1 Several complex variables

To think that the analysis of several complex variables is more or less the one variable
theory with some more indices turns out to be incorrect. Completely new phenom-
ena appear which will be exploited in the following. Many differences between the
one and several variables theories originate from the Cauchy Riemann differential
equations which constitute an overdetermined system of partial differential equa-
tions for several complex variables. We start with the basic definitions and complex
differential forms. Section 1.1 also presents the main differences between one and
several variables analysis, such as the Identity Theorem and Hartogs phenomenon.
Section 1.2 provides another important example for this difference, namely in the
analysis of the inhomogeneous Cauchy Riemann differential equations. In addition
the concept of the tangential Cauchy Riemann equation is introduced. This gives the
tools required for the famous Lewy example of a partial differential operator with-
out solution. In section 1.3 we discuss pseudoconvex domains and plurisubharmonic
functions and explain the concept of a domain of holomorphy.

1.1 Complex differential forms and holomorphic functions

Let © C C™ be an open subset and let f : @ — C be a C'-function. We write
zj = x; + iy; and consider for P € €2 the differential

dfp =Y (fj(P) daj + %(P) dyj) -

j=1
We use the complex differentials
de = dl‘j + idyj , ﬁj = d:L’j — idyj

and the derivatives

B A A
82’]‘_2 (’)xj Z(’)yj ’ %j_2 833]' Zayj

and rewrite the differential dfp in the form

n af af
dfp = ——(P)dzj + =—(P)dz; | = afp.
ifp jE_l <6zj( )dzj + a}j( ) Z.]) ofp +0fp
A general differential form is given by
w = E ! aj K dzy NdZg,

[J|=p,|K|=¢
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where Zlfflznl K|=q denotes the sum taken only over all increasing multiindices
J = (jlv"-7jp)7 K= (kl,...,kq) and

dZJIdelA---Adep s CﬁszfklA"-/\dfkq.

k

We call w a (p, g)-form and we write w € C(p a)

belonging to C*(£2).
The derivative dw of w is defined by

(Q) if wis a (p, ¢)-form with coefficients

dw = Z’daJ,K/\dZJ/\dEK: Z/(an7K+5aJ7K)/\dZJ/\dEK7
|71=p,|K|=q |J|=p,| K|=¢
and we set
Ow= > 'dajx NdzjAdZg and dw =Y ' Dasx Ndzy Adik.
[Jl=p,|K|=q |J|=p|K|=q

We have d = 9 + @ and since d2 = 0 it follows that
0=(0+0)0(0+0)w=(00d)w+(00d+dod)w+ (90w,

—2 - —

which implies 9> =0, 8 =0 and 9o d+ d o0 0 = 0, by comparing the types of the
differential forms involved.

Before we proceed we mention important domains in C™ and some basic facts about
them.

Definition 1.1. A polydisc with center a = (a1,...,a,) € C™ and multiradius r =
(ri,...,mn),7; > 0 is the set

Pla,r) ={z€C" : [z; —aj| <rj,1 <j <n}.
A ball with center a = (aq,...,a,) € C" and radius r > 0 is defined by
B(a,r)={z€C": Z |z — a;]? < r?}.
j=1

We write B for the unit ball B(0,1).
The Siegel ! upper half-space U in C*, n > 2, is defined by

n—1
U={zeC": Sz >> |z}

j=1

In the sequel we will use the symbol b2 for the boundary of a domain €2 in C™. The
symbol 0 is now reserved for differential forms.

1 Siegel, Carl Ludwig (1896-1981)
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Definition 1.2. A domain Q ¢ R, n > 2, is said to have C* (1 < k < 00) boundary
at the boundary point p if there exists a real-valued function p defined in some open
neighborhood U of p such that p € C*(U) and UNQ = {z € U : p(z) < 0}, bQNU =
{z € U : p(z) = 0}, and dp(x) # 0 on bQ N U. The function p is called a C* local
defining function for Q near p. If U is an open neighborhood of Q, then p is called
a global defining function for €2, simply a defining function for .

In the following we consider the relationship between two defining functions.

Lemma 1.3. let p; and py be two local defining functions of Q of class C* in a
neighborhood U of p € bQ). Then there exists a positive C¥~1 function h on U such
that p1 = hpa on U and dpi(z) = h(z)dp2(x) for x € U NDQ.

Proof. Since dps # 0 on the boundary near p, we may assume that p = 0, z,, =
pa(z) and UNbBQY = {z € U : z, = 0}, after a C* change of coordinates. Let

2’ = (x1,...,2p—1). Then we have p;(2/,0) = 0 and by the fundamental theorem of
calculus .
0
p1(x'xn) = p1(2/, ) — p1(2/,0) = 2, / aﬂ(az’,twn) dt.
T,
0

Hence p; = hps for some C*~1 function on U. If k—1 > 1, we get dp1 (x) = h(z)dp2(z)
for x € UNDQ, as pa(x) =0 for z € UND. If k = 1, we get the same conclusion
from the fact that for a function f differentiable at 0 € R™ such that f(0) = 0
and for a function h continuous at 0, one has that f - h is differentiable at 0 and
d(hf)o = h(0) dfo.

Finally, as dp1 (z) # 0 and dpa(z) # 0 for x € UNHQ, we get h(x) # 0 for x € UNHS.
In addition, since h > 0 on U \ b2, and h is continuous, we obtain h >0 on U. O

Definition 1.4. Let Q C C™ be open. A function f : Q — C is called holomorphic

on Q if f € CY(Q) and f satisfies the system of partial differential equations
a—f(z):() for1<j<mnandzeQ, (1.1)

(9,2]‘

equivalently, if f satisfies Of = 0.

We remark that there is no biholomorphic mapping between a polydisc and a ball in
C"™, n > 2, see [6]. The Siegel upper half-space U is biholomorphic to the unit ball
B, by the so-called Cayley transform, so U is an unbounded realization of a bounded
symmetric domain. The boundary H of U carries the structure of the Heisenberg
group, see Exercises for more details.

Next we establish a Cauchy integral formula for holomorphic functions on polydiscs.

Theorem 1.5. Let P = P(a,r) be a polydisc in C". trose that f € C'(P) and that
f is holomorphic on P, i.e. for each z € P and 1 < j < n, the function

C'_) f(Zh“'aZj—1:<aZj+17"':zn)
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is holomorphic on {¢ € C: | — a;| < 1;}. Then

! £(Q)
<2ﬂi>”/"'/ G =) (Co =) S B (1.2)

for z € P, where v;(t) = a; +r;e', fort € [0,27] and j=1,...,n

f(z) =

Proof. Induction over n. For n = 1 one has the classical Cauchy Formula, see Theo-
rem ?7. trose that the theorem has been proven for n — 1 variables. For z € P fixed
we apply the inductive hypothesis with respect to (22, ..., 2,) and obtain

217427 7<n)
f(Zl,ZQ,...,Zn 271_2)” 1/ / CQ—ZQ (: —Zn) dCQan

Y2 Tn
For (a,...,(, fixed, we get from 1-dimensional case
1 f(Claan)
=— [ —/————=d
f(zlv 627 ) Cn) i Cl — Cl
71
which can be substituted to the formula above to obtain (1.2). O

Like in the case n = 1 we get also here that holomorphic functions in several variables
are C*° functions, and all complex derivatives of holomorphic functions are again
holomorphic, differentiate under the integral sign in (1.2).

