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Abstract. We are concerned with analyzing hyperbolic equations with distribu-
tional coefficients. We focus on the case of coefficients with jump discontinuities
considered earlier by Hurd-Sattinger in their proof of breakdown of global distri-
butional solutions. In the framework of Colombeau generalized functions, however,
Oberguggenberger showed existence and uniqueness of a global solution. Within this
framework we develop further a microlocal analysis to understand the propagation
of singularities of such Colombeau solutions. To achieve this we introduce a refined
notion of wave front set, extending Hörmander’s definition for distributions. We
show how the coefficient singularities modify the classical relation of the wave front
set of the solution and the characteristic set of the operator, with a generalized
notion of characteristic set.
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1. Introduction

In this paper, we present a new approach to the mathematical anal-
ysis of wave propagation, in particular propagation of singularities,
in complex media. Such analyses have been established in smoothly
varying media. However, the situation changes substantially if media
with nonsmooth variations of the physical parameters are considered.
Various results on the classical solvability of the corresponding hyper-
bolic equations with singular coefficients could be achieved in certain
examples ([4, 5, 6, 25]), including nonexistence in a surprisingly sim-
ple configuration as shown by Hurd and Sattinger [13]. Furthermore,
semigroup methods ([14]) are often applicable in the case of bounded,
measurable coefficients, e.g., if the source and initial values are in L2

([18]). However, in various (geo)physical applications delta-like sources
together with discontinuous, fractal, or multifractal media occur natu-
rally (for example, in sedimentary sequences in the upper crust of the
Earth [16] or in fractured rocks; see also [9, 10]).
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We shall discuss and test a recently developed extension of microlo-
cal analysis by means of an example, in which the implications of
the theory are more easily understood. In the example, the medium
contains a single step (Heaviside) singularity which includes the spe-
cial case considered by Hurd and Sattinger [13] for which they proved
nonexistence of distributional solutions. However, the analysis we present
applies to media with a far higher degree of complexity than the step
singularity, viz. media described by distributions of any finite order, in
particular also Zygmund classes covering multifractal behavior.

The theory is built on Colombeau algebras [1] of generalized func-
tions (subsection 1.2). Such algebras are not only appropriate for our
analysis of (wave) solutions, but also provide an explicit modeling pro-
cedure of complex media. The ‘generalized function’ is represented by
a class of regularizations. Each regularization is a representative, on
which the analysis is carried out. The regularizations are parameterized
by a scale (zoom-in) factor. The function’s asymptotic properties with
respect to the scale parameter establish an accurate measure of regu-
larity. The original distributions are embedded through regularizations
of the type ‘convolution with mollifier’.

Acoustic and elastic waves are described by a first-order, symmetric,
hyperbolic system of partial differential equations in dimension m+ 1.
In this paper, we will model distributional coefficients in such a system
of equations, preserving their singularity structure (subsection 3.2). In
the context of Colombeau algebras we will establish unique solvability
of the resulting system (subsection 3.1) and investigate the solution’s
microlocal properties such as the propagation of singularities. To this
end we introduce the concept of generalized characteristics (subsec-
tion 4.2). To evaluate the generalized characteristic set we adapt the
method of characteristics to representatives in a Colombeau algebra
(subsection 4.1). The propagation of singularities is then manifest in the
generalized wavefront set of the (Colombeau) solution of the hyperbolic
system of equations (section 5). The generalization is carefully intro-
duced to ensure detectability of all singularities. Throughout the paper,
we develop a theory around the 1 + 1-dimensional configuration and a
distributional coefficient with an isolated singularity (subsection 1.1).
For such configuration a physical intuition exists and peculiarities like
the ‘slowness’ (cotangent) vector in an ‘interface’ (subsection 4.2) can
be better understood. Finally, we establish the existence of distribu-
tional shadows of the solution (section 6). This implicitly induces a
solution mapping from the distributional coefficients to a distributional
shadow, which brings us back to the applications. The analysis sheds
new light on the Schwartz impossibility [26] result in the context of
global solutions of partial differential equations (section 2). We reestab-
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lish the existence of distributional solutions in the generic case by
adapting the levels in the product hierarchy of Oberguggenberger ([21],
p. 69; see also the appendix for a brief summary and a table), but
strengthen the nonexistence of the limiting case of zero speed leading
to Hurd-Sattinger’s example.

The wave equation in 1 + 1 dimensions can also be thought of as a
‘one-way’ wave equation. Such equation is obtained after a directional
decomposition procedure has been applied to the full-wave equation.
Thus, in the example, we focus on the transmission of transient acoustic
waves.

In applications, the propagating singularities contain leading-order
information about the medium. Hence, their understanding is of key
importance to remote sensing, e.g. in data processing and inverse scat-
tering.

1.1. The one-dimensional problem

We study a 1+1-dimensional model represented by the following linear
initial value problem with a discontinuous coefficient,

∂tu− ∂x(R(x)u) = 0 (1)

u|t=0 = a . (2)

We assume the coefficient to be of the form R(x) = c1H(−x)+ c2H(x)
where H is the Heaviside function, i.e., H(x) = 1 for x > 0 and H(x) =
0 for x < 0, c1 and c2 are real nonnegative constants, and a is some
distribution in R.

1.2. Algebras of generalized functions

We recall the basic definitions and notions of Colombeau theory. For
a detailed presentation of the general theory, its role in generalized
function theory, and a review of applications, we refer to [2, 21, 8, 17].

The parameter set for the regularizations defining Colombeau gen-
eralized functions is given by the following cascade of normalized test
function sets with vanishing moment conditions: for q ∈ N0 define

Aq(R) =
{
χ ∈ D(R) |

∫
χ(x)dx = 1,

∫
xkχ(x)dx = 0 (1 ≤ k ≤ q)

}

Aq(R
n) =

{
φ ∈ D(Rn) | ∃χ ∈ Aq(R) : φ(x1, . . . , xn) = χ(x1) · · ·χ(xn)

}

To incorporate real scaling parameters for judiciously chosen asymp-
totic conditions, we define for φ ∈ A0(R

n)

φε(x) = ε−n φ(x/ε) ε > 0 .
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Note that, as distributions, φε → δ0 as ε→ 0; in particular, the support
of φε shrinks to the single point {0}. A useful general tool to couple the
scaling with the shrinking of the support of φ is the support number

l(φ) := sup{x ∈ Rn | φ(x) 6= 0}

which is simply the radius of the smallest closed ball containing supp(φ).
Note that we have l(φε) = εl(φ).

We introduce the set of all maps from the index set A0(R
n) into the

smooth functions over an open subset Ω,

E [Ω] = {R : A0(R
n) → C∞(Ω)} .

This is a differential algebra with component-wise operations, i.e. all
operations are reduced to their classical counterparts at fixed φ. We
single out certain subalgebras of nets subject to asymptotic conditions
uniformly on compact sets, viz. the moderate and the negligible nets:

EM [Ω] =
{
R ∈ E [Ω] | ∀K ⊂ Ω compact,∀α ∈ Nn

0 : ∃N ∈ N : (3)

∀φ ∈ AN (Rn) : sup
x∈K

|∂αR(φε, x)| = O(ε−N ) (ε→ 0)
}

N [Ω] =
{
R ∈ EM [Ω] | ∀K ⊂ Ω compact,∀α ∈ Nn

0 : ∃N ∈ N : (4)

∀φ ∈ AN (Rn)∀q ≥ N : sup
x∈K

|∂αR(φε, x)| = O(εq−N ) (ε→ 0)
}

In the definition of N [Ω] one may neglect to check the growth conditions
for derivatives of order ≥ 1 (as long as R is known to be an element in
EM [Ω]; cf. [7]).

N [Ω] is an ideal in EM [Ω] hence we may form the quotient algebra

G(Ω) = EM [Ω]/N [Ω]

which is called the Colombeau algebra over Ω. It is again a differential
algebra where operations are reduced to component-wise operations
on representatives. To highlight different aspects of the representatives
we will switch between the notations u(φ, x), u(φ, .), or u(φ) and write
U = cl[(u(φ, .))φ] to indicate that U ∈ G has the representative u ∈ EM .
Whenever φ is arbitrary but fixed we will temporarily use a short hand
notation like uε(x) := u(φε, x) in computations.

The Colombeau algebra G(Ω) has localization properties which guar-
antees existence of restrictions to open subsets and a meaningful notion
of generalized support : if U is a Colombeau function then suppg(U) is
the complement of the largest open subset X ⊆ Ω such that U |X= 0
in G(X).
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There is a canonical embedding of distributions ι : D ′(Ω) → G(Ω)
(as a linear subspace) which in the case of Ω = Rn is simply given by

ι(f) = cl[(f ∗ φ)φ] f ∈ D′(Rn) .

For Ω arbitrary one first defines this map on the space E ′(Ω) of distri-
butions with compact support in Ω and then extends by suitable cut-off
over any given compact set K ⊂ Ω (cf. [21], Sect. III.9).

Restricted to smooth functions this map is also consistent with the
‘constant’ embedding of smooth functions, σ : C∞(Ω) → G(Ω),

σ(f) = cl[(f)φ] f ∈ C∞ (ι(f) = σ(f) in this case) .

Requiring this consistency was the motivation for introducing the mo-
ment conditions in Aq: the proof employs Taylor expansions in the
convolution integral and makes use of the vanishing moments of the
mollifier.

Some Colombeau functions can be projected to distributions (these
are said to have ‘distributional shadows’). We say that U ∈ G is asso-
ciated with w ∈ D′, notation U ≈ w, if U = cl[(u(φ, .))φ] and ∀ψ ∈ D
∃N ∈ N:

lim
ε→0

∫
u(φε, x)ψ(x)dx = 〈w,ψ〉 ∀φ ∈ AN .

If U, V ∈ G then we define U ≈ V if U − V is associated with (the dis-
tribution) 0. (This is an equivalence relation.) The following properties
are immediate: ι(w) ≈ w; if U ≈ V then ∂αU ≈ ∂αV and fU ≈ fV for
f ∈ C∞.

Since we study Cauchy problems in Rm+1 (m = 1) we have to define
the restriction of a Colombeau function to a coordinate hyperplane:
let V ∈ G(Rm+1) then if V = cl[(v(φ, .))φ] and φ(l)(x1, . . . , xl) :=
φ0(x1) · · · φ0(xl) for all φ0 ∈ A0(R) we define

V |xm+1=0= cl[(v(φ
(m+1)
0 , .))

φ
(m)
0

] .

2. Global distributional solutions

A classical approach to solve (1)-(2) is to split the problem into two
subproblems (with then constant coefficients) on either side of the jump
at x = 0 and to subject the two associated solutions to boundary
conditions at the jump to find a solution of the original problem. How-
ever, this in general does not lead to a global distributional solution,
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as already observed in the case c1 = 0, c2 = 1, and a = 1 by Hurd and
Sattinger [13] with the framework of L1

loc as solution space (see also the
short discussion in [21], example 1.7). Essentially, the reason is that the
combination of the subproblems suggests to consider u(x, t) = 1+tδ(x),
δ the Dirac delta at 0, as the global solution for t ≥ 0. But this is not
in L1

loc and leaves us with the problem of consistently defining H · δ
and then differentiating this object upon checking if u actually solves
the differential equation. To do so, we want to use one of the notions of
D′-products according to the hierarchy of consistent extensions given
in [21], p. 69 (also described in the appendix). Within this hierarchy we
find that H ·δ exists only on the most general level of the strict products
(and consequently in all higher levels), yielding the value [H · δ] = δ/2
(cf. [21], examples and exercises 7.12). But a simple computation shows
that ∂tu− ∂x([H · u]) = −tδ′(x)/2 6= 0 and therefore u does not solve
the equation globally.

In the following we investigate all cases 0 ≤ c1 < c2. We will show
that almost all initial data associated with remote sensing will necessar-
ily lead to inconsistencies if the properties of the differential operator
and the requirements on the solution are stated in a purely microlocal
form. On the other hand by allowing for distributional products beyond
microlocal conditions we can prove general existence of solutions for the
case 0 < c1 but generic nonexistence for the case c1 = 0.

In order to focus on the interaction of propagating singularities with
the medium jump at x = 0 we introduce the following assumption
concerning the initial value or source:

(o) a ∈ D′(R) and a is smooth near 0.

This is valid in particular if the source of the model experiment is
concentrated on one side of the medium jump.

To give a precise meaning to the question of existence of distribu-
tional solutions of (1)-(2) we start with a detailed list of requirements
for a distribution u ∈ D′(R2) to be considered a global solution.

In a first version these requirements emphasize microlocal methods
and consistencies in accordance with the main issues posed in this
paper. Later on variants of requirement (v) will be considered that
depart from microlocal considerations.

(i) u is continuous in time, i.e. can be considered to be an element
of the space C(R,D′(R)); in particular, its initial value at t = 0
is well defined in the distributional sense. This is natural in the
framework of hyperbolic Cauchy problems and could be weakened.
E.g., we could assume u to be restrictable to t = 0 in the sense of
[11], Cor. 8.2.7, which would imply the same continuity property of
u near the x-axis (cf. the remark in [27], after Prop. 6.11).
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(ii) u|t=0:= u(0) = a.

(iii) in the left half space V− = {(x, t) | x < 0} we have ∂tu = c1∂xu
(according to (1) when restricted to V−). This is a consequence
of (v) and (vi) below but we prefer to include this redundancy to
emphasize coherence with intuition.

(iv) in the right half space V+ = {(x, t) | x > 0} we have ∂tu = c2∂xu
(according to (1) when restricted to V+). As with (iii) this will also
be a consequence of (v)-(vi) below.

(v) the distributional product (R(x) ⊗ 1) · u should exist in D ′(R2) in
the sense of Hörmander ([11], Thm. 8.2.10); in other words, the
wave front sets of R⊗1 and u must not contain opposite cotangent
directions over the same base point. Note that WF((R(x) ⊗ 1)) =
{0}×R×(R×{0})\{(0, 0)} (cf. [11], Thm. 8.2.9, also p. 269) and has
therefore exactly horizontal cotangent directions above the t-axis.
We conclude that within the microlocal setting the existence of this
product is equivalent to the existence of the restriction u |x=0 (cf.
[11], Cor. 8.2.7). This in turn enables us to reformulate the trans-
mission at the medium singularity as a boundary value problem. It
furthermore implies (as remarked similarly in (i)) that locally near
x = 0 we may consider u to be continuous in x and distributional
in time.

(vi) finally, we require the equation to be satisfied globally in the sense
of D′(R2): ∂tu− ∂x((R(x) ⊗ 1) · u) = 0.

Theorem 1. Assume 0 ≤ c1 < c2 and that a satisfies assumption (o)
above. Then there is no distribution u ∈ D ′(R2) satisfying all of the
requirements (i)-(vi) above unless a = 0 on R or, in case c1 = 0, a = 0
in (0,∞). In this sense, there is no distributional solution to problem
(1)-(2) for nontrivial initial values.

Proof. For the proof of nonexistence we distinguish two cases according
to the value of c1.

Case c1 > 0: assume that u is a distribution satisfying (i)-(vi). In
the regions V1 := {(x, t) | x < 0, x + c1t < 0}, V2 := {(x, t) | x >
0, x+c2t > 0} (cf. figure 1) the Cauchy data and the equation determine
the solution u to be a(x+ c1t), a(x+ c2t) respectively (in the sense of
pull-back of a by the functions (x, t) 7→ x+ c1t, (x, t) 7→ x+ c2t). These
distributions can be considered as smooth maps in the x-variable with
distributional values in t-space or vice versa. By (v) the boundary value
of u at x = 0 exists and can be used to determine u in the open sectors
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Figure 1. Definition of subdomains

W1 := {(x, t) | x < 0, x + c1t > 0}, W2 := {(x, t) | x > 0, x + c2t < 0}
(cf. figure 1).

