
A manifold-based approach to sparse global
constraint satisfaction problems

Ali Baharev Arnold Neumaier Hermann Schichl

November 7, 2018

Contents

Abstract 2

1 Introduction 2
1.1 Aims . 2
1.2 Terminology . 3
1.3 Bordered block lower triangular forms . 3
1.4 Creating the desired block decomposition automatically 5
1.5 Tearing heuristics to create bordered block lower triangular forms 5
1.6 Further assumptions . 6

2 Overview of the proposed algorithm 6

3 Exponential worst-case time complexity in the border width 8

4 Implementation details of the proposed algorithm 9
4.1 The source code of the algorithm . 10
4.2 The farthest-first subsampling algorithm . 10
4.3 Generating the new random points in the backsolve step 10
4.4 Efficient implementation of the backsolve step 11

5 Numerical results: The effect of decomposition 12
5.1 Series of test problems . 12
5.2 Numerical results published in the literature 13
5.3 The baseline for comparisons . 13
5.4 Results with the proposed method . 17
5.5 Comparisons: The effect of decomposition . 19

6 Numerical results: Reusing shared substructure 19

7 Future work 20

References 22

A Pseudo-code of the implemented algorithms 25

1

Abstract

We consider square, sparse nonlinear systems of equations whose Jacobian is structurally non-
singular, with reasonable bound constraints on all variables. We propose an algorithm for find-
ing good approximations to all well-separated solutions of such systems.

We assume that the input system is ordered such that its Jacobian is in bordered block lower
triangular form with small diagonal blocks and with small border width; this can be performed
fully automatically with off-the-shelf decomposition methods. Five decades of numerical expe-
rience show that models of technical systems tend to decompose favorably in practice.

Once the block decomposition is available, we reduce the task of solving the large nonlinear
system of equations to that of solving a sequence of low-dimensional ones. The most serious
weakness of this approach is well-known: It may suffer from severe numerical instability. The
proposed method resolves this issue with the novel backsolve step.

We study the effect of the decomposition on a sequence of challenging problems. Beyond
a certain problem size, the computational effort of multistart (no decomposition) grows expo-
nentially. In contrast, thanks to the decomposition, for the proposed method the computational
effort grows only linearly with the problem size. It depends on the problem size and on the hy-
perparameter settings whether the decomposition and the more sophisticated algorithm pay off.
Although there is no theoretical guarantee that all solutions will be found in the general case,
increasing the so-called sample size hyperparameter improves the robustness of the proposed
method.

1 Introduction

1.1 Aims

We consider square nonlinear systems

F(x) = 0,
x≤ x≤ x,

(1)

where F : Rn 7→Rn is a continuously differentiable vector-valued function, and whose Jacobian
is structurally nonsingular; x and x denote the vector of lower and upper bounds, respectively
on the components of x. The task we pose is to find a reasonably small set of points such that
every solution of (1) is close to one of the points in this set. An algorithm solving this task finds
in particular good approximations to all well-separated solutions. Even for problems with an
infinite number of solutions, only a finite number of points need to be generated.

The task that we just posed is computationally intractable in general; we have to make fur-
ther assumptions. We assume that (1) has already been ordered such that its Jacobian is in
bordered block lower triangular form with block sizes of O(1) and with small border width; the

2

formal definition of bordered block lower triangular forms is given in Sec. 1.3. In Sec. 1.4 we
give references how (1) can be ordered to the desired bordered block lower triangular form fully
automatically and efficiently. We argue in Sec. 1.5 why the models of technical systems tend to
decompose favorably in practice, and why the proposed method is expected to be useful across
many engineering fields, e.g., mechanical, electrical, chemical, and aerospace engineering. Fur-
ther (less limiting) assumptions are given in Sec. 1.6. The last one of our assumptions is given
in Sec. 3, after the overview of the proposed method; this is necessary for better understanding
of this particular assumption.

1.2 Terminology

We refer to the number dimx of components of a vector x as its dimension. The structural
rank of a matrix A is the maximum number of nonzero entries that can be permuted onto
the diagonal with suitable row and column permutations. (It is also known as the maximal
size of a transversal, of a maximum assignment, or of a maximum matching in the bipartite
sparsity graph of A.) The structural rank is an upper bound on the numerical rank of A. A is
nonsingular for some numerical values of its nonzero entries iff it is possible to permute the
rows and columns of A in such a way that the diagonal is zero free. Such a matrix is called
structurally nonsingular.

In an engineering application it is usually not meaningful to distinguish two solutions that
are too close due to the intrinsic uncertainty of every real-life model. We therefore call a set
P of points well-separated if, for any distinct points p,q ∈ P, the distance ‖p−q‖2 is above a
small threshold δ specified by the user, for example δ = 10−4.

Array slicing notation. The shorthand p:q is used for the ordered index set p, p+1, . . . ,q,
where p ≤ q. When forming the subvector vp:q of a vector v, p:q is cropped appropriately if
necessary; that is, invalid indices are ignored. The index set p:q is considered empty if p > q,
and the expression vp:q is a valid subvector of v that has no components. In case of block
vectors, the shorthand vi:k is used for a block vector with consecutive blocks v j (j = i : k).

A point cloud is a set of scattered points, intended to approximate a manifold.

1.3 Bordered block lower triangular forms

The so-called bordered block lower triangular form is illustrated in Fig. 1, and formally defined
as follows. The variables in (1) are partitioned as

x =


x1
...

xN+1

 (2)

3

into subvectors xi ∈ Rdi (i = 1 . . .N + 1), so that n = d1 + · · ·+ dN+1. For notational conve-
nience, let

x0 := xN+1. (3)

Similarly to the variables, F is partitioned as

F(x) =


F1(x)

...
FN+1(x)

 (4)

into subfunctions Fi(x) ∈ Rdi (i = 1 . . .N + 1). F ′i (xi) (the diagonal blocks, see Fig. 1) are
required to be structurally nonsingular.

For any bordered block lower triangular matrix, only variables from subvectors x0, . . . ,xi

(i≤ N) can appear in Fi(x):

Fi(x) = Fi(x0, x1, . . . , xi) for i = 1, . . . ,N. (5)

The motivation behind requiring a bordered block lower triangular form is that we can decom-
pose the input system of equations (1) into a cycle-free sequence of subproblems, where the
sequence is given by (5).

By construction, the diagonal blocks are structurally nonsingular. We refer to the set S

of arguments where some block is singular as the singular set of the system. The structural
nonsingularity implies that S has measure zero. For arguments x outside this set, all blocks
are nonsingular, and F1:i(x0:i) = 0 (i = 1, . . . ,N) implicitly defines a (possibly disconnected)
d-dimensional manifold in Rmi , where mi = dimx0:i. We refer to the full solution set of this
subsystem for arguments within the original bounds as the solution manifold associated with
the bordered block lower triangular form. (If the the singular set S is nonempty, this is a man-
ifold only in a generalized sense since it has singularities at the points of S, e.g. self-crossings
and cusps.) In our algorithm we resolve this manifold through a coarse discretization by a point
cloud.

