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One of the most elaborate examples of a non–commutative man-

ifold is the irrational rotation–C⇤–algebra or so–called non–commu-

tative torus. A detailed description from the point of view of non–

commutative di↵erential geometry is given in [2] and related papers.

A di↵erent approach to this interesting object appeared in a re-

cent paper on quantum–ergodic theory (see [1]), where the non–

commutative two–torus is constructed as a quantum analogue of a

well known classical dynamical system. The basic idea is to describe

the algebraic structure by Weyl type relations depending on a quan-

tization parameter, which justifies the notion Weyl–algebra on the

two–torus. We will follow this approach and derive a result on its

representation theory.

1 Definitions

We start with the dynamical system (X, ⌧, T ) consisting of the

compact space X = (IR mod ZZ)2, the two–torus, equipped with
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Lebesgue–probability measure ⌧ and a homeomorphism T : X !
X, given by a matrix (T

ij

) 2 GL(2, ZZ). This model can be de-

scribed equivalently in an algebraic way by the commutative von

Neumann–algebra (abbreviated as vNA) M0 = L1(X), the state

⌧(f) =
R
X

f(x)d⌧(x) (we use the same symbol for the measure and

the corresponding state) and the automorphism ↵(f) = f �T , build-

ing the W ⇤–dynamical system (M0, ⌧, ↵).

The algebra M0 is generated by the functions W (n)(x) = e2⇡ihn|xi

(n 2 ZZ2, h.|.i denotes the scalar product), which satisfy the relations

W (n)W (m) = W (n + m) (1)

⌧(W (n)) = �0n

. (2)

Let ✓ 2 [0, 1) and define � : ZZ2 ⇥ ZZ2 ! ZZ, (n, m) 7! n1m2 �
n2m1. The idea of the following is to construct a non–commutative

version of the above algebra by turning equations (1) and (2) into

W (n)W (m) = e2⇡i✓�(n,m)W (n + m) (3)

⌧(W (n)) = �0n

. (4)

For a realization of this structure we consider the vector space

F = {f : ZZ2 ! C | supp(f) is finite} and define an algebra

multiplication by

fg(n) =
X

m2ZZ

2

f(m)g(n�m)e2⇡i✓�(m,n) (5)

and an involution

f ⇤(n) = f(�n). (6)

In this way we get a ⇤–algebra W
✓

with unit 11 = �0, which is gen-

erated by the unitary elements �
n

(k) = �
nk

with the relations (use

equation (5))

�
n

�
m

= e2⇡i✓�(n,m)�
n+m

, (7)
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the desired Weyl–type relations (3). The definition ⌧(f) = f(0)

8f 2W
✓

gives a tracial state on W
✓

with the property

⌧(�
n

) = �0n

, (8)

hence we have constructed a non–commutative (if ✓ 6= 0, 1/2) ana-

logue of the classical system at an algebraic level.

In order to get a W ⇤–dynamical system one can consider the

GNS–representation of W
✓

corresponding to the state ⌧ . Since the

left–kernel of ⌧ is trivial (⌧(f ⇤f) =
P

n

| f(n) |= 0 , f = 0) and

⌧(f ⇤g) =
P

n

f(n)g(n), the GNS–Hilbert–space is exactly l2(ZZ2).

The action of the generating elements �
n

is given by

(⇡
⌧

(�
n

)⇠)(m) = e2⇡i✓�(n,m)⇠(m� n) 8⇠ 2 l2(ZZ2), (9)

which is similar to the action of the Weyl–operators in the usual

Schrödinger–representation.

It turns out ([1]) that the structure of the generated vNA M
✓

over l2(ZZ2) depends on the parameter ✓, i.e. for rational ✓ M
✓

is

of type I
n

(n < 1) with nontrivial center and is the hyperfinite

type–II1–factor for irrational values of ✓. The next section will show

that in the rational case any representation leads to a type–I vNA.

2 Representations

Let ⇡ : W
✓

! B(H) be an arbitrary representation of W
✓

(unital

*–homomorphism). Define a map W : ZZ2 ! U(H), n 7! W (n) =

⇡(�
n

), where U(H) denotes the group of unitary operators. The

equation (compare with equ.(3) and (7))

W (n)W (m) = e2⇡i✓�(n,m)W (n + m) (10)
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shows that W defines a projective (unitary) representation of the

group ZZ2 with cocycle c(n, m) = e2⇡i✓�(n,m).

Using the central extension G = ZZ2⇥TT (TT denoting the complex

numbers of modulus 1) with the multiplication law

(n, v) � (m, u) = (n + m, e2⇡i✓�(n,m)uv) (11)

one can turn the projective representation W into a representation

T : G ! U(H) of the extended group G by setting

T (n, v) = vW (n), (12)

since then

T (n, v)T (m, u) = vuW (n)W (m) =

e2⇡i✓�(n,m)vuW (n + m) = T ((n, v) � (m, u)).

Now consider the vNA M generated by the representation ⇡. M
can be defined as the strong closure of the set ⇡(W

✓

) or equivalently

T (G). Since T ({0} ⇥ TT ) consists only of scalar multiples of the

identity,M can actually be written as strong closure of T (ZZ2⇥{1}).
Therefore it su�ces to consider the restriction of T to the closed

subgroup H ✓ G generated by the elements of ZZ2 ⇥ {1}.
If ✓ 62 Q then H = G, since {e2⇡i✓k | k 2 ZZ} is dense in TT .

Hence we get nothing new in this case.

If ✓ 2 Q (✓ 6= 0) we can write ✓ = p/q with p, q 2 IN and get the

countable discrete set H = ZZ2 ⇥ {e2⇡ipk/q|k = 0, . . . , q � 1}. The

subgroup H is isomorphic to ZZ2⇥ZZ
q

(ZZ
q

denotes the cyclic group

of order q) with the operation

(n, l̄) � (m, k̄) = (n + m, l + k + �(n, m)). (13)

At this point we can use a result from representation theory of

discrete groups concerning groups of type I. A group is said to be
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of type I (or tame) if all (unitary) representations generate type–I

vNA. A characterization of the type I groups amoung all countable

discrete groups is given by the following

Lemma: (see [3]) Let H be a countable discrete group. H is of

type I if and only if there exists a commutative normal subgroup

N ✓ H with finite index.

If we set in the above situation N = (qZZ2)⇥ ZZ
q

then N defines

a commutative normal subgroup of H, since this is the center of H.

Furthermore

H/N ⇠= (ZZ
q

)2 (14)

and this set has exactly q2 elements, hence N has finite index in H.

Now the above lemma tells us that the vNA generated by T (H) is

of type I and therefore the same is true for M, which is actually

the same vNA. With a view at the special representation of section

1 we have in conclusion the following

Theorem:

Exactly for ✓ 2 Q each representation of W
✓

generates a vNA of

type I.
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