
Integration and microlocal analysis in Colombeau

algebras of generalized functions

Günther Hörmann
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Abstract

We study integration and Fourier transform in the Colombeau alge-
bra Gτ of tempered generalized functions using a general damping factor.
This unifies different settings described earlier by Colombeau, Nedeljkov-
Pilipović, and Damsma (for a simplified version). Further we prove char-
acterizations of regularity for generalized functions in two situations: com-
pactly supported or in the image of S ′ inside Gτ . Finally we investigate
the notion of wave front set in the Colombeau algebra G(Ω), Ω an open
subset of R

n, and show that it is in fact independent of the damping
measure used for Fourier transform.

1 Introduction and basic notation

Generalized functions in the sense of Colombeau (cf.[1]) extend classical dis-
tribution theory to a consistent and efficient method for solving problems in
nonlinear analysis. One main field of application and further development is
the systematic investigation of partial differential operators involving nonlinear
operations with singular objects (e.g. linear PDO with singular coefficients act-
ing on distributions, nonlinear PDE with singular initial data etc.; cf. [9], and
[4] for a survey of recent developments and results).

In distribution theory a refined tool to study propagation of singularities by
PDO — and even the character of singularities — was introduced by Hörmander’s
definition of wave front set ([5], Ch.8). Furthermore it can be used to extend the
operations of composition and multiplication in certain situations without leav-
ing distribution theory. The notion of wave front set rests on spectral analysis
of singularities, i.e. investigation of smoothness of a distribution near a point in
Rn by decay properties of the Fourier transform of “localizations” around this
point. This concept was carried over to Colombeau algebras by Pilipović in a
consistent way, i.e. on the subspace of distributions the notion of wave front set
remains unchanged (cf. [8] for a detailed representation).

1



As in the classical theory one therefore uses an extension of Fourier transform
to tempered generalized functions. Such extensions were defined in different
ways: directly on the Colombeau algebra of tempered generalized functions Gτ

by Colombeau ([1], Ch.4; considerably extended in [12]), Pilipović et.al. (cf.
[8], Ch.1; here, slightly more general weight functions for spatial decay are
considered), and Damsma ([2]: simplified Colombeau algebras with null ideal
changed), or on variants of such algebras as in [3] (Fourier ultrafunctions, having
as representatives sequences in the Schwartz space S), and in [10, 11] (Fourier
transform on S lifted to algebras of quotients of S-sequence spaces).

All approaches to Fourier transform in tempered Colombeau algebras cited
above use an extension of the classical integral formula on S(Rn). This seems
natural since the classical duality method for extension to S′ is not applicable in
this more general context but elements are represented by sequences of smooth
functions. It motivated various definitions of integration as a linear map from
the algebra to the ring of generalized complex numbers (cf. [1], Ch.4, and [7] or
[8], Ch.1).

In this paper we first unify integration theory and Fourier transform on the
Colombeau algebra of tempered generalized functions and also point out some
differences of the special settings (Sect. 2 and 3). Then we investigate and
develop basic notions of regularity theory and microlocal analysis in this context
(Sect. 4 and 5). It turns out that these are independent of the integration
method used in computing Fourier transforms.

Throughout this paper we use notions and notation from Colombeau’s theory
of generalized functions as developed and described in [1] Ch.1,2,4, [9] Ch.III,
[6] Ch.1, and [8] Ch.1.

Let us just recall the definition of tempered generalized functions in detail (cf.
[1], Ch.4). Am (m ∈ N0) denotes the set of tensor products of test functions
with vanishing moments up to order m and integral equal to 1. For a test
function φ we use the notation φε(x) = φ(x/ε)/εn.

Definition 1.1. EM,τ is the set of all maps R:A0 ×Rn → C with the following
property: ∀α ∈ Nn

0 ∃N ∈ N ∀φ ∈ AN ∃c > 0, η > 0 such that

|∂αR(φε, x)| ≤ c(1 + |x|)Nε−N ∀x ∈ R
n, 0 < ε < η . (1)

Nτ is the subset of all R ∈ EM,τ with the property: ∀α ∈ Nn
0 ∃N ∈ N ∀q ≥ N

and φ ∈ Aq ∃c > 0, η > 0:

|∂αR(φε, x)| ≤ c(1 + |x|)Nεq−N ∀x ∈ R
n, 0 < ε < η . (2)

Nτ is an ideal in EM,τ and we define the algebra of tempered generalized functions
by

Gτ = EM,τ/Nτ . (3)

Recall that the space of tempered distributions S′ is embedded into Gτ by
convolution, i.e. u 7→ (u ∗ φ)φ factors to an injective map. On the subspace OC

of smooth functions with uniform polynomial growth order for all derivatives
– therefore in particular on S – this embedding is equal to the map induced
by u 7→ (u)φ. We denote by C the ring of generalized complex numbers (i.e.
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constants in G). Frequently, if R:A0 × Rn → C is moderate we denote its class
in the Colombeau algebra by [(R(φ, .)φ] or R + Nτ (as used in [6]). Fourier
transform in S′ will always be denoted by ̂ and follow the conventions of [5],
Ch.7.

