
Failure Modes of Tearing and a Novel Robust Approach

Ali Baharev Arnold Neumaier Hermann Schichl

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
ali.baharev@gmail.com

Abstract
State-of-the-art Modelica implementations may fail in var-
ious ways when tearing is turned on: Completely incor-
rect results are returned without a warning, or the software
fails with an obscure error message, or it hangs for several
minutes although the problem is solvable in milliseconds
without tearing. We give three detailed examples and an
in-depth discussion why such failures are inherent in tear-
ing and cannot be fixed within the traditional approach.

Without compromising the advantages of tearing, these
issues are resolved for the first time with staircase sam-
pling. This is a non-tearing method capable of robustly
finding all well-separated solutions of sparse systems of
nonlinear equations without any initial guesses. Its ro-
bustness is demonstrated on the steady-state simulation of
a particularly challenging distillation column. This col-
umn has three solutions, one of which is missed by most
methods, including problem-specific tearing methods. All
three solutions are found with staircase sampling.
Keywords: decomposition methods, diakoptics, large-
scale systems of equations, numerical instability, sparse
matrices, staircase sampling

1 Introduction
Definitions. Traditional tearing, cf. (Elmqvist, 1978;
Elmqvist and Otter, 1994; Mattsson et al., 1999; Carpan-
zano, 2000; Cellier and Kofman, 2006; Täuber et al.,
2014), is the representation of a sparse system of nonlinear
equations

f (x) = 0, where f : Rn 7→ Rn, (1)

in a permuted form where most of the variables can be
computed sequentially once a small auxiliary system has
been solved. More specifically, given permutation matri-
ces P and Q such that after the transformation[

g
h

]
= P f ,

[
y
z

]
= Qx, (2)

gi(y,z) = 0 can be rewritten in the equivalent explicit form

yi = g̃i(y1:i−1,z) (3)

using appropriate symbolic transformations. Here the
shorthand p:q is used for the index set p, p+1, . . . ,q where

p≤ q. Equation (3) implies that the sparsity pattern of the
Jacobian of P f is

J =

[
A B
C D

]
, where A is lower triangular, (4)

J is therefore bordered lower triangular. We will use the
abbreviation BLTF which stands for bordered lower trian-
gular form. We refer to a particular choice of P,Q,g,h,y,
and z satisfying equations (3) and (4) as an ordering.
Given an ordering, the system of equations f (x) = 0 can
be written as

g(y,z) = 0
h(y,z) = 0. (5)

The requirement (3) that gi(y,z) = 0 can be made explicit
in yi essentially means that we can obtain y from z by a
nonlinear triangular solve. Substituting the result y = ḡ(z)
into h yields h(ḡ(z),z) = 0 or

r(z) = 0. (6)

That is, the original nonlinear system (1) is reduced to the
(usually much) smaller system r(z) = 0. A commonly
used objective is to find an ordering that minimizes the
border width d := dimz of J. For a given z, we call the
value of r(z) the residual vector or simply the residual.
Advanced tearing methods. There are other, more so-
phisticated variants of tearing, summarized in Table 1.
These try to reduce the size of the final system (6) by re-
laxing the requirements of (3) (by allowing implicit equa-
tions for example) and/or allowing A in (4) to have a form
other than lower triangular. These enhancements share
that the computation of y for a given z only involves fast
and numerically stable algorithms such as solving implicit
univariate equations or small systems of equations. An-
other recent approach tries to balance between minimiz-
ing the border width and preserving the sparsity during the
elimination (Magnusson and Åkesson, 2017). The reader
is referred to (Baharev et al., 2017a) for an in-depth dis-
cussion of the variations on tearing. To keep the examples
short and simple, we only discuss the failure modes of tra-
ditional tearing in the present paper.

Importance: initializing and solving DAE systems.
The problem of solving nonlinear systems of equations
arises in the daily engineering practice, e.g., when consis-
tent initial values for differential algebraic equation (DAE)
systems are sought (Pantelides, 1988; Unger et al., 1995),

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

353



Table 1. The sparsity pattern of the Jacobian in the different variants of tearing, classified by the largest subproblem size and the
level of subproblem nesting. The present paper discusses the failure modes of traditional tearing only.

Largest Maximum level of subproblem nesting
subproblem 1 `

univariate equations bordered lower triangular —only (traditional tearing)

k× k systems bordered block lower triangular nested bordered block lower triangular
of equations (tearing with diagonal blocks) (hierarchical tearing)

or when solving steady-state models of technical systems.
A steady-state solution can be used as a consistent initial
set of the DAE system (Kröner et al., 1997). Tearing usu-
ally also helps to speed up the solution process of DAE
systems thanks to the reduced problem size (Elmqvist,
1978; Elmqvist and Otter, 1994; Mattsson et al., 1999;
Carpanzano, 2000; Cellier and Kofman, 2006).