We set b := u |x=0 which by the local continuity with respect to x
may be computed as one-sided limits limx→0+ u(x, .) or limx→0− u(x, .)
as distributions in the t-variable. For t > 0 we take the limit from the
right and obtain b(t) = a(c2t) as initial value for a Cauchy problem in
W1 where the roles of x and t are interchanged. This yields the formula
u |W1= a((x + c1t)c2/c1) (again, in the sense of the pull-back of a via
(x, t) 7→ (x + c1t)c2/c1). Similarly, we obtain u |W2= a((x + c2t)c1/c2)
by considering for t < 0 the limit from the left.

Making use of the coherence properties in the product hierarchy
(cf. the appendix) we may compute the product (R ⊗ 1) · u as a strict
product where only one factor is regularized and then pass to the limit
ε→ 0. We choose a net of smooth functions (Rε)ε>0 such that Rε → R
in D′(R) as ε→ 0. We will discuss only the upper half space t > 0; the
case t < 0 is completely analogous.

Since R ⊗ 1 is constant away from the t-axis we focus on the more
interesting part of the upper half space near the axis. Let ψ be a
test function on R2 having support near the positive t-axis and not
intersecting V1. Then using the above formulae for u and considering
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it as a continuous map x 7→ u(x, .), R → D ′(R), we have

〈(Rε ⊗ 1) · u, ψ〉 = 〈u(x, t), Rε(x)ψ(x, t)〉

=

0∫

−∞

〈a(
c2
c1

(x+c1.)), ψ(x, .)〉Rε(x) dx+

∞∫

0

〈a(x+c2.), ψ(x, .)〉Rε(x) dx .

Both integrands are continuous functions (with respect to x), have
support in a fixed compact set independent of ε, and have a pointwise
limit as ε→ 0. By dominated convergence we get

〈(R⊗ 1) · u, ψ〉 = c1

0∫

−∞

〈a(
c2
c1

(x+ c1.)), ψ(x, .)〉 dx

+ c2

∞∫

0

〈a(x+ c2.), ψ(x, .)〉 dx .

The verification whether u is a solution is requirement (vi). For a
test function ψ as above we recall that

〈u, ψ〉 =

0∫

−∞

〈a(
c2
c1

(x+ c1.)), ψ(x, .)〉 dx +

∞∫

0

〈a(x+ c2.), ψ(x, .)〉 dx

and therefore (with ∂jψ (j = 1, 2) denoting the derivative of ψ with
respect to its first or second argument)

〈∂tu, ψ〉 = −

0∫

−∞

〈a(
c2
c1

(x+ c1.)), ∂2ψ(x, .)〉 dx

−

∞∫

0

〈a(x+ c2.), ∂2ψ(x, .)〉 dx

and

〈∂x
(
(R⊗ 1) · u

)
, ψ〉 = −c1

0∫

−∞

〈a(
c2
c1

(x+ c1.)), ∂1ψ(x, .)〉 dx

− c2

∞∫

0

〈a(x+ c2.), ∂1ψ(x, .)〉 dx .
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We rewrite the first integrand appearing in the expression for 〈∂tu, ψ〉
as follows:

− 〈a(
c2
c1

(x+ c1.)), ∂2ψ(x, .)〉 = c1
c2
c1
〈a′(

c2
c1

(x+ c1.)), ψ(x, .)〉

= c1
d

dx
〈a(

c2
c1

(x+ c1.)), ψ(x, .)〉 − c1〈a(
c2
c1

(x+ c1.)), ∂1ψ(x, .)〉 .

If we transform the second integrand in 〈∂tu, ψ〉 in the same way and
compare the result with 〈∂x

(
(R⊗ 1) · u

)
, ψ〉 we find

〈∂tu− ∂x
(
(R⊗ 1)u

)
, ψ〉 = c1〈a(c2.), ψ(0, .)〉 − c2〈a(c2.), ψ(0, .)〉 .

But this implies that

∂tu− ∂x
(
(R⊗ 1)u

)
= (c1 − c2) δ ⊗ a(c2.)

which is not zero unless a = 0 in (0,∞).
The reasoning near the negative t-axis is analogous and yields that

u cannot satisfy (vi) unless a = 0 in (−∞, 0). Since a is assumed to be
smooth near 0 we conclude that this would enforce a = 0 globally.

Case c1 = 0: assume that u is a distribution satisfying (i)-(vi) and
without loss of generality that c2 = 1. Set c(x, t) = x+ t then a⊗1, i.e.
a(x), and c∗a, i.e. a(x+ t), solve the problem in the half spaces V1 and
V2 respectively (notation as at the beginning in the proof; note that
now W1 = ∅). By smoothness of a near 0 and since WF(c∗a) cannot
contain horizontal cotangent directions we can define the distributions

u1 = (H(−x) ⊗ 1) · (a⊗ 1)

u2 = (H(x) ⊗ 1) · c∗a (5)

w = u1 + u2 .

We have u |Vj = uj |Vj (j = 1, 2) and therefore u − w |{t≥0,x6=0}= 0.
Furthermore, the uj are smooth functions of time with values in D ′

over x-space, hence w and u− w are continuous with respect to time.
The arguments are similar to the ones used in the first case. By

assumption (v) u can be considered to be continuous in x and distribu-
tional in t near the t-axis. In particular, upon approaching the positive
t-axis from the left, this implies that a(x) is a continuous function for
small x which clearly is consistent with assumption (o). Let ψ be a test
function with support concentrated near the positive t-axis so that u
can be considered continuous in x and distributional in t there. Then
we have

〈u, ψ〉 =

∞∫

−∞

0∫

−∞

a(x)ψ(x, t) dxdt +

∞∫

0

〈a(x+ .), ψ(x, .)〉 dx .
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As in the first case we may evaluate the product (R⊗ 1) · u as a strict
product with one factor regularized

〈(R ⊗ 1) · u, ψ〉 =

∞∫

0

〈a(x+ .), ψ(x, .)〉 dx .

It follows that

〈∂tu, ψ〉 = −

∞∫

0

〈a(x+ .), ∂2ψ(x, .)〉 dx

〈∂x
(
(R⊗ 1) · u

)
, ψ〉 = −

∞∫

0

〈a(x+ .), ∂1ψ(x, .)〉 dx .

Rewriting

−〈a(x+ .), ∂1ψ(x, .)〉 = −
d

dx
〈a(x+ .), ψ(x, .)〉 − 〈a(x+ .), ∂2ψ(x, .)〉

we arrive at

〈∂tu− ∂x
(
(R⊗ 1) · u

)
, ψ〉 = −〈a, ψ(0, .)〉 = −〈δ ⊗ a, ψ〉

which is nonzero unless a = 0 in (0,∞).

Note that within M. Oberguggenberger’s hierarchy of distributional
products condition (v) refers to ‘WF favorable’ which is on the third
level only. The following remarks illustrate the restrictive character of
the purely microlocal condition and motivate extensions to be studied
below.

Remark 2.

(i) Consider the discussion of the original Hurd-Sattinger example at
the beginning of this section. We note that weakening of require-
ment (v) within the coherent product hierarchy does not remove
the ambiguities, even if the initial values were smooth.

(ii) However, in the case c1 > 0 there are global distributional solutions
to (1)-(2) which satisfy requirements (i)-(iv) and (vi) but not (v).
The following example is due to M. Oberguggenberger [23]: consider
the measurable bounded function

u = 1 +
(c2
c1

− 1
)(
H(−x)H(x+ c1t) +H(x)H(−x− c2t)

)
(6)

which is a solution to (1)-(2) when a = 1. (This can be checked by
carrying out the product R ·u within L∞(R2).) Note that the wave
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front set of u contains exactly the horizontal cotangent directions
over the t-axis. A similar construction of a solution is valid for an
initial value a equal to the characteristic function of an interval. In
the latter case we obtain a strip changing its slope and jumping by
c2/c1 at x = 0. We will prove below that a generalization of this
example leads to a general existence result. In addition, we will show
at the end of this paper how to obtain these distributions as classical
shadows of the (unique) Colombeau solution to the appropriately
transfered Cauchy problem.

(iii) Note that condition (v) ensures that the problem can be reformu-
lated as boundary value problem.

(iv) The reader might think that the last (local) result in the above
proof, ∂tu− ∂x

(
R · u

)
= −δ⊗ a, is inconsistent with the discussion

of the original Hurd-Sattinger example at the beginning of this
section, where we obtained ∂tu − ∂x

(
R · u

)
= −δ′ ⊗ t/2 if a = 1.

But note that in the above proof we assumed the product R · u to
exist on a much lower level in the product hierarchy: we assumed
the WF-condition to hold and then used the simplest type of so-
called strict product to conveniently compute it for general a. In
the Hurd-Sattinger example we noticed that we have to use at least
the highest level of strict products. Unlike in the Hurd-Sattinger
example (a = 1) the initial condition is more general in the above
proof.

We will show that if we weaken the product requirement (v) within
Oberguggenberger’s product hierarchy we have the following situation:
in case c1 > 0 a general existence result holds while for c1 = 0 we have
generic nonexistence even if we substitute the highest hierarchy level
in requirement (v).

We begin with the existence case and consider the variant

(v)′ the distributional product (R(x)⊗1) ·u exists in D ′(R2) as a ‘strict
product (1)-(3)’ in the sense of Oberguggenberger’s hierarchy.

Theorem 3. Let c1 > 0 then for any initial value a ∈ D′(R) satisfying
assumption (o) there is a distribution u ∈ D ′(R2) which meets require-
ments (i)-(iv), (v)′, and (vi). In this sense it is a global distributional
solution to the Cauchy problem (1)-(2). It is given explicitly by

u(x, t) = H(−x)H(−x− c1t)a(x+ c1t)

+H(x)H(x+ c2t)a(x+ c2t) +
c1
c2
H(x)H(−x− c2t)a(

c1
c2

(x+ c2t))

+
c2
c1
H(−x)H(x+ c1t)a(

c2
c1

(x+ c1t)) (7)
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where the appearing distributional products are defined in the following
way: we recognize in each term that the second and third factor have
a pull-back in common and thus form a product of the kind ‘disjoint
singular support’; the remaining multiplication with the first factor is
justified by the ‘WF favorable’ in the hierarchy. Furthermore, if a ∈
L1

loc(R) then formula (7) is valid within measurable functions and u ∈
L1

loc(R
2).

Proof. We give the details for the region {t > 0} \ V1 only which in-
cludes the forward transmission across the medium discontinuity. The
reasoning for the other sectors in R2 are similar or even simpler (e.g.,
a classical Cauchy problem in V1).

Therefore let ψ ∈ D(R2) have its support in {t > 0}\V1. Considering
(7) as a weakly measurable map in x into distributions in t the action
of u on ψ can be written as

〈u, ψ〉 =
c2
c1

0∫

−∞

〈a(
c2
c1

(x+ c1.)), ψ(x, .)〉 dx +

∞∫

0

〈a(x+ c2.), ψ(x, .)〉 dx .

(8)
For the verification of (v)′ we regularize R⊗ 1 as in [21], (7.1), and

use formula (8) to calculate the limit explicitly. We obtain

〈(R⊗ 1)u, ψ〉 = c2

0∫

−∞

〈a(
c2
c1

(x+ c1.)), ψ(x, .)〉 dx

+ c2

∞∫

0

〈a(x+ c2.), ψ(x, .)〉 dx . (9)

Thus we have

〈∂x((R ⊗ 1)u), ψ〉 = −c2

0∫

−∞

〈a(
c2
c1

(x+ c1.)), ∂1ψ(x, .)〉 dx−

c2

∞∫

0

〈a(x+ c2.), ∂1ψ(x, .)〉 dx
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and

〈∂tu, ψ〉 = −
c2
c1

0∫

−∞

〈a(
c2
c1

(x+ c1.)), ∂2ψ(x, .)〉 dx

−

∞∫

0

〈a(x+ c2.), ∂2ψ(x, .)〉 dx .

The integrands in the latter equation can be rewritten in the same way
as in the proof of Thm. 1 to yield

〈∂tu, ψ〉 = 〈∂x((R⊗ 1)u), ψ〉−

c2〈a(
c2
c1

(x+ c1.)), ψ(x, .)〉 |0−∞ −c2〈a(x+ c2.), ψ(x, .)〉 |∞0

= 〈∂x((R⊗ 1)u), ψ〉 − c2〈a(c2.), ψ(0, .)〉 + c2〈a(c2.), ψ(0, .)〉

= 〈∂x((R ⊗ 1)u), ψ〉

which proves (vi) (and in turn (iii)-(iv) once this is verified for all of
R2).

(i) and (ii) follow directly by using formula (7) for computing the
action of u on test functions.

The case c1 = 0 is fundamentally different. We will prove a generic
nonexistence result for the following even weaker variant of the product
condition (v):

(v)′′ the distributional product (R(x)⊗1) ·u exists in D ′(R2) as a ‘model
product (4)’ in the sense of Oberguggenberger’s hierarchy.

As a preparation we recall some product formulas needed in the
proof of the theorem below.

Lemma 4.

(i) If χ ∈ D′(R) and c(x, t) = x + t then the distributional product
(δ ⊗ 1) · c∗χ exists in D′(R2) in the sense of Hörmander, i.e. ‘WF
favorable’, and we have

(δ ⊗ 1) · c∗χ = δ ⊗ χ .

(ii) Let Ȟ(x) = H(−x) then H · Ȟ = 0 and H ·H = H by L2
loc-duality.

(iii) H · δ(k) exists as ‘model product (4)’ if and only if k = 0 and we
have H · δ = δ/2.
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Proof.
ad (i): we note that WF(δ⊗1) = {0}×R×R×{0}\0 and WF(c∗χ) =
{(x, t, η, η) | (x + t, η) ∈ WF(χ)} (apply [11], Thm.8.2.4, to c∗χ and
d∗c∗χ with d(x) = (x − d0, d0) successively) are in favorable positions
and therefore the product exists in the sense of Hörmander. We use
the coherence within Oberguggenberger’s product hierarchy and the
parameter product as in [21], 7.12 (d), with the roles of x and t inter-
changed: observe that c∗χ can be interpreted as a weakly smooth map
v : x 7→ χ(x+ .), R → D′(R), so we have (δ ⊗ 1) · v = δ ⊗ v(0) = δ ⊗ χ.
ad (ii): this is a special case of [21], Prop. 5.2, and the verification is
immediate by direct computation.
ad (iii): let ψ ∈ D(R) and (ϕε)ε>0 is a model delta net ([21], (7.9))
then

〈(H ∗ ϕε) · (δ
(k) ∗ ϕε), ψ〉 =

1

εk

∞∫

−∞

x∫

−∞

ϕ(y) dy ϕ(k)(x)ψ(εx) dx

is convergent for all ψ as ε → 0 if and only if k = 0 in which case the
stated formula follows by dominated convergence (cf. also [21], 7.12
(a)).

Theorem 5. Let a ∈ D′(R) with supp(a) ∩ (0,∞) 6= ∅ and satis-
fying assumption (o). Then in case c1 = 0 there is no distribution
u ∈ D′(R2) having all the properties (i)-(iv), (v)′′, and (vi). In this
sense no distributional solution to (1)-(2) can exist.

Proof. We use again the decomposition (5) and its basic properties.
By construction for all t > 0 the distribution u(t) − w(t) ∈ D ′(R) has
support contained in {0} and u(0) − w(0) = 0. This implies that

u3(t) := u(t) − w(t) =
∞∑

k=0

ck(t) δ
(k) if t ≥ 0

where ck are continuous functions with ck(0) = 0 and for t varying in
compact sets only finitely many ck(t) are nonzero. In the upper half
space t ≥ 0 we may therefore write u = u1 + u2 + u3.