2 Integration in Gτ

For generalized functions with compact support the integral can be defined by
componentwise integration of a representative. It is easily seen that it gives a
linear map Gc → C. In order to extend integration to a wider class of gener-
alized functions one idea is to introduce a damping factor in the integrals of
the representatives. Thus, if a generalized function is given by a representative
(φ, x) 7→ R(φ, x) we want to define

∫
(R + N )dx := [(

∫
R(φ, x)S(φ, x)dx)φ ] , (4)

where S(φ, x) on the one hand produces convergence and on the other hand
must not cut away too much information about R (i.e. should in some sense be
“close to 1”).

This can be achieved if the growth rate of (representatives of) the generalized
functions with respect to x can be controlled, as it is the case for elements of
Gτ . Several approaches of this kind exist (cf. [1], Ch.4, [7], [8], Sect.1.3, [2]) but
were developed separately. Since all these yield very similar results concerning
basic properties of integration and Fourier transform it is tempting to collect
these into one theory.

Definition 2.1. A map S:A0 × Rn → C is called a damping measure if it has
the following properties:

(i) ∀φ ∈ A0: S(φ, .) ∈ S(Rn)

(ii) ∀φ ∈ Aq, ∀p ∈ N: ∃c, η > 0: |S(φε, x)| ≤ c ε−p(1 + |x|)−p for all x ∈ Rn

and 0 < ε < η

(iii) ∀φ ∈ Aq: ∃c, η > 0: |S(φε, x) − 1| ≤ c εq+1|x|q+1 for all x ∈ Rn and
0 < ε < η.

We have to check that with this definition equation (4) gives a well defined
generalized number if R is a representative of an element in Gτ . Let IS(R, φ) :=∫
Rn

R(φ, x)S(φ, x)dx and set IS(R) := (IS(R, φ))φ.

Lemma 2.2. Let S be a damping measure. If R is (a representative of) an
element in Gτ then IS(R) defines uniquely a generalized complex number, i.e.
an element of C. R 7→ IS(R) factors to a linear map Gτ → C.

Proof. by definition of EM,τ and property (ii) of the above definition

|IS(R, φε)| ≤

∫
|R(φε, x)||S(φε, x)|dx ≤ c ε−N−p

∫
(1 + |x|)N−pdx
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for fixed N and p arbitrary hence IS(R) is moderate; if R ∈ Nτ we have
|IS(R, φε)| ≤ c εq−N−p

∫
(1 + |x|)N−pdx for fixed N , p arbitrary, and for all

q ≥ N hence IS(R) = 0 in C. The second assertion follows immediately.

We shortly discuss how former approaches to integration theory in Gτ fit into
our framework:

Example 2.3.

(i) Colombeau ([1], Ch.4) introduces a damping function of the form S(φ, x) =

φ̂(x). Essential properties are reflected in the fact that for the scaled delta

nets we have φ̂ε(x) = φ̂(εx). Therefore the damping factor is equal to the
constant 1 in the limit ε→ 0. More precisely, by definition of Aq we have

|1− φ̂ε(x)| = O
(
(ε|x|)q+1

)
if φ ∈ Aq. Further, since φ̂ is in S for all k ∈ N

an estimate

|φ̂ε(x)| ≤ ck(1 + |εx|)−k ≤ ckε
−k(1 + |x|)−k

holds. Note that φ̂ cannot have compact support if φ ∈ A0.

(ii) In [7] Nedeljkov and Pilipović developed a theory of integration, convolu-
tion, and Fourier Transform in the more general context of weighted spaces
of generalized functions (we refer to the presentation in [8], Sect.1.3). For
convenience of comparison and notational simplicity we concentrate on the
special case of the weight function t(r) = 1 + r which exactly reproduces
Gτ . Two slightly different approaches are studied (cf. [8], Def.1.42):

(a) choose µ ∈ D with µ = 1 near 0 and define S(φ, x) = µ(d(φ)x) where
d(φ) = sup{|y| | φ(y) 6= 0} is the support number of φ; the family
µε(.) = µ(ε .) (0 < ε ≤ 1) is called unit net;

(b) a net (µε)0<ε≤1 is called special unit net if

• 0 ≤ µε ≤ 1 for all ε

• there exist constants b, r > 0 such that for all ε

µε(x) =

{
1 if |x| < b/ε
0 if |x| > b/ε+ r

• all derivatives of µε are bounded independently of ε; if (µε)ε is
a special unit net set S(φ, x) = µd(φ)(x).