Even though mature equation-based component-
oriented modeling environments are available, e.g.,
Modelica (Mattsson et al., 1998; Tiller, 2001; Fritzson,
2004) for multi-domain modeling of heterogeneous com-
plex technical systems, and gPROMS, ASCEND (Piela
et al., 1991) and EMSO (de P. Soares and Secchi,
2003) for chemical process modeling, simulation and
optimization, etc., the steady-state initialization is still
not satisfactorily resolved in the general case. Often,
steady-state initialization failures can only be resolved
in very cumbersome ways, requiring user-provided good
initial values for the variables (Vieira and Jr, 2001;
Bachmann et al., 2007; Sielemann and Schmitz, 2011;
Sielemann et al., 2013; Ochel and Bachmann, 2013).

2 Demonstrative examples
Here we show the behavior of the latest release of Dymola
(Version 2017 FD01 (32-bit), 2016-10-11) and OpenMod-
elica (v1.11.0 (64-bit); February 6, 2017) on three exam-
ples. Examples 1 and 2 demonstrate that applying tearing
can lead to completely incorrect results or to initialization
failure. However, correct results are obtained for both ex-
amples when tearing is turned off. Example 3 is about per-
formance: It shows that tearing can slow down the solu-
tion process drastically. Dymola can easily hang for min-
utes on problems that are otherwise solvable in millisec-
onds without tearing. The causes are discussed in Sec-
tion 3. The examples trigger failure only if the tearing is
performed according to the specified ordering. The Mod-
elica source files are available in the GitHub repository of
the (Online Supplement).

Example 1: The residual is overly sensitive to the
changes in the tear variable. We solve the following
20×20 linear system in a Newton step:

xi−1 +10xi + xi+1 = 1.2 i = 1:20, (7)

where x0 := 0.1 and x21 := 0.1 to keep the formulas sim-
ple. The only tear variable is x1; the residual is given by
the last equation (i = 20). The exact solution is xi = 0.1
for i= 1:20. Both Dymola and OpenModelica return com-
pletely incorrect results, for example, x20 = 32.03 and
x20 = 85.82, respectively, but claim that the simulation
was successful.

Example 2: The residual is insensitive to the changes in
the tear variable. We solve the following 20×20 linear
system in a Newton step:

xi−1 + xi +15xi+1 = 17 i = 1:20, (8)

where x0 := 1 and x21 := 1 to keep the formulas simple.
The only tear variable is x1; the residual is given by the
last equation (i = 20). The exact solution is xi = 1 for
i = 1 : 20. Dymola fails with an unhelpful error message,
and does not return any result. OpenModelica emits some
confusing intermediate warnings and reports at the end
of the computations that “simulation process finished suc-
cessfully”. But it returns incorrect results; for example, x1
still equals the initial guess, as if nothing had happened.

Example 3: Unacceptable border width, leading to
very poor performance. We solve the following N×N
linear system in a Newton step:

N

∑
i=1

xi = N (9)

xi + xN = 2 i = 1 : N−1, (10)

and we assume that the only variable that can be elimi-
nated is xN from equation (9); this can be due to the non-
linearities of the original problem (whose Newton step we
see here). All other variables are tear variables, and all
other equations are residuals. For N = 300, the problem is
solved by Dymola in 74 seconds and by OpenModelica in
37 seconds. As we argue in Sec. 3.3, the problem is solv-
able in milliseconds: For N = 300 (the largest dimension
permitted in the free trial version we used), the AMPL
modeling environment (Fourer et al., 2003) is faster than
Dymola and OpenModelica by factors of more than 1200
and 600, respectively. The performance of the Modelica
implementations rapidly deteriorates as the problem size
increases: For N = 500, Dymola hangs for more than 6
minutes, and OpenModelica takes more than 1.5 minutes.

Failure Modes of Tearing and a Novel Robust Approach

354 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353



The examples are intentionally chosen to be easy. In
challenging real-life examples, like the one in Sec. 5.3, it
is hard to identify and understand the reasons of the fail-
ures, because different failure modes usually occur simul-
taneously and interact with each other. However, the sim-
plicity of the present examples allows us to gain (in Sec-
tion 3) important insights into the reasons why tearing fails
or causes very poor performance. The examples were cho-
sen to demonstrate the reasons in isolation, one at a time.
This is also the reason why we picked linear examples;
they should be regarded as the linear system solved in a
Newton step.

3 In-depth discussion of the examples
Pathological input problems are ignored throughout this
paper, for example when the system (1) has conflicting
equations and as a consequence it is infeasible, when (1)
is singular, when it is poorly scaled, or when the prob-
lem has a huge number of solutions, etc. While these
edge cases are interesting and important, a non-tearing
approach can fail in these cases too, and therefore such
failures are not specific to tearing. Throughout this pa-
per we only focus on those failure modes that are specific
to tearing: We assume that the input problem (1) is fea-
sible and properly scaled, has at most a small number of
real solutions, and that these solutions can be found with
an appropriate non-tearing approach using 64-bit floating-
point arithmetic. Traditional tearing can fail even if all
these assumptions are met.