Equations (2)–(5) describe the block sparsity pattern shown in Figure 1. This decomposition
exists for any structurally nonsingular matrix. As we will see in Sec. 3, the usefulness of a
particular block decomposition depends primarily on the border width

d := d0 = dN+1, (6)

and secondarily on the largest block size

b := maxd1, . . . ,dN , (7)

4

from the point of view of the proposed method.

F1

F2

F3

.

.

.

FN

FN+1

x1 x2 x3 · · · xN x0

0

Figure 1: Bordered block lower triangular form with structurally nonsingular square blocks on
the diagonal, see Eqs. (1)–(5). The square blocks along the diagonal (dark gray squares) must
be structurally nonsingular. This decomposition can be computed fully automatically for any
matrix that is structurally nonsingular, see Sec. 1.4. In engineering applications, the light gray
area is typically sparse, and the border width and block sizes tend to be small, see Sec. 1.5.

1.4 Creating the desired block decomposition automatically

Sparse matrix ordering algorithms are a well-researched subject with a vast literature; we only
mention some key points and references here. Both the Jacobian of (1) and the square blocks
along the diagonal are required to have full structural row rank. The structural rank is re-
vealed by the Dulmage–Mendelsohn decomposition (DULMAGE & MENDELSOHN [14, 15,
16], JOHNSON et al. [26], DUFF et al. [13, Ch. 6], POTHEN & FAN [36], and DAVIS [9, Ch. 7]).
This decomposition is a standard procedure, and efficient computer implementations are avail-
able, for example HSL MC79 from the HSL [25]. Practical ordering algorithms are applied next;
these include the Hellerman–Rarick family of ordering algorithms [13, 17, 23, 24], and the
algorithms of STADTHERR & WOOD [37, 38]. An efficient computer implementation of the
Hellerman–Rarick algorithms is MC33 from the HSL [25]. Although there are subtle differ-
ences among the various ordering algorithms, they all fit the same pattern when viewed from a
high level of abstraction, see FLETCHER & HALL [18].

1.5 Tearing heuristics to create bordered block lower triangular forms

Beside the references given in Sec. 1.4, the engineering literature is also rich in sparse matrix
ordering algorithms. Decomposing to bordered block lower triangular form has a long tradi-
tion in engineering applications: It is usually referred to as tearing, diakoptics, or sequential
modular approach, depending on the engineering discipline. When dealing with distillation

5

columns, tearing is called stage-to-stage or stage-by-stage calculations. Tearing dates back to
the 1930’s [28, 39], and has been widely adapted across many engineering fields since: State-
of-the-art steady-state and dynamic simulation environments all implement some variant of
tearing, see for example ASPEN TECHNOLOGY, INC. [1], MOSAICmodeling [7], Dymola [8],
JModelica [30], or OpenModelica [33]. The applicability of tearing is not limited to a particular
engineering discipline: It is generic, and it is used in all state-of-the-art Modelica simulators to
model “complex physical systems containing, e.g., mechanical, electrical, electronic, hydraulic,
thermal, control, electric power or process-oriented subcomponents” [29].

The various tearing heuristics are concerned with selecting a minimal subset of variables
called the torn variables; when these torn variables are moved to the border of the matrix, and
the Dulmage–Mendelsohn decomposition is applied to the rest of the matrix, the blocks of the
resulting bordered block lower triangular form correspond to the devices (or machines) of the
technical system. The block sizes therefore tend to be O(1), that is, they are typically bounded
by a small constant. More than five decades of practical experience and the wide-spread usage
of tearing show that the tearing heuristics also tend to produce a narrow border when applied to
technical systems.

1.6 Further assumptions

Our algorithm assumes that the variables are adequately scaled. This allows us to use one of the
standard norms to measure distances; unless otherwise indicated, we use the Euclidean norm
(`2-norm).

We also assume that the bound constraints x≤ x≤ x are finite and reasonable; this is needed
to allow an adequate sampling of the search space. Therefore, our method may not work well
when a variable is unbounded or its upper bound is not known, and the user circumvents this by
specifying a huge number such as 1020 as upper bound. Finite bound constraints are also impor-
tant from an engineering perspective: These bounds often exclude those solutions of F(x) = 0
that either have no physical meaning or lie outside the validity of the model.

2 Overview of the proposed algorithm

The algorithm builds up a point cloud sequentially, satisfying

F1:i(x0:i)≈ 0 for i = 1, . . . ,N,

x≤ x≤ x.
(8)

The algorithm starts with a scattered set of points S(0) for x0, then eliminates the square blocks
one-by-one along the diagonal in order i = 1, . . . ,N, see Eq. (5) and Fig. 1. Solving (8) for xi

will be referred to as forward solve.
If we applied forward solve only, the algorithm would be similar to Gaussian elimination

6

without pivoting, which can give arbitrarily poor results even for well-conditioned linear prob-
lems [20, Ch. 3.3]. In the nonlinear case, and when propagating the point cloud within the
variable bounds, the numerical issues manifest themselves in two ways:
(a) Many or all points becoming bound infeasible.
(b) The xi component of many points in the point cloud accumulate around one point or around
a particular subspace. In this case, the remaining part of the feasible region is no longer ade-
quately represented by the other points.

In both cases, the point cloud is no longer a proper approximation of the solution set of (8).
Fig. 2 (a) illustrates both issues on the test problem of Sec. 5: Some of the points are outside the
feasible region (outside the so-called composition simplex), and many points have accumulated
along the (0,0)–(0,1) line, while the interior part of the feasible region is poorly covered.

(a) After forward solve (b) After backsolve

Figure 2: Illustrating how the backsolve step introduces new points on the test problem of
Sec. 5 (N = 60). (a) The scattered set of points after the forward solve in a particular iteration i,
projected to 2D; z1,z2 are components of xi; solid lines: boundaries of the feasible region,
the so-called composition simplex. (b) The set of points after the backsolve step in the same
iteration i. The three gray dots show the solutions.