In addition, we get the Cauchy estimates: for f € H(P(a,r)) and o = (o, ..., ap) €

N§ :let |a| = a1 + - + ap and a! = a1!. .. @y, furthermore set r* = r{* ... 719",
then
N olely !
|D% f(a)| = m( a) Sjbupﬂf( z)| 1z € Pla,r)}. (1.3)

Next we show that every holomorphic function can be represented locally by a
convergent power series:

Theorem 1.6. Let f € H(P(a,r)). Then the Taylor series of f at a converges to f
uniformly on all compact subsets of P(a,r), that is

fe =3 2 e (1.0

al
aeNY

for z € P(a,r).

Proof. Use the same method as in the proof of Theorem ?7? for each of iterated
integrals in (1.2). O

From this we get: let Q@ C C™ be a domain and f € H(2), suppose that there is
a € Q2 such that D*(a) =0 for all a € N{j, then f(z) =0 for z € Q. In particular, if
there is a nonempty open set U C 2 such that f(z) =0 for z € U, then f =0 on Q
(Identity Theorem).
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But Theorem ?? is not valid for n > 1 : let f(21,22) = 2z1. Then this function is zero
on {(0, z2) : z2 € C}, but f is not identically zero.

The following result is also an easy consequence of the corresponding one variable
result.

Theorem 1.7. Let Q) be a domain in C™ and suppose that f € H(Q) is not constant.
Then f is an open mapping.

Proof. We refer to Theorem ?7. It is enough to show that for any ball B(a,r) =
{zeC™: 2?21 |zj —aj|? < r?} the image f(B(a,r)) is a neighborhood of f(a). The
restriction of f to B(a,r) is not constant, otherwise f would have to be constant on
Q. Choose p € B(a,r) with f(p) # f(a) and define g(¢) = f(a + (p) for ¢ € D1(0).
Then g is nonconstant and holomorphic on Dj (0). By Theorem ??, g(D1(0)) contains
a neighborhood of ¢(0). As ¢g(0) = f(a) and ¢g(D1(0)) C f(B(a,r)), the image
f(B(a,r)) is a neighborhood of f(a). O

The maximum principle follows from this result as for n =1 : if Q C C™ is a domain
and f € H(£2) such that | f| has a local maximum at a point a € €, then f is constant
on §; if Q is a bounded domain in C" and f € H(Q)NC(R), then |f(2)| < |f|pq for
all z € Q.

We remark that Weierstral® Theorem ?? and Montel’s Theorem ?7? also hold for
holomorphic functions of several variables with an analogous proof.

A striking difference between one variable analysis and several variables analysis
appears in the next result, which gives a domain in C™,n > 1, with the property
that each holomorphic function can be analytically extended to a larger domain,
compare Theorem 77.

Theorem 1.8 (Hartogs ?). Let n > 2 and trose that 0 < r; < 1 for j = 1,...,n.
Then every function f holomorphic on the domain

H(r)={z€C":|zj| <1 forj<mn, rn <|zn| <1}
U{z € C" : |z5| < rj forj <mn, |z,| <1},

see Fig. 1.1, has a unique holomorphic extension f to the polydisc P(0,1).

Proof. The extension is unique because of the Identity theorem. Fix § with r, <
6 < 1. Then we define

F& o) = 5 / %dc, (15)
Vs

where 2/ = (21,...,2,_1) and 75(t) = de’ for t € [0,27]. In this way we defined a
function holomorphic on the polydisc P(0, (1’,4)), where (1',6) = (1,...,1,d). For

2 Hartogs, Friedrich Moritz (1874-1943)
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Fig. 1.1. The Hartogs domain H(r) in absolute space

2" € P(0,r") the function f(2’,.) is holomorphic on |z, | < 1, hence (1.5) implies that
(2, 20) = f(2', 2n) for (2, z,) € P(0,(r,8)). The Identity Theorem implies f = f
on H(r)NP(0,(1,68)), so f is the desired extension of f to the polydisc P(0,1). [
The reason for this phenomenon can be better understood by studying the inho-
mogeneous Cauchy Riemann differential equations in several complex variables (CR

equations).
1.2 The inhomogeneous CR equations

Let Q C C™ be a domain and let
n
9=2 9%
j=1

be a (0,1)-form with coefficients g; € C*(Q), for j = 1,...,n. We want to find a
function f € C(Q) such that

of =g, (1.6)
in other words

— =g, 7=1,...,n. 1.7
8EJ g_]?] 9 7” ( )

f is called a solution to the inhomogeneous CR equation df = g.
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Since 52 = 0, a necessary condition for solvability of (1.6) is that the right hand
side g satisfies g = 0. So, the (0,2)-form Og satisfies

89—iigdzk/\dzj—0,

k=1j=1
which means that 9 5
9; 9k .
— =4 k=1,...,n.
Oz azj /

Theorem 1.9. Let n > 2 and let g = Z?Zl g; dz; be a (0, 1)—f01“m with coefficients
g; €CE(C™), j=1,....,n, where 1 < k < co and trose that g = 0. Then there
exists f € CE(C™) such that Of = g.

We shall see that this result enables us to explain the Hartogs phenomenon in a
rather general setting.

For n = 1 the above theorem is false:

Suppose that f(C g(€)dA(¢) # 0 and that there is a compactly trorted solution f
of the equation % = g. Then there exists R > 0 such that f(¢) = 0 for |[¢| > R.
Applying Stokes’ Theorem (see ??) we obtain for v(t) = Re®, t € [0, 27]

0=/f<<>d<

of —
/ 8—Zd< Ad¢
Dr(0)

# 0,
whenever Dg(0) contains the support of g. That is a contradiction.

Proof of 1.9. Define f on C™ by

f(z17...,zn):2im/w&/\d§ (1.8)
C

By Corollary ?? (a), f € C*(C") and % = g1. Now let & > 1. By hypothesis we

o) o9k . . s
have agi = 8—%’;. Since g1 has compact support we can interchange differentiation
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and integration when we take the derivative of (1.8) with respect to Zj and get

0z Tm 0z, (—21
()
- 1 agk 1 >
=5 8E(C’Z27...’ZH)C*Z1dCAdC
C
:gk(zl7"'azn)7

where we used Corollary 7?7 (b) for the last equality.

Hence 0f = g. We still have to show that f is with compact support. Choose R > 1
such that gg(z) = 0 for 2?21 |zj|> > R, k =1,...,n. Then f is holomorphic on
the domain Q = {z € C™ : 22;1 |zj|? > R}. Since n > 2, we can fix z2 such that
|z2] > R. Then ¢1((,22,...,2,) = 0 for all ( € C and all z3,..., 2, € C. From the
definition of f, it follows that f(z) = 0, if |22| > R. The set {z € Q : |22 > R} is
a nonempty open subset of the domain Q. Since f € H(Q), the Identity Theorem
yields that f = 0 on 2. Therefore f has compact support. O

Now we are able to describe the Hartogs phenomenon in a more general way.