3.1 Example 1: uncontrollable residual
The residual can become practically uncontrollable be-
cause it depends too sensitively on the tear variables. To
see this we consider the system

xi−1 +10xi + xi+1 = 1.2 for i = 1:20 (11)

where x0 := 0.1 and x21 := 0.1 to keep the formulas sim-
ple. The exact solution is xi = 0.1 for i = 1:20. The co-
efficient matrix of the system (11) is a strictly diagonally
dominant tridiagonal matrix (cf. Fig. 1 top), hence solv-
ing (11) with Gaussian elimination produces excellent re-
sults even without pivoting (Golub and van Loan (1996,
Ch 3.4.10)). As it was demonstrated in Section 2, tradi-
tional tearing fails on this easy problem.

We order the coefficient matrix of (11) into BLTF with
minimal border width by moving x1 to the border, see on
the bottom of Fig. 1. Given an initial guess for x1, the
formula for the forward substitution along the diagonal is:

xi+1 =−xi−1−10xi +1.2 for i = 1:19, (12)

and the residual r := −x19 − 10x20 + 1.1 is a univariate
function of x1, that is, we have to solve the univariate equa-
tion r(x1) = 0 for x1. Because of the factor 10 in (12), the
error in our guess for x1 is multiplied roughly by a fac-
tor of 10 in each step of the elimination according to (12).
There are 19 steps in (12), meaning that the error in x1 will

be magnified roughly by a factor of 1019 till we compute
the residual. This has catastrophic consequences. There
is no machine representable number for x1 such that after
eliminating all the other variables according to (12) r is
sufficiently close to zero: The two closest 64-bit floating-
point numbers enclosing 0.1 give approximately 85.82
and −101.03 for x20, respectively, due to the roughly 1019

factor magnifying the error in x1. In other words, (11) is
literally unsolvable in 64-bit floating-point arithmetic with
traditional tearing, whereas solving it with Gaussian elim-
ination is numerically stable even without pivoting. The
failure is not due to a single ill-conditioned elimination
step but the sequence of well-conditioned steps becoming
ill-conditioned when they are chained together as in (12).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1

Figure 1. Top: The sparsity pattern of the coefficient matrix of
problem (11). Black entries correspond to 10, gray entries to 1.
Bottom: The same matrix ordered to bordered lower triangular
form. The leading lower triangular submatrix, surrounded by
dashed lines, is singular to working precision in 64-bit floating
point arithmetic.

Session 6: Poster Session

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

355



A similar behavior in the nonlinear case makes the
problem practically unsolvable with iterative solvers, even
if the original problem is easy to solve without tearing.
Distillation columns are real-life examples where such
failures happen, c.f. Doherty et al. (2008).

For those familiar with linear algebra: The condition
number estimate of the coefficient matrix of (11) is 1.5
(symmetric, strictly diagonally dominant tridiagonal ma-
trix), whereas the condition number estimate of the lead-
ing lower triangular matrix of the BLTF is 9 ·1016, mean-
ing that it is singular to working precision in 64-bit float-
ing point arithmetic. See also Golub and van Loan (1996,
Ch 3.3, and 3.5.4).

3.2 Example 2: insensitive residual
It can also happen that the residual shows practically no
response to changes in the tear variables. Such an example
is the following:

xi−1 + xi +15xi+1 = 17 i = 1:20, (13)

where x0 := 1 and x21 := 1 to keep the formulas simple. It
is easy to see that the solution is xi = 1 (i = 1 : 20). Solv-
ing (13) with a non-tearing approach is not a challenge.

Making x1 the only tear variable, and moving it to the
border makes the resulting BLTF have minimal border
width, see Fig. 2. Given an initial guess for x1, the for-
mula for the forward substitution along the diagonal is:

xi+1 =
1

15
(−xi−1− xi +17) for i = 1:19, (14)

and the residual

r :=−x19− x20 +2 (15)

is a univariate function of x1, that is, we have to solve the
univariate equation

r(x1) = 0 (16)

for x1. As it can be seen from (14), the error in our esti-
mate for x1 is divided roughly by a factor of 15 in each step
of the recursion, that is, the error attenuates in an expo-
nential rate. As a consequence, we get r = 0.0000000000
(with 10 decimals) for both x1 = −1 and x1 = 3. This is
unacceptable, since x1 and many of the eliminated vari-
ables are still very far from the solution. The reason of the
failure is that the value of r(x1) provides no information
about the desired update of x1: The final equation (16) is
satisfied even with grossly erroneous x1 values.

In the nonlinear case, similar issues can lead to failures
of the tearing approach. Distillation columns are again
real-life examples where such failures happen. In fact, dis-
tillation columns are difficult for tearing methods because
one part of the column can magnify the error in the tear
variables with exponential rate (similarly to (12)), while
the remaining part attenuates it with an exponential rate
(similarly to (14)). This in turn can trigger two failure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1

Figure 2. Top: The sparsity pattern of the coefficient matrix of
problem (13). Black entries correspond to 15, gray entries to 1.
Bottom: The same matrix ordered to bordered lower triangular
form.

modes of tearing at the same time: the one described in
this section, and the one from the previous section.

As already stated, (13) is not a challenging problem;
it is just that traditional tearing fails. For those familiar
with linear algebra: Although problem (13) is mildly ill-
conditioned, the condition number estimate is 7 ·1011, one
can still get the result with several accurate significant dig-
its in 64-bit floating point arithmetic (Golub and van Loan
(1996, Ch 3.3, and 3.5.4)).

