- 1. Man zeige, dass die Menge $\{c_n z^n\}_{n \in \mathbb{N}}$ ein vollständiges Orhtogonalsystem in $\mathcal{H}^2(D)$ bildet und bestimme die Normierungsfaktoren c_n .
- 2. Man benütze Aufgabe 61 um zu zeigen, dass die Punktevaluation $f\mapsto f(z)$ ein stetiges lineares Funktional auf $\mathcal{H}^2(D)$ ist. Daraus erschließe man die Existenz einer Funktion $B(z,w):D\times D\to\mathbb{C}$ mit der Eigenschaft

$$f(z) = \int_D B(z, w) f(w) d\lambda(w)$$

für alle $f \in \mathcal{H}^2(D)$. B heißt Bergmankern von D. Für fixes $\underline{w \in D}$ ist die Funktion B(z,w) holomorph in z und es gilt $B(z,w) = \overline{B(w,z)}$.

- 3. Beweise, dass der Bergmankern eines Gebiets $\Omega \subset\subset \mathbb{C}$ durch folgende drei Eigenschaften eindeutig bestimmt ist:
 - Für fixes $w \in \Omega$ ist $B(z, w) \in \mathcal{H}^2(\Omega)$.
 - $B(z, w) = \overline{B(w, z)}$.
 - Für alle $f \in \mathcal{H}^2(\Omega)$ gilt

$$f(z) = \int_{\Omega} B(z, w) f(w) d\lambda(w)$$

4. Sei $\{\varphi_n\}_{n=0}^{\infty}$ eine beliebige Orthonormalbasis von $\mathcal{H}^2(\Omega)$. Zeige, dass der Bergmankern von Ω durch

$$B(z, w) = \sum_{j=1}^{\infty} \varphi_j(z) \overline{\varphi}_j(w)$$

gegeben ist.

Man verwende die Orthonormalbasis aus Beispiel 1, um den Bergmankern für D explizit zu berechnen.