In both cases we have the following estimate (note that d(φε) = εd(φ) and
set b = d(µ)/d(φ) in case (a))

|µd(φε)(x)| ≤ Ce−ε|x|/b = C(
∑

l

εl|x|l

blk!
)−1 ≤ Ckε

−k(1 + |x|)−k

for arbitrary k if ε is small. Observe also that trivially we have |µd(φε)(x)−
1| = O(εq+1|x|q+1) for all q simply by the scaling-like properties of the
supports in both cases.
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(iii) Damsma (cf.[2]) describes integration and Fourier transform in a simpli-
fied version of the algebra of tempered generalized functions (however, he
also changes the definition of the null ideal substantially). The damping
function S(ε, x) itself (by obvious adaption of notation) then defines itself
an element of the algebra and has the following properties:

• for all multi-indices α and for all p0 there is p ≥ p0 such that
|∂α

xS(ε, x)| ≤ cε−p(1 + |x|)−p holds for small ε

• there exists R > 0 such that S(ε, x) = 1 if |x| < R/ε .

In [3] he introduces the algebra of Fourier ultrafunctions consisting only of
rapidly decreasing representatives. There is no need for a damping factor
in integrals then.

This motivates the following

Definition 2.4. Let S be a damping measure. Then the linear map Gτ → C,
R+Nτ 7→ [IS(R)], is called S-integral. We will use the more suggestive notation∫
RdSx instead.

Remark 2.5.

(i) Clearly the integral could be defined over arbitrary Lebesgue-measurable
subsets of Rn (cf. [8], Sect.1.3.1) but here we will concentrate on extension
of Fourier transforms and wave front sets where cut-off is achieved by
appropriate functions.

(ii) Since in Def.2.1 we did not include conditions on x-Derivatives we can
not expect to prove a result on partial integration like in [1], Prop.4.2.9.
If necessary it would be easy to vary conditions (ii) and (iii) to hold for
derivatives also.

First we want to check consistency with usual integration in special cases: action
of Gτ on Schwartz functions, integrals of functions in S or Gc. Recall that if
G ∈ Gτ and f ∈ S then 〈G, f〉 := [(

∫
G(φ, x)f(x)dx)φ ] is well-defined in C (cf.

[8], p.53). From now on S will always denote a damping measure.

Proposition 2.6.

(i) If G ∈ Gτ and f ∈ S then 〈G, f〉 =
∫
Gf dSx.

(ii) If f ∈ S then
∫
fdSx =

∫
fdx in C →֒ C.

(iii) If G ∈ G has compact support then
∫
Gdx =

∫
GdSx.

Proof. (ii) follows from (i) by setting G = 1; to prove (i) we estimate the
difference of representatives (neglecting terms of the null ideal)

|

∫
G(φε, x)f(x)(1 − S(φε, x))dx| ≤

∫
|G(φε, x)||f(x)||1 − S(φε, x)|dx

which is dominated by c εq+1−N
∫
|x|q+1(1 + |x|)N−pdx for fixed N , p arbitrary,

and φ ∈ Aq with q ≥ N arbitrary. (iii): clearly Gc →֒ Gτ (cf. [1],4.1.7); again
estimating the difference of typical representatives we simply use the fact that
on the support of G by property (ii) of S we have |1 − S(φε, x)| ≤ Cεq+1 if
φ ∈ Aq.
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Because most proofs of “standard properties” are more or less just restatements
of already worked-out proofs of the special settings described above we will
quickly proceed to the notions of regularity and wave front set. In the next
section we just summarize elementary facts about the Fourier transform in our
framework. First, however, we reconsider an example of [1], 4.2.8, in order to
illustrate some differences in varying the damping measure S.

Example 2.7. The function f(x) = xk is in OC(R) and can therefore be iden-
tified with [(f)φ] in Gτ . We compute

∫
xkdSx: by the classical Fourier inversion

theorem applied to x 7→ S(φ, x)

∫
xkS(φ, x)dx =

ik

2π

∫ (
Ŝ(φ, .)

(k))
(̂−x)dx = ikŜ(φ, .)

(k)
(0) .

In Colombeau’s setting Ŝ(φ, .)
(k)

= 2π(−1)kφ(k)(−.) and therefore
∫
xkdSx = 2π(−i)k[(φ(k)(0))φ] = 2π(−i)kδ(k)(0) ,

considered as generalized point value of δ at 0. This also nicely reflects a similar
computation in S′ (i.e. Fourier transform of xk). If S is given by a unit net
according to setting (ii)(a) described above we get

∫
xkdSx = [(

ik

d(φ)k+1
µ̂(k)(0))φ] .

Now set k = 0 and consider the difference of both results on φε. This is equal
to

1

ε

(
2πφ(0) −

µ̂(0)

d(φ)

)

which is in the null ideal if and only if 2πd(φ)φ(0) = µ̂(0) for all φ ∈ Aq for
some q. This is impossible to hold for fixed µ because the left hand side will
take on (purely) imaginary and real values for certain choices of φ.