3.3 Example 3: unacceptably wide border
Wide border due to tearing incautiously. The pri-
mary motivation behind tearing is to speed up the solution
process (Dymola User Manual, Ch. 8.8.2, pp. 433-434).
However, tearing can significantly hurt performance, es-
pecially if it is applied without any caution; Example 3

Failure Modes of Tearing and a Novel Robust Approach

356 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353



at equations (9) and (10) in Sec. 2 is just one example of
that. Here the problem is that the border width is propor-
tional to the size of the original problem. In case of Dy-
mola, it slows down the model generation and compilation
drastically; for N = 500, the software hangs for more than
6 minutes. OpenModelica hangs for issues that are most
likely independent of tearing, but we failed to track down
the exact causes.

In comparison, solving the instance N = 300 with
AMPL takes only 61 milliseconds, although AMPL ad-
equately performs all relevant tasks, namely:
(i) reading and parsing the model file written in the AMPL
modeling language,
(ii) instantiating the model,
(iii) flattening,
(iv) compiling the C code,
(v) generating binary opcodes for the virtual AMPL stack
machine,
(vi) launching the external solver and executing the code
to compute the solution, and
(vii) writing back the results for the modeling environ-
ment.
AMPL and the Modelica implementations have to go
through basically the same steps during the solution pro-
cess of Example 3; the computational work to be done is
essentially the same for each modeling environment.

For those familiar with linear algebra: The problem
here is that tearing results in catastrophic fill-in (Duff
et al., 1986, Ch. 7). AMPL and the solver it in-
vokes, IPOPT (Wächter and Biegler, 2006) with MA27
from (HSL, 2017), avoid this by not perform tearing, and
by using proper sparse data structures and sparse linear al-
gebra. As far as we can tell, the state-of-the-art Modelica
implementations seem to perform O(n2) or more opera-
tions, and this can hurt performance already on relatively
small problems. See also (Duff et al., 1986, Ch. 5.8) re-
garding the so-called O(n2) traps.

Wide border due to trying to create a maxi-
mum-weight diagonal. Let A denote the coefficient ma-
trix of (11). The reason why tearing failed in Section 3.1
is that the largest entries of A became off-diagonal after A
was ordered to BLTF, and the elimination happened along
the diagonal. The straightforward attempt to fix this is
to mimic complete pivoting (Golub and van Loan (1996,
Ch. 3.4.8)): We order A into BLTF but instead of hav-
ing a minimal border width, our objective is to have a
maximum-weight diagonal on the lower triangular part.
Indeed, such approaches were proposed in the past, see for
example Westerberg and Edie (1971a,b) and Gupta et al.
(1974).

Although creating a maximum-weight diagonal miti-
gates the issue of uncontrollable residual, it can easily
lead to the opposite problem, to the issue of the insensi-
tive residual: The example of Sec. 3.2 has a maximum-
weight diagonal and tearing fails on that easy problem.
Also, compare Fig. 1 with Fig. 2 where the subdiagonal

became maximum-weight. In short, creating a maximum-
weight diagonal can turn one failure mode to another.

However, there is another issue that creating a BLTF
with maximum-weight diagonal can also cause: It can
produce a BLTF whose border width is proportional to the
size of the input matrix, whereas if we minimized the bor-
der width, the border width would be a small constant,
independent of the problem size. Table 2 and Figure 3
show examples of such disastrous cases. Since the final
system (6) is dense, this means that tearing turns (in the
course of the elimination) a sparse problem into a dense
problem whose size is proportional to the original prob-
lem. Such dense problems become intolerably expensive
to solve as their size grows.

4 Failing due to a single elimination
step

In the previous section we discussed failure modes where
a sequence of eliminations led to the failure. In this sec-
tion we show additional examples where tearing fails due
to a single elimination step, because it leads to an unde-
fined operation (Sec. 4.1) or to a floating-point exception
(Sec. 4.2), or it is multivalued (Sec. 4.3). We comment on
the usual workaround as seen in the state-of-the-art Mod-
elica environments, and propose a novel and better alter-
native in Sec. 4.4.

4.1 Undefined elimination step
For the sake of demonstration let us assume that in an
elimination step in (3) we want to eliminate x3 from

x1− x2x3 = 0, (17)

so we rearrange (17) as

x3 :=
x1

x2
. (18)

However, this symbolic transformation is invalid if x2 = 0.
If x2 happens to be 0 during the iteration in the tear vari-
ables, eliminating x3 according to (18) would lead to di-
vision by zero, whereas the original equation (17) does
not suffer from this issue. It is not only division that is
problematic: Another example of this kind of failure is a
negative argument to the logarithm function during the it-
eration in the tear variables (when working over the set of
real numbers). In general, arguments outside the domain
of the functions involved lead to failure of traditional tear-
ing.

4.2 Floating-point exception in an elimination
step

Floating-point exceptions can easily occur in systems in-
volving an exponential. For example, let the tear variables
be x41 := 440 and x43 := 0.0, and the elimination steps are:

x42 := exp(x41 +273.15)
x44 := x42x43.

