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COMPARISON AND AUTOMATED SELECTION OF LOCAL
OPTIMIZATION SOLVERS FOR INTERVAL GLOBAL
OPTIMIZATION METHODS*

MIHALY CSABA MARKOT! AND HERMANN SCHICHL'

Abstract. We compare six state-of-the-art local optimization solvers, with a focus on their
efficiency when invoked within an interval-based global optimization algorithm. For comparison
purposes we design three special performance indicators: a solution check indicator (measuring
whether the local minimizers found are good candidates for near-optimal verified feasible points),
a function value indicator (measuring the contribution to the progress of the global search), and
a running time indicator (estimating the computational cost of the local search within the global
search). The solvers are compared on the COCONUT Environment test set consisting of 1307
problems. Our main goal is to predict the behavior of the solvers in terms of the three performance
indicators on a new problem. For this we introduce a k-nearest neighbor method applied over a
feature space consisting of several categorical and numerical features of the optimization problems.
The quality and robustness of the prediction is demonstrated by various quality measurements with
detailed comparative tests. In particular, we found that on the test set we are able to pick a “best”
solver in 66-89% of the cases and avoid picking all “useless” solvers in 95-99% of the cases (when
a useful alternative exists). The resulting automated solver selection method is implemented as an
inference engine of the COCONUT Environment.
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1. Introduction. In this study we investigate a set of local optimization solvers
in terms of their efficiency for interval global optimization. That is, we are interested
in the behavior of the local solvers when invoked successively within the global search
(from different starting points). Therefore we measure their success toward finding
the global minimizers in terms of special aggregate features. Our goal is well beyond
a purely comparative analysis of the solvers: we intend to explain solver performance
from the particular problem characteristics and to predict it for new problems. This
enables us to develop an automated local solver selection method for the global search.

Since the present study is part of the long-term extensive development of the
COCONUT Environment, we need a somewhat longer than usual introduction to
give insight into the overall framework and the applied methodologies. Therefore, in
the rest of this section we give an introduction to interval branch-and-bound (B&B)
methods for global optimization (including the role of local search within it), to the
COCONUT Environment, and to the COCONUT interfaces to local search engines.

1.1. Interval branch-and-bound methods. Interval analysis is an efficient
and convenient tool for bounding ranges of functions over rectangular domains. In-
terval versions of the arithmetic operations and elementary functions are implemented
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by interval arithmetic libraries (see, e.g., [1, 16]) in a careful way with directed (out-
ward) rounding. This ensures that the computed bounds to the range of the function
are mathematically correct (i.e., they enclose the actual range) even when the cal-
culations are done with finite-precision floating-point numbers. With the exception
of some simple cases, however, the calculated interval result is not the precise func-
tion range but a wider interval containing some overestimation. Since the analysis of
certain properties of functions often reduces to the range bounding problem of some
related function (e.g., monotonicity or convexity checking), calculations can also be
done with mathematical rigor using interval tools. Interval calculations will not be di-
rectly used in the present paper, so for more details we refer the reader to the interval
textbooks such as [14, 18], and many others.

It is very natural to employ interval analysis in a rectangular B&B global opti-
mization framework, and it is the basic part in the design of solvers for a complete
search: with interval B&B, mathematically rigorous enclosures of all global minimiz-
ers and the global minimum can be determined. In interval B&B methods the original
search box is split iteratively and a bound on the objective function range is deter-
mined with interval calculations over the actual box. When an interval-based tool
verifies that a box or a part of it certainly does not contain any global minimizer,
then the box or the respective part can be pruned from the search tree.