3 Fourier transform in Gτ

Turning now to the definition of Fourier transform, let R ∈ EM,τ and define
FSR:A0 × Rn → C by

(FSR)(φ, x) =

∫
e−i〈x|y〉R(φ, y)S(φ, y)dy , (5)

or by abuse of notation FSR(x) =
∫
e−ixyR(y)dSy. It is immediately seen that

this defines again an element of Gτ (i.e. FSR ∈ EM,τ and FSR ∈ Nτ if R ∈ Nτ ).
We denote the induced linear map again by FS :Gτ → Gτ and call it generalized
S-Fourier transform. The original version according to Colombeau’s damping
measure is given in his book [1]. Extensive further investigation of its properties
and new results are presented by Soraggi (cf. [12]).

The following consistency results hold and are immediate consequences of the
definition and of Prop.2.6.
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Proposition 3.1.

(i) If f ∈ S then FSf = f̂ .

(ii) Let R ∈ Gτ and f ∈ S then 〈FSR, f〉 = 〈R, f̂〉.

(iii) R, f as in (ii) then
∫
FSR · f dSx =

∫
R · f̂ dSx.

The natural candidate for S-Fourier inversion clearly is given by (F∗
SR)(x) =

(1/2π)n
∫
ei〈x|y〉R(y)dSy. An analogous version of the above proposition is then

valid for F∗
S. However, as we know from [1], Rem.4.3.9, in general an inversion

theorem in the strict sense cannot hold. We will show below that actually it can
never hold for FS. Nevertheless a weak form of the inversion theorem is true.
Recall that two elements U and V of Gτ are said to be equal in the sense of

generalized tempered distributions, denoted by U
gtd
= V , iff 〈U,ψ〉 = 〈V, ψ〉 for

all ψ ∈ S. Hence as an immediate consequence of Prop.3.1 and its analogue for
F∗

S we state

Corollary 3.2. For all R ∈ Gτ : F∗
SFSR

gtd
= R

gtd
= FSF∗

SR.

Finally we list basic properties concerning exchange of differentiation with mul-
tiplication by Fourier transform and also weakened consistency with S′.

Theorem 3.3. Let U ∈ Gτ

(i) FS(iyjU) = −∂jFSU and F∗
S(iyjU) = ∂jF∗

SU

(ii) FS(∂jU)
gtd
= ixjFSU and F∗

S(∂jU)
gtd
= −ixjF∗

SU

(iii) If U ∈ Gc then FS(∂jU) = ixjFSU and F∗
S(∂jU) = −ixjF∗

SU

(iv) If f ∈ S′ then for all ψ ∈ S: 〈ι(f̂ ), ψ〉 ≈ 〈FS ι(f), ψ〉 (association in C).
Here, ι denotes the canonical embedding S′ → Gτ , f 7→ [(f ∗ φ)φ].

Proof. (i) as in the proof of [1], Prop.4.3.5, the typical representatives of both
sides are equal.

(ii) using (i) and Cor.3.2 we have F∗
S(ixjFSU) = ∂jF∗

SFSU
gtd
= ∂jU and

therefore ixjFSU
gtd
= FSF∗

S(ixjFSU)
gtd
= FS(∂jU); analogously for F∗

S .

(iii) by Prop.2.6(iii) the integrals may be computed without the damping factor
S(φ, x); but then partial integration translates a representative of the left
hand side into one of the right hand side; the computations for F∗

S are
completely analogous.

(iv) we just need to observe that 〈f̂ ∗φε, ψ〉−〈f ∗φε, ψ̂〉 = 〈f̂ , φ̌ε∗ψ〉−〈f, φ̌ε∗ψ̂〉

tends to 〈f̂ , ψ〉 − 〈f, ψ̂〉 = 0 for ε→ 0.

Colombeau’s example ([1], Rem.4.3.7.), i.e. S(φ, .) = φ̂ and U = 1 ∈ Gτ (R),
shows that Thm.3.3(ii) cannot hold with equality in Gτ in general. As a conse-
quence Cor.3.2 cannot hold in the strong sense since together with Thm.3.3(i)
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this would yield a contradiction (as in [1], Rem.4.3.9). But his example can also
serve to show that for no damping measure S a strict inversion theorem can
hold: with S an arbirtary damping measure we have FS

d
dxU = FS0 = 0; on the

other hand a representative of ixFSU is given by

ix

∫
e−ixyS(φ, y)dy = ixŜ(φ, .)(x) .

If this lies in the null ideal Nτ then there exist N ∈ N and for all q ≥ N
constants c, η > 0 such that

|(ixŜ(φε, .)(x))
′| ≤ c(1 + |x|)Nεq−N ∀x, ε < η ;

the left hand side evaluated at x = 0 gives |Ŝ(φε, .)(0)| which is unbounded by
condition (iii) of Def.2.1. But the right hand side tends to 0 as ε→ 0.

