
Numer Algor
DOI 10.1007/s11075-016-0249-x

ORIGINAL PAPER

A robust approach for finding all well-separated
solutions of sparse systems of nonlinear equations

Ali Baharev1 ·Ferenc Domes1 ·Arnold Neumaier1

Received: 24 November 2015 / Accepted: 30 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Tearing is a long-established decomposition technique, widely adapted
across many engineering fields. It reduces the task of solving a large and sparse non-
linear system of equations to that of solving a sequence of low-dimensional ones.
The most serious weakness of this approach is well-known: It may suffer from severe
numerical instability. The present paper resolves this flaw for the first time. The new
approach requires reasonable bound constraints on the variables. The worst-case time
complexity of the algorithm is exponential in the size of the largest subproblem of the
decomposed system. Although there is no theoretical guarantee that all solutions will
be found in the general case, increasing the so-called sample size parameter of the
method improves robustness. This is demonstrated on two particularly challenging
problems. Our first example is the steady-state simulation a challenging distillation
column, belonging to an infamous class of problems where tearing often fails due to
numerical instability. This column has three solutions, one of which is missed using
tearing, but even with problem-specific methods that are not based on tearing. The
other example is the Stewart–Gough platform with 40 real solutions, an extensively
studied benchmark in the field of numerical algebraic geometry. For both examples,
all solutions are found with a fairly small amount of sampling.

Keywords Decomposition methods · Diakoptics · Large-scale systems
of equations · Numerical instability · Sparse matrices · Tearing

� Ali Baharev
ali.baharev@gmail.com

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-016-0249-x&domain=pdf
http://orcid.org/0000-0003-4715-9003
mailto:ali.baharev@gmail.com


Numer Algor

1 Introduction

We consider square nonlinear systems

F(x) = 0,

x ≤ x ≤ x,
(1)

where F : R
n �→ R

n is a continuously differentiable vector-valued function and
whose Jacobian is structurally nonsingular; x and x denote the componentwise lower
and upper bounds on the variables x, respectively.

From an applied point of view, it is usually not meaningful to distinguish two
solutions that are too close, due to the intrinsic uncertainty of every real-life model.
Therefore, the task we pose is to find a reasonably small set of points such that
every solution of (1) is close to one of the points in this set. An algorithm solving
this task finds in particular all well-separated solutions. Even for problems with an
infinite number of solutions, only a finite number of points need to be generated. Such
problems are expected to come only from defective models, and our implementation
will return in such cases a diagnostic message.

Our algorithm assumes that the variables are adequately scaled. This allows us
to use one of the standard norms to measure distances; unless otherwise indicated,
we use the maximum norm (�∞ norm). We also assume that the bound constraints
x ≤ x ≤ x are finite and reasonable; this is needed to allow an adequate sam-
pling of the search space. (Therefore, our method may not work well when a variable
is unbounded or its upper bound is not known, and the user circumvents this by
specifying a huge number such as 1020 as upper bound.)

Finite bound constraints are also important from an engineering perspective: These
bounds often exclude those solutions of F(x) = 0 that either have no physical mean-
ing or lie outside the validity of the model. In a typical technical system, all variables
are bounded from below and from above. Indeed, a model is typically valid only in
a finite range of the variables. Physical limitations of the devices and the design typ-
ically impose minimal and maximal geometry, load, or throughput of the devices;
this implies bounds on the corresponding variables. There are also natural physi-
cal bounds, for example, the mass fractions must be between 0 and 1. In practice,
not all bounds are made explicit in the model because implied bounds would be
tedious for the modeler to derive by hand and to keep up-to-date when the model
changes. Therefore, the bounds are conventionally not specified explicitly if they can
be deduced from the model formulation; e.g., upper bounds on nonnegative variables
are typically not specified if there is a constraint fixing their sum. Fully automatic
and computationally cheap preprocessing can compute sufficient (but not necessarily
sharp) bounds for properly specified models, see for example [13, 47, 67], or [90].
When dealing with technical systems, a variable that remains unbounded after such
preprocessing is almost always a sign of a modeling mistake. We therefore assume
that such a preprocessing has already been done successfully when presenting (1) to
our algorithm.

Besides the (possibly infinite) number of solutions that exist, the sparsity pat-
tern of F ′ decides how efficiently (1) can be solved. We therefore discuss favorable
forms of sparse matrices in Section 1.1, and in Section 1.2 we present algorithms



Numer Algor

for automatically ordering sparse matrices to the form required by the proposed
algorithm. Since the paper is concerned with resolving the most serious flaw of tear-
ing, we first briefly review it in Section 1.3. The robustness of the method will be
demonstrated on problems with multiple solutions; the alternative approaches are
discussed in Section 1.4. Some important specific applications are summarized in
Section 1.5. The proposed method is given in Section 2, and the numerical results
in Section 3. The Appendix contains practical matters, such as parameter tuning and
implementation-level remarks.

1.1 Staircase triangular matrices

We call any partition of rows and columns of a square matrix A into the same number
m of contiguous row blocks R1, . . . , Rm and contiguous column blocks C1, . . . , Cm a
block structure. A lower triangular block structure (or LTBS) of A is a block structure
that partitions A into conforming submatrices Ajk consisting of the entries in the
contiguous rows of Rj and columns of Ck such that Ajk = 0 for j < k. Thus, A

may be viewed as a generalization of a block lower triangular matrix to the case of
possibly rectangular diagonal blocks Ajj . In general, this may be possible in many
different ways.

We say that a square matrix A ∈ R
n×n is a staircase triangular matrix (or has

staircase triangular form) if it has no zero row or column and if the columns cr of the
last nonzero entry in row r = 1, . . . , n form a monotone increasing sequence, and
the first nonzero entry in column 1, . . . , n forms a monotone decreasing sequence.
Staircase triangular matrices generalize staircase matrices (as surveyed, e.g., by [32])
by allowing the lower triangular part to contain additional entries, but restrict the
possibilities slightly by imposing a minimal structure on the “walking profile” of the
stairs. In practice, the lower triangular part is usually very sparse but often not of the
form required by the traditional staircase matrices. By introducing a block boundary
at every step of the stair, the staircase triangular form induces a canonical LTBS in a
geometrically intuitive way; cf. Fig. 1. The corresponding algebraic description is as
follows. By definition,

1 ≤ c1 ≤ . . . ≤ cn = n.

Let r1 = 1 and let r2 < . . . < rm be the list of r = 2, . . . , n with cr−1 < cr in
increasing order. Then, the rows are partitioned into m consecutive, nonempty row
blocks

Rj =
{ {rj : rj+1 − 1} if j = 1, . . . , m − 1,

{rj : n} if j = m,

and the columns into m consecutive, nonempty column blocks

Ck =
{ {1 : cr1} if k = 1,

{crk−1 + 1 : crk } if k = 2, . . . , m.

The shorthand p:q is used for the index set p, p + 1, . . . , q, where p ≤ q. The stair-
case triangular form implies that the resulting block structure is lower triangular. The
simplest examples of staircase triangular matrices are nonsingular lower triangular
matrices where cr = r , corresponding to n blocks of size 1.



Numer Algor

Fig. 1 Left: A staircase triangular matrix whose canonical LTBS has fully dense diagonal blocks. Right:
another LTBS structure for the same matrix

In addition to the canonical LTBS, we may obtain LTBSs with fewer blocks
by arbitrarily merging one or more consecutive row blocks and the corresponding
column blocks, cf. Fig. 1.