(19)

Session 6: Poster Session

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

357



Table 2. Unacceptably wide border when the matrix is ordered to BLTF with maximum-weight diagonal on the lower triangular
part.

Matrix Minimal border Border width with Pattern in

width max-weight diagonal Figure (3)

Tridiagonal 1 1
2 n top row

Pentadiagonal 2 2
3 n (not shown)

Arrowhead 1 n−1 bottom row

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

3

5

7

9

11

13

15

17

19

18

16

14

12

10

8

6

4

2

1 3 5 7 9 11 13 15 17 19 18 16 14 12 10 8 6 4 2

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

10 9 8 7 6 5 4 3 2 1

Figure 3. The left column shows the input matrices, the right column the corresponding matrices ordered to BLTF with maximum-
weight diagonal; black entries correspond to 10, gray entries to 1. The tridiagonal matrix of size n will have a border width n

2 (top
row). In the worst case, when the optimal ordering is the arrowhead matrix (bottom row), the border width is n−1.

Failure Modes of Tearing and a Novel Robust Approach

358 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353



Unlike previously, the elimination steps are mathemati-
cally sound here. However, in 64-bit floating-point arith-
metic we get: x42 = inf and x44 = nan, where inf and
nan stand for infinity and not a number, see (IEEE 754).
The eliminations cannot be continued as x42 does not have
any correct significant digits, and x44 is not a number. Un-
fortunately, similar failures are not at all uncommon in
practice, especially with thermodynamic models.

Getting a floating-point exception due to a single elim-
ination step is an extreme case. More common is that the
error in the tear variables is amplified during a sequence
of elimination steps, as already discussed in Sections 3.1,
and this leads to an interaction between failure modes by
triggering a floating-point exception. For example, let us
assume that x41 is not a tear variable, but an eliminated
one, and the sequence of eliminations leading up to x41
yields the value 440 for x41 due to amplification of the er-
ror in the tear variables. This is similar to Example 1 of
Sec. 3.1 where the value of x20 was three orders of mag-
nitude off compared to the true value. In Example 1 it
was the residual that became uncontrollable, here it is a
floating-point exception that causes the ultimate failure.

4.3 Multivalued elimination step
In the equation

x2
1 +2x1x2−1 = 0, (20)

the elimination of x1 requires to solve this equation for x1.
However, there are two possibilities to perform this:

x1 =−x2 +
√

x2
2 +1 and x1 =−x2−

√
x2

2 +1. (21)

To continue the remaining eliminations, we would have to
know which solution for x1 will remain feasible, or con-
tinue with both possibilities for x1. If we ignore the fact
that the elimination step is multivalued, we either risk los-
ing solutions, or we risk that we continue with that value
for x1 that becomes infeasible in later eliminations. This
failure mode is simply ignored in state-of-the-art Model-
ica implementations, for example, “[the solver] hopefully
returns the solution closest to the guess value” (Dymola
User Manual, Ch. 8.9.2, p. 442); the emphasis is ours. If
we want to find all well-separated solutions of a nonlinear
system of equations, the kind of applications discussed in
(Baharev et al., 2016), this is unacceptable.

4.4 Avoiding floating-point exceptions, unde-
fined and multivalued elimination steps

The commonly seen workaround in state-of-the-art Mod-
elica tools to avoid undefined and multivalued elimina-
tion steps is to chose only linearly appearing variables
with non-zero coefficients as tear variables. Although this
workaround is easy to implement, it is also overly lim-
iting in the choice of the tear variables. This can lead
to a BLTF with unacceptably wide border and eventually
to very poor performance, because it excludes variables

that are perfectly eligible to become a tear variable. The
same holds for disallowing division by variables in an at-
tempt to avoid undefined elimination steps and floating-
point exceptions. As for multivalued eliminations, it is
left to chance whether a feasible solution is found or not,
see Sec. 4.3.

It is moderately easy to avoid single elimination steps
that can potentially become problematic depending on the
actual values of the variables involved: In Baharev et al.
(2017b) we proposed a novel pre-processing technique
based on interval arithmetic for recognizing single-step
eliminations that are guaranteed to be single-valued and
numerically well-behaved, irrespective of the actual value
of the variables involved. (Of course, it does not prevent a
sequence of eliminations from becoming ill-conditioned.)
Our approach offers more flexibility in the choice of tear
variables than the common workaround, and it does that
without risking any numerically troublesome operation.
The increased flexibility in the choice of the tears can help
to reduce the border width of the BLTF significantly. As
for multivalued elimination steps, nothing is left to chance
in our approach. For those familiar with linear algebra:
Our method is, in some sense, a nonlinear extension of
threshold pivoting (Duff et al., 1986, Ch. 4.4).

5 A novel robust approach
Staircase sampling was inspired by (Baharev and Neu-
maier, 2014), and proposed in (Baharev et al., 2016) to
mitigate all of the issues listed in Sections 3 and 4. A de-
tailed presentation of this method is outside the scope of
this paper; here we only sketch the basic idea.