The computation of R⊗ 1 · u is reduced to the investigation of the
products H ⊗ 1 · uj for j = 1, 2, 3 separately . By smoothness of a near
0 and Lemma 4(ii) we have H ⊗ 1 · u1 = 0. Furthermore, since

〈u2, ψ〉 =

0∫

−∞

〈a, ψ(x, . − x)〉 dx

one easily verifies that H ⊗ 1 · u2 = u2 by directly inspecting the limit
of 〈u2, (H ∗ ϕε)ψ〉 as ε→ 0 for some model delta net (ϕε)ε. Finally, by
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Lemma 4(iii) H ⊗ 1 · u3 exists as model product if and only if ck = 0
for k > 0, in which case it attains the value δ ⊗ c0/2. Hence we have

R · u = H(x)a(x+ t) +
1

2
δ(x)c0(t)

and therefore

∂x((R⊗ 1 · u)) = δ(x)a(x + t) +H(x)a′(x+ t) +
1

2
δ′(x)c0(t)

= δ(x)a(t) +H(x)a′(x+ t) +
1

2
δ′(x)c0(t)

where we used Lemma 4(i) in the last step. Subtracting this from

∂tu = H(x)a′(x+ t) + δ(x)c′0(t)

yields

∂tu− ∂x(Ru) = δ ⊗ (c′0 − a) +
1

2
δ′ ⊗ c0 .

This is equal to zero in the forward half space if and only if c′0 = a and
c0 = 0 in (0,∞) which contradicts supp(a) ∩ (0,∞) 6= ∅.

3. Colombeau modeling for hyperbolic equations
and refined microlocal analysis

3.1. Existence and uniqueness of global Colombeau

solutions

It was shown by Oberguggenberger ([19], see also [21], example 17.6)
that there is a remedy for the dissatisfying situation discussed in the
previous section in the framework of Colombeau algebras. We depart
from our specific example and discuss the general case in space dimen-
sion m. Consider the following hyperbolic Cauchy problem in Rm+1.

∂tU −
m∑

j=1

Aj(x, t)∂xjU −B(x, t)U = F (x, t) (10)

U(x, 0) = G(x) (11)

where Aj (j = 1, . . . ,m), B are real valued generalized functions in
G(Rm+1) (in the sense that all representatives are real valued smooth
functions) and initial value G ∈ G(Rm). We mention that all statements
in this subsection are valid for symmetric hyperbolic systems (which
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brings us back at the two-way wave equation) but here we will only
relate to the scalar case.

The coefficients will be subject to some restriction on the allowed
divergence in terms of ε-dependence. A Colombeau function V ∈ G(Rn)
is said to be of logarithmic type if it has a representative v(φ) with the
following property: there is N ∈ N such that for every φ ∈ AN there
exist C > 0, η > 0 with

sup
y∈Rn

|v(φε, y)| ≤ N log
(C
ε

)
0 < ε < η . (12)

(This property then holds for any representative.)

Theorem 6 (Lafon-Oberguggenberger [15]). Assume that Aj and
B are constant for large |x| and that ∂xk

Aj (k = 1, . . . ,m) as well as B
are of logarithmic type. Then given initial data G ∈ G(Rm), problem
(10)-(11) has a unique solution U ∈ G(Rm+1).

We also mention the following consistency result which shows that
Colombeau theory includes the classically solvable cases.

Proposition 7 (Lafon-Oberguggenberger [15]). In the above The-
orem, assume additionally that the coefficients Aj, B are smooth.

(i) If F and G are smooth then the generalized solution U ∈ G(Rm+1)
is equal (in G) to the classical smooth solution.

(ii) If F ∈ L2(R,Hs(Rm)) and G ∈ Hs(Rm) for some s ∈ R, then
the generalized solution U ∈ G(Rm+1) is associated to the classical
solution belonging to C(R,Hs(Rm)).

The sample differential equation (1)-(2) can be modeled as an equa-
tion with coefficient R(x) = R(x)⊗1(t) ≈ Λ in G(R2) and be rewritten
in the form

∂tU − Λ ∂xU = (∂xΛ)U . (13)

A general initial condition, viz.

U |t=0 = A ∈ G(R) (14)

can then be prescribed. The Colombeau function Λ is given by a repre-
sentative (λ(φ))φ ∈ EM, i.e. a family of smooth functions parameterized
by mollifiers φ ∈ A0, with the property λ(φε) → R ⊗ 1 in D′ as
ε→ 0. λ(φ, x, t) is constructed by choosing a (real valued) test function
χ ∈ D(R) with

∫
χ = 1 and using a combined convolution and scaling
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regularization (recall from the introduction that each φ ∈ A0(R
2) is of

the form φ0 ⊗ φ0):

λ(φ, x, t) = R
(x)
∗
(
µ(φ)χ(µ(φ).)

)
(x)

= c1 µ(φ)

∞∫

x

χ(µ(φ)y) dy + c2 µ(φ)

x∫

−∞

χ(µ(φ)y) dy (15)

where µ(φ0 ⊗ φ0) = log(1/l(φ0)) (here, l(φ0) is the support number
as defined in the introduction). Note that this gives a scaling factor
of log(1/ε) − log(l(φ0)) when evaluated for φε (the reason behind the
choice of this scaling will become clear by a short digression into theory
in Sect. 3; cf. Rem. 8 and Thm. 6). Clearly R(x) is the weak limit of
λ(φ, x, t) as ε → 0. Since λ(φ) is independent of t we will henceforth
often suppress the t-variable (we only have to keep in mind that it is
considered to be a Colombeau function in R2). Substituting µ(φ)y → y
in the integrals and rewriting

∫∞
x χ = 1 −

∫ x
−∞ χ we find

λ(φ, x) = c1 + (c2 − c1)

µ(φ)x∫

−∞

χ(y) dy . (16)

Remark 8. We emphasize (as mentioned already in [15], p. 99) that
a slight modification of [20], Prop. 1.5., provides us with the follow-
ing important result for modeling distributional coefficients: for any
w in the Sobolev space W−k,∞(Rm+1) (k ∈ Z) one can construct a
Colombeau function W̃ associated with w and being of logarithmic
type. For example, we have used exactly this construction in equation
(15) to model the discontinuous coefficient R ⊗ 1 in a way that its
derivative is of logarithmic type.

Furthermore, we will make the following physical assumptions about
the modeling.

Assumption 9.

(i) c2 > c1 ≥ 0 or in terms of the refraction index n = c1/c2 we have
0 ≤ n < 1

(ii) all regularized medium approximations have non-negative sound
velocities λ(φ), i.e. we have

ψ(z) := c1 + (c2 − c1)

z∫

−∞

χ(y) dy ≥ 0

(this is guaranteed for example if χ is non-negative).
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Figure 2. Associated distribution

In the case c1 = 0 the following is shown in [21], ex. 17.6: whenever
A is (the canonical image of) a locally integrable function a then U
has a distributional shadow which can be computed explicitly and has
the properties (i)-(iv) above (formula on p. 163 in [21]; note that the
last term there tends to 0 as a distribution in x when t → 0). This
is illustrated by figure 2 which is redrawn from [21] (Fig. 4.3, p. 164).
Focusing on the possible singularity structure of the Colombeau solu-
tion U in the general case c1 ≥ 0, this picture is suggestive of expecting
different behavior in various regions of space-time (see also figure 1):

(i) in the region V1 the characteristic flow propagates singularities of
the initial data a along the lines parallel to x + c1t = 0 (vertical
if c1 = 0); this should be reflected in spectral (Fourier, cotangent)
components of the wave front set of U being parallel to c1ξ− τ = 0
(or horizontal if c1 = 0) over this region.

(ii) in the region V2 the characteristic flow propagates initial singular-
ities of a along the lines t = −x/c2 + t0 (t0 > 0) with cotangent
components of the wave front set being perpendicular; note that,
eventually, these singularities will hit the positive half of the axis
x = 0.

(iii) the boundaries of the two sectors W2 and W1 (which is empty if
c1 = 0) will be part of the singular support as long as a does not
vanish of infinite order at 0; e.g., in the case c1 = 0 and if a is
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continuous at 0 and a(0) 6= 0 there will be jumps across the half
lines {0} × R− and {(s,−s/c2)|s > 0} (with cotangent wave front
set vectors typically perpendicular to it).

(iv) the most striking non-classical feature appears along the singular
support of the coefficient: for c1 = 0 we saw that there piles up
an additional delta-like singularity; this is caused by the coefficient
singularity and not by the initial data or a singular right hand side
in the equation (note that even if a is smooth this singularity along
x = 0, t > 0 appears); in general, i.e., for arbitrary 0 ≤ c1 < c2
and initial value a ∈ D′, it is not straightforward to guess how the
microlocal properties of U are affected by the interaction of the
medium singularity at x = 0 with the ‘arriving’ initial singularities
propagating in from the right.

The aim of this paper is to analyze the generalized characteristic
set and the nonlinear interaction of the singularities at the medium
discontinuity from a microlocal point of view.

3.2. Modeling of coefficients with equivalent microlocal

properties

Before studying microlocal properties of a Colombeau solution to initial
value problems like (13)-(14) we first have to carefully inspect if a
transfer or modeling process from given distributional data to appro-
priate Colombeau objects respects the properties we are interested in.
Thereby we want to keep enough flexibility in the modeling methods
and also ensure later applicability of more general solvability results
to equations of the above type. To this end we not only consider the
canonical embedding D′ ↪→ G but will allow a wider class of related
mappings constructed via more general combinations of convolution
and scaling, already encountered in (15).

The foundation of an intrinsic regularity theory within Colombeau
algebras was laid in [21], Sect. 25, via the definition of the subalgebra
G∞ ⊆ G of regular Colombeau functions. Its elements are exactly those
generalized functions having representatives with the same power of
ε-growth in each derivative on compact sets. This is motivated by the
classical result that a distribution all derivatives of which are measures,
and are therefore of order 0, is a smooth function. The algebra of regular
functions has the property

G∞ ∩ D′ = C∞ ,

hence the notion of (smooth) regularity is consistent with the one in
subspace of distributions.
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By locality of the G∞-property we have a consistent extension of
the notion of singular support (singsuppg) of a Colombeau function,
defined as the complement of the largest open set on which a generalized
function is regular in the above sense. We illustrate this regularity
notion in two simple situations.

Example 10.

(i) singsuppgι(δ) = {0} = singsupp δ: since ι(δ)|Rn\{0} = 0 we only
have to check at x = 0; the typical representative of ι(δ) is w(φ, x) =
φ(x) and

|∂αw(φε, 0)| = ε−k−1|∂αφ(0)| ;

this is a lower bound for the supremum taken over any compact
subset containing 0. Whatever N ∈ N0, there is a φ ∈ AN with
∂αφ(0) = c 6= 0 for infinitely many α. (By the tensor product
structure of elements in AN (Rn) for n > 1 it suffices to prove this
for AN(R); one may start with ψ ∈ A0(R), near 0 of the form
ψ(x) = (ex+e−x)/2, and proceed as in the second part of the proof
of Lemma 9.0 in [21].)

(ii) we show that Λ, as defined in (15), is in G∞(R2) — this is essentially
included already in the remarks preceding [21], Thm. 25.2; we give
some details because for our applications this also points out the
need for (an obvious) refinement of regularity theory which we will
sketch below. Any t-derivative of order ≥ 1 of the representative λ
in (15) gives 0 and λ(φε, x, t) is bounded uniformly for 0 < ε < 1.
Therefore it is sufficient to check x-derivatives of order k ≥ 1. Using
the shorthand notation µε := µ(φε) = O(log(1/ε)) we obtain the
estimate

|∂kxλ(φε, x, t)| = |∂kx

x∫

−∞

µεχ(µεy) dy| = µkε |χ
(k−1)(µεx)|

≤ µkε‖χ
(k−1)‖L∞ = O

(
(log(1/ε))k

)
= O(1/ε) ,

(17)

which tells us that the G∞-property is satisfied with uniform ε-
power −1.

Localization of a Colombeau function U near a point x0 can be
achieved by using cutoff functions ϕ ∈ D with ϕ(x0) = 1. Then ϕU
has compact support and a natural extension of the Fourier transform
is available to analyze its singularity spectrum. This was initiated in
[3, 12, 17] extending many results from distribution theory in terms
of wave front sets ([11], Ch. 8). The generalized wave front set WFg
of Colombeau functions is also a consistent extension because we have
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WFg(ι(f)) = WF(f) if f ∈ D′ (cf. [17], Thm. 3.8, and [12], Cor. 24
and Thm. 25).

In example 10, (ii), above we saw that singsuppgΛ = ∅ while Λ ≈
H⊗1 and singsuppH⊗1 = {0}×R (the whole t-axis). The logarithmic
rescaling µε in the modeling Colombeau function Λ assures solvability
of the equations of interest but also suppresses the original singularity
structure. But a closer look at the estimate also shows how this infor-
mation could be preserved in singsuppg, viz. by measuring regularity
in terms of uniform powers of µε. It turns out indeed that we only
need to adapt all basic notions of microlocal analysis to more generally
scaled ε-growth to be able to preserve the microlocal information upon
modeling the distributional coefficients as above.

The refined (i.e., rescaled) regularity theory for Colombeau functions
can be developed by modification of the already existing theory in
[3, 12, 17, 21]. For the sake of completeness we give detailed definitions
and sketch the proof of ‘microlocal invariance’ below.

First, we specify admissible scaling functions γ and give an appro-
priate definition of regularity in terms of a subalgebra G∞

γ (Ω) of G(Ω),
Ω an open subset of Rm.

Definition 11.

(i) An admissible scaling γ is a continuous function γ : (0, 1) → R+

with the following properties:

(a) γ(r) → ∞ and γ(r) = O(1/r) as r → 0

(b) for any s > 0: γ(sr) = O(γ(r)) as r → 0

(ii) Let γ be an admissible scaling, then the algebra G∞
γ (Ω) of γ-regular

Colombeau functions is the set of all U ∈ G(Ω) which have a rep-
resentative u ∈ EM(Ω) with the property: for all compact subsets
K ⊂ Ω there is (a uniform growth order) N ∈ N such that for all
(derivative orders) α ∈ Nm

0 there is M ∈ N so that for all mollifiers
φ ∈ AM there are constants C > 0, η > 0 such that it holds

sup
x∈K

|∂αu(φε, x)| ≤ Cγ(ε)N 0 < ε < η . (18)

Remark 12. The continuity requirement for scalings in Def. 11, (i),
is just a matter of technical convenience (for proofs) and not essential
for the regularity property itself; Def. 11, (ii), is exactly Def. 25.1 from
[21] if γ(r) = 1/r.

The generalized γ-singular support (singsuppγg ) of a Colombeau func-
tion is then defined as the complement of the largest open set where
the function is γ-regular in the sense of Def. 11, (ii).
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As in the classical situation we can test γ-regularity of a function
with compact support by establishing appropriate decay properties of
its Fourier transform. Note that a compactly supported Colombeau
function U always has a representative u(φ, .) with support contained
in a fixed compact set (use appropriate cut-off by multiplication with
a smooth function) and its generalized Fourier transform may be con-
sistently computed by application of the classical formula to the rep-
resentative (cf. [12], Rem. 19, (i)). The proof of the following theorem
coincides with the one of [12], Thm. 18, with ε−1 replaced by γ(ε) in
the final estimates.

Theorem 13. If U is a Colombeau function of compact support and
FU denotes its generalized Fourier transform then the following state-
ments are equivalent:

(i) U is in G∞
γ

(ii) FU is γ-rapidly decreasing in Rm, which means that its represen-

tative û(φ, .) (and therefore any representative) has the following
property: there is N ∈ N such that for all p ∈ N0 we can choose
M ∈ N0 so that for all φ ∈ AM there are positive constants C, η
such that

|û(φε, .)(ξ)| ≤ Cγ(ε)N (1 + |ξ|)−p (19)

holds ∀ξ ∈ Rm, 0 < ε < η.