1.2 Ordering to staircase triangular form

The ordering algorithms typically used assume that the input matrix is structurally
nonsingular. This is revealed by the Dulmage–Mendelsohn decomposition [24–27,
45, 66, Ch. 6], and [18, Ch. 7]. This decomposition is a standard procedure, and effi-
cient computer implementations are available, for example HSL MC79 from the [44].
For a structurally nonsingular square matrix, the Dulmage–Mendelsohn decomposi-
tion always produces a block lower triangular matrix with structurally nonsingular
square blocks on the diagonal. These diagonal blocks are irreducible. The ordering
algorithms that we discuss orders each of these diagonal blocks to staircase trian-
gular form; the correspondingly ordered full matrix will be automatically staircase
triangular as well.

Practical algorithms for ordering sparse matrices to staircase triangular form
include the Hellerman–Rarick family of ordering algorithms [24, 29, 42, 43], and
the algorithms of [78, 79]. An efficient computer implementation of the Heller–
man–Rarick algorithms is MC33 from the [44]. Although there are subtle differences
among the various ordering algorithms, they all fit the same pattern when viewed
from a high level of abstraction [31]: Algorithm 1 is the fundamental algorithm. The
various ordering algorithms typically assume that the matrix is irreducible and only
seem to differ in the lookahead step to break ties on line 3. Figure 2 shows an inter-
mediate stage of the algorithm. Any version of Algorithm 1 will produce a staircase
triangular matrix whose canonical diagonal blocks are fully dense.



Numer Algor

Fig. 2 An intermediate stage of
Algorithm 1

Active
sub-
matrix

Removed
min-row-count rows

Some of the above cited papers on the Hellerman–Rarick algorithms and the
Stadtherr–Wood algorithms include numerical results, indicating that this decom-
position method is effective. Further numerical evidence shows that this approach
usually gives favorable decompositions for problems from diverse fields: Perfor-
mance results on 692 test problems are given in [9] for our own ordering algorithm
(inspired by the fundamental Algorithm 1). These problems were taken from the
COCONUT Benchmark [69], which covers a variety of applications, e.g., chemical
engineering, computational chemistry, civil engineering, robotics, economics, multi-
commodity network flow, process design, stability analysis, VLSI chip design, and
portfolio optimization.

1.3 Traditional tearing

Tearing dates back to the 1930s [50, 81] and has been widely adapted across
many engineering fields since: State-of-the-art steady-state and dynamic simulation
environments all implement some variant of tearing, see for example [1], Dymola
[17], JModelica [55], or OpenModelica [61]. The applicability of tearing is not
limited to a particular engineering discipline: It is generic, and it is used in all



Numer Algor

state-of-the-art Modelica simulators to model “complex physical systems contain-
ing, e.g., mechanical, electrical, electronic, hydraulic, thermal, control, electric power
or process-oriented subcomponents” [54]. Tearing is also referred to as diakoptics
or sequential modular approach depending on the discipline. When dealing with
distillation columns, tearing is called stage-to-stage or stage-by-stage calculations.

We say that a square matrix A has bordered block triangular form if it can be
written as

A =
(

A11 A12
A21 A22

)

with block triangular A11 and square A22, the latter typically of fairly small size.
Numerous ordering algorithms are available to permute a spares matrix fully auto-

matically into this form. One way of doing it is to first find a staircase ordering as in
Section 1.2 and then to move those columns to the far right that spoil the upper left
block triangular form. This produces a bordered block triangular form such that the
diagonal blocks in A11 are dense. Conversely, suppose a method is available to order
a matrix to bordered block triangular form with the property that the diagonal blocks
in A11 are structurally nonsingular. Such methods are surveyed in [8] and [9]. Then,
we can reorder the diagonal blocks to staircase form: We reorder each block of the
whole matrix accordingly and then move the resulting border to the far left to get a
matrix in staircase form.

In the traditional setup, the bound constraints in (1) are ignored, and the variables
and equations are permuted with a suitable ordering algorithm such that the sparsity
pattern of the Jacobian is in bordered block lower triangular form with structurally
nonsingular square blocks on the diagonal, see Fig. 3.

The variables in (1) are partitioned as

x =
⎛
⎜⎝

x0
...

xN

⎞
⎟⎠ (2)

Fig. 3 Bordered block lower
triangular form with structurally
nonsingular square blocks on
the diagonal



Numer Algor

into subvectors xi ∈ R
di (i = 0 . . . N), so that n = d0 + · · · + dN . Similar to the

variables, F is partitioned as

F(x) =
⎛
⎜⎝

F1(x)
...

FN+1(x)

⎞
⎟⎠ (3)

into subfunctions Fi(x) ∈ R
di (i = 1 . . . N + 1). Since the system (1) is square, the

trailing dimension must be dN+1 := d0. For any bordered block lower triangular
matrix, only variables from subvectors x0, . . . , xi (i ≤ N) can appear in Fi(x):

Fi(x) = Fi(x0, x1, . . . , xi) for i = 1, . . . , N. (4)

Equations (2)–(4) describe the block sparsity pattern shown in Fig. 3. In practice, the
lower triangle is sparse.

Given the bordered block lower triangular form, the diagonal blocks are eliminated
one-by-one from i = 1 to N , and FN+1(x) is considered as a function of x0 only:
G(x0), where G : Rd0 �→ R

d0 . Then, G(x0) = 0 is solved for x0, the only variables
not eliminated. The solution vector x0, together with the eliminated variables, give
the solution to the original problem (1).

The motivation behind tearing is to save time. The diagonal blocks are typically
small and dense, and specialized methods can be used to efficiently eliminate them.
This can lead to substantial saving in execution time compared to solving (1) without
any decomposition.

The user has to provide an initial guess for each variable when a gradient-based
local solver is used to solve (1) directly. With tearing, the user has to provide an
initial guess for x0 only, which saves significant amount of time for the user. Tearing
is relatively easy to implement in a component-oriented simulator such as Dymola,
JModelica, or OpenModelica, and it is usually robust provided that G(x0) is well-
conditioned.

The biggest flaw of tearing was recognized early [16, 80]: It can show extreme
sensitivity to the initial guess for x0, since numerical sensitivity can build up while
the blocks are eliminated along the diagonal. In such cases, the Jacobian G′(x0) of the
reduced system is extremely ill-conditioned, even if the Jacobian F ′(x) of the original
system is well-conditioned. This in turn has a negative impact on the convergence
properties of the methods used for solving G(x0) = 0. Although several attempts
were made to mitigate this issue, see for example [93, 94] and [37], it has never been
resolved satisfactorily.

The sensitivity issue can become so severe that, with all the intermediate variables
x1, . . . xN eliminated, there may not be any machine representable vector for x0 such
that G(x0) = 0 is satisfied with acceptable numerical accuracy. For example, the
distillation column computed in Section 3.1 is intractable with traditional tearing
although the Jacobian of each solution has a condition number estimate of < 109, so
that one expects from a stable method several accurate digits.



Numer Algor

1.4 General-purpose methods for finding multiple solutions

Multistart methods try to find all solutions by starting a gradient-based local solver
from multiple starting points. Guarantees regarding finding all solutions depend on
the placement of the starting points. Perhaps the simplest method for bound con-
strained problems is the grid search: The constraint violation is evaluated at each
point of a fine grid, and the best points are used as starting points for local optimiza-
tion. Finding all solutions with probability one can be achieved by making the grid
sufficiently dense. This naive approach is only effective in very low dimensions as
the number of grid points grows exponentially with the dimension of the problem.