We propose the following procedure to mitigate the numerical issues. In each iteration step,
after having solved (8) for xi, new points are inserted for a subset of xi uniformly at random, let
(x̃i)J denote this subset where |J|= d. Both the index set J and the values for (x̃i)J come from a
random number generator. (We use the tilde to distinguish between xi and x̃i: The former values
come from the forward solve, the latter from a random number generator.) These newly inserted
(x̃i)J points are still lacking the components of x0:i that are not covered by (x̃i)J . Therefore, for a
given (x̃i)J , and for each point x0:i−h−1 in the scattered set of points S(i), we solve the following

7

NLPs:

minimize
yi−h:i

‖Fi−h:i(x0:i−h−1,yi−h:i)‖

subject to (yi)J = (x̃i)J

xi−h:i ≤ yi−h:i ≤ xi−h:i

(9)

to determine the missing components, where h is a hyper-parameter of the algorithm (h stands
for history, and it is typically a small integer). The missing components will partly come from
the old point (the x0:i−h−1 part), and the rest is the solution of the NLP above (the yi−h:i part);
the (x̃i)J part from the random number generator remains unchanged. The procedure of solv-
ing (9) will be referred to as backsolve. The new points are forcibly inserted in the back-
solve step, it is therefore expected that there will be some amount of constraint violation in
Fi−h:i(x0:i−h−1,yi−h:i), which has to be tolerated. Fig. 2 illustrates how the backsolve introduces
new points.

The last subproblem at i = N+1 is different from (8) in that it is an overdetermined system,
while all the other subproblems (8) are square. At i = N + 1 the algorithm skips the forward
solve step (since there is no square block to eliminate), and performs a backsolve-like step:
It solves (9) with J = ∅, and with xi−h:N as starting points for yi−h:N . (For the variables, the
variable slices i−h : i are truncated to i−h : N, see Sec. 1.2.)

The output of the proposed (main) algorithm, after finishing the last subproblem i=N+1, is
a point cloud approximating the solution set of (1). The implementation details of the algorithm
will be discussed in Sec. 4. The algorithm of the present paper is a significant improvement
over older algorithms discussed in [3, 4], both algorithmically and on the implementation level.
The entire algorithm has been redesigned and rewritten from scratch, and in particular, the
backsolve step is radically different. Our numerical results show several orders of magnitude
improvements in speed, while achieving better robustness at the same time.

3 Exponential worst-case time complexity in the border width

As discussed at (8), the proposed method builds up a point cloud lying approximately on the
implicitly defined d-dimensional solution manifold of

F1:i(x0:i) = 0 for i = 1, . . . ,N,

x≤ x≤ x,
(10)

and aims at a point distribution such that every point on the manifold is close to a point of the
cloud. (We refer back to Sec. 1.3 regarding the singular points.) For reasons of efficiency, the
point cloud is constructed in a heuristic way, guided by theory.

In general, the set of points in the constraint box at distance s≤ δ from the solution manifold
of (10) has a volume proportional to se, defining the effective dimension e of the manifold.

8

Then the size of a cloud with the property that every point on the manifold has distance at most
s to a point of the cloud grows proportionally to s−e. Thus constructing the point cloud will have
exponential time complexity in the effective dimension e. Creating the point cloud is therefore
computationally tractable only for small dimensions e; how small depends on the resolution
δ needed, which fortunately is not high when (as usual) the total number of solutions of the
original system is small, and the solutions are well-separated. Thus a small effective dimension
e is the main assumption under which our new method can operate efficiently.

Pathological cases (such as Peano-like curves that come close to every point in the box) may
have a large effective dimension but small d. But for most applications of interest, the border
width is an upper bound on the effective dimension (d is the true dimension of the manifold,
with singular points excluded), since regions of the d-dimensional manifold far apart in the
geodesic metric are typically far apart also in the Euclidean metric.

In engineering applications, the presence of important bounds further decreases the effec-
tive dimension of the manifold. For example, we have the natural non-negativity bound on
many variables. Each such bound will be active at many solutions, effectively amounting to
an additional equation, typically decreasing the effective dimension by one. In addition, if the
lower and upper bound on some variable differs by significantly less than the threshold δ , this
variable is effectively constant and also decreases the effective dimension. Such strong specifi-
cations are fairly common since the designer wants the system to perform something useful and
therefore pushes the system to its limits (for example to create almost pure chemicals). We give
numerical examples in Sections 5 and 6 showing that the method is practical for certain difficult
engineering applications.

To locate the solution manifold, i.e., to construct the approximating point cloud, we need
to sample function values without knowing beforehand where the useful points lie that should
go into the point cloud. To achieve this efficiently is the main reason why the bordered block
triangular decomposition is needed. Indeed, we could sample the solution set of F1:N(x0:N) =

0 within the bound constraints directly, without decomposition. However, the volume to be
sampled then grows exponentially with the dimension p := dimx0:i, which gets larger and larger
(ultimately p = n). This makes good sampling in this naive way prohibitively expensive. The
proposed method avoids this scalability trap by sampling only at the square blocks along the
diagonal (see Fig. 1): The volume to be sampled grows exponentially only with the largest block
size, which is assumed to be reasonably small. In engineering applications, this assumption is
usually satisfied since typically the largest block corresponds to the largest device/machine in
the technical system being modeled.

4 Implementation details of the proposed algorithm

A high-level overview of the algorithm was already given in Sec. 2. In this section we discuss
the building blocks in more detail. These building blocks are mostly implementation-level de-

9

tails, and there could be other ways to fill-in these low-level details that the high-level overview
left open.

4.1 The source code of the algorithm

The most complete description of the algorithm is its source code, therefore the Python source
code of the algorithm is available on GitHub [2] under the very permissive 3-Clause BSD Li-
cense. For convenience the source code is distilled down to its essence, and it is given in
Appendix A as pseudo-code too. Algorithm 1 of Appendix A is the core of the algorithm. We
use the VA27 solver from HSL [25] to solve the equations and NLPs at each block. Since this
solver cannot handle variable bounds, we enforce them with Algorithm 2. The backsolve step
is given by Algorithm 3. The pseudo-code is less than 50 lines in total.

4.2 The farthest-first subsampling algorithm

The goal of the subsampling algorithm is to select a spatially well-distributed subset of a given
scattered set of points S. A greedy heuristic is implemented, based on the so-called farthest-first
traversal. The algorithm starts by choosing a point in S. We currently pick the point closest
to the mean of S; other choices are also possible, including the random choice. Then, points
are selected one-by-one, always picking that not yet chosen point next that is the farthest away
from the already chosen ones, breaking ties arbitrarily. The subsampling algorithm stops when
the desired sample size is reached.

4.3 Generating the new random points in the backsolve step

We refer back to Sec. 2, and to Fig. 2: After each forward solve we must insert new points
into the sample where the manifold is not approximated properly. One way of populating such
deserted areas would be inter- and extrapolation; this would assume that the spatial distribution
of the points is already appropriate for inter- and extrapolation tasks, and assumes connected-
ness of the manifold. While this could be a viable approach, we chose a much simpler and
more robust approach. Essentially we propose brute-force oversampling at the block level: We
try to insert significantly more (x̃i)J points than what we need. We do not know where to insert
them, so we generate them uniformly at random within the variable bounds (brute-force). Then,
the NLPs (9) of the backsolve step are solved, and those points whose objective (norm of the
constraint violation) is above a user-defined threshold are discarded. Finally, we keep only the
most distant ones of the remaining points by applying the subsampling algorithm.