Theorem 1.10. Let Q be a bounded open set in C™ such that is connected. trose that
n > 1. Let U be an open neighborhood of the boundary bQ = Q\ Q. Then there exists
an open set V with bQ C V. C U having the following property: if f € H(U), then
there exists F' € H(KY) such that for the restriction to VN Q one has

flvra = Flvna.

Proof. Let W be an open neighborhood of b2 such that W cC U. Choose a € C§°(U)
such that « =1 on W. For f € H(U) we define

af on UNKQ
7= 0 on Q\ U.

Since a = 0 in a neighborhood of bU, we have g € C>°(12). Next, define

@ on )
or =< 0%k
0 on C™\ Q.

Since %’k = % on W NQ, we have ¢, € C°>°(C™). Furthermore ¢ = 0 on (C™ \

) UW, which implies that supp(¢y) C 2 and ¢y, € C§°(C™).
Next we claim that the (0,1)-form ¢ = 2?21 ¢; dz; satisfies d¢ = 0. We have to

show that
99; _ O¢
0z, afj ’
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for all j,k =1,...,n. Both, ¢; and ¢, are zero on (C™\ ) UW, on Q we have

9¢; %9 _ 9y

9zp  0z;07, 0z

By Theorem 1.9, there exists u € C§°(C") such that du = ¢. Now we set F' = g — u.

‘We have
oF  dg

0%k 0%k

on Q, for k=1,...,n. Hence F € H(Q).
Let Qo be the connected component of (C™ \ Q) U W containing C™ \ €. Define
V = Qo NU. We claim that flyng = Flvnq. Since VN Q CWNNand a = 1
on W so that ¢ = f on V' N, it suffices to show that u|g, = 0. Since ¢ = 0 on
C™\ Q and ¢y = % = 0 on W, we have g—% = 0 on . Hence u € H(Qp). And
since supp(u) is compact and € is bounded, C™ \ © must intersect C™ \ supp(u). In
particular, the open set 1 = Qo N (C™\ tr(u)) # 0, and u|n, = 0. Since u € H(Qp),
the Identity Theorem implies that u = 0 on .

O

Corollary 1.11. Let Q be a bounded open set in C™ such that C™ \  is connected.
trose that n > 1. Let U be an open neighborhood of the boundary bQ = Q\ Q.
Furthermore trose that U N Q is connected. If f € H(U), then there exists G €
H(QUU) such that Gly = f.

Proof. If F' is as in Theorem 1.10, and 2 N U is connected, the Identity Theorem
implies that F|onu = flanu, and we may define G by G|q = F and G|y = f.
O

Example 1.12. Let |2|2 := |12+ -+ |zp|?, for 2 € C™. Let Q = {z € C" : |2| < 1}
and let U = {z € C" : 1/2 < |z| < 3/2}. Then each f € H(U) has a unique
holomorphic extension to QU U = {z € C™ : |z| < 3/2}, see Fig. 1.2 in absolute
space.

It is even possible to extend certain functions on the boundary of a domain to
holomorphic functions in the interior of the domain.

Theorem 1.13. Let Q be a bounded open set in C",n > 1. trose that C" \ Q is
connected and b € C*, i.e. there exists a real-valued defining function p € C*(C™)
such that p vanishes precisely on bQ and dp # 0 on bQ. If u € C*(Q) and dundp =0
on b§2, one can then find a function U € C1(Q) such that U € H(Y) and U = u on
bed.
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| 22|

3/2

1/2

1/2 3/2

Fig. 1.2
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Remark 1.14. The condition du A Op = 0 on b, can also be stated as

Zt-@zOon b,
i 5.
J

for all (t1,...,tn) € C™ with 2?21 tj%”j = 0 on b). We say that u satisfies the
tangential Cauchy-Riemann equations and that u is CR-function. Using Lemma 1.3
one easily sees that this definition does not depend on the choice of the defining
function p (see Exercises).

Proof of 1.18. First we construct Uy € C2(Q2) such that Uy = u on b§2 and 0Uy = p?v
where v is a (0, 1)-form with C! coefficients on bQ. First we claim that Ou = hoOp +
ph1, where hg € C3(Q) and hy € C(ZO’I)(Q). For this aim we consider the coefficients
of the (0,1)-form du. Using the assumption that du A 9p = 0 on bS2, we see that

there exists ho € C3(€2) such that

— —hg=— =0,0nbQ, j=1,...,n.

627 0627 , O y J n
From the proof of Lemma 1.3 we get that there exist hy ; € C2(Q), j = 1,...,7n such
that

Now define the (0, 1)-form h; = Z?:1 h1,5dz;. Then Ou = hoOp + ph1. Next we get

A(u — hop) = p(hy — Ohg) = pha, where hy € C(20 1)(5). Since 0 = 52(u — hop) =
9(pha) = Op A ha + pOha, we have dp A hg = 0 on bS. As in the first part of the
proof, we can again write

ha = h3dp + pha,

where hs € C2(Q) and hy € C(1071)(ﬁ). Now set Uy = u — hgp — h3p?/2. An easy

computation shows that

Uy = pQ(h4 —5h3/2),

which completes the construction of Uy. Next we define the (0, 1)-form

f o on
a 0 on C™\ Q.

Since f = p?v on b§2 we have f € C(lo,l)((C") and f has compact support. By Theorem
1.9 we can find a function V € C}(C™) with compact support, such that 9V = f.
The definition of f implies that V' is holomorphic in the connected set C" \ Q and,
as V has compact support, that V' = 0 on C™ \ Q. The function U = Uy — V is

therefore equal to Uy = u on b§), and U = 9Uy — OV = f — f =0 in Q. |
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The tangential Cauchy-Riemann equations for the Siegel upper half-space U are of
special interest. Let n = 2. The function p(z1, 22) = —2%(22 —Z2)+ 2171 is a defining
function for bU. The boundary can be identified with Hy = C x R via the mapping
7 (21,t+il21|?) = (21,t), where 2o = t +is. We call Hy the Heisenberg group, see
Exercises. If Qu A dp = 0 on bU, we have for a function u € C'(U)

1 ou ou

2718721 - 218722 =0,
on bU. This means we have to consider the differential operator

0

- .0 ) .0
L—%—i—za—y—m(x—i—zy)a

on Hy. This operator has a special property giving a partial differential operator
without solution.

Theorem 1.15 (H. Lewy 3). Let f be a continuous real-valued function depending
only on t. If there is a C'-function u on (x,y,t) € Hy satisfying Lu = f in some
neighborhood of the origin, then f is analytic at t = 0, i.e. can be expanded into a
convergent Taylor series in a neighborhood of t = 0.

So if one takes a continuous function f being not analytic at 0, the partial differential
equation Lu = f has no solution.

Proof. Suppose Lu = f in the set where 2 + 42 < R? and |t| < R, R > 0. Let
v(0) = re?? 6 € [0,2n], 0 < r < R. Consider the line integral

2m
V(r,t) :/u(%yat) dzzir/u(rc%&rsin&,t) e dp.
v 0

By 7?7 and Stokes’ Theorem 77,

V(r,t) =1 / (gz +Z?)Z> (z,y,t) d\(2)

Dr(0)

r 27
:z//(?;—}—z?;) (ocosb,osinb,t)ododd,
0 0

where we used polar coordinates dA(z) = o dodf. Hence
2

ov Oou .Ou .
o = z/ (&r —Hay) (rcos@,rsiné,t)rdf
0

= pe Zf)y ,y,0) 7 —.