Multistart methods are applicable to large-scale systems of equations by giving up
on the strong guarantees that, for example, grid search would provide. In practice,
sophisticated approaches are used to place the starting points, for example, constraint
consensus (to reduce infeasibility in a computationally cheap way) and clustering (to
separate basins of attraction) by Smith et al. [73–75] or stochastic methods (espe-
cially population-based metaheuristics) [83]. These methods strike a balance between
speed and robustness.

Another set of methods that are often successfully used to solve large-scale
problems—especially if the objective function can be cheaply computed—are evolu-
tionary algorithms, e.g., CMA-ES [2], if they are combined with local optimization
starting from the most promising points found. Other methods that are based on sim-
ilarities to natural processes (ant colony [22], particle swarm [28], etc.) can be used
in a similar way.

For solving systems of equations with multiple solutions, homotopy methods
are extensively used, especially for systems of polynomial equations. The reader is
referred to [10, 11, 77, 95] for the latest developments. Mature and robust software
implementations for solving polynomial systems are, for example, Bertini [11,
12], and PHCpack [86, 87]. Homotopy methods with problem-specific homotopy
maps were successfully applied to large-scale industrial problems with transcenden-
tal equations [21, 51, 85]. This approach with problem-specific homotopy maps is
also suitable for component-based (also referred to as component-oriented) model-
ing of large, complex, and heterogeneous technical systems [70; 72, Ch. 8–10]: Once
the models of the devices (components) are implemented and put into a library, practically no
understanding of probability—one homotopy method is required from the end-user.

Spatial branch-and-bound methods recursively split the search space into smaller
parts and eliminate those parts that cannot lead to a solution better than the currently
best known one. Unfortunately, their worst-case performance tends to grow exponen-
tially with the dimension of the problem since they perform exhaustive search. (For
non-convex functions, global optimization is NP-hard.) The applicability of branch-
and-bound methods currently seems to be limited to fairly low-dimensional problems
in the general case. Successful enclosure methods in chemical engineering include
interval arithmetic [41], McCormick relaxations [53, 68], affine arithmetic [6, 76],
and αBB [40].



Numer Algor

1.5 Important specific applications

The problem of solving nonlinear systems of equations arises in the daily engineer-
ing practice, e.g., when consistent initial values for differential algebraic equation
(DAE) systems are sought [63, 84], or when solving steady-state models of techni-
cal systems. A steady-state solution can be used as a consistent initial set of the DAE
system [48].

Even though mature equation-based component-oriented modeling environments
are available, e.g., Modelica [34, 52, 82] for multi-domain modeling of hetero-
geneous complex technical systems and [36] ASCEND [65] and EMSO [62] for
chemical process modeling, simulation, and optimization, the steady-state initial-
ization is still not satisfactorily resolved in the general case. Often, steady-state
initialization failures can only be resolved in very cumbersome ways [3, 60, 71, 72,
89], involving user-provided good initial values for the variables. The proposed algo-
rithm aims to eliminate this tedious process by generating good initial values fully
automatically.

2 Proposed algorithm

Here, we give a formal presentation with pseudo-code through Sections 2.1–2.4; the
Java source code is available online in the supplementary material [7], together with
an illustrative numerical example where the steps of the algorithm are illustrated with
several figures.

2.1 Input of the proposed method

The input of the proposed method is (1), together with an LTBS of its Jacobian,
obtained with appropriate preprocessing. For efficiency reasons one should enforce
that the diagonal blocks are structurally nonsingular and contain no zero row or
column; Algorithm 1 always delivers a staircase triangular matrix whose canonical
LTBS has this property. As outlined in Section 1.2, numerical evidence indicates that
Algorithm 1 tends to give favorable decompositions for problems from diverse fields,
that is, the size of the largest block tends to be small. The worst-case time complexity
of the proposed method grows exponentially with the size of the largest block.

Let N denote the number of blocks of the input LTBS. Unlike in tearing, the
variables are now partitioned along the block boundaries as

x =
⎛
⎜⎝

x1
...

xN

⎞
⎟⎠ (5)



Numer Algor

into N subvectors xi ∈ R
ni (i = 1 . . . N), so that n = n1 + · · · + nN . Similarly, F is

partitioned along the block boundaries as

F(x) =
⎛
⎜⎝

F1(x)
...

FN(x)

⎞
⎟⎠ (6)

into N vector-valued subfunctions Fi(x) ∈ R
mi (i = 1 . . . N), and n = m1+· · ·+mN .

The motivation behind requiring an LTBS as input is that then only variables from
the subvectors x1, . . . , xi (i ≤ N) can appear in Fi(x):

Fi(x) = Fi(x1, . . . , xi) for i = 1, . . . , N. (7)

We view this as a cycle-free sequence of subproblems that will be handled sequen-
tially.

2.2 The idea in a nutshell

The algorithm builds up a point cloud, i.e., a set of vectors satisfying

F1:i (x1:i ) = 0 (8)

by processing the blocks one-by-one along the diagonal of the LTBS. The algorithm
sketched so far would have exactly the same numerical issues that tearing has. Com-
pared to tearing, the only significant difference up to this point is that a set of points
is propagated through the blocks and not just a single point. But working with a point
cloud allows us to counteract conditioning problems. Inspired by our earlier results
for the univariate case [5], this is achieved by redistributing the sample points after
each block. This redistribution step strives to ensure in each iteration that the sample
of the solution set of (8) remains representative within the bound constraints, in the
sense that (a) no point of the solution set is too far from the sample, and (b) the points
in the sample are well-separated.

These goals are achieved on a best effort basis. In each iteration, we first insert
additional points into the sample with Algorithm 4 which involves robust sampling
and sensitivity analysis; the aim of this is to achieve goal (a). After inserting addi-
tional points to the sample, its size is assumed to be greater than the user-defined
sample size Mi ; therefore, we have to drop some of the points from the sample until
Mi points remain. (If, due to some pathological situation, the sample size is still less
than or equal to Mi , we simply skip the the rest of the redistribution step and do not
drop any of the points.) To achieve goal (b), we choose Mi points from the point cloud
with a greedy algorithm: We choose the least infeasible point (the point with small-
est ‖F1:i (x1:i )‖∞) as the first point. We iteratively continue choosing a point from



Numer Algor

the point cloud that are furthest away from all already chosen points, breaking ties
arbitrarily. When the desired sample size Mi is reached, we drop all points from the
sample that have not been chosen. The sample size Mi has the biggest effect on the
robustness and execution time of the method: Increasing the sample size is expected
to improve robustness but at the cost of increased computational costs.

The difference of our procedure to the naive way of directly sampling the solution
set of F1:i (x1:i ) = 0 within the bound constraints is that in the latter approach, the
volume to be sampled grows exponentially with the dimension p := dim x1:i , hence
good sampling is prohibitively expensive once p gets large (ultimately p = n). The
proposed method avoids this growth by sampling only at the blocks along the diago-
nal: The volume to be sampled grows exponentially only with the largest block size,
which is usually significantly smaller than p. The biggest computational savings of
the proposed method are therefore achieved here.

2.3 Pseudo-code of the proposed algorithm

The algorithm is presented in high-level pseudo-code in Algorithm 2; the reader is
referred to Appendix C for practical matters, such as the choice and effect of the
used-provided parameters.

When forming the subvector vp:q of a vector v, p:q is cropped appropriately if
necessary; that is, invalid indices are ignored. The index set p:q is considered empty
if p > q, and the expression vp:q is a valid subvector of v that has no elements. We
write

x ⊕ y :=
(

x

y

)
∈ R

m+n (9)

for the concatenation of two vectors x ∈ R
m and y ∈ R

n.