This approach for populating deserted areas of the manifold is very robust, and fairly simple
to implement. It does not assume connectedness, and it does not assume anything about the spa-
tial distribution of the already existing points in the sample. In fact, if we loose all points in the
forward solve, the backsolve may still succeed to insert new points, and the algorithm can con-
tinue. In contrast, it is impossible to inter- and extrapolate if we have lost all our points. Since

10

we cannot assume connectedness of the manifold, some sort of (block-level) global sampling is
inevitable.

4.4 Efficient implementation of the backsolve step

A significant fraction of the execution time is spent in the backsolve step, solving (9). Three
improvements proved to be crucial to perform the backsolve step efficiently: (i) trying only a
small, carefully selected subset of all the possible combinations of the ((x̃i)J, x0:i−h−1) matches
in (9) instead of trying all of them, (ii) estimating a good starting point for (9), and (iii) skipping
those matches that are very likely to have above-threshold objective value (constraint violation)
at the optimum, and would most likely be discarded anyway.

As Sec. 2 is written, we try all the possible ((x̃i)J, x0:i−h−1) matches in a brute-force manner.
The previous implementation of the algorithm also worked [3] this way. Numerical evidence
shows that it can be very wasteful: If two distinct points in the point cloud are close in their xi−h:i

components, it is very likely that the ((x̃i)J, x0:i−h−1) matches will have very similar objective
value in (9) too; there is little to no benefit in trying both of them. An optional heuristic that
we propose is to apply the subsampling algorithm of Sec. 4.2 to the points of the point cloud,
considering their xi−h:i components only. We then try to match the points (x̃i)J with this selected
subset only. This heuristic can be disabled at the user’s discretion.

We propose estimating a starting point yi−h:i for (9) with singular-value decomposition
(SVD, see [32, Ch. 10.2]). For simplicity, and since it seems to be adequate in practice, we
currently ignore during this estimation the variable bounds in (9), and we also assume that a
linear approximation to (9) around the optimum is appropriate. (This estimation is crude: We
set parts of ∆xi to zero, although we let them change in (9) arbitrarily.)

We consider the submatrices of the Jacobian J of F(x) shown in Fig. 3, and defined as
follows. The rows of J11 are the row blocks i−h : i−1 of J; those of J21, and J22 is row block i

of J. The columns of J11 and J21 are the column blocks i−h : i−1 of J; those of J22 is i column
block i of J. In terms of these submatrices, the following linear least-squares problem is solved
with SVD:

minimize
∆xi−h:i−1

∥∥∥∥∥
[

J11

J21

]
[∆xi−h:i−1]−

[
0

J22∆xi

]∥∥∥∥∥
2

2

(11)

Informally speaking, (11) solves the linear approximation to (9) in which the variable bounds
are ignored, (∆xi)J = (x̃i)J− (xi)J , and all other components of ∆xi are zero. The solution to the
linear least-squares problem (11) gives us ∆xi−h:i, and our estimate for yi−h:i is xi−h:i +∆xi−h:i.

The best match ((x̃i)J, x0:i−h−1) for each (x̃i)J is always tried. For those matches for which
the norm of ‖Fi−h:i(x0:i−h−1,yi−h:i)‖ at the starting point is below the pre-defined threshold
(hyperparameter), we select at most m− 1 additional candidate ((x̃i)J , x0:i−h−1) matches with
subsampling. For each candidate match, we launch the local solver from the estimated yi−h:i

11

Fi−h

Fi−h+1
.
.
.

Fi−1

Fi

xi−h xi−h+1 · · · xi−1 xi

J11 0

J21 J22
Figure 3: Submatrices J11, J21, and J22 used in the starting point estimation for the backsolve
step, see (11).

to solve (9). The value of m is an arbitrary, used-defined value; in our numerical experiments
m = 20 was used, and we did not attempt to tune this hyperparameter.

5 Numerical results: The effect of decomposition

We give numerical results where the computational gains, if any, are thanks to the block decom-
position. The benchmark problems are coded in the AMPL modeling language [19], and are
available on GitHub [2] together with the source code of the algorithm.

5.1 Series of test problems

The steady-state simulation of distillation columns can be a major numerical challenge [11].
Our example is a series of challenging distillation columns; these columns have 3 solutions,
one of which is missed even with problem-specific methods, see Sec. 5.2. Distillation columns
consist of so-called stages. The natural order of the stages directly yields the desired block
structure (2) and (4) by virtue of the internal physical layout of distillation columns; no prepro-
cessing is necessary. (Even if it was not the case, we could use any of the ordering algorithms
referenced in Sec. 1.4 and 1.5 to create the block structure fully automatically.) There is a
one-to-one correspondence between the stages and the blocks.

In the engineering applications it is common to optimize the total cost by varying the number
of stages, which makes distillation columns perfect test problems from the perspective of the
present paper: Distillation columns have a natural parameter, namely the number of stages,
for examining how different numerical methods scale as the number of blocks changes. As
the number of blocks is varied (within reasonable limits) each column is interesting from an
engineering point of view. Let N denote the number blocks. In our examples the size of each

12

block is 4× 4 except the first block which is 2× 2; the problem size is 4N; the number of
nonzeros is 25N−10. The manifold dimension d = 2, and it is independent of N.

The model equations are the MESH equations: The component material balance (M), vapor-
liquid equilibrium (E), summation (S), and heat balance (H) equations are solved. The liquid
phase activity coefficient is computed from the Wilson equations. The model and its parameters
correspond to the Auto model [21], except for the number of stages N and the feed stage location
NF . The specifications are the feed composition (methanol–methyl butyrate–toluene), the reflux
ratio, and the vapor flow rate.

There are three steady-state branches: two stable steady-state branches and an unstable
branch; this was experimentally verified in an industrial pilot column operated at finite re-
flux [12, 21]. Multiple steady-states can be predicted by analyzing columns with infinite reflux
and infinite length [5, 22, 35]. These predictions for infinite columns have relevant implications
for columns of finite length operated at finite reflux.

5.2 Numerical results published in the literature

The published numerical results for our test problem indicate numerical difficulties. Both the
conventional inside-out procedure [6] and the simultaneous correction procedure [31] were re-
ported to miss the unstable steady-state solution, see VADAPALLI & SEADER [40] and KAN-
NAN et al. [27] (all input variables specified; output multiplicity). However, all steady-state
branches were computed either with the AUTO software package [10] or with an appropriate
continuation method [21, 27, 40]. In both cases, the initial estimates were carefully chosen
with the ∞/∞ analysis [5, 22], and special attention was paid to the turning points and branch
switching. Unfortunately, those papers do not include execution times, most likely because
the computations involved human interactions too (initial estimates, turning points and branch
switching).

5.3 The baseline for comparisons

As discussed in Sec. 5.2, the literature clearly indicates that our benchmark problems are chal-
lenging, unfortunately the execution times are not available for comparisons; we have to estab-
lish a baseline for comparisons.