3 Lewy, Hans (1904-1988)
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Now set s = r2 and use Lu = f to get

OV LV _ [ (0w ouy e
0s  2r Or ox Oy RS

¥
. [ Ou dz
—i [ Szt [ 105
¥ ¥
oV
=ig +imf(t).

Now we set F'(t) = fOT f(r)dr, and U(t,s) = V(t,s) + 7F(t), Then

ou  oU

i 0
ot +Zas ’

which is the Cauchy-Riemann equation. Hence U is a holomorphic function of w =
t +is for 0 < s < R? and |[t| < R, in addition, U is continuous up to the line

s =0, and V = 0 when s = 0, therefore U(¢,0) = wF(t) is real-valued. We can
apply the Schwarz’ reflection principle (see Exercise 47b): the definition U(t, —s) =

U(t,s) gives a holomorphic continuation of U to a full neighborhood of the origin.
In particular, U(¢,0) = 7F(t) is analytic in ¢, hence so is f = F”. O

1.3 Domains of holomorphy

In this section we describe domains for which the Hartogs extension phenomenon
does not occur; these are the so-called domains of holomorphy. First we study holo-
morphically convex domains, a concept which was of importance for the Runge type
theorems and which serves as an interesting concept where the difference between one
and several complex variables becomes apparent. It turns out that another general-
ization of convexity, so-called pseudoconvexity, is the appropriate geometric concept
to characterize domains of holomorphy in C™, n > 2. It is beyond the level of this
book to give all the details in this context and we refer to textbooks on several
complex variables for a thorough treatment ([1; 6; 3]).

Definition 1.16. Let Q be a domain in C™. A holomorphic function f on €2 is com-
pletely singular at p € b2 if for every connected neighborhood U of p there is no
h € H(U) which agrees with f on some connected component of U N Q.
) is called a weak domain of holomorphy if for every p € b} there is f € H(Q) which
is completely singular at p, and €2 is called a domain of holomorphy if there exists
f € H(2) which is completely singular at every boundary point p € bS2.
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We already know that every domain in C is a domain of holomorphy, see Theorem
??7. For n > 2 we already know examples of domains which fail to be domains of
holomorphy.

The concept of weak domain of holomorphy is convenient at the introductory level,
it is, in fact, equivalent to the concept of domain of holomorphy, but this result is

not elementary.
Lemma 1.17. Every convexr domain Q in C™ is a weak domain of holomorphy.

Proof. Let p € b). The convexity implies that we can find an R-linear function
1 : C" — R such that the hyperplane {z € C" : I(z) = l(p)} separates 2 and p, i.e.
we may assume that [(z) < [(p) for z € Q. We can write

(2) =Y ajz+ Y Bi%,
j=1 j=1

where a;,8; € C. Since [ is real-valued, we have 3; = @;, for j = 1,...,n. Set
h(z) =2 Z?Zl a;z;. Then h is complex-linear and [(z) = Rh(z). Now the function
1

&)= e hG)

is holomorphic on 2 and completely singular at p. O

In the following we consider the concept of holomorphically convex domains in C™ in
order to get further examples of domains of holomorphy. This concept was already
introduced in Chapter 4 for a general treatment of the Runge approximation theorem
in one complex variable.

Definition 1.18. A domain Q in C" is called holomorphically convex , if KQ is
relatively compact in Q for every compact set K C , where Ko = {z € Q:
|f(2)] <|flxfor all f € H(2)}. We call K holomorphically convex ( H(2)-convex),
if K =Kq.

Remark. A domain in C is always holomorphically convex (see ?? (e)). The situation
is different in higher dimensions. Let Q@ = {z € C" : 1/2 < |z| < 2} and K = {z €
C™ : |z| = 1}. Then Kq = K, if n = 1, but if n > 1, Corollary 1.11 implies that
every f € () extends to a holomorphic function f on B(0,2). It follows from the
maximum principle applied to f that for 1/2 < |z| < 1, one has

If() = 1) < Iflx = Ik,
hence {z € Q: |z| < 1} C Kq, and Kq is not relatively compact in .

Lemma 1.19. Let Q be a holomorphically convexr domain in C™. Then there is a
compact exhaustion (K;); of Q by holomorphically convex sets K;.

Proof. Since Q is holomorphically convex, one can use ?? (f). O
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This can be used to construct unbounded holomorphic functions.

Lemma 1.20. Let (K;); be a compact exhaustion of Q by holomorphically convex
sets Kj. trose that pj € Kj 11\ Kj for j =1,2,.... Then there exists f € H(Q) such
that lim;_, o | f(p;)| = 0.

Proof. The desired function f is constructed as the limit of a series ) fy,,, where
fm € H(R) is chosen such that

|fnli,, <27™ m=1,2,..., (1.9)
and
j—1
i) > +1+ > @)l =23, (1.10)
m=1

We construct the sequence (fp,)m inductively: set f1 = 0, and if k > 2, trose that
fi,-++, fr—1 have already been found such that (1.9) and (1.10) hold. By 77 (g),
since py ¢ (Kj) q, there exists f € H(Q) with |fx|x, < 27* and such that (1.10)
holds.

Now (1.9) implies that f = Z;i1 fj converges uniformly on all compact subsets of
Q. Hence f € H(Q). Furthermore (1.10) implies

@2 150D = D 1 fm@) > 5 +1= Y | fm(p)l, 5 > 2.

mj m>j

Then (1.9) implies that > . [fm(p;)| < >_,,~,;27™ < 1, and hence that |f(p;)[ >
j. 0

It is now easy to show that a domain {2 is holomorphically convex if and only if
for every sequence (p;); in © without limit point in © there is f € H(Q) with
sup; |f(p;)| = oo. In addition, one can now use Lemma 1.17 to show that every
convex domain in C" is holomorphically convex (see Exercises).

Now we introduce a class of domains which generalize the polydiscs.

Definition 1.21. An open set 2 CC C" is called an analytic polyhedron if there are
a neighborhood U of Q and finitely many functions fi,..., fi € H(U), such that

Q={zeU:|fi(z)|<1,...,|fx(z)] <1}
Example 1.22. Let 0 < ¢ < 1. Then
Q= {(21,22) €C?: |z1]| < 1,]22] < 1,|2122| < ¢}

is an analytic polyhedron which is not a convex domain, see Fig. 1.3.

Theorem 1.23. Every analytic polyhedron is holomorphically convez.



16 —— 1 Several complex variables

|22]

q 1 |Zl|

Fig. 1.3

Proof. Let Q be like in 1.21. If K C Q is compact, then r; := |f;|x < 1, for
j=1,...,k. It follows that

Ko C{zeU:|fi(z) <ri o fr(z)] <l
and the set on the right hand side is relatively compact in €. O

It is relatively easy to show that holomorphically convex domains are domains of
holomorphy. For this aim we need some preparations which are similar to the proof
of Theorem ?7.