To put this result into a microlocal context is straightforward.

Definition 14. Let V be a Colombeau function over Ω. A pair (x0, ξ0) ∈
Ω×Rm\0 (Ω×Rm with the zero section removed) is called microlocally
γ-regular for V if there is ϕ ∈ D, ϕ(x0) = 1, and a conic neighborhood
Γ of ξ0 such that for U = ϕV the estimate (19) holds ∀ξ ∈ Γ, i.e.,
F(ϕV ) is γ-rapidly decreasing in the cone Γ. The generalized wave
front set WFγg(V ) is the complement (in T ∗Ω \ 0) of all microlocally
γ-regular pairs for V . Clearly, WFγg(V ) = WFg(V ) for γ(r) = 1/r
and we will use the standard notation WFg(V ) in this case. We de-
note by Σγ

x0
(V ) = {ξ | (x0, ξ) is microlocally γ-irregular} the cone of

γ-irregular (cotangent) directions at x0 (or the fiber over x0).

As in [12], Sect. 5, the basic properties of WFγg are easily obtained
with the classical procedure. In particular, WFγg is a closed conic subset
of Ω × Rm \ 0 and its projection to Ω gives exactly singsuppγg .

Now we are in a position to investigate the microlocal properties of
modeling Colombeau functions like Λ given in (15). Observe that Λ is
obtained from the distribution H⊗1 by a (space and time) convolution
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with the scaled mollifier (x, t) 7→ µ(φ)2χ(µ(φ)x)χ(µ(φ)t) making use of
the identity

1
(t)
∗ µ(φ)χ(µ(φ).) =

∫
µ(φ)χ(µ(φ)t)dt =

∫
χ = 1 .

If we choose the admissible scaling γ(r) = log(1/r) then the first line
in (17) shows that along x = 0 we will be able to detect a γ-singularity
since µε = γ(ε) − const, as noted after (15). In fact, the following
stronger statement is true in general for modeling processes of this
type.

Theorem 15. Let γ be an admissible scaling and choose χ ∈ D(Rm)
with

∫
χ = 1. Define the modeling map ιγχ : D′ → G by setting ιγχ(w)

equal to the Colombeau class of the EM(Rm) function

(φ, x) 7→ (w ∗ χγ(φ, .))(x) := γ(l(φ0))
m(w ∗ χ

(
γ(l(φ0)).

))
(x) (20)

where φ = φ0 ⊗ · · · ⊗ φ0 with φ0 ∈ A0(R). Then we have for any
distribution w invariance of the microlocal properties in the following
sense

WFγg(ι
γ
χ(w)) = WF(w) . (21)

In particular, this includes equality of the singular supports

singsuppγg ι
γ
χ(w) = singsuppw .

Proof. This is essentially an adaption of the proof of [17], Thm. 3.8.
Step 1: (x0, ξ0) 6∈ WF(w) =⇒ (x0, ξ0) 6∈ WFγg(ι

γ
χ(w))

Let ϕ ∈ D with ϕ(x0) = 1 and ψ ∈ D with ψ = 1 in a neighborhood
of suppϕ. Using the notation χγ(φ, x) = γ(l(φ0))

mχ(γ(l(φ0))x) the
Fourier transform of ϕ · ιγg (w) has the representative (with F denoting
the classical Fourier transform)

(φ, ξ) 7→ F
(
ϕ ·
(
w ∗ χγ(φ, .)

))
(ξ) .

If ε is small enough the support of χγ(φε, .) will be so small that for
x in the support of ϕ we may rewrite (w ∗ χγ(φε, .))(x) as ((ψw) ∗
χγ(φε, .))(x). Hence the above representative evaluated at (φε, ξ) can
be written in the form

(
ϕ̂ ∗

(
(̂ψw) · ̂χγ(φε, .)

))
(ξ) =

∫
ϕ̂(ξ − η) (̂ψw)(η) χ̂(

η

γε
) dη (22)

where we have used the short notation γε := γ(εl(φ0)) = O(γ(ε)). By
assumption there exists a conic neighborhood Γ of ξ0 such that for

supports of ϕ, ψ small enough the function (̂ψw) is rapidly decreasing
in Γ.
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As in the proof of [11], Lemma 8.1.1, we can find a closed conic
neighborhood Γ1 ⊂ Γ ∪ {0} and a constant c > 0 such that

ξ ∈ Γ1, η 6∈ Γ =⇒ |ξ − η| ≥ c|ξ| .

Then we split the estimation of the integral in (22) at ξ ∈ Γ1 into two
parts

|
∫
ϕ̂(ξ − η) (̂ψw)(η) χ̂(

η

γε
)| dη ≤

∫

Γ

|ϕ̂(ξ − η)||(̂ψw)(η)||χ̂(
η

γε
)| dη+

+

∫

Rm\Γ

|ϕ̂(ξ − η)||(̂ψw)(η)||χ̂(
η

γε
)| dη =: I1(ξ) + I2(ξ) .

I1(ξ) contains only rapidly decreasing integrand factors, the first
and second having bounds of the form (1 + |ξ − η|2)−l and (1 + |η|2)−l

times some constant. Application of Peetre’s inequality yields a bound
(1 + |ξ|2)−l times some other constant, l an arbitrary, positive integer.

The remaining integral
∫
|ψ̂(η/γε)| dη is bounded by a constant times

γkε
∫
dη/(1 + |η|)k, k large enough but fixed.

In I2(ξ) we first estimate |ϕ̂(ξ − η)| by (a constant times) (1 + |ξ −
η|)−l, l an arbitrary, positive integer. Using the above stated property
of Γ1 this is bounded by (1 + c|ξ|)−l. The remaining integral involves

the polynomially bounded factor |(̂ψw)(η)| (since ψw is smooth and
has compact support) which together with the last rapidly decreasing
factor gives again a bound of the form γkε times some constant, k large
enough but fixed.

In summary, the generalized Fourier transform of ϕ · ιγχ has a repre-

sentative which can be dominated by Cl,φ,kγ
k
ε (1+ |ξ|)−l for l arbitrarily

large, ε small, k large enough but fixed, and ξ ∈ Γ1. This completes
the first step.

Step 2: (x0, ξ0) 6∈ WFγg (ι
γ
χ(w)) =⇒ (x0, ξ0) 6∈ WF(w)

¿From the assumption it follows that there is a conic neighborhood
Γ of ξ0 and ϕ ∈ D, ϕ(x0) = 1, and N ∈ N0 such that for arbitrary
p ∈ N0, we can find M ∈ N0 so that for all mollifiers φ ∈ AM with
appropriate positive constants C and ε0,

|F
(
ϕ · (w ∗ χγ(φε, .))

)
(ξ)| ≤ CγNε (1 + |ξ|)−p ∀ξ ∈ Γ, 0 < ε < ε0 .

Let ψ ∈ D with ψ = 1 in a neighborhood of suppϕ. We have

|(̂ϕw)(ξ)| ≤ |F
(
ϕ · (w − w ∗ χγ(φε, .))

)
(ξ)| + |F

(
ϕ · (w ∗ χγ(φε, .))

)
(ξ)|

where we can estimate the second term on the right hand side for ξ ∈ Γ
as above. As noted in the first step of the proof for ε small we may insert
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ψ as additional factor for w in the above convolutions and can therefore
rewrite the first term in the form

|F
(
ϕ ·
(
(ψw) ∗ (δ0 − χγ(φε, .))

))
(ξ)| = |ϕ̂ ∗

(
(̂ψw) · (1 − ̂χγ(φε, .))

)
(ξ)|

≤
∫

|ϕ̂(η)||(̂ψw)(ξ − η)||1 − χ̂(
ξ − η

γε
)| dη .

We can use a polynomial bound (in ξ − η) for the second factor and
by Taylor expansion a bound |ξ − η|/γε times a constant for the third
factor (note that χ̂ is real analytic and χ̂(0) = 1). Altogether the first
two factors can be bounded by Cγ−1

ε (1+ |ξ− η|2)L, L ∈ N fixed, which
is in turn bounded by C ′γ−1

ε (1 + |ξ|2)L(1 + |η|2)L. Since ϕ̂ is rapidly
decreasing

∫
|ϕ̂(η)|(1 + |η|2)L dη is bounded by some constant which

yields finally a bound of the form γ−1
ε (1 + |ξ|2)L times some constant.

In summary, we may state that there are N ∈ N and M ∈ N such
that for all p ∈ N there is some positive constant C so that

|(̂ϕw)(ξ)| ≤ C
((1 + |ξ|)M+1

γε
+

γNε
(1 + |ξ|)p

)

is valid for all ξ ∈ Γ. For |ξ| ≥ 1 we may further rewrite this with some
positive constants c′, c′′ in the form

|ξ|pγ−Nε |(̂ϕw)(ξ)| ≤ c′γ−N−1
ε |ξ|p+M+1 + c′′ . (23)

We now proceed using exactly the idea at the end of the proof of [21],
Thm. 25.2. We assert that

|ξ|
p−(M+1)N

N |(̂ϕw)(ξ)| is bounded uniformly for ξ ∈ Γ, |ξ| ≥ 1 .

Since p may be chosen arbitrarily large this will complete step 2.
We prove the above assertion by contradiction assuming that one

can find a sequence ξj (j ∈ N) in Γ such that |ξj| → ∞ and

|ξj |
p−(M+1)N

N |(̂ϕw)(ξj)| → ∞

as j → ∞. For each j we can choose εj such that γεj = |ξj|
p−(M+1)N

N ; we
may assume that εj → 0 as j → 0. If we insert ξj and εj into inequality
(23) and send j → ∞ we arrive at the contradiction that the right hand
side of (23) stays bounded while the left hand side tends to ∞.

Remark 16. As an immediate application of Thm.15 we observe that
for Λ ∈ G(R2), as constructed in (15), and γ(r) = log(1/r) we have

WFγg (Λ) = WF(R⊗ 1) = {0} × R ×
(
R × {0} \ {(0, 0)}

)

while we had WFg(Λ) = ∅.
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4. The generalized characteristic set

This section is devoted to the analysis of the differential operator in
equation (13). Subsection 4.1 collects useful formulae for the solution
in our example in particular. In subsection 4.2 we investigate in detail
the generalized characteristic set of the operator which in the classical
case is the key to the study of propagation of singularities.

4.1. Representations of the generalized solution

In our simple example (13)-(14) we can make use of the special structure
to obtain explicit formulae for a representative of the unique Colombeau
solution U (along the lines of [21], Ex. 17.6).

Consider the representative λ(φ) of Λ given by equation (15). Let
a(φ) be a representative of A ∈ G(R). We want to specify a conve-
nient representative u(φ) of U ∈ G(R2) given for fixed φ as the unique
solution of

∂tu(φ) − λ(φ)∂xu(φ) = λ′(φ)u(φ) (24)

u(φ, x, 0) = a(φ, x) . (25)

Since λ(φ) is real valued and smooth we can employ the method
of characteristics to determine u(φ): for φ fixed denote by σ(φ, x, t; s)
the unique smooth and (by boundedness of λ(φ)) global solution of the
initial value problem (σ̇ denoting d

dsσ)

σ̇(φ, x, t; s) = −λ(φ, σ(φ, x, t; s)) (26)

σ(φ, x, t; t) = x . (27)

Then u(φ) is given by (note again that φ ∈ A0(R
2) is of the form

φ0 ⊗ φ0 for some φ0 ∈ A0(R))

u(φ, x, t) = a(φ0, σ(φ, x, t; 0))︸ ︷︷ ︸
aσ(φ,x,t)

exp (

t∫

0

λ′(φ, σ(φ, x, t; s)) ds)

︸ ︷︷ ︸
e(φ,x,t)

(28)

which we can interpret as the product of the two Colombeau functions
AΣ = cl[(aσ(φ, x, t))φ] and E = cl[(e(φ, x, t))φ], i.e., U = AΣE.

If we strengthen the physical non-negativity assumption 9(ii) on
λ(φ) to χ ≥ 0 and use (26) we deduce that σ̇(φ, x, t; s) < 0 unless
λ(φ, σ(φ, x, t; s)) vanishes and is stationary in which case the integrand
in the definition of e vanishes. Hence s 7→ σ(φ, x, t; s) is strictly mono-
tone for the relevant values. If c1 > 0 then λ′(φ, r)/λ(φ, r) is always
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well-defined, smooth, and integrable with respect to r. This allows for
the substitution r = σ(φ, x, t; s), dr = −λ(φ, r)ds, in the integral and
yields

e(φ, x, t) = exp (

x∫

σ(φ,x,t;0)

λ′(φ, r)

λ(φ, r)
dr) =

λ(φ, σ(φ, x, t; 0))

λ(φ, x)
if c1 > 0 .

(29)
In doing estimates upon inserting φε later on it is convenient to

introduce the shorthand notation λε(r) = λ(φε, r) and aε, σε, uε, aεσ,
eε, in the same way. Then the solution formula for the representative
reads

uε(x, t) = aε(σε(x, t; 0)) exp (

t∫

0

λε′(σε(x, t; s)) ds) = aεσ(x, t) e
ε(x, t) .

(30)
The characteristic coordinates σ(φ, x, t; s) depend smoothly on (x, t).

For example, differentiating the equations (26)-(27) with respect to x
gives

∂xσ̇ε(x, t; s) = −λε′(σε(x, t; s)) ∂xσ
ε(x, t; s)

∂xσ
ε(x, t; t) = 1 .

This in turn yields

∂xσ
ε(x, t; s) = exp(

t∫

s

λε′(σε(x, t; z)) dz) (31)

which in the case c1 > 0, χ ≥ 0, can be rewritten as above into the
simple expression ∂xσ

ε(x, t; s) = λε(x)/λε(σε(x, t; s)). If we apply ∂t to
(26)-(27) then the initial condition becomes

∂tσ
ε(x, t; t) = −σ̇ε(x, t; t) = λε(σε(x, t; t)) = λε(x)

yielding

∂tσ
ε(x, t; s) = λε(x) exp(

t∫

s

λε′(σε(x, t; z)) dz) (32)

or if c1 > 0, χ ≥ 0, then ∂tσ
ε(x, t; s) = λε2(x)/λε(σε(x, t; s)).

We make use of the above observations to derive a simple formula
for the distributional action of uε (for ε fixed) on an arbitrary test
function ψ ∈ D(R2). As a smooth function, uε acts on ψ via the usual
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integral formula where we insert equation (30)

〈uε, ψ〉 =

∫∫
aε(σε(x, t; 0)) exp(

∫ t

0
λε′(σε(x, t; s)) ds)ψ(x, t) dx dt .

(33)
We change coordinates (x, t) 7→ (y, t) with y = σε(x, t; 0), equivalently
x = σε(y, 0; t), and upon substituting (31) into dx = ∂yσ

ε(y, 0; t)dy
arrive at the simple expression

〈uε, ψ〉 =

∫∫
aε(y)ψ(σε(y, 0; t), t) dy dt (34)

where we also used the flow property σε(y, 0; s) = σε(x, t; s) of the
characteristic lines.