5.3.1 Requirements for the baseline algorithm

In order to assess the quality of our new method within the prior state of the art we need to
compare against a suitable baseline method with similar capabilities. We use the following
criteria that such a baseline method should possess. It should be

(1) state-of-the-art;
(2) able to enumerate all solutions of large, sparse systems;
(3) able to handle transcendental equations and bound constraints,

13

(4) usable from an advanced modeling language without user-input beyond equations and
variable bounds;

(5) a generic algorithm not tailored to a specific class of problems;
(6) easy to use without any expert knowledge;
(7) publicly available as an off-the-shelf solver.

To our knowledge, there is currently no such solver. But the technology to create one based
on traditional techniques is available; so we wrote the baseline solver ourselves. We chose
AMPL [19] as the modeling environment IPOPT [41] as local solver. Both are state-of-the-art,
and their highly polished implementation is among the fastest ones. To enumerate all solu-
tions, we implemented multistart with uniform random sampling between the variable bounds.
(Uniform sampling is adequate since all variables are scaled to be between 0 and 1.)

5.3.2 Results with the baseline algorithm

IPOPT was executed from 250,000 randomly generated points for N = 50..74, and 500,000
points were necessary for N = 75 to get consistent results. Table 1 shows the relative frequencies
of IPOPT finding a particular solution.

N sol. 1 sol. 2 sol. 3 none

50 82.3 17.0 0.7 0.0
51 83.1 16.2 0.7 0.0
52 84.0 15.3 0.7 0.0
53 84.8 14.5 0.7 0.0
54 85.6 13.7 0.6 0.0
55 86.1 13.2 0.6 0.0
56 86.7 12.6 0.6 0.0
57 87.2 12.2 0.6 0.0
58 87.6 11.7 0.5 0.1
59 88.0 11.2 0.5 0.3
60 88.3 10.6 0.5 0.5
61 88.7 9.8 0.5 1.0
62 89.2 9.0 0.4 1.4
63 89.4 8.2 0.4 2.0
64 89.6 7.3 0.4 2.7
65 89.7 6.4 0.3 3.6
66 89.8 5.6 0.3 4.3
67 90.0 4.8 0.2 5.0
68 90.1 4.1 0.2 5.6
69 90.3 3.5 0.2 6.1
70 90.2 3.0 0.1 6.6
71 90.4 2.6 0.1 6.9
72 90.5 2.2 0.1 7.2
73 90.6 1.9 0.1 7.4
74 90.6 1.7 0.1 7.7
75 90.6 1.5 0.1 7.8

Table 1: Relative frequencies (percentages) of IPOPT finding a particular solution when starting
points are generated uniformly at random between the variable bounds.

14

The points are partitioned into consecutive batches: The first batch starts with the first point.
A batch is completed when all 3 solutions are found, and then the next batch starts. Only batches
completed within the allocated point budget count (250,000 points for each N = 50..74, and
500,000 points for N = 75), that is, if the last batch is unfinished, we ignore it. For a fixed N,
the total number of iterations per completed batch fits the exponential distribution, see Fig. 4 for
N = 60. The growth rate of the expected number of iterations in a batch fits equally well with

0 50000 100000 150000
number of iterations per batch

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

Figure 4: Histogram of the number of iterations per batch when the starting points are generated
uniformly at random between the variable bounds; N = 60. The fitted curve corresponds to the
exponential distribution.

exponential and linear correlation in the N = 50..63 regime, and it fits exponential growth rate
between N = 64..75, see Fig 5. The total number of iterations IPOPT made in a batch correlates
well with the total execution time, and with the number of starting points in the same batch.

15

50 55 60 65 70 75
N (number of blocks)

4.2

4.4

4.6

4.8

5.0

5.2

lg
(m

ea
n

nu
m

be
r o

f i
te

ra
tio

ns
 p

er
 b

at
ch

)

64 66 68 70 72 74
N (number of blocks)

4.4

4.6

4.8

5.0

5.2

lg
(m

ea
n

nu
m

be
r o

f i
te

ra
tio

ns
 p

er
 b

at
ch

)

50 52 54 56 58 60 62 64
N (number of blocks)

4.15

4.20

4.25

4.30

4.35

lg
(m

ea
n

nu
m

be
r o

f i
te

ra
tio

ns
 p

er
 b

at
ch

)

50 52 54 56 58 60 62 64
N (number of blocks)

12000

14000

16000

18000

20000

22000

24000

m
ea

n
nu

m
be

r o
f i

te
ra

tio
ns

 p
er

 b
at

ch

Figure 5: Computational effort of multistart with starting points generated uniformly at random
between the variable bounds. The effort is measured as the mean number of iterations per batch,
averaged over 250,000 starting points. The effort growth rate fits equally well with exponential
and linear correlation in the N = 50..63 regime, and it fits exponential growth rate between
N = 64..75.

16

5.4 Results with the proposed method

5.4.1 Illustrating the point cloud computed with the proposed method

−2.5 0.0 2.5

−2

0

2

4
y1 - y2 colored by y3

−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

−2.5 0.0 2.5

−1

0

1

2

y1 - y3 colored by y2

−3
−2
−1
0
1
2
3
4

−2.5 0.0 2.5

−1

0

1

2

y2 - y3 colored by y1

−3
−2
−1
0
1
2
3
4

0 2

−1

0

1

y3 - y4 colored by y1

−3
−2
−1
0
1
2
3
4

Figure 6: Representative sample of the 2D solution manifold of the leading subsystem
F0:30(x) = 0, generated with the proposed method (N = 60). The sample is projected to the
planes of the principal components yi–y j.

Fig. 6 shows the intermediate point cloud in iteration i = 30 for N = 60, projected to 2D
with principal component analysis (PCA). We used Scikit-learn [34] to perform PCA and to
generate the plots. Fig. 7 shows the final output of the proposed method, the generated starting
points, projected to 2D with PCA. We also managed to embed the 2D manifold of these starting
points into the 2D plane with multidimensional scaling (MDS) from [34]; this embedding is
shown in Fig. 8.