Corollary 3.4. For every damping measure S there exists U ∈ Gτ such that
FS∂jU 6= ixjFSU . Furthermore, Fourier inversion by F∗

S does not hold strictly
in Gτ .

Remark 3.5.

(i) There are important results concerning Fourier transform of convolutions
which are valid for example in case of special unit nets but not in general
(cf. [8], Thm.1.11(c) and Ex.1.19).

(ii) The above impossibility result fits nicely with Damsma’s observations in
[3], Lemma 1 and 2. This was one reason to introduce the algebra of
Fourier ultrafunctions in his paper. Fourier transform on this algebra is a
linear isomorphism with many classical properties.

(iii) Radyno et.al. (cf. [10, 11]) also considered Fourier transform lifted to al-
gebras built up by equivalence classes of moderate sequences in S. In
this case the exact formula of interchange of partial differentiation with
multiplication by variables is still valid.

(iv) In [12], Thm.3.6, Soraggi proved that Fourier transform in the sense of
Colombeau is injective when restricted to Gc(R

n). Using Prop.2.6, (iii), it
follows from his result that this also holds for FS .

4 Regular generalized tempered functions

In [9], Sect.25, regularity theory is developed intrinsic to the algebra G of gen-
eralized functions. It turns out that the subalgebra G∞ of elements (having
representatives) of uniform ε-growth order for all derivatives is an appropriate
substitute for the subspace C∞ inside D′. This is emphasized by results on
hypoelliptic operators, propagation of singularities, and the remarkable proof of
the equality ([9],Thm.25.2)

G∞ ∩ D′ = C∞ (6)

(valid on arbitrary open subsets of Rn). Hence there is a concept of (generalized)
singular support and local regularity in the sense of G∞. Since Gc →֒ Gτ this

8



local concept can be carried over to Gτ locally by appropriate cut-off with test
functions. This was refined and developed further in [8] towards microlocal
analysis of generalized functions. A global variant of G∞ was defined as follows
(cf. [8], Def.1.46).

Definition 4.1. G∞
τ is the subalgebra of those elements in Gτ having represen-

tatives R with the following property: ∃N ∈ N0 : ∀α ∈ Nn
0 ∃M ∈ N0: ∀φ ∈ AM

∃c, η > 0 such that

|∂αR(φε, x)| ≤ cε−N (1 + |x|)M ∀x, ε < η . (7)

We will show that there is an analogue to equ.(6) for G∞
τ with S′ instead of D′.

Before we will state a lemma of M. Oberguggenberger which is actually included
in the proof of [9], Thm.25.2.

Lemma 4.2. Let v ∈ E ′, φ ∈ A0. If there exists N ∈ N0 such that for all
m ∈ N there are positive constants c, η such that

‖∆mv ∗ φε‖L1 ≤ cε−N (0 < ε < η) (8)

(∆ is the Laplace operator) then v is smooth.

Proof. (adapted from [9], pp.275-277) Taking Fourier transform we have for
some constant c′

‖|ξ|2mv̂φ̂ε‖L∞ ≤ c′ε−N .

We want to show that v̂ is rapidly decreasing. Therefore we estimate

εN |ξ|2m|v̂(ξ)| ≤ εN |ξ|2m|(v̂φ̂ε)(ξ)| + εN |ξ|2m|v̂(ξ)||1 − φ̂(εξ)| .

The first term on the right hand side is dominated by a constant. For the second
one we use |1 − φ̂(εξ)| ≤ c′′ε|ξ| and that v̂ is polynomially bounded, of order
K − 1 say. Hence we get

εN |ξ|2m|v̂(ξ)| ≤ c1 + c2ε
N+1(1 + |ξ|)2m+K (9)

for some positive constants c1, c2 and ε small.

We assert that a(ξ) := |ξ|(2m−KN)/(N+1)|v̂(ξ)| is bounded. Otherwise there
exists a sequence (ξj)j with |ξj | → ∞ (j → ∞) such that a(ξj) → ∞. Setting
εj = 1/|ξj |(2m+K)/(N+1) yields a contradiction in estimate (9) because the right
hand side would stay finite whereas the left hand side tends to infinity.

Since m is arbitrary we conclude from the boundedness of a that v̂ is rapidly
decreasing and hence that v is smooth.

Theorem 4.3. G∞
τ ∩ S′ = OM

Proof. If f ∈ OM then it has a representative (f ∗ φ)φ in EM,τ ; if α ∈ Nn
0 there

is M ∈ N and c > 0 such that |∂αf(y)| ≤ c(1 + |y|2)M and therefore

|∂αf ∗ φε(x)| = |

∫
∂αf(x− εz)φ(z)dz| ≤ c

∫
(1 + |x− εz|2)M |φ(z)|dz .
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By Peetre’s inequality (applied to x− εz, εz) and since ε ≤ 1 we have (1 + |x−
εz|2)M ≤ 2M (1 + |x|2)M (1 + |z|2)M hence the above integral can be dominated
by some constant times (1 + |x|2)M . Therefore [(f ∗ φ)φ] is in G∞

τ .