The role of local optimization. A key ingredient of the interval B&B method is
the update of the currently best-known upper bound for the global minimum. This
value is used as the pruning threshold for suboptimality, but it can also improve
constraint propagation methods (which are targeted to eliminate infeasible parts of
the search domain). Therefore, updating it efficiently is indispensable to the efficiency
of the whole method. When local (usually not interval-based) solvers are available,
they can be employed to produce unverified local optimizers. For an interval method,
however, such a raw solution is not of immediate use: it must be verified that there is
a box in the neighborhood of the provided solution that certainly contains a feasible
(or even better, a locally optimal) point. Only then can the upper bound of the
interval evaluation of the objective function over this box serve as a guaranteed upper
bound for the minimum. The acquisition of such guaranteed information from an
unverified point is an intensively researched field in the interval community. One of
the performance indicators used in the current study—the solution check indicator—
will be a heuristic indicator that measures the frequency of getting the verified answer
from the point returned by the local solver.

1.2. The COCONUT Environment. The COCONUT (COntinuous CON-
straints — Updating the Technology) Environment [9] is an open-source software plat-
form for complete global optimization and constraint satisfaction problems. The CO-
CONUT project, started in 2000, was initially funded by an IST program of the Eu-
ropean Community (IST-200-26063, 2000-2004) and has been continued since then
on a smaller scale.

The COCONUT Environment (called COCONUT in what follows) is designed
to be modular and extensible with newly developed or existing solver components.
Its central component is the COCONUT API (application programmer’s interface),
mostly written in C4++. The API contains, among other things, tools for building an
internal representation (a model) of the global optimization problem. The model is
given as a directed acyclic graph (DAG) consisting of expression nodes for the various
mathematical operations, and additional information on the constraints, the objective
function, the current variable bounds, etc.



AUTOMATED SELECTION OF LOCAL OPTIMIZATION SOLVERS 1373

Other API components are the search graph, the evaluators, management mod-
ules, report modules, and inference engines and graph analyzers. The search graph
is a DAG with a model in each node, representing the B&B procedure. Evaluators
evaluate problem functions and their higher-order derivatives (both with real and in-
terval data). Management modules are used to initialize and manipulate the search
graph and the respective models (e.g., doing branching by splitting a node of the
search graph). The report modules provide output related to the respective prob-
lem (problem specification, structural information, solution, etc.) in various formats.
The graph analyzers and the inference engines do most of the work while solving a
problem: graph analyzers work on the search graph (e.g., they cut off leaves if the
respective model provides suboptimal solutions only), while inference engines work
on a specific model (e.g., they perform local optimization or generate the respec-
tive Karush—John conditions). In particular, external optimization solvers (including
the local solvers used in this paper) are connected to the environment as inference
engines.

2. Methods for interfacing solvers with the COCONUT API. The com-
munication between the solver and COCONUT is implemented in one of the following
ways:

1. Object-oriented interface with problem instance objects. Solvers written in an

object-oriented language (e.g., in C++) usually provide object-oriented inter-
faces by having a (base) class of problem descriptions. The software that calls
the solver (in our case, the COCONUT environment itself) needs to have a
class derived from this base class, where the necessary problem information
is evaluated by the caller (in a COCONUT routine) and is specified by over-
loading the base class member functions (i.e., initialization, evaluation, and
postprocessing routines). Upon execution, a problem instance and a solver
instance are created in the COCONUT interface, and then the problem class
is passed to the solver for solving.
Besides its transparency, the main advantage of this method is that, since the
information is passed between the solver and the environment through the
member functions, the solver calls the respective routines only when neces-
sary, without causing overhead or using additional control parameters.

2. Procedural interface. The other type of COCONUT interface (usually pro-
vided by solvers implemented in C or Fortran) is procedure oriented. There
is typically one main solver routine to be called (perhaps together with ini-
tialization and postprocessing routines). There are two principal ways of
communication between the solver and the evaluation functions:
2a. Callback communication. The main routine needs to be called only

once, and the evaluation routines are predeclared callback functions that
should be defined by the user.
2b. Reverse communication. The main routine is called in a loop, and its
requests and status are communicated through the call parameters and
a returned status code; e.g., if a call to the main routine returns with
the status “request a constraint gradient evaluation,” then the slots in
the parameter list corresponding to the gradient should be filled before
the main routine is called again.
In principle, any external solver supporting one or more of the above object-oriented,
callback, or reverse communication modes can be interfaced with COCONUT. It is,
however, also recommended that the solver be thread-safe—in particular, it does not
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use global variables—for the interface to stay valid in future distributed COCONUT
applications.