5.4.2 Running a local solver from the output of the proposed algorithm

The subsampling algorithm of Sec. 4.2 selects the points in a specific order; the subsampling
procedure can be used to order the points in any set S. This order is the so-called greedy
permutation or the farthest-first traversal. When the main algorithm finishes, we propose that a

17

−5 0 5

−2

0

2

4
y1 - y2 colored by y3

−1

0

1

2

3

4

−5 0 5

0

2

4

y1 - y3 colored by y2

−2
−1
0
1
2
3
4

−2 0 2 4

0

2

4

y2 - y3 colored by y1

−4

−2

0

2

4

6

−5 0 5
−2

−1

0

1

2

y1 - y4 colored by y2

−2
−1
0
1
2
3
4

Figure 7: The starting points generated by the proposed method (N = 60). The points are
projected to the planes of the principal components yi–y j. There would be 3 well-separated
clusters of points in the ideal case, however, the last two equations FN+1(x) = 0 only trim the
2D solution manifold of the leading subsystem F0:N(x) = 0 due to mild ill-conditioning. One
cluster is nevertheless fairly small and well-separated.

local solver for large-scale, sparse problems (like IPOPT) is launched from the points of the final
point cloud in this order. The numerical experiments suggest that this increases the likelihood
of finding all solutions early, because we always try that point next that is the least similar to the
already tried ones. As it is shown in Fig. 8, the first 3 points picked by the farthest-first heuristic
suffice to find all solutions in this case. Note that in Sec. 5.3 the probability of finding the
third solution was 0.5% for starting points generated uniformly at random between the variable
bounds; see in Table 1, row N = 60.

Numerical experiments also show that the final constraint violations are non-distinctive with
respect to the goodness of the starting points: Below a certain threshold, the constraint violations
are due to the random perturbations applied in the backsolve step, and they do not convey
any information regarding the goodness of the starting points. In other words, the constraint
violation is not a good metric for ordering the final starting points; we propose the farthest-first
traversal instead.

18

−5 0 5
−6

−4

−2

0

2

4

1

2

3

Figure 8: The starting points (circles and squares) generated by the proposed method (N = 60),
embedded into the 2D with plane with multidimensional scaling. The 3 crosses show the 3
solutions. Each cluster of starting points yields the solution it surrounds when the IPOPT solver
is started from there. The first 3 points picked by the farthest-first heuristic of Sec. 4.2 are
marked with 1, 2, 3; in this case, they suffice to find all solutions. Note that the farthest-first
heuristic measures distances in the space of the input variables.

5.5 Comparisons: The effect of decomposition

The effect of the decomposition (2)–(5) can be studied by requesting all solutions for a given
column length, and comparing the execution times of the proposed method with the baseline
multistart algorithm (no decomposition). As we discussed in Sec. 5.3, if the starting points
are generated uniformly at random within the variable bounds, the computational efforts grow
exponentially for N ≥ 64. For the proposed method, the computational efforts grow linearly,
thanks to the decomposition. It depends on the problem size (column length) and on the hyper-
parameter settings whether the decomposition, and the more sophisticated algorithm pays off;
see the left column of Fig. 9, comparing the execution times.

6 Numerical results: Reusing shared substructure

A frequent task in engineering is to solve a series of related square systems F`(x) = 0, where
the number N` of blocks of the `th problem and hence the Jacobian varies, but the equations in
the first B` blocks of F` and F`+1 are identical; the remainder may deviate arbitrarily. If B` is
close to N`, the major part of the point cloud generation can be reused without any change.

We give numerical results where the computational gains, if any, are thanks to the reused
substructure. The benchmark problems and the baseline algorithm are the same as in Sec. 5. The
difference is that all solutions to 10 different columns with consecutive length are required. The

19

shared substructure can be reused with the proposed method. This results in significant gains
compared to our baseline multistart method, see the right column of Fig. 9. As previously, it
depends on the problem size, and on the hyperparameter settings whether the decomposition,
and the more sophisticated algorithm pays off.

7 Future work

Nonlinear programming with optionally varying N and `. Another common application in
the field of engineering is to augment the leading subsystem of F1:N(x0:N) = 0 of (1) with an
objective function and ask for all global optima.

min G(N,`)(x0:N)

s.t. F1:N(x0:N) = 0
x≤ x≤ x

(12)

The basic algorithm, sketched in Sec. 2, is applied to F1:N(x0:N) = 0 up until and including block
N as before to obtain a point cloud, approximately satisfying the constraints of (12). Then, a
local solver is executed from the points of the point cloud, targeting the nonlinear program (12).
As for the computational savings with varying N and `, the same arguments hold as in the
previous paragraphs: Whether the leading underdetermined subsystem is augmented with d

additional equations (making it square), or with an objective function, the point cloud for the
shared leading subsystem F1:N(x0:N) = 0 can be reused either way.

20

50 55 60 65 70 75
N (number of blocks)

50

100

150

200

250

300

350
Ti

m
e

(s
)

h = 8
h = 7
h = 6
h = 5
multistart

60 65 70 75
N (number of blocks)

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(s

)

h = 8
h = 7
h = 6
h = 5
multistart

50 55 60 65 70 75
N (number of blocks)

0

100

200

300

400

500

Ti
m

e
(s

)

h = 8
h = 7
h = 6
h = 5

h = 4
h = 3
multistart

60 65 70 75
N (number of blocks)

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(s

)

h = 8
h = 7
h = 6
h = 5
h = 4
h = 3
multistart

50 55 60 65 70 75
N (number of blocks)

0

200

400

600

800

1000

Ti
m

e
(s

)

h = 8
h = 7
h = 6
h = 5

h = 4
h = 3
h = 2
multistart

60 65 70 75
N (number of blocks)

200

400

600

800

1000

1200

1400

1600

Ti
m

e
(s

)

h = 8
h = 7
h = 6
h = 5

h = 4
h = 3
h = 2
multistart

Figure 9: Comparing the execution times of the proposed method to multistart with randomly
generated starting points between the variable bounds. For multistart, the mean execution time
for a batch is given, averaged over 250,000 starting points. The execution times for the proposed
method are all-inclusive: IPOPT is launched from the first 6 points picked by the farthest-first
heuristic which suffices to find all 3 solutions. Left side: All solutions are required for the
given column lengths. Right side: All solutions to 10 different columns with consecutive length
are required; the execution times are plotted at the longest column. Rows from top to bottom:
Mkeep = 100, 200, 400; for the meaning of the algorithmic parameters h (history), Mkeep (at
most this many new points are inserted in each iteration) see the pseudo-code in Appendix A.

21

References
[1] Aspen Technology, Inc. Aspen Simulation Workbook, Version Number: V7.1, 2009.

Burlington, MA, USA. EO and SM Variables and Synchronization, p. 110.

[2] A. Baharev. ManiSolve: A manifold-based approach to solve systems of equations, 2018.
URL https://github.com/baharev/ManiSolve.

[3] A. Baharev, F. Domes, and A. Neumaier. A robust approach for finding all well-separated
solutions of sparse systems of nonlinear equations. Numerical Algorithms, 76:163–189,
2017. ISSN 1572-9265. URL https://doi.org/10.1007/s11075-016-0249-x.

[4] A. Baharev and A. Neumaier. A globally convergent method for finding all steady-state
solutions of distillation columns. AIChE J., 60:410–414, 2014.

[5] N. Bekiaris, G.A. Meski, C.M. Radu, and M. Morari. Multiple steady states in homoge-
neous azeotropic distillation. Ind. Eng. Chem. Res., 32:2023–2038, 1993.