Alternatively, we find a formula analogous to (28) by tracing the
characteristic flow back to the boundary values of U at x = 0. From
(28) we may directly compute a representative of B := U |x=0∈ G(R)
(cf. the restriction formula in the introduction)

b(φ0, t) = a(φ0, σ(φ, 0, t; 0)) exp (

t∫

0

λ′(φ, σ(φ, 0, t; s)) ds) . (35)

In the integral (33) above we can also change the coordinates by x =
σε(0, r; t) with σε(x, t, r) = 0, which means to trace back x to the
boundary point (0, r), and use (32). By the definition of r and the flow
property of σε we have σε(x, t; s) = σε(0, r; s) and therefore

〈uε, ψ〉

= λε(0)

∫∫
aε(σε(0, r; 0)) exp(

r∫

0

λε′(σε(0, r; s)) ds))ψ(σε(0, r; t), t) dr dt

= λε(0)

∫∫
bε(r)ψ(σε(0, r; t), t) dr dt . (36)

4.2. The generalized characteristic set and the

characteristic flow

Referring to [3], Def. 3, and adapting it to the full Colombeau al-
gebra we will restate the definition of generalized characteristic set
for a differential operator with Colombeau functions as coefficients.
Assume that Ω ⊆ Rn open and that the operator P : G(Ω) → G(Ω)
is given by (notation: for α ∈ Nn

0 we write |α| = α1 + . . . αn and
Dα = (−i∂x1)

α1 · · · (−i∂xn)αn)

P (x,D) =
∑

|α|≤m

Aα(x)D
α
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where Aα ∈ G(Ω) and Aα0 6= 0 for some α0 with |α0| = m. If we
denote by Ξ = (Ξ1, . . . ,Ξn) the Colombeau class of the smooth coordi-
nate functions (ξ1, . . . , ξn) and set Ξα = Ξα1

1 · · ·Ξαn
n then the principal

symbol Pm ∈ G(Ω × Rn) can be defined by

Pm =
∑

|α|=m

AαΞα

which in terms of representatives aα(φ) for Aα reads more familiarly as

pm(φ, x, ξ) =
∑

|α|=m

aα(φ, x)ξα .

Here, pm(φ) is a representative of Pm.
The following definition describes a microlocal ellipticity condition

for P and the characteristic set as the regions of non-ellipticity.

Definition 17. A point (x0, ξ0) ∈ T ∗Ω \ 0 is called non-characteristic
for P if there exist a neighborhood V of x0 and a conic neighborhood
W of ξ0 such that for some r ≥ 0 there is N ∈ N0 such that for all
φ ∈ AN there are C > 0, and 1 > η > 0 yielding the estimate

|pm(φε, x, ξ)| ≥ Cεr|ξ|m for all x ∈ V, ξ ∈W, 0 < ε < η . (37)

The complement (in T ∗Ω \ 0) of all non-characteristic points defines
the generalized characteristic set ChargP .

Remark 18. In case the coefficients Aα are smooth functions, e.g.,
are represented by aα(φ) = aα ∈ C∞, then ChargP reproduces exactly
the classical definition of CharP as the zero set of the principal symbol.
One can try to restate this is in the spirit of generalized point values, as
described in [24]. There it is proved that Colombeau functions over an
open set are characterized by their evaluations on so-called compactly
supported generalized points in the open set Ω — a Colombeau function
can be identified with its graph in this sense. By the above definition we
observe the following: assume that a generalized pointvalue (x̃0, ξ̃0) (in
the notation of [24], Def. 2.2) is a zero of the principal symbol Pm, i.e.,
Pm(x̃0, ξ̃0) = 0 as a generalized Colombeau number; if it also happens
to be the class of a classical point (x0, ξ0) ∈ T ∗Ω \ 0 then we must
have (x0, ξ0) ∈ ChargP . In other words, the classical shadow of the
generalized zero set of the principal symbol is contained in ChargP .
A further investigation of this relation could lead to a more geometric
description or even provide alternative definitions for the notion of a
generalized characteristic set.
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We will compute the generalized characteristic set for our example
operator in (x, t)-space with Colombeau coefficients

P (x, t,Dx, Dt) = i(Dt − ΛDx) − ∂xΛ . (38)

First, we note that the principal symbol P1(x, t, ξ, τ) has the represen-
tative

p1(φ, x, t, ξ, τ) = i(τ − λ(φ, x, t)ξ) , (39)

where λ is given by (15). Then a point (x0, t0; ξ0, τ0) ∈ T ∗R2 \ 0 is
not in ChargP if there exist a neighborhood V of (x0, t0) and a conic
neighborhood W of (ξ0, τ0) such that for some r ≥ 0 there is N ∈ N0

such that for all φ ∈ AN there are C > 0, and 1 > η > 0 yielding the
estimate

|τ − λ(φε, x, t)ξ| ≥ Cεr(|ξ| + |τ |) ∀(x, t) ∈ V, (ξ, τ) ∈W, 0 < ε < η .
(40)

Substituting (16) we find

|p1(φε, x, t, ξ, τ)| = |τ − ξ
(
c1 + (c2 − c1)

µεx∫

−∞

χ(y) dy
)
|

with the notation µε = µ(φε) as in example 10, (ii). This is independent
of t so we will only distinguish the cases x0 < 0, x0 = 0, and x0 > 0 in
the following.

As expected we reproduce the classical behavior on either side of the
medium discontinuity: if x0 < 0 then

∫ µεx
−∞ χ = 0 if ε is small for x near

x0 giving |P1(φε, x, t, ξ, τ)| = |τ − c1ξ|; similarly because
∫ µεx
−∞ χ = 1

near x0 > 0 and small ε we obtain |P1(φε, x, t, ξ, τ)| = |τ − c2ξ|.
For the case x0 = 0 we choose an interval [−α, α] (α > 0) as

neighborhood and have to estimate

min
|x|≤α

|τ − ξ
(
c1 + (c2 − c1)

µεx∫

−∞

χ(y) dy
)
| = min

|x|≤α
|τ − ξψ(µεx)| (41)

from below. By homogeneity in (ξ, τ) it is sufficient to restrict to the
situation |ξ| + |τ | = 1 and estimate the above expression by some
constant times some power of ε to detect non-characteristic directions.

We divide the investigation of the case x0 = 0 in further subcases
concerning the (ξ, τ)-directions in the cotangent part of ChargP :

− if ξ = 0 we have |τ | = 1 and |τ − ξψ| = 1 > 0; hence the directions
(0,±1) are non-characteristic
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− if τξ < 0 we have |τ−ξψ| = (−τξ+ξ2ψ)/|ξ| ≥ |τ | > 0 (independent
of x and ε) so the second and fourth open quadrants in the (ξ, τ)-
plane consist of non-characteristic directions only

− if ξτ ≥ 0 we have ξ = ±1 − τ and can rewrite

|τ − ξψ| = |τ(1 + ψ) ∓ ψ| = (1 + ψ)︸ ︷︷ ︸
1≤.≤Cχ

|τ ∓
ψ

1 + ψ
|

where Cχ = c1 + (c2 − c1)‖χ‖L1 . This is bounded from below by

Cεr if and only if τ 6= 0 and |τ | ≥ Cεr + ψ
1+ψ or τ = 0 and

ψ ≥ Cεr for |x| ≤ α and ε small enough. If we define the χ-
dependent quantities −‖χ‖L1 ≤ χ0 := minz

∫ z
−∞χ(y) dy ≤ 0 and

1 ≤ χ1 := maxz
∫ z
−∞χ(y) dy ≤ ‖χ‖L1 (note that χ has compact

support and
∫
χ = 1) then the corresponding quantities ψ0 := inf ψ

and ψ1 := supψ can be bounded as follows

0 ≤ ψ0 = c1 +(c2 − c1)χ0 ≤ c1 < c2 ≤ ψ1 = c1 +(c2 − c1)χ1 ≤ Cχ .

Hence we can be sure that τ 6= 0 defines a non-characteristic
direction if |τ | > ψ1

1+ψ1
(note that ψ1/(1 + ψ1) < 1) and that

(±1, 0) is non-characteristic if and only if ψ0 > 0.

On the other hand if we assume that for |τ | < 1 the equation

ψ(z) = c1 + (c2 − c1)

z∫

−∞

χ(y) dy =
|τ |

1 − |τ |

is solvable for some z ∈ R then p1(φε, x, t,±1 − τ,±|τ |) vanishes
identically on the set {(x, t, ε) | t ∈ R, |x| ≤ α, ε > 0 : µεx = z}
which includes x arbitrary close to x0 = 0 and ε arbitrary small.
Hence in this case the directions (1 − |τ |, |τ |) in the first quadrant
and (−1 + |τ |,−|τ |) in the third quadrant are characteristic. This

situation appears if ψ0

1+ψ0
≤ |τ | ≤ ψ1

1+ψ1
.

To summarize, in ChargP we have the following possible cotangent
directions (ξ, τ) over a base point (x, t).

Proposition 19. Assume that (x, t, ξ, τ) ∈ ChargP for P as given in
(38). Then if x < 0 then τ = c1ξ and if x > 0 then τ = c2ξ, if x = 0
the characteristic directions cover the cones ψ0ξ ≤ τ ≤ ψ1ξ with ξ > 0
and ψ0ξ ≥ τ ≥ ψ1ξ with ξ < 0. In particular, this is also true for the
case c1 = 0.
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x

t

Figure 3. Cotangent directions in the characteristic set

Example 20. If the modeling mollifier χ is chosen to be nonnegative
we have ψ0 = c1 and ψ1 = c2 and we see that the characteristic cotan-
gent directions at points (0, t) ‘interpolate’ between the characteristic
directions on either side of the axis x = 0. The three different cases
x < 0, x = 0, and x > 0 are illustrated in figure 3.

Note that by inspection of the possible values of ψ0 and ψ1 one easily
verifies that these are actually the minimal cones appearing as χ varies
in the set of real valued test functions with integral 1.

In the situation of the last example — that is χ ≥ 0 — we will also
give a more detailed picture about the behavior of the characteristic
flow (x, t, s) 7→ (σε(x, t; s), s) in space-time as ε → 0. For ε > 0 fixed
this represents the global flow according to the smooth and bounded
vector field (−λε(x), 1) in R2. By −c2 ≤ −λε ≤ −c1 ≤ 0 the space com-
ponent σε(x, t; s) is non-increasing with respect to the flow parameter
s, i.e., the flow never turns to the right. Since the characteristics are
given globally as s 7→ (σε(x, t; s), s) and never intersect we also have
monotonicity properties in x and t separately (at fixed ε)

σε(x′, t′; s) ≤ σε(x, t; s) if x′ ≤ x and t′ ≤ t . (42)

Consider any compact set K contained in the open left half space
V−. K is contained in some closed box [x′0, x0] × [t′0, t0] with x0 < 0.
We clearly have σε(x, t; s) ≤ x0 for all (x, t) ∈ K and s such that
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(σε(x, t; s), s) ∈ K. This implies that uniformly for all such (x, t; s)

σ̇ε(x, t; s) = −λε(σε(x, t; s)) = −c1 − (c2 − c1)

µεσε(x,t;s)∫

0

χ(y) dy

≥ −c1 − (c2 − c1)

µεx0∫

0

χ(y) dy = −c1

as long as ε is small enough, say ε < ε0. On the other hand, since
χ ≥ 0, the opposite estimate σ̇ε(x, t; s) ≤ −c1 is always true, which
implies that for these (x, t), s, and 0 < ε < ε0 we have σ̇ε(x, t; s) = −c1
and σε(x, t; t) = x. This implies that on any compact set K ⊂ V− we
have eventually (if ε is small enough, e.g., if |µεx0| > l(χ)) σε(x, t; s) =
x+ c1(t− s) as long as (σε(x, t; s), s) stays in K.

The case that K is contained in the open right half space V+ is
completely analogous. Therefore we have proved

Lemma 21. Assume χ ≥ 0 and let K−, K+ be compact subsets of V−,
V+ respectively. Then there is ε0 > 0 such that for all 0 < ε < ε0

σε(x, t; s) = x+ c1(t− s) on {(x, t, s) ∈ K− × R | (σε(x, t; s), s) ∈ K−}

σε(x, t; s) = x+ c2(t− s) on {(x, t, s) ∈ K+ × R | (σε(x, t; s), s) ∈ K+}.

From this we can easily identify the domains of dependence on initial
or boundary values for compact subsets within the various open regions
defined in figure 1. For example, if K is a compact subset of V1 then
the tubular set K0 = {(x + c1(t − s), s) | st ≥ 0, |s| ≤ |t|} is also
a compact subset of V1 ⊆ V−. The lemma implies that eventually all
characteristic lines joiningK with the x-axis will be lines of slope −1/c1

and stay within K0. Hence in the solution formula (30) only strictly
negative arguments in aε and λε′ will occur if (x, t) varies in a compact
set in V1. Similarly, for compact subsets of W1 the characteristic flow
eventually will only trace back to boundary values on the positive t-
axis, bounded away from (0, 0). We summarize this behavior in the
following figure 4. Note that all this is also valid for c1 = 0 with the
only change that W1 does not appear — the characteristic lines in the
left half space are vertical then.

We now come to the most interesting part of the characteristic flow:
what happens when the propagating signals cross the singularities of
the medium? Since for all ε the characteristic curves cross the x-axis at
a certain point we may simply restrict to initial points of the form (x, 0)
if all values of s are considered. The case c1 = 0 is already discussed in
[22] and we summarize it in the following
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Figure 4. Domains of dependence

Proposition 22. Assume χ ≥ 0 then the family of smooth functions
(x, s) 7→ σε(x, 0; s) (ε > 0) on R2 converges almost everywhere to a
continuous function (x, s) 7→ σ(x, 0; s). If c1 > 0 then

σ(x, 0; s) =





x− c1s if c1s ≥ x and x ≤ 0

x− c2s if c2s ≤ x and x ≥ 0
c2
c1
x− c2s if c1s ≤ x and x ≤ 0

c1
c2
x− c1s if c2s ≥ x and x ≥ 0

(43)

and if c1 = 0 then

σ(x, 0; s) =





x if x ≤ 0

x− c2s if c2s ≤ x and x ≥ 0

0 if 0 ≤ x ≤ c2s

. (44)

Proof. The detailed proof for the case c1 = 0 is given in [22], Prop. 3.
Note that it does not even assume that χ is nonnegative.

We assume c1 > 0. Following the idea in [22], p. 263, we define
ηε = max{|x| | χ(µεx) 6= 0} which is bounded by 0 ≤ ηε ≤ l(χ)/µε
(where l(χ) is the support number, cf. subsect. 1.2). Therefore ηε → 0
as ε → 0. Note that λε(x) = c1 if x ≤ −ηε and λε(x) = c2 if x ≥ ηε
and therefore

σε(x, 0; s) =

{
x− c1s x ≤ −ηε and s ≥ x+ηε

c1

x− c2s x ≥ ηε and s ≤ x−ηε

c2

.

As ε → 0 this shows pointwise convergence in the regions x < 0,
s > x/c1 and x > 0, s < x/c2 as stated in (43).
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Next we consider x ≤ −ηε and follow the characteristic flow through
(x, 0) backwards, i.e., for decreasing values of s. Clearly σε(x, 0; s) =
x− c1s as long as s ≥ (x + ηε)/c1. On the other hand if sε marks the
entrance point into the region at distance ηε to the right of the t-axis,
i.e., σε(x, 0; sε) = ηε then we have by the above lemma

σε(x, 0; s) = σε(ηε, sε; s) = ηε − c2(s− sε) ∀s ≤ sε .

Clearly sε ≤ (x + ηε)/c1 because (σε(x, 0; s), s) always moves to the
lower right when s is decreasing since −c2 ≤ σ̇ε ≤ −c1 < 0. By the same
estimate for σ̇ε we can also estimate sε from below by the intersection
time s∗ of the line (x− c1s, s) with the vertical line (−ηε, s). We have
s∗ = (x− ηε)/c1 which shows that sε → x/c1 =: s1 as ε→ 0. Hence if
x < 0 and s < x/c1 we have that σε(x, 0; s) → 0 − c2(s− s1) as ε→ 0
which proves the assertion in the third line of (43).

For the subcase x ≥ ηε we follow the flow through (x, 0) into the
future, i.e. for increasing values of s. Let sε ≥ (x + ηε)/c2 =: s̄ε mark
the event σε(x, 0; sε) = −ηε then

σε(x, 0; s) = σε(−ηε, sε; s) = −ηε − c1(s− sε) ∀s ≥ sε .