3. The local optimization solvers.

3.1. Common properties and requirements. Unless noted otherwise, all
investigated solvers are designed for solving general nonlinear constrained problems.

The problem information commonly passed to the solvers consists of

— the number of variables and constraints,
— the bounds on the variables and constraints,
— the starting point (currently just for the primal variables).

The values of the objective and constraint functions evaluated at the specified
input points must be provided externally for all solvers. The requests for first and
second derivatives are more versatile: in some cases it is mandatory that they be
supplied; in others they can be approximated internally. Since first derivatives are
evaluated in COCONUT efficiently with backward automatic differentiation, in this
study we always provide them externally, even if they are optional.

For second-order information, however, the choice between explicitly supplied val-
ues and internal approximations can lead to substantial differences in efficiency, and
the right selection can obviously depend on the particular problem properties. There-
fore, for solvers that offer a choice between externally supplied and internally approx-
imated Hessians, we consider both possibilities and use different solver subversions in
the comparison test based on this distinction. The details of this are given in the solver
introductory sections below. (In COCONUT, Hessians are evaluated as compositions
of Hessian-vector products with backward automatic differentiation. The number of
necessary Hessian-vector product evaluations needed to construct the whole Hessian
is reduced by a Hessian-coloring algorithm, namely, Algorithm 4.1 of [11].)

With the exception of DONLP3 and L-BFGS-B, all of our tested solvers strongly
utilize sparsity information. Therefore COCONUT also passes this information for the
Jacobian and, when second derivatives are supplied, for the Hessian of the Lagrangian.
The sparsity information passed always consists of the number and position of the
nonzeros of the respective matrix.

Many solvers can utilize special problem structure information, e.g., whether the
problem is known to be linear, linearly constrained, or quadratic. Since this can be
easily determined by COCONUT, we always supply this extra information (whenever
the solver can make use of it).

Next we give a short description of the solver variants used in the study regarding
their methodology and availability. In addition, in Table 1 we list some (comparable)
characteristics of the solvers, including software version number, implementation lan-
guage, licensing, sparsity utilization, type of interfacing with COCONUT, and need
for supplying Hessians externally.

3.2. DONLP3.

Methodology. The DONLP3 solver of Spellucci [24, 25] implements a variant of
the sequential quadratic programming (SQP) method. At each iteration, a correction
to the current iterate is computed by solving a convex quadratic model of the problem.
After a search direction for the next iterate is computed, an appropriate stepsize is
determined by using an ¢; exact penalty merit function. To avoid the evaluation of all
constraint gradients at each iterate, DONLP3 maintains a set of working constraints.
DONLP3 does not utilize sparsity information, and there is no need to supply second-
order derivative information to it. The software is originated from Spellucci’s F77
DONLP2 algorithm.
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TABLE 1
Summary of the local optimization solvers interfaced to COCONUT.

Name Version Language Licensing Sparse?  Interface Hessian
supplied?
DONLP3 3 C++ free for research no 2a no
IPOPT-H 3.5.1 C++ CPL (free) yes 1 yes
IPOPT-gN no
L-BFGS-B 2.1 F77 GPL (free) no 2b no
LOQO 6.07 C proprietary yes 2a yes
KNITRO-H yes
KNITRO-FD 5.1.2z C/C++ proprietary yes 2b no
KNITRO-Hv as Hyp -v
SNOPT 6 F77 proprietary yes 2a no

Awailability. DONLP3 is freely available for research purposes from P. Spellucci
or from the COCONUT development team.