Numer Algor

The robust sampling and sensitivity analysis in Algorithm 3 was necessary to over-
come implementation artifacts of the solvers: In the underdetermined case, the solver
may place many of the solution vectors near to each other in a particular subspace due
to implementation artifacts. Making the underdetermined subsystem square by fixing
the least influential variables (xi)J proved to be sufficient to resolve this issue. The
goal of the local sensitivity analysis performed on line 9 is to order the variables xi

according to their influence on ‖Fi(x1:i )‖2 with x1:i−1 fixed. The index set J on line
9 denotes the indices of the least influential variables. QR factorization with column
pivoting is performed on the Jacobian of Fi(x1:i ); the resulting permutation vector
gives the desired ordering [35, p. 591].

2.4 Adding additional sample points

The goal of Algorithm 4 is to produce additional sample points. The newly introduced
xi−h:i parts of the forced new points are separated from each other on a best effort
basis. The new values for xi are obtained with Latin hypercube sampling on line 3,
which is expected to give good separation of these new xi parts. Local sensitivity
analysis is performed to find the index set J of the least influential variables (more
on this shortly). Only these least influential variables of xi are ultimately fixed on
line 13(s.t. (yi)J = (xi)J ), so that infeasibility can be most likely repaired on line 13
by minimizing the constraint violation. The fixed (xi)J parts are also separated from
each sample point x

(S)
i (received from Algorithm 2 as input): Those (xi)J parts that

already have nearby neighbors in the sample S(i) are discarded on line 10.



Numer Algor

The cardinality of J is chosen to be max(1, dim xi−h:i − dim Fi−h:i ), that is, if
the subsystem is underdetermined, we treat it as we did in Algorithm 3, see Section
2.3. However, if the subsystem is square (which is a common case) or even overde-
termined, we still have to perturb at least one of the variables; otherwise, the solution
vector x1:i is most likely in the input S(i) already, and we will not insert any new
point into our sample. (If the subsystem has multiple solutions in xi−h:i ; then, it can
happen that we find a new point without perturbation.)

The entire x1:i−1 part of the partial solution should not be recomputed on line 13,
not even with inter- or extrapolations: that would potentially make the complexity of
the entire algorithm O

(
n2

)
where n is the number of variables in (1). This is the rea-

son why x1:i−h−1 is left unchanged, and only the last h subproblems are considered
on line 13.



Numer Algor

3 Numerical results and discussion

The benchmark problems have been coded in the AMPL modeling language [33]
and are available in the online supplementary material [7]. A short summary of the
problems is given in Table 1.

3.1 Multiple steady-states in homogeneous azeotropic distillation

The steady-state simulation of distillation columns belongs to an infamous family
of problems where tearing is often inapplicable due to numerical instability [21].
Our first example is therefore a challenging distillation column where tearing fails.
This column has three solutions, one of which is missed even with problem-specific
methods (that are not based on tearing).

3.1.1 Background of the problem

The model equations are the MESH equations: The component material balance
(M), vapor-liquid equilibrium (E), summation (S), and heat balance (H) equations
are solved. The liquid phase activity coefficient is computed from the Wilson equa-
tions. The model and its parameters correspond to the Auto model [39], except for
the number of stages N and the feed stage location NF = N/2. The specifications
are the feed composition (methanol–methyl butyrate–toluene), the reflux ratio, and
the vapor flow rate.

There are three steady-state branches: two stable steady-state branches and an
unstable branch; this was experimentally verified in an industrial pilot column oper-
ated at finite reflux [23, 39]. Multiple steady-states can be predicted by analyzing
columns with infinite reflux and infinite length [14, 38, 64]. These predictions for
infinite columns have relevant implications for columns of finite length operated at
finite reflux.

3.1.2 Published numerical results with continuation methods

Both the conventional inside-out procedure [15] and the simultaneous correction pro-
cedure [57] were reported to miss the unstable steady-state solution, see [85] and [46]
(all input variables specified; output multiplicity). However, all steady-state branches

Table 1 Short summary of the benchmark problems

Name Number of Largest Solutions Note

variables Nonzeros Blocks block size

Azeotropic 4N 21N − 6 N 5 3 Transcendental

Distillation equations

Stewart–Gough 9 57 3 3 40 Polynomial

Platform equations



Numer Algor

were computed either with the AUTO software package [20] or with an appropriate
continuation method [39, 46, 85]. The initial estimates were carefully chosen with
the ∞/∞ analysis [14, 38], and special attention was paid to the turning points and
branch switching.

3.1.3 Obtaining the lower triangular block structure

A distillation column consists of stages; partitioning the Jacobian along the stage
boundaries gives the blocks. The natural order of the stages directly yields the LTBS
by virtue of the internal physical layout of distillation columns. As a consequence,
no preprocessing was necessary before applying the proposed method. The sparsity
pattern of the Jacobian is shown in Fig. 4.

3.1.4 A note on plotting the solution vectors

To understand the displayed results of the next section, we recall how chemical
engineers traditionally plot the solutions. Once a solution to the model equations is
available, it is plotted as follows. A slice of the solution vector is created first: A
subset of variables is selected that has the same physical meaning in each block. For
example, if the variables corresponding to the temperature are selected at each block,
a slice is obtained, the so-called temperature column profile, etc. Then, the block
index is plotted against the selected value of the variable in this block, see on the left
of Fig. 5.

In the chemical engineering literature, not a sequence of discrete points are plotted
but a piecewise linear curve passing through these points, and not the block but the
stage index is used, see on the right of Fig. 5. For the columns considered in this
paper, block i corresponds to stage N − i + 1, that is, the stages are numbered in
reverse order compared to the blocks. It must be emphasized that the solution is a
vector of real numbers and not a continuous curve.

Fig. 4 Sparsity pattern of the
Jacobian with the natural block
structure as defined by the
stages. The figure is prepared
for N = 20 stages



Numer Algor

Fig. 5 Plot of a solution vector slice. Left: block index vs. the value of the variable in the slice. Right: plot
of the same slice as seen in the chemical engineering literature, the so-called temperature column profile.
The stages are numbered in reverse order compared to the blocks. It must be emphasized that the slice is a
vector of real numbers and not a continuous curve

3.1.5 Our numerical results

With the appropriate parameter settings, all three steady-state solutions are found
when IPOPT [91] is run from the starting points generated with the proposed method.
As for parameter tuning of the proposed algorithm, the reader is referred to Appendix
C; the effects of varying h is shown in Table 2.

For the purposes of demonstration, several plots are given for the column with
N = 20 stages; the column with 40 stages is too long to be appropriate for illustra-
tion. Figure 6 shows the three steady-state solutions and those starting points that are
the closest to them.

Figure 7 illustrates an intermediate step of the algorithm, the extension of the
partial column profiles when moving from stage 11 to stage 10, that is, the result
of executing the nested loop in Algorithm 2 for each point in the sample. Block i

Table 2 The effect of varying h while the initial sample size M0 is kept fixed at 25

N = 20 N = 40

h Solutions Time in Alg. 2 Total time Solutions Time in Alg. 2 Total time

1 2 43 51 1 104 115

2 3 67 82 3 237 323

3 3 114 130 3 384 473

The problem being solved is the azeotropic distillation problem of Section 3.1; it has three solutions for
both N = 20 and N = 40. The time is measured in seconds. Time in Alg. 2 is the time needed to generate
the starting points; the total time also includes running IPOPT from each point



Numer Algor

Fig. 6 The three steady-state solutions (dashed gray lines) and those generated starting points (solid black
lines) that are the closest to them. The gradient-based solver IPOPT converges to the nearest solution when
started from the corresponding starting point. Column description in Section 3.1

corresponds to stage N − i + 1; the computations are performed bottom up, starting
at the reboiler (block 1, stage 20).