Let U ∈ S′ ∩ G∞
τ with typical representative (u ∗ φ)φ for some u ∈ S′. By

definition of G∞
τ we have the following: ∃N : ∀α ∃M ∀φ ∈ AM

|∂αu ∗ φε(x)| ≤ c ε−N(1 + |x|)M (10)

for some positive constant c and ε small.

First we will show that u ∈ C∞. It is enough to show that χu is smooth for all
χ ∈ D. Since supp(χu) ∗ φε is compact we have by (10)

‖∂α(χu) ∗ φε‖L1 ≤ cχ,α ε
−N

and setting α = (2m, . . . , 2m) it follows from Lemma 4.2 that χu is smooth.

Finally we have to show that u is actually in OM. Set α = β + γ with |γ| = N
for N chosen in (10) and β arbitrary. Then

c (1 + |x|)M ε−N ≥ |∂βu ∗ ∂γ(φε)(x)| =
1

ε|γ|
|

∫
∂βu(x− εy)∂γφ(y)dy|

and therefore

c (1 + |x|)M ≥ |

∫
∂βu(x− εy)∂γφ(y)dy| → Cφ |∂βu(x)| ε→ 0

for φ ∈ AM arbitrary. We conclude that u is in OM.

Classically smoothness of a compactly supported distribution can be tested by
decrease properties of its Fourier transform. We introduce the appropriate no-
tion in the following definition (in a generality useful for microlocal analysis
studied in the next section).

Definition 4.4. Let Γ be a cone in Rn. R ∈ Gτ is said to be rapidly decreasing
in Γ if it has a representative R(φ, x) with the following property: ∃N ∈ N:
∀p ∈ N0 ∃M ∈ N0: ∀φ ∈ AM there are positive constants c, η such that

|R(φε, x)| ≤ c ε−N (1 + |x|)−p ∀x ∈ Γ, 0 < ε < η .

If Γ = Rn we simply say that R is rapidly decreasing.

Theorem 4.5. If U ∈ Gc and S is a damping measure then the following are
equivalent:

(i) U ∈ G∞

(ii) FSU is rapidly decreasing

Proof.
(i)→(ii): follows from Thm.3.3(iii) as in the classical case.
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(ii)→(i): let U(φ, x) be a representative with compact support and ψ ∈ S
arbitrary then we compute (neglecting terms of the null ideal) using Prop.3.1(ii),
Thm.3.3(iii), and the decrease property for FSU successively

|〈∂αU(φε, .), ψ̂〉| = |〈FS∂
αU(φε, .), ψ〉 = |〈ξαFSU(φε, .), ψ〉| ≤

c

∫
|ξ||α||FSU(φε, ξ)||ψ(ξ)|dξ ≤ c′ ε−N

∫
|ξ||α|

(1 + |ξ|)p
|ψ(ξ)|dξ ≤ c′′ ε−N‖ψ‖L1

for p > |α|, ε small, and c′′ > 0 depending only on α, φ, and p. Since ψ was
arbitrary it follows that

‖∂αU(φε, .)‖L∞ ≤ c̃ ε−N

with N independent of α. Hence U is in G∞.

Remark 4.6.

(i) Note that for U ∈ Gc the properties to be in G∞ or G∞
τ are equivalent and

that condition (i) of Thm.4.5 is independent of the damping measure S.
We will further investigate this in the next section.

(ii) The above characterization is just a pointer to Paley-Wiener like results.
Much progress in this direction was already achieved in settings with more
specified damping measures. We refer to [8] and [12] instead of just copying
the results and arguments (nearly literally) to our framework.

(iii) A result related to Thm.4.5 is given in [8], Prop.3.13, using the term
G∞-rapidly decreasing ([8], Def.3.12) for a tempered generalized function
G having a representative G(φ, .) with the following property: ∃N ∈ N:
∀α ∈ Nn

0 ∀p ∈ N ∃M ∈ N0: ∀φ ∈ AM

|∂αG(φε, x)| ≤ C
ε−N

(1 + |x|2)p/2
∀x ∈ R

n (11)

for some constant C > 0 and small ε. Then it is proved that the Fourier
transform (using a unit net as damping measure) of a G∞-rapidly decreas-
ing function has again this property (clearly, the converse is also true).
This is an analogue of the fact that the classical Fourier transform maps
S into S.

(iv) It follows directly from Thm.3.3(iii) that in Thm.4.5 the two conditions
are then actually equivalent to FSU being G∞-rapidly decreasing.