[6] J.F. Boston and S.L. Sullivan. A new class of solution methods for multicomponent,
multistage separation processes. Can. J. Chem. Eng., 52:52–63, 1974.

[7] S. Bublitz, E. Esche, G. Tolksdorf, V. Mehrmann, and J.U. Repke. Analysis and decom-
position for improved convergence of nonlinear process models in chemical engineering.
Chemie Ingenieur Technik, 89(11):1503–1514, 2017.

[8] Dassault Systèmes AB. Dymola – Dynamic Modeling Laboratory. User Manual, 2014.
Vol. 2., Ch. 8. Advanced Modelica Support.

[9] T.A. Davis. Direct methods for sparse linear systems. In N.J. Higham, editor, Fundamen-
tals of algorithms. Philadelphia, USA: SIAM, 2006.

[10] E.J. Doedel, X.J. Wang, and T.F. Fairgrieve. AUTO94: Software for continuation and
bifurcation problems in ordinary differential equations. Technical Report CRPC-95-1,
Center for Research on Parallel Computing, California Institute of Technology, Pasadena
CA 91125, 1995.

[11] M.F. Doherty, Z.T. Fidkowski, M.F. Malone, and R. Taylor. Perry’s Chemical Engineers’
Handbook, chapter 13, p. 33. McGraw-Hill Professional, 8th ed., 2008.

[12] C. Dorn, T.E. Güttinger, G.J. Wells, and M. Morari. Stabilization of an unstable distillation
column. Ind. Eng. Chem. Res., 37:506–515, 1998.

[13] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Clarendon
Press, Oxford, 1986.

[14] A.L. Dulmage and N.S. Mendelsohn. Coverings of bipartite graphs. Can. J. Math., 10:
517–534, 1958.

[15] A.L. Dulmage and N.S. Mendelsohn. A structure theory of bipartite graphs of finite exte-
rior dimension. Trans. Royal Society of Canada. Sec. 3., 53:1–13, 1959.

[16] A.L. Dulmage and N.S. Mendelsohn. Two algorithms for bipartite graphs. J. Soc. Ind.
Appl. Math., 11:183–194, 1963.

22

https://github.com/baharev/ManiSolve
https://doi.org/10.1007/s11075-016-0249-x

[17] A.M. Erisman, R.G. Grimes, J.G. Lewis, and W.G.J. Poole. A structurally stable modi-
fication of Hellerman-Rarick’s P4 algorithm for reordering unsymmetric sparse matrices.
SIAM J. Numer. Anal., 22:369–385, 1985.

[18] R. Fletcher and J.A.J. Hall. Ordering algorithms for irreducible sparse linear systems.
Annals of Operations Research, 43:15–32, 1993.

[19] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Mathemat-
ical Programming. Brooks/Cole USA, 2003.

[20] G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, USA, 3rd ed., 1996.

[21] T.E. Güttinger, C. Dorn, and M. Morari. Experimental study of multiple steady states in
homogeneous azeotropic distillation. Ind. Eng. Chem. Res., 36:794–802, 1997.

[22] T.E. Güttinger and M. Morari. Comments on “multiple steady states in homogeneous
azeotropic distillation”. Ind. Eng. Chem. Res., 35:2816–2816, 1996.

[23] E. Hellerman and D.C. Rarick. Reinversion with preassigned pivot procedure. Math.
Programming, 1:195–216, 1971.

[24] E. Hellerman and D.C. Rarick. The partitioned preassigned pivot procedure (P4). In D.J.
Rose and R.A. Willoughby, editors, Sparse Matrices and their Applications, The IBM
Research Symposia Series, pp. 67–76. Springer US, 1972.

[25] HSL. A collection of Fortran codes for large scale scientific computation., 2016. URL
http://www.hsl.rl.ac.uk.

[26] D.M. Johnson, A.L. Dulmage, and N.S. Mendelsohn. Connectivity and reducibility of
graphs. Can. J. Math, 14:529–539, 1962.

[27] A. Kannan, M.R. Joshi, G.R. Reddy, and D.M. Shah. Multiple-steady-states identification
in homogeneous azeotropic distillation using a process simulator. Ind. Eng. Chem. Res.,
44:4386–4399, 2005.

[28] W.K. Lewis and G.L. Matheson. Studies in distillation. Ind. Eng. Chem., 24:494–498,
1932.

[29] Modelica. Modelica and the modelica association. https://www.modelica.org/, 2018.
[Online; accessed 14-October-2018].

[30] Modelon AB. JModelica.org User Guide, version 2.2. https://jmodelica.org/

downloads/UsersGuide.pdf, 2018. [Online; accessed 14-October-2018].

[31] L.M. Naphthali and D.P. Sandholm. Multicomponent separation calculations by lineariza-
tion. AIChE J., 17:148–153, 1971.

[32] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, USA, second
ed., 2006.

[33] OpenModelica. Openmodelica user’s guide. https://openmodelica.org/doc/

OpenModelicaUsersGuide/latest/omchelptext.html, 2018. [Online; accessed 14-
October-2018].

23

http://www.hsl.rl.ac.uk
https://www.modelica.org/
https://jmodelica.org/downloads/UsersGuide.pdf
https://jmodelica.org/downloads/UsersGuide.pdf
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[35] F.B. Petlyuk. Distillation Theory and Its Application to Optimal Design of Separation
Units. Cambridge University Press, Cambridge, UK, 2004.

[36] A. Pothen and C.J. Fan. Computing the block triangular form of a sparse matrix. ACM
Trans. Math. Softw., 16:303–324, 1990.

[37] M.A. Stadtherr and E.S. Wood. Sparse matrix methods for equation-based chemical pro-
cess flowsheeting–I: Reordering phase. Computers & Chemical Engineering, 8(1):9–18,
1984.

[38] M.A. Stadtherr and E.S. Wood. Sparse matrix methods for equation-based chemical pro-
cess flowsheeting–II: Numerical Phase. Computers & Chemical Engineering, 8(1):19–33,
1984.

[39] E. Thiele and R. Geddes. Computation of distillation apparatus for hydrocarbon mixtures.
Ind. Eng. Chem., 25:289–295, 1933.

[40] A. Vadapalli and J.D. Seader. A generalized framework for computing bifurcation dia-
grams using process simulation programs. Comput. Chem. Eng., 25:445–464, 2001.

[41] A. Wächter and L.T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–
57, 2006.