Lemma 1.24. Let Q) be a domain in C™. Let U be a connected neighborhood of p € b2
and let Q1 C UNK be a nonempty connected component of UNQ. Then b1 N (UN
bQ) # 0.

Proof. Since 21 is a component of the open set U N (2, it follows that €2, is open in
C™ and closed in U N Q. Since U is connected and 1 # U, one has that Q1 cannot
be closed in U. Hence there exists g € (621 NU)\ Q1. Since Q1 C Q and Qy is closed
in U NQ, we have g € b2, and so ¢ € by N (U N Q). O

Lemma 1.25. Let (K,n)m be a compact exhaustion of the domain Q in C™. Then
there are a subsequence (m;) of N and a sequence (pj); of points in Q such that
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(a) pj € Koy \ Ky, for j=1,2,..., and
(b) for every p € b and every connected neighborhood U of p, each component
of UNQ contains infinitely many points from (p;);.

Proof. Let (ag)r be an enumeration of the points of £ with rational coordinates.
Let r = dist(ag, b2). Then the balls By, = B(ag,7x) are contained in 2. Let (Q;);
be a sequence of such balls By which contains each By infinitely many times; for
example the sequence By, By, Ba, By, B, B3, By, .... Now take K,,,;, = K and use
induction: assume that { > 1 and py,...,p;—1 and K,,,, ..., Ky, have been chosen
so that (a) holds for j = 1,...,l — 1. Since @; is not contained in any compact
subset of 2, we may choose p; € Q; \ Ky, and myyy such that p; € Ky, ;. Then (a)
holds for all j =1,2,.... We claim that the points (p;); statisfy (b): given Q; as in
(b) there is a point ¢ € b N (U N bSY), see Lemma 1.24. Hence there is a, € O
with rational coordinates sufficiently close to ¢, so that B, C ;. Since B, occurs
infinitely many times in the sequence (Q;);, and p; € Q; for j =1,2,..., the ball
B, contains infinitely many points of the sequence (p;);, and we are done. O

Theorem 1.26. FEvery holomorphically convex domain €2 in C™ is a domain of holo-
morphy.

Proof. We can choose a compact exhaustion (K;); of  with by holomorphically
convex sets K. We apply Lemma 1.20 to the sequences (p;j); and (Kp;); given
by Lemma 1.25 to get f € H(Q) with limj_,o |f(pj)| = co. We claim that f is
completely singular at every point p € bQ2. If 0 is a component of U N2, where U is
a connected neighborhood of p, trose there exists h € H(U) with flq, = h|q,. Now
we replace U by U’ CC U and we replace Qy by a component ) of U’ N Q which
meets (21, then we may assume that |h[o, < |h|ys < co. Hence f would have to be
bounded on ), and this contradicts Lemma 1.25 (b) and lim; o | f(p;)] = c0. O

Using 1.22 we have an example of a domain of holomorphy which is not convex. We
now introduce the suitable generalization of convexity to characterize domains of
holomorphy.

Definition 1.27. A C? real valued function ¢ on Q is plurisubharmonic, if

Zttk>0

i00p(t, ) (p) : Z

zjﬁzk

for all t = (t1,...,tn) € C™ and all z € Q.
@ is strictly plurisubharmonic if

i00p(t,t)(p) : Z 82' 62 z)tity >0,
k=17

forall t € C™, t # 0.
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Remark 1.28. (a) A C2 real valued function ¢ on (2 is plurisubharmonic, if and only
if for every a € Q and w € C" the function u — ¢(a + uw) is subharmonic on
{ueC:a+uw e N}, see Exercises.

For technical reasons it is convenient to include upper semicontinuous functions and
to admit the value —oo in the definition of plurisubharmonic functions, where one
has to take the general definition of subharmonicity 77?.

(b) Suppose r € C?(U) is a defining function for a domain Q C C", where U is a
neighborhood of a point p € b{2. One can write the Taylor expansion of r at p in
complex form:

r(p +t) = 7(p) + 2R(Orp(t) + Qp(r;t)) +i00r(t,t)(p) + o(|t]?), (1.11)

where t = (t1,...,t,) € C*,

" or
arp(t) =) ——(p)t;, (1.12)
° Zj
j=1
G I g (113
pT, 72']@ 15‘Zjazkp]k. ’
J7 =

Definition 1.29. A bounded domain €2 in C" is called strictly pseudoconvex if there
are a neighborhood U of b§) and a strictly plurisubharmonic function » € C2(U) such
that

QNU ={z€U:r(z) <0}

The simplest example of a strictly pseudoconvex domain is a ball B(p, R), the func-
tion r(z) = |z — p|? — R? is strictly plurisubharmonic , and B(p, R) = {z € C" :

r(z) < 0}.

In the following we shall show that a strictly pseudoconvex domain is (at least)
locally a domain of holomorphy.

Lemma 1.30. Let U be open in C" and trose r € C2(U) is strictly plurisubharmonic
onU. If W CC U, there are positive constants ¢ > 0 and € > 0, such that the function
F()(¢, 2) defined on U x C™ by

FOI(C,2) = Za— G- 2) 5; c%k G—2) (G —z)  (1.14)

satisfies the estimate
RF((,2) 2 7(Q) = r(2) +clz = ¢ (1.15)

for¢ e W and |z — (| <e.
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Proof. From (1.11) with p = ¢ € U and t = z — (, we obtain the Taylor expansion
of r(z) at ¢ :

r(z) = () — 2RFU((, 2) +i00r(z — ¢,z — O)(C) + o(|z — ¢|?). (1.16)

Since r is strictly plurisubharmonic, we have iddr(t,t)(p) > k[t|?> where k =
min{iddr(t,t)(p) : |[t| = 1} is positive. So, if 0 < ¢ < &, the continuity of
the second derivatives of r implies i90r(t,t)(z) > c|t|?, for t € C™ and all z
in some neighborhood of p. As W C U is compact there is ¢ > 0 such that
i00r(z — ¢,z — ¢)(¢) > 2c|z — (|? for ¢ € W and z € C". Now we use Taylor’s
theorem and the uniform continuity on Wof the derivatives of r up to order 2 to
show that there exists € > 0 such that the error term o(|z — ¢|?) in (1.16) can be
estimated in the form o(|z — ¢|?) < ¢|z — ¢|? uniformly for ¢ € W and if |z — (| < e.

The desired estimates (1.15) now follows from (1.16). O

Theorem 1.31. Let Q be a strictly pseudoconvexr domain. Then every point p € b§)
has a neighborhood V' such that V N Q is a (weak) domain of holomorphy.