We obtain an upper bound for sε by considering the time s∗ when the
line (ηε−c1(s− s̄ε), s) (this is the line with slope −1/c1 issuing from the
entrance point of the flow into the vertical strip of width 2ηε around
the t-axis from the right) intersects the vertical (−ηε, s). Here, we used
again the fact that σ̇ε ≤ −c1. We have s∗ = (x+ ηε)/c2 + 2ηε/c1 which
proves that sε → x/c2 =: s2 as ε → 0. Therefore if x > 0, s > x/c2
then σε(x, 0; s) tends to −0 − c1(s− s2) which proves the assertion in
the fourth line of (43).

We thus see that in the limit the characteristic flow produces a
kink according to the change of velocity upon transmission through
the medium jump. In case c1 = 0 the flow becomes trapped in the
singularity as already shown in the figure in subsection 3.1.

5. Microlocal properties of the generalized
solution – propagation of singularities

In this section we will study the interplay of the wave fronts sets of the
initial data and the medium coefficients and the characteristic set of
the partial differential operator. Such interplay induces the propagation
of singularities. First, we will recover classical relations between the
wave front and characteristic sets in the case of G∞-regular medium
coefficients. We recall from example 10, (ii), that the Colombeau model
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coefficient Λ given by equation (15) is in G∞(R2) — we remind that
this does not imply that Λ is γ-regular when γ(r) 6= 1/r — and hence
the operator P in (38) is a differential operator with G∞ coefficients.

Theorem 23. Let A ∈ G(R) and U be the unique Colombeau solution
to problem (13)-(14). Then we have

(i) WFg(U) ⊆ ChargP .

(ii) If A is in G∞(R) then U is in G∞(R2).

Proof. ad (i): This follows directly from the general theorem about
propagation of singularities for linear operators with G∞ coefficients
proved in [3], Thm. 4. Although the proof is given in detail there for
the so-called ‘simplified’ version of Colombeau algebras (where only ε-
parameterization is used) an inspection of the arguments shows that
the proof transfers to the ‘full’ version we are dealing with.

ad (ii): This follows actually from the fact that we have G∞-regularity
of the solution U to the general hyperbolic problem (10)-(11) if A is
G∞. This can be seen by inspection of the estimates in the existence
proof from [15].

Extending this insight to the detailed influence of the step medium
coefficients requires the earlier introduced refined notion of wave front
set (the γ-scaled variant). As shown in subsect. 3.2 this notion preserves
the singularity structure of the medium. On the other hand, with re-
spect to its pure geometrical nature we leave the notion of generalized
characteristic set of the differential operator intact, i.e., we stick to
Def. 37.

Led by Thm. 15, we expect to get a more refined detection of sin-
gularities of U through the analysis of the generalized wave front set
WFγg (U) with γ(r) = log(1/r). Note that we have

WFγg(U) ⊇ WFg(U) ;

a critical question is whether the generalized wave front set can still
be bounded by the characteristic set of the operator P . In this respect
the determination of WFγg (U) also requires that, according to (28), we
have to deal with the product of two γ-singular generalized functions
U = AΣE, and have to give estimates for WFγg(AΣE) in terms of their
respective wave front sets.

To obtain sensible results we also want to exclude any pathologies
arising from the mixing of regularity scales. For example, taking the
generalized constant A0 given by (1/l(φ))φ as initial value A would
always produce an (x, t)-independent overall factor 1/ε in the expres-
sions for U . But 1/ε can never be dominated by powers of log(1/ε) and
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would thus ‘simulate’ singular behavior everywhere in the solution of
a kind that does not relate to the propagation and interaction process.
Of course this is mathematically correct because A0 is an element in
G∞ \ G∞

γ but it is completely misleading if we aim to observe prop-
agating singularities caused by distributional initial values. Therefore
we will assume the initial value A to have the following property.

Definition 24. A ∈ G(R) is said to be of γ-type if it has a represen-
tative (a(φ))φ with the property that for every compact set K there is
N ∈ N0 such that sup

x∈K
|a(φε, x)| = O(γ(ε)N ) as ε→ 0.

The methodology underlying the specification of the wave front set
is as follows. WFγg(U) is local with respect to the base space: the cones
of irregular directions over a certain base point (x0, t0) are detected
according to Def. 14 by choosing test functions ϕ with support near
(x0, t0) and ϕ(x0, t0) = 1 and then investigating the decay properties

of the Fourier transform (̂ϕuε)(ξ, τ) where as usual uε = u(φε) denotes
an arbitrary representative of U .

If we use the representative obtained by the method of characteris-

tics in subsect. 4.1 then by (30) an explicit expression for (̂ϕuε) is given
by

(̂ϕuε)(ξ, τ) =

∫∫
e−i(ξx+τt)+

∫ t

0
λε′(σε(x,t;s)) ds aε(σε(x, t; 0))ϕ(x, t) dx dt .

(45)
Using equation (34) with e−i(ξx+τt)ϕ(x, t) in place of ψ(x, t) this can
be written with characteristic coordinates in the alternative form

(̂ϕuε)(ξ, τ) =

∫∫
e−i(ξσ

ε(y,0;t)+τt)aε(y)ϕ(σε(y, 0; t), t) dy dt . (46)

As with the computation of ChargP in the further investigation
we divide R2 into several sectors according to the geometry of the
generalized characteristic flow (cf. figure 1). For the sake of brevity
we will focus now on that part of the forward time domain which
includes the transmission from one medium into the other. Thus we
will investigate the singular behavior at points (x0, t0) ∈ V2 ∪W2. The
exact determination of the microlocal properties at the discontinuity
x = 0 for general initial values A seem to require a more systematic de-
velopment of the following tools: a generalized stationary phase method
and an analysis of the behavior of the wave front set under generalized
pull-backs.

(x0, t0) ∈ V2 If (x, t) varies in a small neighborhood of (x0, t0)

then by the results of subsect. 4.2 we have σε(x, t; s) = x+ c2(t− s) for
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small ε as long as (σε(x, t; s), s) stays within a compact subset of V2.
Hence if supp(ϕ) is concentrated in such a neighborhood of (x0, t0) we
have for small ε > 0

(̂ϕuε)(ξ, τ) =

∫∫
e−i(ξx+τt)aε(x+ c2t)ϕ(x, t) dx dt .

Without loss of generality assume that ϕ is of the form ϕ1(x+c2t)ϕ2(t)
where ϕ1, resp. ϕ2, is concentrated near x0 + c2t0, resp. t0. This fol-
lows upon appealing to property (13) (or rather its γ-analogue) in [12]
and noting that (x + c2t, t) are coordinates in R2. Then we change
coordinates according to y = x+ c2t in the integral and obtain

∫∫
e−i(ξy+t(τ−c2ξ))aε(y)ϕ1(y)ϕ2(t) dy dt

=

∫
e−iξyaε(y)ϕ1(y) dy

∫
e−it(τ−c2ξ)ϕ2(t) dt = (̂ϕ1aε)(ξ) ϕ̂2(τ − c2ξ) .

Here, by assumption (A) the first factor is bounded by

‖ϕ1a
ε‖L1 ≤ ‖ϕ1‖L1 sup

y∈supp(ϕ1)
|aε(y)| = O(γ(ε)N ) for some N ∈ N0

and the second factor is rapidly decreasing in (ξ, τ) if τ 6= c2ξ. On the
other hand if τ = c2ξ then, since ϕ1 is concentrated near x0 + c2t0,
the whole expression can only be non-γ-rapidly decreasing if this point
belongs to singsuppγg (A). Hence we have proved the following

Proposition 25. If A is of γ-type then

WFγg (U |V2) ⊆ {(x, t) ∈ V2 | x+ c2t ∈ singsuppγg(A)}

× {(r, c2r) | r 6= 0}.

We point out that this is valid for any Colombeau initial value A of
γ-type. In particular, any distribution of finite order can be modeled
in this way by convolution with a γ-scaled delta net of mollifiers.

It is worth noting that we can even recover the exact shape of
WFγg (U) in V2 if we model a distributional initial value a ∈ D ′(R)
in an appropriate way. As we saw above in this region we have for ε
small

uε(x, t) = aε(x+ c2t) = c∗2a
ε(x, t)

with the slight abuse of notation c∗2 for the pull-back by the map
c2(x, t) = x + c2t. Assume that A is modeling a distribution a via
a(φ) = a ∗ χγ2(φ) as in Thm. 15 which we will denote after ε-insertion
by aε = a ∗ χε2. Then we may rewrite

c∗2a(φ, x, t) = a ∗ χγ2(φ)(x + c2t) = 〈a(y), χγ2(φ, x+ c2t− y)〉 .
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We would like to consider this as a γ-modeling of the distribution c∗2a ∈
D′(R2) to be able to apply Thm. 15. This can be achieved by the
following construction. Choose β0 ∈ A0(R) arbitrary and define

χ2 = β0 ∗
1

c2
β0(

.

c2
) . (47)

χ2 is smooth with compact support and by the simple property [11],
(1.3.4), it follows that

∫
χ2 = 1. Finally, we set

β2(x, t) = β0(x)
1

c2
β0(

t

c2
)

which defines a test function in R2 with integral 1. In the following we
use the notation βγ0 (φ), βγ2 (φ), and χγ2(φ) as in the modeling map of
Thm. 15.

Consider the two-dimensional convolution

c∗2a ∗ β
γ
2 (φ)(x, t) = 〈c∗2a(y, s), β

γ
2 (φ, x− y, t− s)〉 .

By formula [11], (6.1.1), for the pull-back (e.g., with the function h(z, r) =
(z−r, r/c2) in the notation of the cited equation), this can be rewritten
as

〈(a⊗ 1)(y, s), βγ2 (φ, x− y + s, t− s/c2)/c2〉

= 〈a(y),
∫
βγ2 (φ, x− y + s, t− s/c2) ds/c2〉 .

Substituting t− s/c2 = r/c2 in the integral and using the definition of
β2 via β0 we finally arrive at

c∗2a ∗ β
γ
2 (φ)(x, t) = 〈a(y),

(
βγ0 (φ, .) ∗

1

c2
βγ0 (φ,

.

c2
)
)
(x+ c2t− y)〉

which matches exactly the above expression for c∗2a(φ, x, t) if χ2 is given
by (47) (observe that a simple computation shows that indeed χγ2(φ) =
βγ0 (φ) ∗ βγ0 (φ, ./c2)/c2).

To summarize this construction we may state the following.

Proposition 26. If the initial value A models a distribution a over
R+ by A = ιγχ2

(a) (in the notation of Thm. 15) with χγ2 given by (47)
then in the region V2 we have

U = ιγβ2
(c∗2a) and WFγg(U) = WF(c∗2a) .

Note that adapting the arguments of [11], p. 270, it is easy to
compute WF(c∗2a) explicitly in terms of WF(a) which recovers the
classically expected result in V2

WFγg(U) = WF(c∗2a) = {(x, t; η, c2η) | (x+ c2t, η) ∈ WF(a)} .
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Note that the analysis for (x0, t0) ∈ V1 is equivalent. In stating the
corresponding results one only has to replace c2, resp. V2, by c1, resp.
V1, in all the propositions.

(x0, t0) ∈W1 Note that this case only occurs if c1 > 0 (otherwise

W1 = ∅). We now use formula (46) where we assume that ϕ(x, t) =
ϕ1(x)ϕ2(t). Let K be some fixed compact set containing {y | ∃t ∈
supp(ϕ2) : ϕ1(σ

ε(y, 0; t)) 6= 0} (this is possible by the properties of the
characteristic flow established in 3.3). Then we may insert an additional
factor ψ(y) in the integrand of (46) where ψ is a test function with
ψ = 1 on K without changing the value of the integral. We inter-
pret ϕ1(σ

ε(y, 0; t)) as the inverse Fourier transform of ϕ̂1 evaluated at
σε(y, 0; t) giving

(̂ϕuε)(ξ, τ) =
1

2π

∫∫∫
e−i
(
(ξ−η)σε(y,0;t)+τt

)
ψ(y) aε(y) ϕ̂1(η)ϕ2(t) dη dy dt .

Since we may assume that ε is small and ϕ has support concentrated
in a small neighborhood of (x0, t0) we know that y will vary near y0 =
σε(x0, t0; 0) > 0. Hence y will stay strictly positive in the support
of the integrand. Furthermore, y0 = σε(x0, t0; 0) ≤ x0 + c2t0 < c2t0
since x0 < 0. Therefore we can choose the support of ϕ so small that
0 < y < c2t whenever ϕ(σε(y, 0; t), t) 6= 0. Using the notation from the
proof of Prop. 22, in case x > ηε, we thus get

σε(y, 0; t) = c1sε(y) − ηε − c1t

on the support of the (original) integrand. We insert this equality into
the above integral formula and interchange the order of integration to
obtain

eiξηε

2π

∫
e−iηεηϕ̂1(η)ϕ̂2(c1η + τ − c1ξ)

∫
e−ic1(ξ−η)sε(y)ψ(y)aε(y) dy

︸ ︷︷ ︸
fε(ξ,η)

dη

where the smooth function fε(ξ, η) has the property

|∂kηfε(ξ, η)| ≤ ck1

∫
|sε(y)|

k|ψ(y)aε(y)| dy ≤ Ckγ(ε)
N

for Ck independent of ε and some N independent of k, because A is
assumed to be of γ-type and ψ has compact support. In the integral
above we now use ϕ̂2(c1η + τ − c1ξ) = eiη(τ−c1ξ)ϕ̂2(c1η) and obtain

(̂ϕuε)(ξ, τ) =
eiξηε

2π

∫
e−iη(ηε−(τ−c1ξ)) ϕ̂1(η)ϕ̂2(c1η)fε(ξ, η)︸ ︷︷ ︸

γ(ε)Ngε

dη .
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Here, (gε)ε constitute a bounded family of functions in S(R) (w.r.t. the
variable η) — this means that this set is bounded w.r.t. every seminorm
on S (cf. [11], Def. 7.1.2) independent of ε. This is guaranteed by the
property of fε together with the fact that ϕj ∈ S. Therefore, if we
interpret the above integral as

γ(ε)−N (̂ϕuε)(ξ, τ) =
eiξηε

2π
ĝε(ηε − (τ − c1ξ)) ,

by continuity of the Fourier transform on S the family (ĝε)ε is bounded
in the same sense and we may estimate for arbitrary k ∈ N0

γ(ε)−N |(̂ϕuε)(ξ, τ)| ≤ Ck(1 + |ηε − (τ − c1ξ)|)
−k

with a constant Ck independent of ε. If (ξ, τ) varies in closed cones
disjoint to τ = c1ξ then since ηε → 0 (ε > 0) this estimate proves

γ-rapid decrease for (̂ϕuε)(ξ, τ). Thus no cotangent directions different
from τ = c1ξ can occur in the γ-wave front set in the region W1.

As for the singular support we use the viewpoint of considering the
Colombeau Cauchy problem in W1 with ‘initial’ value U |x=0= B where
a representative (b(φ))φ of B is given by (35). Then we know that by
the convergence properties of σε in W1 we have, as ε is getting small
enough (let (x+c1(t−s), s) flow back to the right until its first argument
becomes 0)

uε(x, t) = bε(t+
x

c1
) .

This shows that any γ-singular behavior of B around a point r > 0 can
only be transported parallel to the line x + c1t = c1r into the region
W1. To summarize we have proved the following

Proposition 27. If A is of γ-type, then

WFγg (U |W1) ⊆ {(x, t) ∈W1 |
x+ c1t

c1
∈ singsuppγg (B)}

× {(r, c1r) | r 6= 0} .