5 Equivalence of basic microlocal properties

Microlocal analysis and pseudo-differential calculus in Colombeau algebras are
presented in [8], Ch.3, based on Fourier transform and integration using damping
measures defined by (special) unit nets. The aim of this section is to show that
concerning the basic definitions and facts this fits into the current setting and
at the same time maintains the complete range of generality.
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We proceed along the lines of classical theory as presented in [5], Sect.8.1. If
U ∈ Gc we define the cone ΣS(U) ⊆ Rn \0 to be the complement of those points
having open conic neighborhoods Γ such that FSU is rapidly decreasing in Γ
(and 0 excluded in any case). ΣS(U) is closed in Rn\0 and by Thm.4.5 is empty
if and only if U ∈ G∞. As one would guess from Thm.4.5 this notion is actually
independent of S.

Lemma 5.1. If S1 and S2 are damping measures and U ∈ Gc then ΣS1
(U) =

ΣS2
(U). Hence we may write Σg(U) instead.

Proof. Assume that FS1
U is rapidly decreasing in the open cone Γ; let U(φ, .)

be a representative of U then there exist N ∈ N0 and for all p ∈ N0 a constant
c such that (for small ε)

‖(1 + |ξ|)pFS1
U(φε, .)‖L∞(Γ) ≤ c ε−N .

If ψ ∈ S with suppψ ⊆ Γ we have therefore

c ε−N‖ψ‖L1 ≥ |〈(1 + |ξ|)pFS1
U(φε, .), ψ〉| = |〈FS1

U(φε, .), (1 + |ξ|)pψ〉| ,

interpreted in the pairing with L∞(Γ) as dual of L1(Γ). But according to
Prop.3.1(ii) the right hand side is equal to |〈U(φε, .), (ψ(1 + |ξ|)p)̂ 〉| apart from
some null ideal terms in C; again by the same arguments this differs from the
expression |〈(1 + |ξ|)pFS2

U(φε, .), ψ〉| only by terms of order εq for arbitrary q.
Since the set of all ψ ∈ S with suppψ ⊆ Γ is dense in L1(Γ) we conclude that
(1 + |ξ|)pFS2

U(φε, .) is bounded in Γ by some constant times ε−N and hence
FS2

U is rapidly decreasing in Γ. Interchanging the roles of S1 and S2 completes
the proof.

If ϕ ∈ D and U ∈ Gc there is a representative of FS(ϕU) of the form ϕ̂ ∗ Û(φ, .)
(use Prop.2.6(iii)) and the reasoning in the proof of [5], Lemma 8.1.1, can be
applied to show

Σg(ϕU) ⊆ Σg(U) . (12)

Moreover one can also copy the proof of the following property: let x0 ∈ Rn

and (ϕν)ν be a net in D with ϕν(x0) 6= 0, suppϕν → {x0} then

lim
ν

Σg(ϕνU) =
⋂

ϕ∈D,ϕ(x0) 6=0

Σg(ϕU) (13)

in the sense that Σg(ϕνU) will finally be contained in any open cone containing
the right hand side. This enables us to transfer Hörmander’s definition of wave
front set ([5], Def.8.1.2) to the Colombeau algebra. We stick to the notation of
[8] because the definition turns out to be equivalent.

Definition 5.2. Let Ω be open in Rn and U ∈ G(Ω). Then define the cone of
irregular directions at x0 by

Σg,x0
(U) =

⋂

ϕ∈D(Ω),ϕ(x0) 6=0

Σg(ϕU) . (14)

The wave front set of U is the set

WFg(U) = {(x, ξ) ∈ Ω × R
n \ 0 | ξ ∈ Σg,x(U)} . (15)
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Remark 5.3. Completely analogous to the classical case one has Σg,x(U) 6= ∅
if and only if x ∈ singsuppgU . As a consequence the projection of WFg(U) to
the first component is equal to singsuppgU . Furthermore the wave front set is
a closed subset of Ω × Rn \ 0 which is conic in the second component. If U has
compact support then the projection of WFg(U) to the second component is
Σg(U) (proof exactly as in [5], Prop.8.1.3).

By Lemma 5.1 the cone Σg,x0
(U) of irregular directions at a point and hence

the wave front set WFg(U) is independent of the damping measure S chosen for
computation of FS. We will prove that Def.5.2 is equivalent to the definition of
wave front set according to [8], Def.3.14. To this end we use [8], Cor.3.2, which
gives formulae completely analogous to (15) and (14) but with Σg(ϕU) defined
in another way ([8], Def.3.13; note that in the last line of that definition it should
read ψFG instead of ψG). Therefore we have to show that both definitions for
Σg(U) coincide when U is in Gc. This is the content of the following lemma.

Lemma 5.4. Let U ∈ Gc and S be a damping measure. Then Σg(U) is equal
to the complement of all points ξ0 in Rn \ 0 having a conic convex open neigh-
borhood Γ with the following property: ∃ ψ ∈ C∞(Rn) with suppψ ⊂ Γ, ψ
positive-homogeneous of degree 0 outside some ball of radius r, 0 < r < ξ0,
and ψ = 1 near ξ0 such that ψFSU is G∞-rapidly decreasing (in the sense of
Rem.4.6, (iii)).