Proof. Let r € C?>(U) be strictly plurisubharmonic in a neighborhood U of b§) so
that QNU = {z € U : r(z) < 0}. Choose ¢, € as in Lemma 1.30 such that (1.15) holds
for ¢ € bQ. For ¢ € bQ we have 7(¢) = 0, and (1.15) implies that RE() (¢, z) > 0 for
z € Q with |z — ¢|] < € (choose € so small that B({,e) C U for ¢ € bQ2). If p € bQ2 is
fixed, set V = B(p, ¢/2). We claim that V N is a weak domain of holomorphy: for
¢ € VN the function

1
fe(z) = Gl

is holomorphic on V N Q and completely singular at (; for any of the remaining
boundary points ¢ € bV N Q of V N Q the convexity of V implies that there is
g € H(V) which is completely singular at ¢, see Lemma 1.17. O

Remark 1.32. We mention different types of pseudoconvexity:
Let © be a bounded domain in C™ with n > 2, and let = be a C? defining function
for €. Q is called Levi pseudoconvex at p € b€, if the Levi form

n

i00r(t,t)(p) :=
for all

teTyO(bQ) = {t = (tr,....tn) €C™ = Y _t;(r/dz)(p) = 0},
j=1

where Tp1 ’O(bQ) is the space of type (1,0) vector fields which are tangent to the
boundary at the point p.
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The domain €2 is said to be strictly Levi pseudoconvex at p, if the Levi form is
strictly positive for all such t # 0. Q is called a Levi pseudoconvex domain if 2 is
Levi pseudoconvex at every boundary point of 2.

A bounded domain Q in C” is pseudoconvex if Q has a C2 strictly plurisubharmonic
exhaustion function ¢ : Q@ — R, i.e. the sets {z € Q : p(z) < ¢} are relatively
compact in §, for every ¢ € R. (Here there is no assumption on the boundary of €2.)
It turns out that for bounded domains with C? boundary the concepts of (strictly)
Levi pseudoconvex and (strictly) pseudoconvex domains coincide. Furthermore, the
following assertion holds:

Let Q be a domain in C™. The following are equivalent:

(1) © is pseudoconvex.

(2) The equation Ju = f always has a solution u € C® )(Q) for any form f €

_ (p.q
C$7q+1)(9) with 0f =0, ¢=0,1,...,n— 1.

(3) Q2 is a domain of holomorphy.

The proof is beyond the scope of this book. The most difficult part is the solution of
the Levi problem, to prove that a pseudoconvex domain is a domain of holomorphy,
see [1; 6; 3].

1.4 Exercises

111) Show that the Cayley transform ®(z1,...,2,) = (wi,...,wy), where w; =
zj/(1+ 2zy) for 1 < j <n—1and w, =i(1 — 2,)/(1 + 2p) is a biholomorphic map
from B — U.

112) Let n > 1. Show that the boundary
WU = {(2/,t+i}): 2/ e C" Lt e R}

of the Siegel upper half-space can be identified with C*~! x R. Show that the mul-
tiplication

(2, 0) - (¢, 1) = (&' + st + 74+ 28(, ()
turns bU into a group which is non-abelian. This group is called the Heisenberg *
group.

113) Let f be holomorphic in a neighborhood of the closed polydisc P(0,7) C C™,
where n > 1, with the possible exception of the origin (0,...,0) € C™. Suppose that

4 Heisenberg, Werner (1901-1976)
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not all z;, where 1 < j <n — 1, are zero. Prove that

L f(zla“-zn—laCn)
271 Cn — 2zn
|Cnl=rn

f(z1, .o y2n) = dCp,

and show that the integral on the right hand side depends holomorphically on
Z1y...,2n for all z = (21,...,2,) € P(0,r). Therefore holomorphic functions of
several variables do not have isolated zeros.

114) Let Q be a bounded domain in C*, n > 1, with a defining function p € C? which
vanishes precisely on bQ and dp # 0 on bQ. Show that the condition du A dp = 0 on
b2, can also be stated as

" du
thg =0on bQ,
Jj=1

for all (¢1,...,t,) € C™ with Z?:l tjf%’; = 0 on b§2. We say that u is a CR-function.
Show that this definition does not depend on the choice of the defining function p.

115) Use Lemma 1.17 and Lemma 1.20 in order to show that every convex domain
in C™ is holomorphically convex.

116) Let 0 < g < 1. Define
Q= {(21,22) € C?: |21| < 1, 22| < 1,|2122] < q}.
Show that €2 is a domain of holomorphy, which is not convex.

117) Let © be a domain in C". Show that a C? real valued function ¢ on € is
plurisubharmonic, if and only if for every a € Q and w € C" the function u —
v(a + uw) is subharmonic on {u € C : a + uw € Q}.

118) Let 2 be a domain in C™ and let f € H(£2). Show that |f|*, a > 0, and log | f|
are plurisubharmonic on Q.

119) Let Q C C™ and G C C™ be domains and let F : G — § be a holomorphic
map. trose that u € C2(Q) is plurisubharmonic on . Show that u o F' is plurisub-

harmonic on G.

1.5 Notes

In Section 1.2 we have followed the expositions of L. Hsrmander [1] and R.M. Range
[6]. For a thorough treatment of Lewy’s theorem 1.15 including interesting conse-
quences for Hardy spaces the reader should consult E. Stein [7]. Pseudoconvexity is
also crucial for the inhomogeneous Cauchy Riemann equations, as well as plurisub-
harmonic functions, see Chapter 10 and 11. The Levi problem to construct a holo-
morphic function on a pseudoconvex domain which is completely singular at the



22 —— 1 Several complex variables

boundary is solved by means of integral representations in [6]. Another proof uses
the powerful method of global solutions and estimates for the inhomogeneous Cauchy
Riemann equations [1], this method will be discussed and exploited in more details
in the following chapters.



2 Nuclear Fréchet spaces of holomorphic
functions

In this chapter we investigate the spaces H(2) of all holomorphic functions on a
domain Q endowed with the topology of uniform convergence on all compact subsets
of . This a complete metric space, a Fréchet space. We start with some general facts
about Frechet spaces such as fundamental systems of seminorms and the Montel
property. We indicate that H(£2) can be seen as a so-called projective limit of Hilbert
spaces, we introduce the concept of a nuclear Fréchet space and prove that H(Dg(0))
is a nuclear Fréchet space. In addition, the dual space of H(Dg(0)) is determined, it
can be identified as a space of holomorphic functions on the complement of Dg(0) -
Kothe duality (Section 2.2). The spaces H(2) of holomorphic functions together with
their dual spaces are described as so-called Kéthe sequence spaces, which are spaces
of the sequences of the Taylor coefficients of the holomorphic functions together
with certain weights. The duality is used to prove a Runge type approximation
theorem. A similar approach was already the main idea for the proof of Theorem
??. Furthermore, it is pointed out that the spaces H () endowed with the topology
of uniform convergence on all compact subsets of {2 are not normable (see Exercises
Section 2.3).

2.1 General properties of Fréchet spaces

Assuming basic knowledge of general topology we collect important facts about
topological vector spaces.

A topological vector space X is a vector space endowed with a topology such that
the addition + : X x X — X and scalar multiplication . : C x X — X are

continuous.

X is a normed vector space if there is a norm ||.|| on X; each open set of X can be
written as a union of open balls {z € X : ||z — || < r}.

X is a metric topological vector space if there is a metric d : X x X :— R4 on X,
each open set of X can be written as a union of open balls {z € X : d(z,z¢) < r}; we
will also suppose that the metric is translation invariant, i.e. d(z+u, y+u) = d(x,y),
for all z,y,z € X.

A subset M of a vector space X is called absolutely convex , if Az + py € M for
each z,y € M and A, u € C with [A| + |u| < 1.