We illustrate Prop. 25-27 in the simple qualitative figure 5 (dashed
lines denote propagating singularities and solid arrows indicate cotan-
gent directions of the wave front sets).

x0 = 0, t0 > 0 Here we prove that for certain initial values A and

0 < c1 < c2 the γ-scaled wave front set of the solution U will con-
tain noncharacteristic cotangent directions. Those directions are indeed
caused by the medium singularity and not by the characteristic flow
or the initial value (cf. the remarks in item (iv) towards the end of
subsection 3.1).
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t = -x/c 1

B((x+c t)/c )1 1

A = U
t=0

B = U
x=0

A(x+c t)2
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Figure 5.

Remark 28.

(i) In case c1 = 0 according to Prop. 19 the generalized characteristic
set does contain {0} × R × R \ 0 × {0} and therefore also includes
the singular spectrum, WFγg (Λ), of the medium.

(ii) Note that unlike in the regions V2 and W1 now the formula U =
AΣ ·E shows several difficulties at the same time: first, the singular
support of E lies exactly in the focus of our zoom into (0, t0);
second, the inner structure of AΣ as a pullback of the Colombeau
function A by the γ-irregular Colombeau representative (φ, x, t) 7→
σ(φ, x, t; 0) directly contains the medium singularity since (x, t)
varies in a neighborhood of its singular support.

We prepare for the estimates of the integrand in formula (46) by
stating useful properties related to the generalized characteristic flow.

Lemma 29. Let S ∈ G(R2) be represented by (φ, y, t) 7→ σ(φ, y, 0, t).

(i) For any φ ∈ A0 we have
(
λ(φ, y)∂y + ∂t

)
σ(φ, y, 0; t) = 0

which implies Λ(y)∂yS + ∂tS = 0 in G(R2).

(ii) Let χ ≥ 0, φ ∈ A0 and define for α, ε > 0

Kε,α(t0) := {(y, t) | |t0 − t| ≤ α, |σε(y, 0; t)| ≤ α} .

Then for every β > 0 there is α > 0 such that for all ε > 0

pr1
(
Kε,α(t0)

)
⊆ [c1t0 − β, c2t0 + β]
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where pr1 denotes the projection onto the first coordinate.

(iii) Let 0 < β < c1t0 and φ ∈ A0 and choose α > 0 as in (ii). If
ϕ ∈ D(R2) with supp(ϕ) ⊆ [−α, α] × [t0 − α, t0 + α] then for every
k ∈ N0 and (y, t) ∈ supp(ϕ)

(
λε(y)∂y + ∂t

)k
(aε(y)ϕ(σε(y, 0; t), t)) =

k∑

j=0

(
k

j

)
λε(y)j (

d

dy
)jaε(y) ∂k−j2 ϕ(σε(y, 0; y), t) ,

where ∂2 means differentiation w.r.t. the second argument in ϕ.

Proof. ad (i): Let r(φ, y, t) :=
(
λ(φ, y)∂y+∂t

)
σ(φ, y, 0; t) then according

to (26) and (31) we have

r(φ, y, t) = λ(φ, y)e−
∫ t

0
λ′(φ,σ(φ,y,0,s))ds − λ(φ, σ(φ, y, 0; t).

By (27) we have r(φ, y, 0) = 0 which together with ∂tr(φ, y, t) =
−λ′(φ, σ(φ, y, 0; t))r(φ, y, t) implies r(φ, ., .) = 0.

ad (ii): Making α small enough we may assume that t0−α > 0. Due
to the monotonicity and flow properties of σε at ε fixed we have for
y ∈ pr1(Kε,α(t0) the bounds σε(−α, t0−α; 0) ≤ y ≤ σε(α, t0+α; 0). The
assertion follows from simple estimates using the defining differential
equation for σε if α is chosen small enough:

σε(−α, t0 − α; 0) = −α+

t0−α∫

0

λε(σε(−α, t0 − α, s))ds ≥ −α+ c1(t0 − α)

and

σε(α, t0 + α; 0) = α+

t0+α∫

0

λε(σε(α, t0 + α, s))ds ≤ α+ c2(t0 + α) .

ad (iii): L = λε(y)∂y+∂t is a combination of the three operators ∂y,
∂t, and multiplication by λε(y). Since y > c1t0−β > 0 in supp

(
(y, t) 7→

ϕ(σε(y, 0; t), t)
)

we have for ε small enough λε′ = 0 in the considered
domain. Therefore all three operators commute, in particular ∂y(λ

εf) =
λε∂yf . Furthermore, by (i) and the chain rule L · ϕ(σε(y, 0; t), t) =
∂2ϕ(σε(y, 0; t), t). Therefore the stated formula follows using Leibniz
rule and binomial expansion or induction.

Proposition 30. Assume χ ≥ 0 and define

Γ = {(ξ, τ) | τ 6= 0 and either ξ/τ < c1 or ξ/τ > c2} .
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(i) If A ∈ G∞
γ near the interval (c1t0, c2t0) then

Σγ
g,(0,t0)(U) ⊆ R2 \ Γ .

(ii) If c1 > 0 and A is constant and nonzero near (c1t0, c2t0) then

Σγ
g,(0,t0)

(U) = R × {0} \ {(0, 0)} .

Proof. ad (i): Let ϕ ∈ D(R2) with φ(0, t0) = 1 and supp(ϕ) ⊆ [−α, α]×
[t0−α, t0 +α] where α > 0 is chosen as in Lemma (iii) above. Therefore
aε represents a γ-regular Colombeau function inside the integral (46).
Let (ξ, τ) = ω(ξ0, τ0) ∈ Γ with ω ≥ 1 then

(̂ϕuε)(ξ, τ) =

∫∫
e−iω(ξ0σε(y,0;t)+τ0t)aε(y)ϕ(σε(y, 0; t), t) dy dt .

We set pε(y, t) = ξ0σ
ε(y, 0; t)+τ0t and note that grad pε = (ξ0∂yσ

ε, τ0−
ξ0λ

ε) stays away from 0 by the defining inequalities of Γ. If

Lt =
i

ωτ0
(λε(y)∂y + ∂t)

then Lt
(
exp(−iωpε)

)
= exp(−iωpε) by Lemma (i) above and integra-

tion by parts for k times gives with L = −i(λε(y)∂y + ∂t)/ωτ0

(̂ϕuε)(ω(ξ0, τ0)) =

∫∫
e−iωpε(y,t)Lk

(
aε(y)ϕ(σε(y, 0; t), t)

)
dy dt .

Since Lk = (−i/ωτ0)
k(λε(y)∂y + ∂t)

k we can apply part (iii) of the
Lemma and rewrite the integral into

(
−i

ωτ0
)k

k∑

j=0

(
k

j

)∫∫
e−iωpε(y,t)λε(y)j (

d

dy
)jaε(y) ∂k−j2 ϕ(σε(y, 0; t), t) dy dt .

By the regularity assumption about A there is an N , independent of
j and k, such that for some C ′ > 0 we have supy |(

d
dy )

jaε(y)| ≤ C ′γNε .

Clearly, supy |λ
ε(y)j | ≤ cj2 and since the support of ϕ(σε(y, 0; t), t) stays

in some compact set independent of ε each integral can be estimated

by some constant times cj2γ
−N
ε ‖∂k−j2 ϕ‖L∞ .

Altogether we see that |(̂ϕuε)(ω(ξ0, τ0))| is bounded by CγNε ω
−k for

k arbitrary, N independent of k, and the constant C depending only
on k, derivatives of ϕ of order ≤ k, τ0, c2, α > 0, and is valid for ε > 0
small enough.

This proves that (̂ϕuε)(ξ, τ) is rapidly decreasing in Γ for all ϕ ∈
D(R2) with support near (0, t0).
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ad (ii): By smooth cut-off we may assume that (x, t) varies only in a
small neighborhood Ω of (0, t0). As noted in the proof above σε(x, t; 0)
will stay to the right of 0, that is ∃α > 0 such that σε(x, t; 0) ≥ α for
all (x, t) ∈ Ω and ε small. Therefore λε(σε(x, t; 0)) = c2 and using (29)
in (30) gives

uε(x, t) = c2
aε(σε(x, t; 0))

λε(x)
.

yielding in turn that

Σγ
(0,t0)(U) = Σγ

(0,t0)(AΣ/Λ) .

It is easy to determine Σγ
(0,t0)(1/Λ): clearly, 1/Λ is γ-regular outside the

t-axis and by evaluating the derivatives at points (0, t) one proves that
singsuppγg(1/Λ) = {0} × R; by the t-independence of Λ the cotangent
wave front set directions can only be horizontal; using the fact that
the typical representative is real-valued a symmetry argument for the
Fourier transform (as in [12], at the end of Ex. 26) yields that both the
positive and negative horizontal directions must be included, hence

Σγ
(0,t0)(1/Λ) = R \ 0 × {0} .

Since A is constant on an interval containing the set {σε(x, t; 0) |
(x, t) ∈ Ω} the assertion follows.

Remark 31. We can give an alternative argument to show that hor-
izontal cotangent directions may appear at the t-axis in the case c1 >
0. Use the general relation WFγg(U) ⊇ WFγg(∂tU) and the fact that
U is a solution to ∂tU = ∂x(ΛU). By differentiating the representa-
tive using ∂xσ

ε(x, t; 0) = λε(x)/λε(σε(x, t; 0)) (stated after (31)) and
λε′(σε(x, t; 0)) = 0 for (x, t) ∈ Ω we get

Σγ
(0,t0)(U) ⊇ Σγ

(0,t0)(A
′
Σ · Λ) .

Now A′ plays the role A played in the proof above and we obtain
immediately that

Σγ
(0,t0)(U) ⊇ Σγ

(0,t0)(Λ) = R \ 0 × {0}

if A′ is constant near c2t0.

Corollary 32. Let U ∈ G(R2) be the generalized solution to the hy-
perbolic equation ∂tU − ∂x(ΛU) = 0 with U |t=0= A ∈ G(R) and let
γ(r) = log(1/r).

(i) If A is γ-regular then

WFγg (U) ⊆ ChargP ∪ WFγg(Λ) .
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(ii) If c1 > 0 there are solutions U such that

WFγg(U) 6⊆ ChargP but WFγg (U) ⊆ ChargP ∪ WFγg(Λ) .

These results illustrate that the medium singularities can be ‘visible’
in the singularity structure of the solution even if the initial values are
regular. It suggests that in search for upper bounds for the propagation
of singularities by linear hyperbolic PDOs with G-coefficients in general
one has to combine the following ingredients: for the classical part,
the characteristic set of the operator and the wave front set of the
right hand side (which is empty in our example); in addition, a certain
set generated by the wave front sets of the coefficients seems to be
necessary.

However, as can be seen from the following example by the interac-
tion of singularities at the medium discontinuity an unexpected variety
of irregular directions may occur. We investigate the case of a point
source at some s0 > 0.

Proposition 33. Let ρ ∈ D(R) with
∫
ρ = 1. Define A to be the class

of a(φ, y) = γ(l(φ))ρ(γ(l(φ)(y − s0)), so that A ≈ δs0 . Then we have

Σγ
g,(0,s0/c2)

(U) = R2 \ {(0, 0)}

which implies that

WFγg (U) 6⊆ ChargP ∪ WFγg(Λ) .

Proof. Let d1 > 0 such that supp(ρ) ⊆ [−d1, d1] and set ϕ(x, t) =
ϕ1(x)ϕ2(t) where ϕj ∈ D(R) (j = 1, 2) with ϕ1(0) = ϕ2(s0/c2) = 1
and ϕj ≥ 0. Let d2 > 0 such that supp(ϕ2) ⊆ [s0/c2 − d2, s0/c2 + d2].

Let (ξ0, τ0) 6= (0, 0) arbitrary. We will show that (̂ϕuε) does not
satisfy the γ-rapid decay property (19) in the direction of (ξ0, τ0), that
is for (ξ, τ) = ω(ξ0, τ0) where ω ≥ 1.

Given any N ∈ N0 choose β > 1 and set p = β(N + 1). Fix
φ ∈ A0(R

2) arbitrary and let ε be small enough such that γε =

log(1/l(φε)) ≥ 1. Setting ω = γ
1/β
ε we obtain

ωp

γNε
|(̂ϕuε)(ω(ξ0, τ0))| = γε|(̂ϕuε)(γ

1/β
ε (ξ0, τ0))|

= γε

∫∫
e−iγ

1/β
ε (τ0t+ξ0σε(y,0;t)) γε ρ(γε(y − s0))ϕ(σε(y, 0; t), t) dydt

Here we change the integration variables to (z, r) = γε(y−s0, t−s0/c2)

and pull the factor exp(−iτ0s0γ
1/β
ε ), which is of modulus 1, out of the
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integral to arrive at the expression

|
∫
ρ(z)

∫
e
−i(γ

1/β−1
ε τ0z+ξ0γ

1/β
ε σε( z

γε
+s0,0;

r
γε

+
s0
c2

))

· ϕ1(σ
ε(
z

γε
+ s0, 0;

r

γε
+
s0
c2

))ϕ2(
r

γε
+
s0
c2

) drdz| . (48)

Assertion: For all r ∈ R we have as ε tends to 0

γ1/β
ε · σε(

z

γε
+ s0, 0;

r

γε
+
s0
c2

) → 0 uniformly for z ∈ [−d1, d1] .

(49)
If ε is small then z/γε+s0 ≥ s0−d1/γε ≥ s0/2 > 0 hence we may refer to
the subcases corresponding to x ≥ ηε in the proof of Prop. 22. Sticking
to the notation of that proof recall that for x > 0 we defined sε(x) by
σε(x, 0; sε(x)) = −ηε. Using the shorthand notations zε = z/γε + s0
and rε = r/γε + s0/c2 we consider the following three cases

c2rε ≤ zε − ηε: we obtain 0 ≤ σε(zε, 0; rε) = zε − c2rε = (z − r/c2)/γε

zε − ηε ≤ c2rε ≤ sε(zε): by the monotonicity properties of σε and the
definition of sε we have |σε(zε, 0; rε)| ≤ ηε

sε(zε) ≤ c2rε: here 0 > σε(zε, 0; rε) = −ηε − c1(rε − sε(zε)); as noted
in the proof of Prop. 22 a lower bound for sε(zε) is given by (zε +
ηε)/c2 ≥ (−d1/γε + s0 + ηε)/c2 and hence 0 > σε(zε, 0; rε) ≥
(c1/c2 − 1)ηε − c1(d1/c2 + r)/γε.

Since ηε = O(1/γε) we deduce that in all cases for r fixed and z ∈

[−d1, d1] we obtain |σε(zε, 0; rε)| = O(γ−1
ε ). Therefore γ

1/β
ε |σε(zε, 0; rε)|

is O(γ
1/β−1
ε ) as ε→ 0 which proves (49).

Since ϕj ≥ 0 the inner integrand in (48) is of the form fε(r, z) ·
exp(ipε(r, z)) where fε ≥ 0 and fε → 1, pε → 0 as ε → 0 pointwise
in r and uniformly in z. If ε is small then its real part cos(pε)fε is
nonnegative and hence by Fatou’s lemma the real part of the whole
integral tends to ∞ (since

∫
ρ = 1 is real and nonzero).

Therefore if N and p are as above then for any n ∈ N and ε0 > 0 we

can find ε < ε0 and ω ≥ 1 such that |(̂ϕuε)(ω(ξ0, τ0))| ≥ nγNε ω
−p.

6. Distributional shadows

We give a concise discussion of the situation in which the initial value
A models a given distribution a. Away from the coefficient singularity
the initial values and their singularities propagate as expected from the
classical ray theory.
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Proposition 34. If G(R) 3 A ≈ a ∈ D′(R) then we have

U |V1≈ c∗1a U |V2≈ c∗2a

where c∗j denotes the distributional pullback via (x, t) 7→ x+ cjt.