The subsystem
g(y,z) = 0 (22)

in (5) is an underdetermined system of equations; it has
infinitely many solutions per our assumptions in the first
paragraph of Section 3. The aim of staircase sampling is
to find a small set of points such that every solution of (22)
is close to one of the points in this set. We call this small
set of points the sample: It is an approximation to a sam-
ple from the infinitely many solutions of (22). The sam-
ple is built up incrementally, similarly to the usual tearing
approach. Staircase sampling requires finite and reason-
able lower and upper bounds on all of the variables; this is
needed to allow an adequate sampling of the search space.

Staircase sampling starts with an entire set of val-
ues for z (a scattered set of points between the variable
bounds), and not just with a single value for z as in the
usual tearing approach. The algorithm then proceeds sim-
ilarly to the common tearing algorithms, and it performs
eliminations. A minor difference compared to (3) is that
staircase sampling solves small nonlinear systems in the
elimination steps, that is, it performs block elimination.
The fundamental difference is that after each block elimi-
nation step, the points are redistributed, and a subvector of
y is recomputed as necessary. The goal of this redistribu-
tion algorithm is to improve the spatial distribution of the

Session 6: Poster Session

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

359



points between the variable bounds: It discards points that
are too close, and it inserts new points where the search
space has become deserted. The details of the redistri-
bution algorithm are discussed in (Baharev et al., 2016).
Staircase sampling returns a set of scattered points, sat-
isfying (22) fairly well. In the current implementation,
those points are chosen that violate (5) the least, and they
are used as a starting point for large-scale sparse solvers
that target solving (1) directly. In the future, interpolation
and extrapolation on the complete set of scattered points
will be used to find starting points that approximately sat-
isfy (1).

5.1 How staircase sampling resolves the fail-
ure modes of traditional tearing

We now compare staircase sampling to traditional tearing
from the point of view of the the failure modes; the items
are enumerated in the same order as in Sections 3 and 4.

1. As shown in Sections 3.1 and 3.2, the error in our ini-
tial estimate for z can grow or attenuate exponentially
even in simple cases, ultimately leading to the failure
of traditional tearing. Staircase sampling breaks this
exponential change in the redistribution step; the er-
ror accumulation in an exponential rate is not possi-
ble.

2. As a consequence of the previous point, we can min-
imize the border width in our ordering algorithm
without having to worry about the exponential er-
ror growth rate during the eliminations. An exact
ordering algorithm to minimize the border width is
given in (Baharev et al., 2017b). Furthermore, stair-
case sampling works on so-called staircase triangular
matrices, and those matrices allow more flexibility in
the orderings than the BLTFs do.

3. A single block elimination step can also fail, how-
ever, this is usually not an issue. Staircase sampling
works with a set of points, losing some of them is
typically not a problem: New points are inserted af-
ter each block elimination step in the redistribution
algorithm, which makes up for the lost points.

4. Staircase sampling builds up a set of solution vec-
tors, not just a single solution vector at a time as in
traditional tearing. As a consequence, multivalued
elimination steps are handled naturally.

5.2 A note on plotting vectors in 2 dimensions
Here we explain how the starting points and solution vec-
tors will be plotted in the next section. We first select a
subset of the variables according to an appropriate rule;
for example, we select the methanol composition in each
device of the system that we are simulating. Let us as-
sume that we have selected a 20-dimensional subset. We
then draw each 20-dimensional vector as a curve in 2 di-
mensions by connecting the points (xi, i) (i = 1:20) with

adjacent indices, as shown in Fig. 4. The connecting lines
have no meaning, but allow us to plot without ambiguity
several vectors in one figure.

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

In
d
ex

i

−1 0 1 2 3
Value of xi

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

In
d
ex

i

−1 0 1 2 3
Value of xi

Figure 4. Top: Plotting the 20-dimensional vector x in 2 dimen-
sions by placing a dot at (xi, i) for i = 1:20. Bottom: To indicate
that the dots belong to the same vector, we connect the neigh-
boring points with linear lines, and we may omit the dots. The
connecting lines have no meaning, but allow us to plot without
ambiguity several vectors in one figure.

5.3 Demonstration test case
The robustness of staircase sampling is demonstrated on a
particularly challenging distillation column. The model
and its parameters correspond to the Auto model (Güt-
tinger et al., 1997). The problem has three steady-state
solutions: two stable steady-state branches and an unsta-
ble branch. Both the inside-out procedure (Boston and
Sullivan, 1974) and the simultaneous correction procedure
(Naphthali and Sandholm, 1971) were reported to miss the
unstable steady-state solution, see (Vadapalli and Seader,
2001) and (Kannan et al., 2005). However, all steady-state
branches were computed either with the AUTO software

Failure Modes of Tearing and a Novel Robust Approach

360 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353



0.0 0.2 0.4 0.6 0.8 1.0
Liquid phase mole fraction of methanol

20

15

10

5

1
S
ta
ge

in
d
ex

Figure 5. The three steady-state solutions (dashed gray lines)
and those generated starting points (solid black lines) that are the
closest to them. The gradient-based solver IPOPT converges to
the nearest solution when started from the corresponding starting
point.

package (Doedel et al., 1995) or with an appropriate con-
tinuation method (Güttinger et al., 1997; Vadapalli and
Seader, 2001; Kannan et al., 2005). The initial estimates
were carefully chosen with the ∞/∞ analysis (Bekiaris
et al., 1993; Güttinger and Morari, 1996), and special at-
tention was paid to the turning points and branch switch-
ing.