3.3. IPOPT.

Methodology. TPOPT is a primal-dual interior point algorithm with a line search
filter method by Wéchter and coworkers [19, 28, 30, 29, 31]. The primal-dual KKT
equations are solved by a damped Newton method; the resulting search direction is
then passed to a line search algorithm. IPOPT uses a filter method [10] in the line
search, which means, in very simplified terms, that a trial point during the search is
considered acceptable when it improves either the (barrier) objective function value or
the constraint violation (in contrast to the more traditional merit functions combining
these two measurements into one quantity).

IPOPT requires at least one sparse symmetric linear solver as third party software.
We used the MUMPS multifrontal solver (http://graal.ens-lyon.fr/MUMPS/) version
4.7.3 for this purpose.

Second-order derivatives (the Hessian of the Lagrangian) can be either supplied
explicitly or approximated by IPOPT internally with a limited-memory quasi-Newton
method. In the present study we employ and compare two versions of IPOPT:

— IPOPT-H: Hessians evaluated by COCONUT,
— IPOPT-gN: Hessians internally approximated with a quasi-Newton method.

In the interface routines we also supply IPOPT with the number and list of
nonlinear variables (this is only optionally required by the solver but is useful when
the quasi-Newton approximation is selected).

Awailability. TPOPT is freely available together with its source code from COIN-
OR (http://www.coin-or.org) under the Common Public License.

3.4. L-BFGS-B.

Methodology. L-BFGS-B is a limited memory quasi-Newton solver by Byrd et
al. [6], applicable for bound constrained problems. L-BFGS-B proceeds by updating
a quadratic model to the problem by a limited-memory BFGS approximation of the
Hessian of the objective. The matrices are represented in a special compact form [7],
which is well-suited for bound constrained problems. In each iteration the search di-
rection is obtained by first determining the active variables with a gradient projection
method and then minimizing the quadratic model in the free variables. Then a line
search algorithm presented in [17] is performed.
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Availability. L-BFGS-B is freely available under the General Public License from
J. Nocedal (http://www.ece.northwestern.edu/ nocedal/lbfgsb.html).

3.5. LOQO.

Methodology. LOQQO is a primal-dual interior point solver developed by Vanderbei
[22, 26, 27]. The successive search directions are obtained by solving the appropriate
primal-dual KKT system with sparse indefinite LDLT factorization. After the search
direction is evaluated, a line search is performed to achieve sufficient decrease of an
{5 merit function. LOQO requires derivative information up to second order.

LOQO is connected to COCONUT through a type 2a interface. Note, however,
that LOQO provides access to its whole internal problem representation (a structure
called LOQO) through a pointer; therefore, the interface is programmed similarly to
those of type 1 but employs a C structure instead of a C++ class.

Awailability. The most recent versions of LOQO are available for download from
their author at http://www.princeton.edu/ rvdb/. The full version of LOQO is li-
censed (although there exist free, student versions of the software with limitations on
the problem size).

3.6. KNITRO.

Methodology. KNITRO is a commercial package designed primarily for large-scale
nonlinear optimization. For nonlinear problems KNITRO employs three different op-
timization algorithms: an interior point method (named Interior/Direct) that solves
the primal-dual KKT system with direct linear algebra methods [32], a similar interior
point method (named Interior/CG) with a projected conjugate gradient method for
the KKT system [5, 2], and an active-set method (named Active Set) with a sequential
linear-quadratic programming (SLQP) algorithm [3, 4]. A summary of the algorithms
implemented in KNITRO is given in [8]. KNITRO has built-in strategies to auto-
matically select the probably best-suited algorithm (depending on the characteristics
of the problem) and to switch from Interior/Direct to Interior/CG if the direct steps
behave poorly.

There are many options (parameters that can be given to a computer program)
for the KNITRO user to specify the evaluation of the gradients and Hessians. As
mentioned above, the gradients are always supplied by COCONUT. For the Hessian
evaluations/approximations, we selected three different options, which determine the
KNITRO variants of the present study:

— KNITRO-H: Hessians evaluated by COCONUT,

— KNITRO-FD: internal Hessian-vector product approximations with finite dif-
ferences, and

— KNITRO-Hv: Hessian-vector products (with vectors specified by KNITRO)
evaluated by COCONUT.