A locally convex vector space X is a topological vector space for which each point
has neighborhood basis consisting of absolutely convex sets.
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Let X be a locally convex vector space and let U be an absolutely convex 0-
neighborhood in X. Then ||.||¢y : ¢ — inf{¢t > 0 : x € tU} is a continuous seminorm
on X; we call ||.||y the Minkowski functional of U.

One can explain the topology of a locally convex vector space X in a different way:
a family U of 0-neighborhoods is a fundamental system of 0-neighborhoods, if for
each 0-neighborhood U there exists V' € U and there exists € > 0 such that eV C U.
A family (pq)aeca of seminorms is called a fundamental system of seminorms, if the
sets Uy = {x € X : po(x) < 1} constitute a fundamental system of 0-neighborhoods
of X. We will write (X, (pa)aca)) to refer to that.

Let X and Y be locally convex vector spaces with fundamental systems (pq)ac4 and
(gg)gep of seminorms. A linear mapping T': X — Y is continuous if and only if
for each 8 € B there exist & € A and a constant C' > 0 such that ¢g(Tz) < Cpa(x),
for all z € X.

A linear functional z’ on X is continuous if and only if there exist a € A and a
constant C' > 0 such that |z'(z)| < Cpq(x), for all z € X.

We indicate that the consequences of the Hahn-Banach Theorem 7?7 and 7?7 are also
true for locally convex vector spaces, one has to replace the norm in the proof of
Theorem ?? by one of the seminorms defining the topology of a locally convex vector
space; a subspace Y of a locally convex vector space X is dense in X if and only if
each continuous linear functional on X, which vanishes on Y, also vanishes on the
whole of X.

The appropriate concept of a bounded subset in X reads as follows: a subset B of
a locally convex vector space is said to be bounded if to every 0-neighborhood U in
X corresponds a number s > 0 such that B C tU for every t > s. It is easily seen
that B is bounded if and only if sup,c g pa(x) < oo for all @ € A, where (pa)aca is

a fundamental system of seminorms for the topology of X, compare with Definition
77

Now let X’ be the space of all continuous linear functionals on a locally convex vector
space (X, (pa)aca)).- We endow the dual space X’ with the topology of uniform
convergence on all bounded subsets of X; which can be expressed in the following
way: (X', (pB)BeB), where pp(z') = sup,cp |2'(z)| and B denotes the family of all
bounded subsets of X. It is called the strong topology on X'.

2.2 The space H(Dgr(0)) and its dual space

Our main example is the the space H(Q2) of all holomorphic functions on a domain
Q) C C™ endowed with the topology of uniform convergence on all compact subsets
of Q. Let (K)men be a compact exhaustion of Q. The topology of H(2) can be
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described by the increasing system of norms |f|m, :=sup,cx, |f(2)], for f € H(Q).
The system of norms (|.|m)men is a fundamental system of (semi)norms. Let f, g €

H(Q) and define

oo

_ 1 lf — 3glm
d(f.9) —mzz:l2—m T (2.1)

It is easily seen that d(.,.) is a metric which generates the original topology of
uniform convergence on all compact subsets of Q.

By Weierstral’ Theorem, 7?7 H () is a complete metric vector space. These spaces
are called Fréchet spaces. Montel’s Theorem 77 indicates that all closed bounded
subsets of H(f2) are compact subsets of H(€2).

The topology of H () does not stem from a single norm, but from a countable
system of norms, see Exercises Section 2.3.

In sake of simplicity we describe the following properties of H () for 1-dimensional
discs Dr(0), most of the results can be generalized to arbitrary domains in C" using
standard functional analysis methods.

Take an increasing sequence ry, ,/* R and define |f|n, = sup|,<,, [f(2)] for f €
H(Dgr(0)). Using (??) we find out that for each m € N there exists £ € N and a
constant C, depending only on m and ¢, such that

Flm < O / )2 A=), (2.2)
D, (0)
for each f € H(Dgr(0)); the inequality
1l = ( / FE )2 < O [ flm (2.3)
D,,, (0)

is clear. Hence, using the Hilbert norms ||.||;,, the space (H(Dgr(0)), (||-llm)men)
carries the original topology of uniform convergence on all compact subsets of Dg(0).

Now we consider the Bergman spaces A2(D;. (0)) endowed with the norm |||/, see
Section ??. If r,,, < rp < R, we have the inclusions

H(Dr(0)) € A*(Dr,(0)) € A*(Dr,,(0));
and we can show that the natural embedding
tm + A2(Dy, (0)) = A*(Dr.,, (0))

is a Hilbert-Schmidt operator.

Fix m € N and set
¢,y [n+1 2"
¢n(z) T T 7’?+1’
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for n = 0,1,2,.... Then (¢%)%, constitutes an orthonormal basis in A2(D,,(0)),
see Section ??7. By Theorem 7?7 we have to show that

(o]
S lleem (@12, < oo. (2.4)
n=0

An easy computation shows that

lee.m (D)1 = (rm /re)?"*2,

and as ry > ryy, we get (2.4).
We just showed that for each m € N there exists ¢ € N such that the natural
embedding

tem : A%(Dy, (0)) = A*(Dy,, (0))
is a Hilbert-Schmidt operator, we say that H(Dg(0)) is a nuclear Fréchet space.

Using the Taylor series expansion and its uniqueness property it is shown that the
spaces H(Dg(0)) are topologically isomorphic to certain sequence spaces (Kothe!
sequence spaces):

Theorem 2.1. Let r,,, /' R be an increasing sequence of positive numbers. Define
Ag = {(gn)n 0- pm((én n—= 0 Z |fn|7“ < o0o,VYm € N}
n=0

Then the spaces (H(Dr(0)), (|.lm)men) and (AR, (Pm)men) are topologically iso-
morphic, where the isomorphism T : Ap — H(DRr(0)) is given by

T((én)nzo) an , z € Dg(0),

and
£ (0)

n!

T'(f) = ( ):0 » [ € H(Dg(0)).

Proof. For (£,)52, € Ar we have

\mmawzm|2@ﬂ<2mmzm&mm

<rm n=0 n=0
On the other side, we get from Cauchy’s estimates 7?7 that

’f(")(o)’ Iflz
n! -

e

1 Kothe, Gottiried (1905-1989)
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hence, if ry > r,,, We get

F(0)

hE

pm(T_l(f))

’ m

I IA
1M
i =, =
Nﬁﬁ Sﬁ &:ﬁ;
~— 33

=~

o~

O

In a similar way, we can describe the dual space of H(Dg(0)). Recall that L is
a continuous linear functional on (H(Dg(0)), (|.|m)men) if and only if there exist
m € N and a constant C' > 0 such that |L(f)| < C'|f|n, for each f € H(Dg(0)).

Theorem 2.2. Let r,,, /* R be an increasing sequence of positive numbers. Define

|77n|

m

={(m)nzo : Im € N with g ((1n)nZ0) := Sup < < 0o}

Then the dual space H'(Dg(0)) is isomorphic to the sequence space (Ay, (¢m)men)-

Proof. We indicate that the seminorms (¢m)men are decreasing in m, and that
(A%, (gm)men) is not a metric space, but a dual metric space.