Proof. This follows from the general consistency result presented in
3.1 when considering the Cauchy problems in the regions V1 and V2

separately. However, it is straightforward to prove it directly. If ψ is a
test function with supp(ψ) ⊂ Vj then we have for the representative
(u(φ))φ given in (28) and ε small enough

〈uε, ψ〉 =

∫∫
aε(x+cjt)ψ(x, t) dx dt = 〈c∗ja

ε, ψ〉 → 〈c∗ja, ψ〉 (ε→ 0) .

If we assume that a ∈ L1
loc(R) we can take full advantage of Prop. 22

combined with formula (34). The case c1 = 0 is completely covered in
[19] and [21], Ex. 17.6, and we presented the result already in subsection
2.1. Therefore we assume c1 > 0. Since aε → a in the sense of L1

loc(R)
and by the uniform boundedness of ψ(σε(y, 0; t), t) together with Prop.
22 we conclude that as ε→ 0

〈uε, ψ〉 →
∫∫

a(y)ψ(σ(y, 0; t), t) dy dt .

Here we can split the integration according to the different regions
defined in (43) yielding

0∫

−∞

c1t∫

−∞

a(y)ψ(y − c1t, t) dy dt+

∞∫

0

0∫

−∞

a(y)ψ(y − c1t, t) dy dt

+

0∫

−∞

∞∫

0

a(y)ψ(y − c2t, t) dy dt+

∞∫

0

∞∫

c2t

a(y)ψ(y − c2t, t) dy dt

+

0∫

−∞

0∫

c1t

a(y)ψ(
c2
c1

(y− c1t), t) dy dt+

∞∫

0

c2t∫

0

a(y)ψ(
c1
c2

(y− c2t), t) dy dt

(where the the first two pairs of integrals correspond to the first two
lines in (43) respectively). Upon adjusting the integration variables
appropriately in each integral, the integrals will have the factor ψ(x, t)
in common. Carefully inspecting the integral limits the sum of integrals
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can be rewritten as (combining the first two pairs of integrals)

∫∫
H(−x)H(−x− c1t)a(x+ c1t)ψ(x, t) dx dt

+

∫∫
H(x)H(x+ c2t)a(x+ c2t)ψ(x, t) dx dt

+
c1
c2

∫∫
H(x)H(−x− c2t)a(

c1
c2

(x+ c2t))ψ(x, t) dx dt

+
c2
c1

∫∫
H(−x)H(x+ c1t)a(

c2
c1

(x+ c1t))ψ(x, t) dx dt .

Thus we have proved the following result

Proposition 35. If G(R) 3 A ≈ a ∈ L1
loc(R) then the unique Colombeau

solution U to problem (13)-(14) admits a distributional shadow w ∈
L1

loc(R
2) which is given by

w(x, t) = H(−x)H(−x− c1t)a(x+ c1t) +H(x)H(x+ c2t)a(x+ c2t)

+
c1
c2
H(x)H(−x−c2t)a(

c1
c2

(x+c2t))+
c2
c1
H(−x)H(x+c1t)a(

c2
c1

(x+c1t)) .

(Here all products are to be understood as products of measurable
functions.)

Note that Prop. 35 recovers the distribution given in Thm. 3 con-
cerning a global distributional solution to (1)-(2). On the other hand it
shows explicitly the reason for the nonexistence of global distributional
solutions in Thm. 1: it is not continuous in x as a distribution in t.

If a is an approximation to a delta-like source to the right of the
medium singularity, e.g. a function with small support concentrated
around x0 > 0. Then we observe that the distributional shadow of the
corresponding Colombeau solution looks like a refraction of an incoming
signature at the medium discontinuity (cf. figure 6). Due to the scaling
factor c2/c1 the support of the signal will be compressed while it is
amplified by the same amount.

Remark 36. Assume that supp(a) ⊆ (0,∞). Then we observe that for
the wave front set of the limit distribution w, the distributional shadow
of U , we have

WF(w |V2) = WF(c∗2a |V2)

= {(x, t; η, c2η) ∈ V2 × R2 | (x+ c2t, η) ∈ WF(a)}

WF(w |W1) = WF(c∗1(a(
c2
c1
.)) |W1)

= {(x, t; η, c1η) ∈W1 × R2 | (
c2(x+ c1t)

c1
, η) ∈ WF(a)}
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Figure 6. Transmission of highly spatially localized signal

and for the restriction to the submanifold x = 0 in the base space

WF(w) |x=0⊇ {(0, c2t; ξ, τ) |
(
τ = 0 and t ∈ supp(a)

)
or

((
τ = c1ξ or τ = c2ξ

)
and (t, ξ) ∈ WF(a)

)
} .

The first two assertions are immediate. For the third one we note that
by direct computation similarly to the first part of the proof of Thm.
1 one obtains for a tensor product of test functions ϕ1(x)ϕ2(t) the
expression

(̂ϕw)(ξ, τ) =
1

c1

0∫

−∞

e−ix(c1ξ−τ)/c1ϕ1(x)〈a, ϕ2(./c2 − x/c1)e
−iτ./c2〉 dx

+
1

c2

∞∫

0

e−ix(c2ξ−τ)/c2ϕ1(x)〈a, ϕ2((. − x)/c2)e
−iτ./c2〉 dx .

This cannot be rapidly decreasing for ϕ1(x) = 0, supp(ϕ2(./c2)) ∩
supp(a) 6= ∅ if τ = c1ξ, τ = c2ξ, or τ = 0 (in the latter case the
integrals can be interpreted as one-dimensional Fourier transform of a
compactly supported piecewise continuous function with discontinuity
at 0). Note that the cotangent direction τ = 0 is a remnant of the wave
front set of the proper Colombeau solution which corresponds with an
instantaneous delay at the singularity.

Finally we reconsider the case of the initial value a = δs0 (s0 > 0)
— a point source to the right of the medium singularity (c.f. Prop. 33).
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Proposition 37. Let γ be any admissible scaling and ρ ∈ D(R) with∫
ρ = 1. Define A to be the class of a(φ, y) = γ(l(φ))ρ(γ(l(φ)(y − s0)),

so that A ≈ δs0 . Then the corresponding unique Colombeau solution
U to the Cauchy problem (13)-(14) admits an associated distribution
w ∈ D′(R2) which is given by

w =

{
H(−x) c2c1 δs0(

c2
c1

(x+ c1t)) +H(x)δs0(x+ c2t) if c1 > 0

δ(x)H(c2t− s0) +H(x)δs0(x+ c2t) if c1 = 0
. (50)

(Note that all appearing products exist within D ′(R2) by the wave
front set condition.) The strong interaction of the propagating point
singularity at s0 with the medium singularity is seen from the following

WF(w) = {(s0 − c2r, r; ξ, c2ξ) | r ≤ s0/c2, ξ 6= 0}

∪ {(−c1r, r + s0/c2; ξ, c1ξ) | r ≥ 0, ξ 6= 0}

∪ {(0, s0/c2)} × R2 \ {(0, 0)} . (51)

Proof. Let ψ ∈ D(R2) then according to (34) we have

〈uε, ψ〉 =

∫∫
γερ(γε(y − s0))ψ(σε(y, 0; t), t) dy dt

where we substitute z = γε(y − s0) to obtain

〈uε, ψ〉 =

∫∫
ρ(z)ψ(σε(s0 + z/γε, 0; t), t) dz dt .

We assert that for almost all t: σε(s0 + z/γε, 0; t) → σ(s0, 0; t) as ε→ 0
uniformly for z ∈ supp(ρ). Since z/γε → 0 we have that s0 + z/γε
will stay in a compact interval neighborhood of s0 > 0 for ε small. An
inspection of the proof of Prop. 22 shows that the arguments there for
the cases x > 0 can be extended for almost all t fixed and x varying in
a compact interval included in (0,∞).

Hence by Lebesgue’s dominated convergence

〈uε, ψ〉 →
∫
ρ(z) dz

∫
ψ(σ(s0, 0; t), t) dt (ε→ 0) .

By using (43) resp. (44) and splitting the integrals accordingly the
relations (50) can be read off.

To prove (51) let ϕ ∈ D(R2) be real valued with ϕ(0, s0/c2) = 1 and
calculate with α = (c2ξ − τ)/(c1ξ − τ) (assume c1ξ − τ 6= 0 otherwise
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we use α−1 in the following)

(̂wϕ)(ξ, τ) =
1

c2
e−iτs0/c2

·
∫
e−ir(c2ξ−τ)/c2

(
H(−r)ϕ(r,

s0 − r

c2
) + αH(r)ϕ(α

c1
c2
r,
s0 − αr

c2
)
)
dr

=
1

c2
e−iτs0/c2 ψ̂(

τ − c2ξ

c2
)

for a compactly supported, piecewise smooth, and bounded function ψ
on R. α = 1 if and only if ξ = 0 which implies that ψ ∈ C 0(R) \C1(R)
since the left and right sided derivatives at 0 do not coincide and ψ does
not vanish near 0. If α 6= 1 then ψ has a jump discontinuity at 0. In

both cases ψ is real valued which implies ψ̂(−τ) = ψ̂(τ) and hence the

cones of irregular directions are symmetric. It follows that (̂wϕ)(ξ, τ)
cannot be rapidly decreasing regardless of the direction of (ξ, τ).

7. Discussion

We have developed a microlocal analysis of Colombeau generalized
functions to understand the singularity structure of the global solution
of the ‘extended’ Hurd-Sattinger hyperbolic equation. Thereby we have
related the propagation of singularities to the generalized characteristic
set of the wave operator.

Particular attention had to be paid to the modeling of distributional
coefficients, carefully preserving the wave front sets. This led to the
notion of scaled, intrinsic, regularity. With a view to this regularity
and the existence of classical shadows of the Colombeau solution we
conclude with the following remark.

In general, the association relation does not respect wave front sets.
For example, the Colombeau class U of (xφ(x))φ is associated to 0
but has wave front set WFg(U) = {0} × R \ 0 ⊃ ∅ = WF(0). On the
other hand, as shown in Ex. 10 (ii), for the class Λ ≈ R ⊗ 1, we have
WFg(Λ) = ∅ whereas WF(R⊗ 1) = {0} ×R ×R \ 0 × {0}. But, in our
refined notion of wave front set we recover WFγg (Λ) = WF(R⊗ 1).

A general inclusion relation exists ([17], Prop. 3.18, p. 130) in case
of strong association. If we consider G∞ 3 A ≈ a ∈ L1

loc \ C
∞ then by

Thm. 23 we have WFg(U) = ∅ and by Prop. 35 we have U ≈ w ∈ D′,
but WF(w) will be nonempty. Therefore the association of U with w
cannot be strong. This indicates that the notion of strong association
might be too restrictive for application to hyperbolic equations.
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Appendix

A. Hierarchy of distributional products

For convenience of the reader we recall the basic definitions of the
coherent distributional products described in Oberguggenberger’s book
[21], Chapt. II, leading to the hierarchy table referred to several times
throughout the paper. All products considered here yield exactly the
classical multiplication when restricted to smooth functions and their
value, when defined, is always a distribution.

We denote by Ω an open subset of Rn and by û the Fourier transform
of u.

To begin with we mention the most elementary product in this con-
text, i.e., C∞ · D′: the product of a smooth function and a distribution
is defined as the adjoint of multiplication with the smooth function in
the test function space.

A.1. Singular support and wave front set conditions

A.1.0.1. Disjoint singular support: Assume that u, v are in D ′(Ω)
with disjoint singular supports. Then for any x ∈ Ω there is a neigh-
borhood Ωx and a function fx ∈ D(Ωx) such that either fxu or fxv is
smooth. Then in Ωx the product of u and v can be defined in the sense
of C∞ ·D′ and by the localization properties of D ′ (cf. [11], subsect. 2.2)
this consistently defines a distribution in Ω.

We briefly recall the definition of the wave front set. Let u ∈ D ′(Ω)
and (x0, ξ0) ∈ T ∗Ω \ 0 := {(x, ξ) | x ∈ Ω, ξ 6= 0} (the cotangent bundle
over Ω with the zero section removed). u is said to be microlocally
regular at (x0, ξ0) if there is ϕ ∈ D(Ω), ϕ(x0) 6= 0, and an open cone Γ
with axial vector ξ0 such that ϕ̂u is rapidly decreasing in Γ. WF(u) is
the closed subset of T ∗Ω \ 0 where u is not microlocally regular.

A.1.0.2. WF favorable: If u, v ∈ D′(Ω) their wave front sets are said
to be in favorable position if (x, ξ) ∈ WF(u) implies that (x,−ξ) 6∈
WF(v). In this case the product of u and v can be defined as the
pullback of the tensor product u⊗ v ∈ D ′(Ω×Ω) by the diagonal map
Ω → Ω × Ω, x 7→ (x, x) (cf. [11], Thm. 8.2.10).
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A.2. The Fourier product

Given two distributions u, v ∈ D′(Ω) we say that their Fourier product
exists if for every x ∈ Ω there is an open neighborhood Ωx and fx ∈
D(Ω), fx = 1 on Ωx, such that the S ′-convolution of f̂xu and f̂xv exists.
Locally near x, the product of u and v is then defined to be the inverse
Fourier transform of f̂xu ∗ f̂xv (for a definition of S ′-convolvability see
[21], sect. 6).

A.3. Duality products

Let X be a normal space of distributions, that is D ⊆ X ⊆ D ′ and
D is dense in X. Assume that the dual space X ′ is (equipped with a
locally convex topology so that it becomes) normal as well and that
multiplication with a fixed element in D induces a continuous linear
map both from X into X and from X ′ into X ′.

For any normal space of distributions Y denote by Yloc the set of
distributions v ∈ D′ such that ψv ∈ Y for all ψ ∈ D. If u ∈ (X ′)loc and
v ∈ Xloc then the product of u and v can be defined by

〈u · v, ψ〉 := 〈χu, ψv〉

for ψ ∈ D and χ ∈ D chosen arbitrarily with χ = 1 on supp(ψ). Note
that in the above definition the left hand side denotes a (D ′,D) pairing
while the right hand side uses the pairing (X ′, X).

A.4. Regularization and passage to the limit

The basic idea is to regularize one or both factors by convolution,
perform the multiplication in the sense C∞ · D′ or C∞ ·C∞, and try to
take the limit. The regularizing convolutions are carried out with two
principal types of mollifiers.

A.4.0.3. Strict delta net: This is a net (ρε)ε>0 in D(Rn) such that

supp(ρε) → {0} as ε→ 0 (52)
∫
ρε(x) dx = 1 for all ε > 0 (53)

∫
|ρε(x)| dx is bounded independently of ε. (54)

A.4.0.4. Model delta net: Given ϕ ∈ D(Rn) with
∫
ϕ(x) dx = 1 define

the net (ϕε)ε>0 by ϕε(x) = ϕ(x/ε)/εn.
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Consider the following four possibilities to define a product of u and
v:

u · [v] = lim
ε→0

u(v ∗ ρε) (1)

[u] · v = lim
ε→0

(u ∗ ρε)v (2)

[u] · [v] = lim
ε→0

(u ∗ ρε)(v ∗ σε) (3)

[u · v] = lim
ε→0

(u ∗ ρε)(v ∗ ρε) (4)

where the limit is required to exist in D ′(Rn) and independent of the
choice of (ρε)ε>0 and (σε)ε>0 in the class of strict, resp. model, delta
nets. This defines 4 types of so called strict, resp. model, products.
Since the definitions (1)-(3) turn out to be equivalent when using strict,
resp. model, delta nets (cf. [21], Thms. 7.2 and 7.11) we distinguish only
the following four products: strict product (1)-(3), strict product (4),
model product (1)-(3), and model product (4).

A.5. Coherence properties

The various products satisfy coherence properties and can be brought
into the following hierarchy table. Here, an arrow indicates that a
product definition is contained and consistent with its successor in the
graph.
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-
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