These options are made in accordance with the KNITRO manual, which recom-
mends supplying exact Hessians or Hessian-vector products for best general perfor-
mance and suggests the finite differences approximation as a possible further choice.

Remark 3.1. In the present study, we let KNITRO decide internally which of the
basic algorithms discussed above to invoke (or when to switch from one algorithm to
another). The relation of this internal decision process to our prediction methodology
(e.g., that the latter can improve the decision of KNITRO) can be a subject of future
research.

Awailability. KNITRO is a licensed product of Ziena Optimization LLC. General
information is provided at http://www.ziena.com/knitro.html.
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3.7. SNOPT.

Methodology. SNOPT uses the sparse SQP method of Gill, Murray, and Saunders
[12].

In the general nonlinear case, SNOPT considers a special modified Lagrangian
(based on constraint linearization), and at each iteration it builds a convex quadratic
model of this Lagrangian at the current iterate. The resulting quadratic program is
solved with the active-set method SQOPT [13]. The solution gives a search direction
for both primal and dual variables for the next iterate, which is determined by a line
search using an augmented Lagrangian merit function.

SNOPT approximates the Hessians of the modified Lagrangian with a limited-
memory quasi-Newton (BFGS) method; therefore, no second-order information on
the problem needs to be provided externally.

The solver is designed especially for large problems with a moderate number of
degrees of freedom. In general it requests relatively few function and gradient evalu-
ations; therefore it is particularly suitable when the problem functions are expensive
to evaluate.

The SNOPT 6 package offers various interfaces to invoke the solver and specify
the problem details. For COCONUT environment we chose the snOptA interface,
which is the generally recommended, easy-to-use option starting from Version 6.

Awailability. SNOPT is a proprietary software available from Stanford Business
Software Inc. (http://www.sbsi-sol-optimize.com/asp/sol product_snopt.htm).

4. The testing environment. We run all local solver variants on the
COCONUT test set [23] consisting of a total of 1307 optimization and constraint
satisfaction problems (CSPs) (http://www.mat.univie.ac.at/ neum/glopt/coconut/
Benchmark/Benchmark.html). The CSPs were also specified as optimization prob-
lems with a constant objective function. With the exception of L-BFGS-B, which
was run only on the bound-constrained and unconstrained problems (a total of 253
instances), all solvers were tested on all problems.

We generated 20 random starting points for each problem, that is, every problem
was attempted 20 times by each solver, from the same set of starting points. The
solvers were reinvoked for each problem instance (no warm-start information was
considered). For bounded variables, the starting points were generated with equal
probability from their domain. For unbounded variables, the starting points were
created in such a way that smaller absolute values were picked with bigger probability.
This was done with the aid of a special probability density function with quadratic
decay toward +oco. For precise details on the random point generation and on the
used density function we refer to the r_random routine of the COCONUT API.

The problems were classified by their dimension (the number of variables) n as
“tiny” (1 <n < 10), “small” (11 < n < 100), “large” (101 < n < 1000), and “huge”
(1001 < n) problems, and according to this, the maximal allowed running time was
set to 10, 60, 300, and 600 seconds, respectively. The limit is meant individually for
each problem instance, i.e., for each starting point. In addition, we set up a hard
time limit of 1000 seconds; if this amount of time elapsed and the solver was still
running, we externally killed the optimization process. (This happened mostly when
large sparse problems were tried with the, obviously not suitable, dense DONLP3
solver and in a few other cases when the problem was so big that program control did
not reach the first time-checkpoint of the solver code.)

The solvers were executed with their default parameters except for the time limit
and those additional settings specified in section 3. The tests were run on a cluster
of 32 PCs with AMD Opteron 2.4 GHz CPUs and 16 GB of RAM.
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5. Methodology of solver comparison.

5.1. The performance indicators. In this section we detail the three basic
criteria we use to measure the quality of the solutions reported by the local solvers.
It is important to emphasize that these criteria differ somewhat from the ones tradi-
tionally used in benchmarking studies, because we consider the use and efficiency of
local optimization within interval global optimization algorithms.