Figure 8 shows the effect of the distinguishing feature of the method, the redistri-
bution. If the redistribution is disabled, the proposed method eventually boils down
to the tearing (stage-by-stage method). Figure 8 is computed stage-by-stage, exactly
from the same bulk composition used for Fig. 6. Two out of the three steady-state
solutions are lost without the redistribution step.

Figure 9 shows one execution of the redistribution step at stage 10. New points are
forced into the sample, compare with Fig. 7; then, only the most distant points are
kept.

Fig. 7 Extending the partial solutions as moving from stage 11 (left) to stage 10 (right); see line 4
in Algorithm 2. Several partial column profiles are built stage-by-stage, starting from a variety of bulk
compositions. Column description in Section 3.1



Numer Algor

0.0 0.2 0.4 0.6 0.8 1.0
Liquid phase mole fraction of methanol

20

15

10

5

1

St
ag
e
in
de
x

0.0 0.2 0.4 0.6 0.8 1.0
Liquid phase mole fraction of methanol

20

15

10

5

1
St
ag
e
in
de
x

Fig. 8 The lack of redistribution. Left: Several column profiles are built as in the traditional stage-by-
stage calculation, starting from a variety of bulk compositions. Right: The dashed gray lines show the
three different steady-state solutions, two of them do not have any good approximation and therefore are
not discovered. Column description in Section 3.1

3.2 Stewart–Gough platform with 40 real postures

The Stewart–Gough platform consists of two rigid bodies that are connected by six
rods attached via spherical joints; it is a type of parallel-link robotic device. This
problem is an extensively studied benchmark with homotopy methods, see, e.g, [77,
Sec. 7.7] or [11, Sec. 6.3]. [19] published parameters with which a given Stewart–
Gough platform has 40 real postures. The model equations with these parameters are
available from the database of PHCpack, maintained by [88]; it is the stewgou40
benchmark. The latest version of PHCpack [86, 87] is v2.4.25, released on 31 Aug
2016. With the hardware specified at beginning of Section 3, it requires 56.5 seconds

Fig. 9 The redistribution step at stage 10. Left: New values are inserted for mole fractions of methanol, cf.
Fig. 7. Right: Only the most distant column profile extensions are kept. Column description in Section 3.1



Numer Algor

for solving this particular benchmark in its so-called blackbox mode for non-experts.
It is very likely that in the hands of an expert, this software can solve the problem
faster. Here, we show how all the 40 real solutions can be found with the proposed
method. Even though the problem characteristics that favor our method (large, sparse
problem) are not present, our method performs reasonably on this benchmark.

3.2.1 Our results

Some preprocessing is necessary before applying the proposed method. As all vari-
ables are coordinates of unit vectors and therefore must be in the interval [−1, 1], the
latter defines the bound constraints.

The Jacobian can be permuted fully automatically into staircase triangular form.
The optimal pattern, shown in Fig. 10, is found on the root node of the search tree
of the method of [9], in less than 5 ms. However, in this particular case, using such
an ordering algorithm is an overkill: One can easily bring the Jacobian into stair-
case triangular form with pen and paper by making the first equation the fourth. As
it can be seen in Fig. 10, the sparsity pattern has very little structure that the pro-
posed method can exploit: It only has three blocks on the diagonal of the canonical
LTBS.

As for setting the initial sample size M0, the following strategy gives a reasonable
approach. The user should set M0 to be ten times the expected number of solutions,
and at least 25. If more than the expected number of solutions were found, M0 should
be doubled iteratively, and the proposed method run again with this larger initial
sample size. We keep doubling M0 and rerunning the algorithm until all previously found
solutions were found and no new solutions, or we reach a pre-defined limit
for M0.

Let us pretend that we expect only one solution, and we start with an initial sample
size of 25 accordingly. Since 21 solutions are found, see Table 3, we iteratively double
the initial sample size and rerun the proposed algorithm, until all previously found
solutions are found with M0 = 400 and no new solutions. The entire procedure takes
54.3 s. If we know a priori that there are at most 40 real solutions, see for example

Fig. 10 The sparsity pattern of
the Stewart–Gough benchmark
problem (stewgou40) in
staircase triangular form and
with canonical LTBS



Numer Algor

Table 3 The effect of iteratively
doubling the initial sample size
M0, while keeping h fixed at 2

M0 Solutions Accumulated Time (s) Cumulative

found solutions time (s)

25 21 21 3.3 3.3

50 30 33 4.9 8.2

100 35 39 7.3 15.5

200 39 40 12.5 28.0

400 40 40 26.3 54.3
The problem being solved is the
Stewart–Gough platform with
40 solutions

[30, 49, 56], or [92], we can stop at M0 = 200, requiring 28.0 s. Alternatively, if we
anticipate 40 solutions and start with M0 = 40 × 10 accordingly, we finish in 26.3 s.

Acknowledgments Open access funding provided by Austrian Science Fund (FWF). The research was
funded by the Austrian Science Fund (FWF): P23554, and P27891-N32. Support by the Austrian Research
Promotion Agency (FFG) under project number 846920 is thankfully acknowledged. We are grateful to
the anonymous reviewers for feedback that lead to improvements in the presentation of the goals, the
background, and the implementation of the proposed method.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

A software and hardware environment

All computations have been carried out with the following hardware and software
configuration. Processor: Intel(R) Core(TM) i5-3320M CPU at 2.60 GHz; operating
system: Ubuntu 14.04.3 LTS with 3.13.0-67-generic kernel; Java (TM) SE Runtime
Environment (build 1.8.0 101-b13) and Java HotSpot (TM) 64-Bit Server VM (build
25.101-b13, mixed mode). The implementation is sequential (single-threaded); cf.
Appendix D.

B Local solvers used

B.1 Solving the nonlinear subproblems

The actual norm in the auxiliary Algorithms 3 and 4 depends on the solver being
used to solve the optimization problem. In our implementation, the user can choose
between IPOPT and LMBOPT [59]; the former uses the �1 norm and the latter the
�2 norm. The choice of the solver for solving the subproblems had no effect on the
robustness of the algorithm in our numerical experience.

http://creativecommons.org/licenses/by/4.0/


Numer Algor

B.2 Solving the original system from the generated starting points

Our solver of choice for solving the input problem from the generated starting points
is IPOPT; however, due to implementation artifacts, this solver is not appropriate
for the Stewart–Gough benchmark of Section 3.2. Even when supplied with a solu-
tion, IPOPT first wanders off then back while it is reducing the dual infeasibility.
As a consequence, it already starts losing some of the solutions when provided with
starting points that were obtained from the true solutions by applying small random
perturbations of at most 0.004 in the maximum norm. The minimum �∞ distance
between any two solutions is approximately 0.155. Other solvers, e.g., LMBOPT
and VA27 from [44], do not have any difficulty with such small random pertur-
bations. We therefore used LMBOPT for this particular benchmark. However, this
solver squares the condition number, and the estimated condition number of the
Jacobian at some of the solutions is of order 106. This necessitated some post-
processing: The solutions returned by LMBOPT had to be polished with textbook
Newton iteration.

