M+, and the Cauchy problem

2u = f, u |S= v, ξu |S= w,

is well-posed in appropriate Sobolev spaces.

2. Some of the talks delivered in Session III

2.1. James Vickers: Time, causality, and Einstein’s equations. This key talk started with
a discussion of the differences regarding the notions of time, space, and causality in Newtonian
Theory, Special and General Relativity. In the latter, the dependence of the concept of past
and future on a spacetime point was emphasized and how curvature is reflected in a variation of
the lightcones in the tangent spaces from point to point. Moreover, the simplest mathematical
model situations of black holes, white holes, and worm holes were described in terms of intuitive
geometric visualizations and explicit formulae of model spacetime metrics.

The second part gave some examples of solutions to Einstein’s equations which contain closed
timelike curves (CTCs), which means that by locally always travelling within ones forward light-
cone in spacetime, one can actually travel into ones own past on the global level. The examples
illustrated were the van Stockum rotating cylinder, Gödel’s universe, the rotating black hole,
wormhole solutions, the Gott 2-string solution, and Ori’s solution. The possibility of travelling
into ones own past leads to potential causal paradoxes, although not necessarily is the existence of
CTCs incompatibile with the laws of physics. One crucial question is whether the Cauchy problem
for a scalar field in such a spacetime can still be well-posed. In particular, the evolution of a scalar
field in a spacetime which contains an initially globally hyperbolic region which evolves into one
containing CTCs was considered. It was discussed how these results relate to several aspects
of “Hawking’s Chronology Protection Conjecture”, stating essentially that in a finite region of
spacetime CTCs cannot form without violating the so-called averaged weak energy condition.
Support for the chronology protection is provided by some evidence that quantum mechanical
effects preclude the creation of any putative “time machine” in form of CTCs. For example, the
spacetime with closed timelike curves due to Gott will, when quantum mechanical effects are taken
into account, be distorted in such a way that the region with closed timelike curves will no longer
form.

Alternatively, there is Novikov’s “Principle of Self-Consistency”, observing that events on a
CTC influence one another in a cyclic and self-consistent way and the Cauchy problem can be
solved locally. One can then try to extend the local solution to obtain a global solution. In the
well-known Polchinski Paradox, where a billard ball enters a wormhole at one end, but returns
at an earlier time through the other end, choosing only self-consistent initial data, the earlier
returned billard ball will hit the original ball only in a way so that it still enters the worm hole.

Considering as a test case the wave equation on the spacetime of a rotating cosmic string, which
allows for CTCs, one finds that global solutions are possible, but the wave operator changes type,
since it is hyperbolic in the chronological regions, but elliptic in the other parts of spacetime. In
particular, the initial data have to obey further restrictions in the elliptic region.

A few references for James Vicker’s talk are [5, 9, 11,16,18,24,25].

2.2. Michael Kunzinger: Singularity theorems in low regularity. The talk began by ex-
plaining the basic structure and concepts of the singularity theorems of general relativity, which
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were milestones in the understanding of solutions to the Einstein equations, a line of research
initiated by Penrose and continued by Hawking, Penrose, Ellis, Geroch, and others. Still the
investigation of singularity theorems constitutes a central topic of active research in mathemati-
cal relativity. In essence, the singularity theorems show that under realistic assumptions on the
spacetime (and independently of any symmetries) there necessarily exist incomplete timelike or
null geodesics, which may be interpreted as singularities of the spacetime. One weakness of the
classical singularity theorems is that they do not make any statement on the actual nature of
the singularities themselves. In particular, they do not imply that the curvature blows up where
a causal geodesic ceases to exist. Thus, in principle, they allow the possibility that the space-
time might be singular in the above sense merely due to the fact that the differentiability of the
spacetime metric drops below C2 (twice continuously differentiable). The talk reported on recent
progress in low-regularity causality theory and gave precise statements and sketches of proofs of
the fact that both the Penrose and the Hawking theorem remain valid for Lorentzian metrics
of differentiability class C1,1 (i.e., the first-order derivatives are Lipschitz continuous), which is
the maximal class where the geodesic differential equation with initial conditions still has unique
solutions.

A few references for Michael Kunzinger’s talk are [12,14,15,19,23].

2.3. Clemens Sämann: Global hyperbolicity for spacetimes with continuous metric.
The talk opened with a brief review of the definition and the reasons why global hyperbolicity is a
commonly used causality condition in general relativity: It ensures well-posedness of the Cauchy
problem for the wave equation; globally hyperbolic spacetimes are the class of spacetimes used in
the initial value formulation of Einstein’s equations; it plays an important role in the formulation
and in the proofs of singularity theorems. Classically, i.e., with smooth Lorentzian metric, there
are four equivalent notions of global hyperbolicity: Compactness of the “causal diamonds” J+(p)∩
J−(q) and (strong) causality, compactness of the space of causal curves connecting two points and
causality, existence of a Cauchy hypersurface, and the metric splitting of the spacetime. The talk
described techniques enabling one to show that the definition of global hyperbolicity in terms of
compactness of the “causal diamonds” plus the non-total imprisonment condition (causal curves
eventually leave any compact subset) can be extended to spacetimes with continuous Lorentzian
metrics, while retaining the first three equivalences above. Furthermore, global hyperbolicity in
this sense implies properties such as causal simplicity (closedness of the causality relation ≤),
stable causality (“small” perturbations of the metric with respect to the C0 open topology do
still not produce closed timelike curves), and the existence of maximal causal curves connecting
any two causally related points. We may refer to [21] for more details mentioned in the talk, in
particular, also regarding a clear analysis of comparability of several topologies on the space of
continuous causal curves.

Acknowledgement. The author thanks for support by the Austrian Science Fund project P25326,
which enabled him and the speakers Michael Kunzinger and Clemens Sämann to participate in
this session of the conference.
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