24

A Pseudo-code of the implemented algorithms

Algorithm 1: The proposed algorithm (top level, main algorithm)
Input: P: A problem instance as defined by (1), see also Fig. 1
Output: A set of starting points S(N+1) for a local solver
Parameters: M0: Number of points to generate for the initial set S(0)

Mkeep: We add at most this many new points in each iteration i
h: The number blocks to re-solve in backsolve
εlast : The acceptable constraint violation in the last step

1 Initialize the set of x0 points, S(0), uniformly at random with M0 points
2 for i = 1 to N do

// Forward solve, see Sec. 2:
3 foreach x0:i−1 ∈ S(i−1) do

// Square system solved from random starting point, variable bounds ignored:
4 Solve Fi(x0:i−1,xi) = 0 for xi (with x0:i−1 fixed)
5 Add the resulting x0:i vector to S(i) (even if it is bound infeasible)

// Call backsolve to add more points, see Eq.(9) and Fig. 2 in Sec. 2:
6 Call Algorithm 3 with S(i); that algorithm returns a new set of points T
7 Append T to S(i)

// Try to repair the bound infeasible points by small perturbations:
8 Call Algorithm 2 with S(i), and then replace S(i) with the returned set

// All points in S(i) are bound feasible now; the too infeasible ones were discarded.
// Backsolve oversampled the search space (brute-force), discard the excess points:

9 Apply subsampling in xi to the points inserted by Alg. 3, keep at most Mkeep of them
// Only the xi components of the new points were considered in the subsampling.
// We have |S(i)| ≤M0 + i ·Mkeep points at this line.

10 i = N +1
// Reached the last d equations with no new variables; try to reduce ‖FN+1(x)‖:

11 foreach x0:i−1 ∈ S(i−1) do
// Overdetermined system, xi−h:N as starting point, variable bounds ignored:

12 minyi−h:N ‖Fi−h:i(x0:i−h−1,yi−h:N)‖
13 Let x∗0:N := (x0:i−h−1,yi−h:N) denote the optimal solution
14 Add x∗0:N to S(i) if

∥∥Fi−h:i(x∗0:N)
∥∥≤ εlast

// Try to repair the bound infeasible points by small perturbations:
15 Call Algorithm 2 with S(i), then replace S(i) with the returned set
16 return S(i)

25

Algorithm 2: Repairing bound infeasibility; workaround due to VA27 from [25]

Input: P, h, i, and S(i) from Alg. 1
Output: Set of points W, all x0:i ∈V are bound feasible and ‖Fi−h:i(x0:i)‖ ≤ ε

Parameters: δ : Threshold above which we do not try to repair bound infeasibility
d: The manifold dimension in (1)
ε: Tolerated constraint violation

// If i = N +1, x0:i is cropped to be x0:N .
// Keep only those points that have sufficiently small bound violations:

1 Compute the subset T of S(i) for which the L2-norm of bound violations is less then δ

// The already bound feasible points are temporarily ignored till line 8:
2 Split T into set U of the bound feasible points, and set V of the bound infeasible ones
3 Project each point in V back to the nearest boundary of the bound feasible region

// We now fix those components that changed the most during the projection,
// and try to reduce the constraint violations by changing the remaining components:

4 foreach x0:i ∈V do
5 Minimize ‖Fi−h:i(x0:i)‖ with the d most changed components fixed

// If less then d components changed during the projection,
// fix some at random until d components are fixed.

6 Save the resulting point in W

7 Project each point in W back to the nearest boundary of the bound feasible region
8 Merge U into W
9 For each x0:i ∈W re-evaluate ‖Fi−h:i(x0:i)‖

10 Discard all x0:i ∈W for which ‖Fi−h:i(x0:i)‖> ε

11 return the remaining set of points W

26

Algorithm 3: Backsolve

Input: P, h, i, and S(i) from Alg. 1
Output: New set of points T , see Fig. 2 for an example
Parameters: Mback: Number of (x̃i)J points to generate at random, see also Sec. 2

εlinear: Residual threshold for candidate matches
εnl p: Residual threshold after solving the nonlinear program (9)
m: 20 in our experiments, see Sec. 4.4

1 Generate the (x̃i)J points with a random number generator, Mback points in total
2 if i≤ h then

// We get a square system after fixing (x̃i)J . We use random starting points,
// and we ignore the variable bounds and all the points in S(i):

3 Solve F1:i(x0:i) = 0 for x0:i with (x̃i)J fixed (ignore variable bounds)
4 Add the results to the new set of points T (even if bound infeasible)

5 if i > h then
6 Optional: Compute a subsample Ŝ(i) of S(i) with farthest-first subsampling of Sec. 4.2

// When the optional subsampling heuristic is disabled: Ŝ(i) := S(i).
// Fi−h:i(x0:i−h−1,xi−h:i) = 0 is square before fixing (x̃i)J , overdetermined after that.
// Unlike when i≤ h, here we compute starting points, and we use Ŝ(i) for that.
// For each ((x̃i)J, x0:i−h−1) pair we estimate the optimal solution of (9)
// by its linear approximation (11):

7 foreach x0:i ∈ Ŝ(i) do

8 Compute the pseudo-inverse of
[

J11
J21

]
, cf. (11) in Sec. 4.4

9 foreach (x̃i)J in the new randomly generated points do
10 Compute the starting point ŷi−h:i for (9) by solving (11), see in Sec. 4.4

11 Save the residual
∥∥∥∥[J11

J21

]
[∆xi−h:i−1]−

[
0

J22∆xi

]∥∥∥∥2

2
together with ŷi−h:i

// Select the candidate matches ((x̃i)J, x0:i−h−1):
12 foreach (x̃i)J in the new randomly generated points do

// We view x0:i−h−1 and ŷi−h:i as a function of (x̃i)J , as on line 10
13 Given (x̃i)J , always select the match (x0:i−h−1, ŷi−h:i) with the smallest residual
14 From those matches whose residual is less then εlinear, select at most m−1 points

// The additional m−1 points are selected with farthest-first subsampling in xi
15 Add the selected matches to the candidate matches

// Solve the nonlinear programs (9) from their estimated starting point:
16 For each candidate match, solve (9) for yi−h,i starting from ŷi−h:i
17 Add the result to the set of points T if ‖Fi−h:i(x0:i−h−1,yi−h:i)‖ ≤ εnl p at the optimum

// Try to repair the bound infeasible points:
18 Call Algorithm 2 with T , then replace T with the returned set

// All points in T are bound feasible now, and satisfy F1:i(x0:i)≈ 0
19 return T

27

	Abstract
	Introduction
	Aims
	Terminology
	Bordered block lower triangular forms
	Creating the desired block decomposition automatically
	Tearing heuristics to create bordered block lower triangular forms
	Further assumptions

	Overview of the proposed algorithm
	Exponential worst-case time complexity in the border width
	Implementation details of the proposed algorithm
	The source code of the algorithm
	The farthest-first subsampling algorithm
	Generating the new random points in the backsolve step
	Efficient implementation of the backsolve step

	Numerical results: The effect of decomposition
	Series of test problems
	Numerical results published in the literature
	The baseline for comparisons
	Results with the proposed method
	Comparisons: The effect of decomposition

	Numerical results: Reusing shared substructure
	Future work
	References
	Pseudo-code of the implemented algorithms