Our goal with staircase sampling was to find all solu-
tions automatically, without any initial estimates, without
relying on any domain-specific knowledge, and without
any human interaction. This goal was achieved: All three
steady-state solutions are found when IPOPT (Wächter
and Biegler, 2006) is run from the starting points gener-
ated with staircase sampling. Figure 5 shows the three
steady-state solutions of a 20-stage column and those
starting points that are the closest to them; see also
Sec. 5.2 as to how the solution vectors are plotted. For
a more detailed discussion of this example, and for other
examples see (Baharev et al., 2016).

Despite these promising results, the practical applica-
bility and limitations of staircase sampling are yet to be
explored, and a benchmark suite with real-world problems
would be needed for that.

Acknowledgement
The research was funded by the Austrian Science Fund
(FWF): P27891-N32. Support by the Austrian Research
Promotion Agency (FFG) under project numbers 846920
and 853930 is thankfully acknowledged.

References
B. Bachmann, P. Aronßon, and P. Fritzson. Robust initial-

ization of differential algebraic equations. In 1st Interna-
tional Workshop on Equation-Based Object-Oriented Model-

ing Languages and Tools (Berlin; Germany; July 30; 2007),
Linköping Electronic Conference Proceedings, pages 151–
163. Linköping University Electronic Press; Linköpings uni-
versitet, 2007.

A. Baharev, H. Schichl, and A. Neumaier. Decomposition meth-
ods for solving nonlinear systems of equations. Submit-
ted, 2017a. URL http://reliablecomputing.eu/
baharev_tearing_survey.pdf.

A. Baharev, H. Schichl, and A. Neumaier. Order-
ing matrices to bordered lower triangular form with
minimal border width. Submitted, 2017b. URL
http://reliablecomputing.eu/baharev_
tearing_exact_algorithm.pdf.

Ali Baharev and Arnold Neumaier. A globally convergent
method for finding all steady-state solutions of distillation
columns. AIChE J., 60:410–414, 2014.

Ali Baharev, Ferenc Domes, and Arnold Neumaier. A robust ap-
proach for finding all well-separated solutions of sparse sys-
tems of nonlinear equations. Numerical Algorithms, pages
1–27, 2016. doi:10.1007/s11075-016-0249-x. URL https:
//doi.org/10.1007/s11075-016-0249-x.

N. Bekiaris, G. A. Meski, C. M. Radu, and M. Morari. Multi-
ple steady states in homogeneous azeotropic distillation. Ind.
Eng. Chem. Res., 32:2023–2038, 1993.

J. F. Boston and S. L. Sullivan. A new class of solution methods
for multicomponent, multistage separation processes. Can. J.
Chem. Eng., 52:52–63, 1974.

Emanuele Carpanzano. Order reduction of general nonlinear
DAE systems by automatic tearing. Mathematical and Com-
puter Modelling of Dynamical Systems, 6(2):145–168, 2000.

François E Cellier and Ernesto Kofman. Continuous system sim-
ulation. Springer Science & Business Media, 2006.

R. de P. Soares and A. R. Secchi. EMSO: A new environment for
modelling, simulation and optimisation. In Computer Aided
Chemical Engineering, volume 14, pages 947–952. Elsevier,
2003.

E. J. Doedel, X. J. Wang, and T. F. Fairgrieve. AUTO94: Soft-
ware for continuation and bifurcation problems in ordinary
differential equations. Technical Report CRPC-95-1, Center
for Research on Parallel Computing, California Institute of
Technology, Pasadena CA 91125, 1995.

M. F. Doherty, Z. T. Fidkowski, M. F. Malone, and R. Taylor.
Perry’s Chemical Engineers’ Handbook, chapter 13, page 33.
McGraw-Hill Professional, 8th edition, 2008.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for
Sparse Matrices. Clarendon Press, Oxford, 1986.

Dymola User Manual. Volume 2. Dymola 2017 FD01, Dassault
Systèmes AB, 2016.

H. Elmqvist and M. Otter. Methods for tearing systems of equa-
tions in object-oriented modeling. In Proceedings ESM’94,
European Simulation Multiconference, Barcelona, Spain,
June 1–3, pages 326–332, 1994.

Session 6: Poster Session

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

361



Hilding Elmqvist. A Structured Model Language for Large Con-
tinuous Systems. PhD thesis, Department of Automatic Con-
trol, Lund University, Sweden, May 1978.

Robert Fourer, David M. Gay, and Brian Wilson Kernighan.
AMPL: A Modeling Language for Mathematical Program-
ming. Brooks/Cole USA, 2003.

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley-IEEE Press, 2004.

G. H. Golub and C. F. van Loan. Matrix Computations. The
Johns Hopkins University Press, Baltimore, USA, 3rd edi-
tion, 1996.

gPROMS. Process Systems Enterprise Limited, gPROMS.
https://www.psenterprise.com, 2017. [Online;
accessed 21-Jan-2017].