B.3 Notes on the execution time

Implementing the proposed method is a major undertaking; the most difficult part
is the implementation of the function and Jacobian evaluation of the subproblems.
In order to reduce the implementation effort, we use at present our existing Java
code that was originally created for researching inclusion algebras [58, Ch. 2.2]
with abstract datatypes and our existing Java wrappers for the IPOPT and LMBOPT
solvers for large-scale and sparse problems, that are comparably inefficient for small,
dense subproblems to which they are applied here. Although this code reuse dra-
matically reduced the time needed to implement a prototype, the resulting software
is unacceptably slow. Profiling shows that the execution times given in the present
paper mostly reflect the performance flaws of our current research prototype. We
therefore started a complete rewrite from scratch [4]: We are currently reimplement-
ing the function and Jacobian evaluations in the C programming language, and for
solving the subproblems, we are switching to VA27. Unlike IPOPT and LMBOPT,
the latter solver is tailored for small and dense problems. This reimplementation is
still an ongoing process.

C Parameter tuning

Algorithms 2 and 4 have parameters that were explicitly indicated in the pseudo-
code but were left unspecified; here, we discuss (i) the influence of these parameters
on the robustness and execution time of the method, (ii) how they were set in
our numerical experiments, (which we also consider reasonable default settings),
(iii) and outline appealing future research directions to set them adaptively and
automatically.

In our numerical experience, the sample size M is the most important, and h in the
redistribution step is the second most important parameter of the method with respect



Numer Algor

to their influence on robustness and execution time. The sample size M determines
the resolution of the solution set. With the parameter h, one controls the number of
subproblems among which the constraint violation of a newly forced point is spread.
Increasing either one of these parameters is expected to increase robustness at the
expense of increased computational effort; this is illustrated by Tables 2 and 3.

C.1 Setting the sample size

We used Mi = c · i + M0 in our numerical experiments, where c and M0 are con-
stants; it is left to the user to specify M0 and c. The choice Mi = i + 25 proved to be
appropriate for the most difficult distillation column considered in this paper and, for
all other, easier problems in our test set (that are not discussed here) with one excep-
tion. The stewgou40 benchmark, to be discussed in Section 3.2, has 40 solutions,
and it was necessary to iteratively double M0 to achieve a sufficient resolution of the
solution set, see Table 3.

One can probably find a parametric formula that gives a reasonable default value
for Mi as a function of the key characteristics such as the size of the largest block,
the size of block i, and the number of blocks N . The parameters of such a formula
with the right qualitative form should be fitted and cross-validated by running the
algorithm on a large benchmark set, consisting of diverse test problems. This is the
subject of future research.

C.2 Setting h

The second most important parameter of the proposed method is h in the redis-
tribution step: After forcing a new point into the sample, the last h blocks are
simultaneously resolved to minimize the constraint violation resulting from the force-
ful insertion. If h is chosen too small (for example h = 1), we may fail to reduce
the constraint violation sufficiently, and the new forced points will be discarded in
Algorithm 2 on line 8; this can lead to poor resolution of the solution set, and some
of the solutions will be lost eventually. Setting h to a large value (h 
 5) spoils the
performance, since the last h blocks are resolved simultaneously, and the increased
computational effort does not yield any visible improvement in robustness. In the
current implementation, it is left to the user to specify h. The h = 4 choice works for
all the test problems in our test set.

Similarly to M , it is subject of future research to work out a rule for choosing
a default value for h. In particular, the following adaptive rule seems appealing. In
our numerical experience, the remaining constraint violation in Algorithm 4, line
13 decreases rapidly as h is increased. Therefore, the algorithm could start with a
small value for h at each block (for example h = 2), and increment it until either
the tolerated constraint violation ε of Algorithm 2 or a user-defined cutoff for h (for
example h = 5) is reached. The optimization problem in Algorithm 4 on line 13 can
be quickly resolved after incrementing h if the gradient-based solver is started from
the previous solution. Other, more sophisticated adaptive rules are also possible.



Numer Algor

C.3 Setting the remaining parameters

With M and h fixed, the other parameters have negligible effect on the robustness
and performance of the method in our experience; therefore, practically no effort
was made to tune these other parameters. For the purposes of documentation only,
the following settings were used: ε = 2/M0 in Algorithm 2, and p = ∣∣S(i)

∣∣, and
δ = 2/M0 in Algorithm 4.

D Parallelization

Profiling shows that most of the time is spent solving the subproblems at the blocks
as expected: In Algorithm 2 in the loop on lines 3–5, and in Algorithm 4 in the
loop on lines 12–14. Since the optimization problems solved in these loops are com-
pletely independent, this means that they can be solved in parallel; the bottleneck of
the computations is parallelizable. We have not implemented this improvement; our
current implementation is still sequential (single-threaded) because the underlying
implementation is unfortunately not thread-safe.

References

1. Aspen Technology, Inc (2009) Aspen Simulation Workbook, Version Number: V7.1. Burlington, MA,
USA. EO and SM Variables and Synchronization, p. 110

2. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: 2005.
The 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE (2005)

3. Bachmann, B., Aronßon, P., Fritzson, P.: Robust initialization of differential algebraic equations.
In: 1st International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools,
vol. 2007, pp. 151–163, Linköping University Electronic Press; Linköpings universitet, Linköping
Electronic Conference Proceedings (2007)

4. Baharev, A.: https://sdopt-tearing.readthedocs.io, Exact and heuristic methods for tearing (2016)
5. Baharev, A., Neumaier, A.: A globally convergent method for finding all steady-state solutions of

distillation columns. AIChE J. 60, 410–414 (2014)
6. Baharev, A., Kolev, L., Rév, E.: Computing multiple steady states in homogeneous azeotropic and

ideal two-product distillation. AIChE J. 57, 1485–1495 (2011)
7. Baharev, A., Domes, F., Neumaier, A.: Online supplementary material of the present manuscript.

http://www.baharev.info/finding all solutions.html (2016a)
8. Baharev, A., Schichl, H., Neumaier, A.: Decomposition methods for solving nonlinear systems of

equations, http://reliablecomputing.eu/baharev tearing survey.pdf, submitted (2016b)
9. Baharev, A., Schichl, H., Neumaier, A.: Ordering matrices to bordered lower triangular form with

minimal border width, http://reliablecomputing.eu/baharev tearing exact algorithm.pdf, submitted
(2016c)

10. Bates, D.J., Hauenstein, J.D., Sommese, A.J.: Efficient path tracking methods. Numer. Algorithm.
58(4), 451–459 (2011)

11. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polyno-
mial Systems with Bertini, Software, Environments and Tools, vol 25. SIAM, Philadelphia, PA
(2013)

12. Bates, D.J., Newell, A.J., Niemerg, M.: BertiniLab: A MATLAB interface for solving systems of
polynomial equations. Numer. Algorithm. 71(1), 229–244 (2016)

https://sdopt-tearing.readthedocs.io
http://www.baharev.info/finding_all_solutions.html
http://reliablecomputing.eu/baharev_tearing_survey.pdf
http://reliablecomputing.eu/baharev_tearing_exact_algorithm.pdf


Numer Algor

13. Beelitz, T., Frommer, A., Lang, B., Willems, P.: Symbolic–numeric techniques for solving nonlinear
systems. PAMM 5(1), 705–708 (2005)

14. Bekiaris, N., Meski, G.A., Radu, C.M., Morari, M.: Multiple steady states in homogeneous azeotropic
distillation. Ind. Eng. Chem. Res. 32, 2023–2038 (1993)

15. Boston, J.F., Sullivan, S.L.: A new class of solution methods for multicomponent, multistage
separation processes. Can. J. Chem. Eng. 52, 52–63 (1974)

16. Christensen, J.H.: The structuring of process optimization. AIChE J. 16(2), 177–184 (1970)
17. Dassault Systèmes, A.B.: Dymola—Dynamic Modeling Laboratory. User Manual. Vol. 2., Ch. 8.

