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One of the most elaborate examples of a non—commutative man-
ifold is the irrational rotation—-C*—algebra or so—called non—commu-
tative torus. A detailed description from the point of view of non—
commutative differential geometry is given in [2] and related papers.

A different approach to this interesting object appeared in a re-
cent paper on quantum—ergodic theory (see [1]), where the non—
commutative two—torus is constructed as a quantum analogue of a
well known classical dynamical system. The basic idea is to describe
the algebraic structure by Weyl type relations depending on a quan-
tization parameter, which justifies the notion Weyl-algebra on the
two—torus. We will follow this approach and derive a result on its

representation theory.

1 Definitions

We start with the dynamical system (X, 7,7") consisting of the
compact space X = (IRmod Z)?, the two-torus, equipped with



Lebesgue—probability measure 7 and a homeomorphism 7" : X —
X, given by a matrix (T;;) € GL(2,Z). This model can be de-
scribed equivalently in an algebraic way by the commutative von
Neumann—algebra (abbreviated as vNA) M, = L*(X), the state
7(f) = [x f(x)dT(z) (we use the same symbol for the measure and
the corresponding state) and the automorphism a(f) = foT', build-
ing the W*—dynamical system (M, 7, «).

The algebra M, is generated by the functions W (n)(z) = e?™inlz)
(n € Z?, (.|.) denotes the scalar product), which satisfy the relations

W(n)W((m) = W(n+m) (1)
T(W(n)) = don. (2)
Let 0 € [0,1) and define 0 : Z? X Z* — Z, (n,m) — nymy —

nomy. The idea of the following is to construct a non—commutative

version of the above algebra by turning equations (1) and (2) into

Wn)W(m) = X™0m (n+m) (3)
T(W(n)) = don. (4)

For a realization of this structure we consider the vector space
F =A{f:2Z* — C| supp(f) is finite} and define an algebra
multiplication by
fgn) = > flm)g(n —m)e>ootmn) ()
meZ?

and an involution
fr(n) = f(=n). (6)
In this way we get a *~algebra W, with unit 1 = dy, which is gen-
erated by the unitary elements §, (k) = d,x with the relations (use

equation (5))

00y = €200 (7)
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the desired Weyl-type relations (3). The definition 7(f) = f(0)
Vf € W, gives a tracial state on Wy with the property

7(0n) = don, (8)

hence we have constructed a non-commutative (if # # 0,1/2) ana-
logue of the classical system at an algebraic level.

In order to get a W*-dynamical system one can consider the
GNS-representation of W, corresponding to the state 7. Since the
left—kernel of 7 is trivial (7(f*f) =>,| f(n) |[=0 < f=0) and
(f*g9) = 3, f(n)g(n), the GNS-Hilbert-space is exactly >(Z?).

The action of the generating elements 9,, is given by

(m7(8,)€) (m) = 2™ g(m —n) V€ € 1(2Z%), (9)

which is similar to the action of the Weyl-operators in the usual
Schrodinger-representation.

It turns out ([1]) that the structure of the generated vNA My
over [?(Z?) depends on the parameter 0, i.e. for rational § My is
of type I, (n < oo0) with nontrivial center and is the hyperfinite
type—II;—factor for irrational values of 6. The next section will show

that in the rational case any representation leads to a type—I vNA.

2 Representations

Let m : Wy — B(H) be an arbitrary representation of W, (unital
*~homomorphism). Define a map W : Z? — U(H), n — W(n) =
7(d,), where U(H) denotes the group of unitary operators. The
equation (compare with equ.(3) and (7))

W (n)W (m) = ™0 mW (n + m) (10)



shows that W defines a projective (unitary) representation of the
group Z?2 with cocycle ¢(n, m) = e2™0onm),
Using the central extension G = Z?xT (T denoting the complex

numbers of modulus 1) with the multiplication law

(n,v) o (m,u) = (n+m, 207 mmyy) (11)

one can turn the projective representation W into a representation
T : G — U(H) of the extended group G by setting

T(n,v) = vW(n), (12)
since then

T(n,v)T(m,u) = vulW(n)W(m)=
Zm e mm)y Win+m) = T((n,v)o (m,u)).

Now consider the vNA M generated by the representation 7. M
can be defined as the strong closure of the set m(Wj) or equivalently
T(G). Since T'({0} x T') consists only of scalar multiples of the
identity, M can actually be written as strong closure of T(Z?x{1}).
Therefore it suffices to consider the restriction of 7' to the closed
subgroup H C G generated by the elements of Z? x {1}.

If 0 ¢ @ then H = G, since {e™* | k € Z} is dense in T
Hence we get nothing new in this case.

If 6 €@ (0+#0) we can write § = p/q with p,q € IN and get the
countable discrete set H = Z?* x {*™"*/1|k = 0,...,q — 1}. The
subgroup H is isomorphic to Z?* x Z, (Z, denotes the cyclic group

of order q) with the operation

(n,0)o(m,k)=(n+m,l+k+o(n,m)). (13)

At this point we can use a result from representation theory of

discrete groups concerning groups of type I. A group is said to be



of type I (or tame) if all (unitary) representations generate type-I
vINA. A characterization of the type I groups amoung all countable

discrete groups is given by the following

Lemma: (see [3]) Let H be a countable discrete group. H is of
type I if and only if there exists a commutative normal subgroup
N C H with finite index.

If we set in the above situation N = (¢Z?) x Z, then N defines
a commutative normal subgroup of H, since this is the center of H.
Furthermore

H/N = (Z,)* (14)

and this set has exactly ¢? elements, hence N has finite index in H.
Now the above lemma tells us that the vNA generated by T'(H) is
of type I and therefore the same is true for M, which is actually
the same vINA. With a view at the special representation of section

1 we have in conclusion the following

Theorem:

Exactly for 6§ € @) each representation of W, generates a vINA of
type L.
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