Let L € H'(Dg(0)). Then there exist m € N and a constant C' > 0 such that
|L(f)] < C|f|m for each f € H(Dgr(0)), in particular applying L to the monomials
z — 2™ we obtain a sequence 7, := L(z — 2™) such that

Inn| < Crlhyn=0,1,2,....

This implies that (7,)0%, € A’;.
If, for the other direction, (1,)2%, € A’ is given with ¢, ((7,)5%() = sup,, I:ZZ' < 00,

we define a linear functional on H(Dg(0)) by

f(n)
Z

for an arbitrary function f(z) = > o7 f( )( ) 2 in H(Dgr(0)). Again, from Cauchy’s

n=0 n!

estimates 77, we obtain

() < Zm 1
m+1
= ‘f|m+1z m|77n
n=0 m m+1
< ()20 [f s Z

nOerl



28 —— 2 Nuclear Fréchet spaces of holomorphic functions

Hence L € H'(Dg(0)). O

Furthermore, we associate to each sequence (1,)72, € A’; a function F' being holo-
morphic in a neighborhood of oo, i.e. in a set {w € C : |w| > ¢}, and with the
property F(oo) = lim,_,0 F(1/2z) = 0. This is done in the following way: suppose

that sup,, I;Y”‘ < 00, then £ := limsup,,_, . |7|"/™ < 7m < R. Hence the function
)
n
F(w) = RS
n=0

is holomorphic in {w : |w| > ¢} and satisfies F/(co) = 0. We know from the last proof
that the expression

o0

(n)
L= m O renwao)

n=0

represents an arbitrary continuous linear functional on H(Dgr(0)). Let £ < p < R
and 7,(t) = pe'*, t € [0,27]. Then

1 "n
o [ P fwae = o / an+1f

Yo
_ (w)
o Z " omi w"+1 dw

Yp
- Z:Onn n'()
= L(f).

Given L € H'(Dg(0)), we obtain the corresponding holomorphic function F, repre-
senting L as before, by Cauchy’s integral formula

L (w - ) = QL/ F) gy = B2, (2.5)

zZ—w T Z—w
Yo

1 F) (2
L (w S w)w) S O] (26)

Let Ho(R) be the space of all functions holomorphic in an open neighborhood of
{z € C : |z| > R}, such that F(co) = 0. We have just shown that the dual space
H'(Dgr(0)) can be identified with Hy(R), a space of holomorphic functions in a

and

where |z]| > p.

neighborhood of the complement of Dg(0), which is known as the Kothe duality.
This will now be used, together with the Hahn-Banach Theorem, to give a simple
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proof of a Runge type approximation theorem; compare with the proof of Theorem
7?7 where a similar method was used.

For this purpose we have to explain the concept of a subset W C C with multiplicity
m: W — {1,2,3,...} U{oco}. By a limit point of (WW,m) we mean an ordinary
limit point of W or a point w € W with m(w) = co. Given a set (W, m) with
multiplicity, let R(WW) denote the following collection of functions: if w € W, w # oo
and m(w) < oo, then z — 1/(z — w) belongs to R(W); if w # oo and m(w) = oo,
then the functions z +— 1/(z — w)*, for k = 1,2,... belong to R(W); if co € W and
m(o0) = oo, then the functions z — 2*, for k = 0,1,2,... belong to R(W).

Theorem 2.3. If W C C\ Dg(0) is a set with multiplicity which has a limit point
in C\ Dg(0), then the linear span of R(W) is dense in H(Dg(0)).

Proof. To show that the linear span of R(W) is dense in H(Dgr(0)), we take a con-
tinuous linear functional L € H'(Dg(0)) which vanishes on the linear span of R(W).
Using Corollary ?7?, we will be finish if we can show that L vanishes on H(Dg(0)).
The assumptions on R(W) imply that the holomorphic function F' corresponding to
L by (2.5) vanishes on a set with limit point or, using (2.6), has the property that
F®)(¢) =0, for k=0,1,2,... and some ¢ € C\ Dg(0). In both cases, the Identity
Theorems ?? and ?? imply that F = 0, and hence L =0 on H(Dg(0)). O

2.3 Exercises

140) Let (K;,)men be a compact exhaustion of the domain Q@ C C™ and let |f|,, :=
f(2)|, for f € H(€). Show that

SUPzek,,

d(f,g)*n;%m

defines a translation invariant metric on H(€2).

141) Show that the metric d(.,.) generates the original topology of uniform conver-
gence on all compact subsets of €).

142) Let X be a locally convex vector space and let U be an absolutely convex 0-
neighborhood in X. Show that the Minkowski functional ||z||y = inf{t > 0 : = € tU}
is a continuous seminorm on X.

143) Let X be a locally convex vector space. A collection A of neighborhoods of a
point x € X is called a local base at z if every neighborhood of x contains a member
of A. A set B C X is called balanced if ¢B C B for every ¢ € C with |¢| < 1. Show
that X has a local base consisting of balanced convex sets.
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144) Let X be a locally convex vector space and let U be a 0-neighborhhod in X.
Let (rj); a strictly increasing sequence of positive numbers with r; — oo as j — oo.

Show that -
X = U TjU.
j=1

145) Let X be a locally convex vector space. Show that every compact subset K C X
is bounded.

Hint: Choose a 0-neighborhood U and a balanced 0-neighborhood W such that
W CUand K C |J,_, nW.

146) Let (s;); be a strictly decreasing sequence of positive numbers such that
lim; o, s; = 0 and V be a bounded subset of the locally convex vector space X.
Show that the collection {s;V : j € N} is a local base for X.

147) Show that each finite dimensional subspace of a locally convex subspace is
closed.

148) X is locally compact if 0 has a neighborhood whose closure is compact. Show
that each locally compact locally convex vector space has finite dimension.

Hint: take a O-neighborhood V' whose closure is compact, since V is also bounded,
the sets 27"V, n € N form a local base for X. The compactness of V shows that
there exist z1,..., 2, € X such that

— 1 1
VcC (x1+§V)U~--U(9:m+§V).
Let Y be the vector space spanned by x1,...,Z,. Show that Y = X.

149) Let Q C C™ be a domain. Show that H(Q2) endowed with the topology of
uniform convergence on all compact subsets of €2 is not normable, i.e. has no bounded
0-neighborhood.

Hint: if U is a bounded 0-neighborhood, Montel’s Theorem ?7? implies that H(2) is
locally compact, now use Exercise 148.

150) Show that the system of seminorms

pr(f):= sup |agx|r*, r <R
0<k<oc0

where f € H(Dg(0)) has Taylor series expansion f(z) = Y o, arz”, defines the
original topology of uniform convergence on all compact subsets of Dg(0).

151) Show that for each 0 < r < R there exists 0 < p < R and a constant C,
depending on r, such that

> arlrt < C sup |f(2)],

k=0 lz[<p

for each f € H(Dg(0)) with Taylor series expansion f(z) = > pe  arz”.
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2.4 Notes

For a thorough discussion of locally convex vector spaces related to real and complex
analysis, in particular of nuclear Fréchet spaces, the reader should consult [5] or [2].
The Ko6the duality together with its applications is presented in [2]. Additional details
and applications to different problems in complex analysis are given in [4].
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