Advanced Modelica Support (2014)
18. Davis, T.A.: Direct methods for sparse linear systems. In: Higham, N.J. (ed.) Fundamentals of

Algorithms. SIAM, Philadelphia, USA (2006)
19. Dietmaier, P.: The Stewart-Gough platform of general geometry can have 40 real postures, pp. 7–16.

Springer, Netherlands, Dordrecht (1998)
20. Doedel, E.J., Wang, X.J., Fairgrieve, T.F.: AUTO94: Software for continuation and bifurcation prob-

lems in ordinary differential equations. Technical Report CRPC-95-1, Center for Research on Parallel
Computing, California Institute of Technology, Pasadena CA 91125 (1995)

21. Doherty, M.F., Fidkowski, Z.T., Malone, M.F., Taylor, R. Perry’s Chemical Engineers’ Handbook, 8th
edn., p. 33. McGraw-Hill Professional (2008). chapter 13

22. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39
(2006)

23. Dorn, C., Güttinger, T.E., Wells, G.J., Morari, M.: Stabilization of an unstable distillation column.
Ind. Eng. Chem. Res. 37, 506–515 (1998)

24. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct methods for sparse matrices. Clarendon Press, Oxford
(1986)

25. Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Can. J. Math. 10, 517–534 (1958)
26. Dulmage, A.L., Mendelsohn, N.S.: A structure theory of bipartite graphs of finite exterior dimension.

Trans. Royal Soc. Can. Sec. 3(53), 1–13 (1959)
27. Dulmage, A.L., Mendelsohn, N.S.: Two Algorithms for Bipartite Graphs. J. Soc. Ind. Appl. Math. 11,

183–194 (1963)
28. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth

International Symposium on Micro Machine and Human Science, 1995. MHS’95, pp. 39-43. IEEE
(2002)

29. Erisman, A.M., Grimes, R.G., Lewis, J.G., Poole, W.G.J.: A structurally stable modification of
Hellerman-Rarick’s P 4 algorithm for reordering unsymmetric sparse matrices. SIAM J. Numer. Anal.
22, 369–385 (1985)

30. Faugère, J.C., Lazard, D.: Combinatorial classes of parallel manipulators. Mech Mach. Theory 30(6),
765–776 (1995)

31. Fletcher, R., Hall, J.A.J.: Ordering algorithms for irreducible sparse linear systems. Ann. Oper. Res.
43, 15–32 (1993)

32. Fourer, R.: Staircase matrices and systems. SIAM Rev. 26(1), 1–70 (1984)
33. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Program-

ming, Brooks/Cole, USA (2003)
34. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-IEEE

Press (2004)
35. Golub, G.H., Van Loan, C.F. Matrix computations, 3rd edn. The Johns Hopkins University Press,

Baltimore, USA (1996)
36. gPROMS. Process Systems Enterprise Limited, gPROMS. http://www.psenterprise.com, [Online;

accessed 17-November-2015] (2015)
37. Gupta, P.K., Westerberg, A.W., Hendry, J.E., Hughes, R.R.: Assigning output variables to equations

using linear programming. AIChE J.ournal 20(2), 397–399 (1974)
38. Güttinger, T.E., Morari, M.: Comments on multiple steady states in homogeneous azeotropic

distillation. Ind. Eng. Chem. Res. 35, 2816–2816 (1996)
39. Güttinger, T.E., Dorn, C., Morari, M.: Experimental study of multiple steady states in homogeneous

azeotropic distillation. Ind. Eng. Chem. Res. 36, 794–802 (1997)
40. Guzman, Y.A., Hasan, M.M.F., Floudas, C.A.: Computational comparison of convex underestimators for

use in a branch-and-bound global optimization framework. In: Rassias, T.M., Floudas, C.A., Butenko,
S. (eds.) Optimization in Science and Engineering, pp. 229–246. Springer, New York, USA (2014)

http://www.psenterprise.com


Numer Algor

41. Gwaltney, C.R., Lin, Y., Simoni, L.D., Stadtherr, M.A.: Interval methods for nonlinear equation
solving applications. Wiley, Chichester, UK (2008)

42. Hellerman, E., Rarick, D.C.: Reinversion with preassigned pivot procedure. Math Programm. 1, 195–
216 (1971)

43. Hellerman, E., Rarick, D.C.: The partitioned preassigned pivot procedure (P 4). In: Rose, D.J.,
Willoughby, R.A. (eds.) Sparse Matrices and their Applications, The IBM Research Symposia Series,
pp. 67–76. Springer, US (1972)

44. HSL: A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk
(2016)

45. Johnson, D.M., Dulmage, A.L., Mendelsohn, N.S.: Connectivity and reducibility of graphs. Can. J.
Math. 14, 529–539 (1962)

46. Kannan, A., Joshi, M.R., Reddy, G.R., Shah, D.M.: Multiple-steady-states identification in homo-
geneous azeotropic distillation using a process simulator. Ind. Eng. Chem. Res. 44, 4386–4399
(2005)

47. Kearfott, R.B.: Decomposition of arithmetic expressions to improve the behavior of interval iteration
for nonlinear systems. Computing 47(2), 169–191 (1991)

48. Kröner, A., Marquardt, W., Gilles, E.: Getting around consistent initialization of DAE systems?
Comput. Chem. Eng. 21(2), 145–158 (1997)

49. Lazard, D.: On the representation of rigid-body motions and its application to generalized platform
manipulators, pp. 175–181. Springer, Netherlands, Dordrecht (1993)

50. Lewis, W.K., Matheson, G.L.: Studies in distillation. Ind. Eng. Chem. 24, 494–498 (1932)
51. Malinen, I., Tanskanen, J.: Homotopy parameter bounding in increasing the robustness of homotopy

continuation methods in multiplicity studies. Comput. Chem. Eng. 34(11), 1761–1774 (2010)
52. Mattsson, S., Elmqvist, H., Otter, M.: Physical system modeling with Modelica. Control Eng. Pract.

6, 501—-510 (1998)
53. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim.

20(2), 573–601 (2009)
54. Modelica: Modelica and the modelica association. https://www.modelica.org/, [Online; accessed 10-

October-2016] (2016)
55. Modelon, A.B.: JModelica.org User Guide, verison 1.17. http://www.jmodelica.org/page/236,

[Online; accessed 10-October-2016] (2016)
56. Mourrain, B.: The 40 g̈eneric positions of a parallel robot. In: Proceedings of the 1993 International

Symposium on Symbolic and Algebraic Computation, ACM, NY, USA, ISSAC ’93, pp. 173–182,
doi:10.1145/164081.164120 (1993)

57. Naphthali, L.M., Sandholm, D.P.: Multicomponent separation calculations by linearization. AIChE J.
17, 148–153 (1971)

58. Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, Cambridge
(1990)

59. Neumaier, A., Azmi, B.: LMBOPT – A limited memory method for bound-constrained optimization,
http://www.mat.univie.ac.at/neum/ms/lmbopt.pdf, in preparation (2017)

60. Ochel, L.A., Bachmann, B.: Initialization of equation-based hybrid models within OpenModelica. In:
5th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools (Uni-
versity of Nottingham), pp. 97–103. Linköping University Electronic Press; Linköpings universitet,
Linköping Electronic Conference Proceedings, Nottingham, Uk (2013)

61. OpenModelica: Openmodelica user’s guide. https://openmodelica.org/doc/OpenModelicaUsersGuide/
latest/omchelptext.html, [Online; accessed 10-October-2016] (2016)