Proof. First we note that Σg(U) is contained in the described set since the
stated decay in Γ and the properties of ψ imply rapid decrease of FSU in Γ.

To prove the reverse inclusion we assume that ξ0 6∈ Σg(U) and nonzero. By
Rem.4.6, (iv), we conclude that FSU is G∞-rapidly decreasing in an open convex
conic neighborhood Γ of ξ0. This means exactly that all derivatives ∂αFSU are
rapidly decreasing in Γ. Choose a smooth function ψ with suppψ ⊂ Γ, ψ(ξ) = 1
for |ξ| ≥ |ξ0|/2 and ξ in some closed conic neighborhood Γ0 of ξ0 contained
in Γ. Then ψ∂αFSU is rapidly decreasing in Rn for all α ∈ Nn

0 . For |ξ| large
derivatives of order > 0 of ψ vanish in Γ0 hence ∂α

(
ψFSU

)
is rapidly decreasing

by the Leibniz rule.

To summarize we arrive at the very satisfying conclusion that Def.5.2 gives an
equivalent notion of wave front to that introduced in [8], Sect.3.2.2.

Corollary 5.5. The wave front set of a generalized function in G(Ω) according
to Definition 5.2 can equivalently be determined by the methods of [8], Section
3.2.2.

Hence all results of [8], pp.124-131, are valid also in the presented context.
Especially consistency with the distributional wave front set is valid (proved in
[8], Sect.3.2.3). More explicitely, if Ω is open in Rn and ι denotes the canonical
embedding D′(Ω) →֒ G(Ω), we have the following

Theorem 5.6. If u ∈ D′(Ω) then WF(u) = WFg(ι(u)).

Finally we give an example illustrating the notion in a situation beyond distri-
butions arising from multiplication of distributions.
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Example 5.7. In G(R) let U = ι(1/(x+i0)) and V = ι(1/(x−i0)) and consider
W = U · V . Note that WFg(U) = WF( 1

x+i0 ) = {0} × R+ and WFg(V ) =

WF( 1
x−i0 ) = {0} × R−. Therefore Hörmander’s wave front rule for defining a

product in D′ is not applicable. More general with respect to the hierarchy
of distributional products in [9], p.69, even the model product does not exist
(argument similar to [9], Ex.1.4, Case 3). In G a representative W (φ, x) of W is
formed as product of the typical representatives (use 1/(x±i0) = vp(1/x)∓iπδ)

1

x± i0
∗ φ(x) =

∞∫

0

φ(x− y) − φ(x+ y)

y
dy ∓ iπφ(x)

of U and V . We want to determine the wave front set of W in the sense of
Def.5.2.
Assertion 1: singsuppgW = {0}
The k-th derivative of W (φε, x) can be written as a polynomial of order ≤ k in
expressions of the form

Aε(x) = (
d

dx
)l

∞∫

0

φ(x−y
ε ) − φ(x+y

ε )

εy
dy and Bε(x) =

1

εl+1
φ(l)(

x

ε
) ,

where 0 ≤ l ≤ k. Let K be compact in R; assume first that 0 ∈ K; then
the values Aε(0) = 〈vp(1/y), φ(l)(y/ε)〉/εl+1, Bε(0) = φ(l)(0)/εl+1 can never be
dominated by O(ε−N ) for fixed N for all k and φ; otherwise if 0 has distance
α > 0 from K then Bε will vanish on K if ε is small enough because suppφ
is compact; for the same reason in expression Aε the integration variable y will
be bounded away from 0 and then splitting into a difference of integrals and
substitution ((x± y)/ε) will bring each integral into the form

(
d

dx
)l

∞∫

−∞

φ(y)

x− εy
dy = const ·

∫
φ(y)

(x− εy)l+1
dy ;

if ε is so small that α − εd(φ) ≥ α/2 this expression can be dominated by
C(2/α)l+1 independent of ε.
Assertion 2: Σg,0(W ) = R \ 0
0 ∈ singsuppgW therefore Σg,0(W ) 6= ∅ ; let ψ ∈ D, ψ(0) = 1, ψ real valued,
and set W1 = ψW . FSW1 has the representative

∫
e−iξx

(
〈vp(

1

y
), φ(x + y)〉2 + π2φ(x)2

)
ψ(x)dx ;

we have FSW1(φ,−ξ) = FSW1(φ, ξ) (this reflects the fact that vp(1/y) and δ
respect complex conjugation) and hence rapid decrease on one side of the real
line would imply the same on the other side; but this would imply that Σg,0(W )
is empty – a contradiction.

Summarizing we conclude that

WFg(W ) = {0} × R \ 0 .
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[11] Ya.V. Radyno, A. Romachèvski, Fu Than Ngo, Ramadan Sabra, La trans-
formation de Fourier dans l’algebre des fonctions nouvelles généralisées,
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