Prem K. Gupta, Arthur W. Westerberg, John E. Hendry, and
Richard R. Hughes. Assigning output variables to equations
using linear programming. AIChE Journal, 20(2):397–399,
1974.

T. E. Güttinger and M. Morari. Comments on “multiple steady
states in homogeneous azeotropic distillation”. Ind. Eng.
Chem. Res., 35:2816–2816, 1996.

T. E. Güttinger, C. Dorn, and M. Morari. Experimental study of
multiple steady states in homogeneous azeotropic distillation.
Ind. Eng. Chem. Res., 36:794–802, 1997.

HSL. A collection of Fortran codes for large scale scientific
computation., 2017. URL http://www.hsl.rl.ac.
uk.

IEEE 754. IEEE standard for floating-point arith-
metic. IEEE Std 754-2008, pages 1–70, Aug 2008.
doi:10.1109/IEEESTD.2008.4610935.

A. Kannan, M. R. Joshi, G. R. Reddy, and D. M. Shah. Multiple-
steady-states identification in homogeneous azeotropic distil-
lation using a process simulator. Ind. Eng. Chem. Res., 44:
4386–4399, 2005.

A. Kröner, W. Marquardt, and E.D. Gilles. Getting around con-
sistent initialization of DAE systems? Computers & Chemi-
cal Engineering, 21(2):145–158, 1997.

F. Magnusson and J. Åkesson. Symbolic elimination
in dynamic optimization based on block-triangular or-
dering. Optimization Methods and Software, 2017.
doi:10.1080/10556788.2016.1270944. Published online: 17
Jan 2017.

S. Mattsson, H. Elmqvist, and M. Otter. Physical system mod-
eling with Modelica. Control. Eng. Pract., 6:501–510, 1998.

S. E. Mattsson, M. Otter, and H. Elmqvist. Modelica hybrid
modeling and efficient simulation. In Decision and Con-
trol, 1999. Proceedings of the 38th IEEE Conference on, vol-
ume 4, pages 3502–3507, 1999.

L. M. Naphthali and D. P. Sandholm. Multicomponent sepa-
ration calculations by linearization. AIChE J., 17:148–153,
1971.

L. A. Ochel and B. Bachmann. Initialization of equation-
based hybrid models within OpenModelica. In 5th Interna-
tional Workshop on Equation-Based Object-Oriented Model-
ing Languages and Tools (University of Nottingham; Notting-
ham, UK; April 19, 2013), Linköping Electronic Conference
Proceedings, pages 97–103. Linköping University Electronic
Press; Linköpings universitet, 2013.

Online Supplement, 2017. URL https://github.com/
baharev/failure-modes-of-tearing.

C. C. Pantelides. The consistent initialization of differential-
algebraic systems. SIAM Journal on Scientific and Statistical
Computing, 9(2):213–231, 1988.

P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. West-
erberg. ASCEND: An object-oriented computer environment
for modeling and analysis: The modeling language. Comput-
ers & Chemical Engineering, 15(1):53–72, 1991.

M. Sielemann and G. Schmitz. A quantitative metric for robust-
ness of nonlinear algebraic equation solvers. Mathematics
and Computers in Simulation, 81(12):2673–2687, 2011.

M. Sielemann, F. Casella, and M. Otter. Robustness of declar-
ative modeling languages: Improvements via probability-one
homotopy. Simulation Modelling Practice and Theory, 38:
38–57, 2013.

P. Täuber, L. Ochel, W. Braun, and B. Bachmann. Practical
realization and adaptation of Cellier’s tearing method. In
Proceedings of the 6th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools,
pages 11–19, New York, NY, USA, 2014. ACM.

M. Tiller. Introduction to physical modeling with Modelica.
Springer Science & Business Media, 2001.

J. Unger, A. Kröner, and W. Marquardt. Structural analysis of
differential-algebraic equation systems — theory and appli-
cations. Computers & Chemical Engineering, 19(8):867–
882, 1995.

A. Vadapalli and J. D. Seader. A generalized framework for
computing bifurcation diagrams using process simulation
programs. Comput. Chem. Eng., 25:445–464, 2001.

R.C. Vieira and E.C. Biscaia Jr. Direct methods for consistent
initialization of DAE systems. Computers & Chemical Engi-
neering, 25(9–10):1299–1311, 2001.

A. Wächter and L. T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale non-
linear programming. Mathematical Programming, 106:25–
57, 2006.

A. W. Westerberg and F. C. Edie. Computer-aided design, Part 1
Enhancing Convergence Properties by the Choice of Out-
put Variable Assignments in the Solution of Sparse Equation
Sets. The Chemical Engineering Journal, 2:9–16, 1971a.

A. W. Westerberg and F. C. Edie. Computer-Aided Design,
Part 2 An approach to convergence and tearing in the solution
of sparse equation sets. Chem. Eng. J., 2(1):17–25, 1971b.

Failure Modes of Tearing and a Novel Robust Approach

362 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353