62. De P Soares, R., Secchi, A.R.: EMSO: A new environment for modelling, simulation and optimisation.
In: Computer Aided Chemical Engineering, vol. 14, pp. 947–952. Elsevier (2003)

63. Pantelides, C.C.: The consistent initialization of differential-algebraic systems. SIAM J. Sci. Stat.
Comput. 9(2), 213–231 (1988)

64. Petlyuk, F.B.: Distillation theory and its application to optimal design of separation units. Cambridge
University Press, Cambridge, UK (2004)

65. Piela, P.C., Epperly, T.G., Westerberg, K.M., Westerberg, A.W.: ASCEND: An object-oriented com-
puter environment for modeling and analysis: the modeling language. Comput. Chem. Eng. 15(1),
53–72 (1991)

66. Pothen, A., Fan, C.J.: Computing the block triangular form of a sparse matrix. ACM Trans. Math.
Softw. 16, 303–324 (1990)

http://www.hsl.rl.ac.uk
https://www.modelica.org/
http://www.jmodelica.org/page/236
http://dx.doi.org/10.1145/164081.164120
http://www.mat.univie.ac.at/ neum/ms/lmbopt.pdf
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html


Numer Algor

67. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J.
Global Optim. 33, 541–562 (2005)

68. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51(4),
569–606 (2011)

69. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Benchmarking global
optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.)
Global Optimization and Constraint Satisfaction, Lecture Notes in Computer Science, vol. 2861,
pp. 211–222. Springer, Berlin Heidelberg (2003). http://www.mat.univie.ac.at/neum/glopt/coconut/
Benchmark/Benchmark.html

70. Sielemann, M.: Device-oriented modeling and simulation in aircraft energy systems design. Disserta-
tion, TU Hamburg, Hamburg (2012). https://doi.org/10.15480/882.1111

71. Sielemann, M., Schmitz, G.: A quantitative metric for robustness of nonlinear algebraic equation
solvers. Math. Comput. Simul. 81(12), 2673–2687 (2011)

72. Sielemann, M., Casella, F., Otter, M.: Robustness of declarative modeling languages: improvements
via probability-one homotopy. Simul. Modell. Pract. Theory 38, 38–57 (2013)

73. Smith, L.: Improved placement of local solver launch points for large-scale global optimization.
PhD thesis, Ottawa-Carleton Institute for Electrical and Computer Engineering (OCIECE). Carleton
University, Ontario, Canada (2011)

74. Smith, L., Chinneck, J., Aitken, V.: Constraint consensus concentration for identifying disjoint feasible
regions in nonlinear programmes. Optim. Methods Softw. 28(2), 339–363 (2013a)

75. Smith, L., Chinneck, J., Aitken, V.: Improved constraint consensus methods for seeking feasibility in
nonlinear programs. Comput. Optim. Appl. 54(3), 555–578 (2013b)

76. Soares, R.P.: Finding all real solutions of nonlinear systems of equations with discontinuities by a
modified affine arithmetic. Comput. Chem. Eng. 48, 48–57 (2013)

77. Sommese, A.J., Wampler II, C.W.: The numerical solution of systems of polynomials arising in
engineering and science. World Scientific (2005)

78. Stadtherr, M.A., Wood, E.S.: Sparse matrix methods for equation-based chemical process
flowsheeting–I: Reordering phase. Comput. Chem. Eng. 8(1), 9–18 (1984a)

79. Stadtherr, M.A., Wood, E.S.: Sparse matrix methods for equation-based chemical process
flowsheeting–II: Numerical Phase. Comput. Chem. Eng. 8(1), 19–33 (1984b)

80. Steward, D.V.: Partitioning and tearing systems of equations. J. Soc. Indust. Appl. Math. Ser. B Numer.
Anal. 2(2), 345–365 (1965)

81. Thiele, E., Geddes, R.: Computation of distillation apparatus for hydrocarbon mixtures. Ind. Eng.
Chem. 25, 289–295 (1933)

82. Tiller, M.: Introduction to physical modeling with Modelica. Springer Science & Business Media
(2001)

83. Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Martı́, R.: Scatter Search and Local NLP
Solvers: A Multistart Framework for Global Optimization. INFORMS J. Comput. 19(3), 328–340
(2007). doi:10.1287/ijoc.1060.0175

84. Unger, J., Kröner, A., Marquardt, W.: Structural analysis of differential-algebraic equation systems
—– theory and applications. Comput. Chem. Eng. 19(8), 867–882 (1995)

85. Vadapalli, A., Seader, J.D.: A generalized framework for computing bifurcation diagrams using
process simulation programs. Comput. Chem. Eng. 25, 445–464 (2001)

86. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by
homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

87. Verschelde, J.: Polynomial homotopy continuation with phcpack. ACM Commun. Comput. Algebra
44(3/4), 217–220 (2011)

88. Verschelde, J.: The database of polynomial systems. http://homepages.math.uic.edu/jan/demo.html
(2016)

89. Vieira, R.Jr., E. B.: Direct methods for consistent initialization of DAE systems. Comput. Chem. Eng.
25(9–10), 1299–1311 (2001)

90. Vu, X.H., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic graphs
for numerical constraint solving. J. Glob. Optim. 45(4), 499 (2008)

91. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Programm. 106, 25–57 (2006)

92. Wampler, C.W.: Forward displacement analysis of general six-in-parallel sps (Stewart) platform
manipulators using soma coordinates. Mech. Mach. Theory 31(3), 331–337 (1996)

http://www.mat.univie.ac.at/ neum/glopt/coconut/Benchmark/Benchmark.html
http://www.mat.univie.ac.at/ neum/glopt/coconut/Benchmark/Benchmark.html
https://doi.org/10.15480/882.1111
http://dx.doi.org/10.1287/ijoc.1060.0175
http://homepages.math.uic.edu/ jan/demo.html


Numer Algor

93. Westerberg, A.W., Edie, F.C.: Computer-aided design, Part 1 enhancing convergence properties by the
choice of output variable assignments in the solution of sparse equation sets. Chem. Eng. J. 2, 9–16
(1971a)

94. Westerberg AW, Edie FC: Computer-aided design, part 2 an approach to convergence and tearing in
the solution of sparse equation sets. Chem. Eng. J. 2(1), 17–25 (1971b)

95. Wu, W., Reid, G.: Finding points on real solution components and applications to differential poly-
nomial systems. In: Proceedings of the 38th International Symposium on Symbolic and Algebraic
Computation, ACM, NY, USA, ISSAC ’13, pp. 339–346 (2013)


	Robustly finding all well-separated solutions of sparse systems of nonlinear equations
	Abstract
	Introduction
	Staircase triangular matrices
	Ordering to staircase triangular form
	Traditional tearing
	General-purpose methods for finding multiple solutions
	Important specific applications

	Proposed algorithm
	Input of the proposed method
	The idea in a nutshell
	Pseudo-code of the proposed algorithm
	Adding additional sample points

	Numerical results and discussion
	Multiple steady-states in homogeneous azeotropic distillation
	Background of the problem
	Published numerical results with continuation methods
	Obtaining the lower triangular block structure
	A note on plotting the solution vectors
	Our numerical results

	Stewart–Gough platform with 40 real postures
	Our results


	Acknowledgments
	Open Access
	Appendix A 
	A software and hardware environment
	B Local solvers used
	B.1 Solving the nonlinear subproblems
	B.2 Solving the original system from the generated starting points
	B.3 Notes on the execution time
	C Parameter tuning
	C.1 Setting the sample size
	C.2 Setting h
	C.3 Setting the remaining parameters
	D Parallelization
	References