In the first place, we expect the solution to be “useful” in the sense that it can
be used as a candidate for a verified feasible solution. (Algorithms for the auto-
matic feasibility verification of approximate solutions, e.g., ones based on [15, 21], are
currently under development for COCONUT.) Namely, the reported search point is
expected to be at least “almost” feasible, and the objective function value attained at
the minimizer is expected to be “consistent” with the reported minimum value. These
expectations are checked by the solcheck test of COCONUT. In addition, for the use-
fulness we also expect that the reported solution is classified by the solver as at least
a rough approximation of a local minimizer; that is, the search point is obtained after
successful termination (convergence), or after a partial progress when some running
limit was exhausted, or when some stopping condition could not be satisfied.

In the present study we say that a solution passes the solcheck test if (i) the relative
error between the reported optimum and the objective function value evaluated at the
reported optimizers is at most 1073, and (ii) the relative constraint violation evaluated
at the reported optimizer is at most 1072 for all constraints. The relative constraint
violation is obtained by evaluating the constraint at the reported optimizers and (in
case of constraint violation) taking the relative error between the constraint value and
the constraint bound. Note that for CSPs, condition (i) holds by definition. Since
the solvers have a wide variety of sometimes incomparable built-in stopping criteria,
the solcheck tolerance values are set intentionally big enough so that they will not
interfere with these criteria. That is, when a solver stops and the claimed solution
is indeed an approximate optimizer, then it will not be rejected by the solcheck test
purely because of an expected higher precision. The solcheck indicator 5’; regarding
the performance of solver s on test problem p is defined by the number of times the
delivered solution passes the solcheck test. Thus, 0 < 5’; < 20.

Second, two local optimization methods can be compared by their efforts toward
finding the global minimum, which can be measured by the best reported local minimum
F‘; € RU{—o0} passing the solcheck test during the multistart testing. If 5’; =0, we

set Flf = oo. For brevity we also call this indicator the function value indicator.

The third criterion of comparison is the amount of computational effort needed
to obtain (approximate) local minimizers, which is simply represented by the solver
running time including pre- and postprocessing (in seconds). This can obviously
be measured within COCONUT in a uniform way for all solvers. Note that other
indicators such as the number of evaluations are less suitable for comparison reasons
in the present case: different solvers use evaluations up to different orders (which are
hard to compare), and, perhaps more importantly, the amount of computation spent
between evaluations is also important to be estimated. The running time indicator
is denoted by Tlf > 0 and is computed as the average of the running times on the
respective 20 problem instances. If a solver passes the hard time limit for a given
problem instance, we declare that the solver is not advised to run at all on that
problem w.r.t. the time requirement and set T; = 1010,

There is, of course, a natural trade-off between quantifying or ranking by the
usefulness, the function value, and the time criteria: a solver can, for instance, pro-
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duce worse objective function values, but in a shorter time than another. Indeed,
it is neither easy nor practical to create a good general combined measurement of
these criteria. Therefore, during the performance analysis and the prediction of the
expected solver behavior, we consider all three indicators separately. When the pre-
diction system is in use for a new problem, the indicators can be combined into one
single measurement—depending, e.g., on the particular problem characteristics and
the user’s expectations—to determine the final solver selection.

Notation. The symbols for the raw performance indicator values are marked
with a “hat” accent, as above; the transformed values (scores) introduced below (and
used most frequently in the paper) are denoted by the respective letter without an
accent. A prediction of a performance score is denoted by a “bar” accent.

5.2. Transforming the performance indicators into scores. In the next
step we transform the raw indicators above into a score between 0 and 100 for each
problem and solver variant. This is done not only because the different solvers should
be compared on each problem, but because it should be possible to compare the
individual solver behaviors from problem to problem in order to create a prediction
(a fit) of the indicators.

Transforming the solcheck indicator SS is obvious; we just set Sp := 5 SS The
case of the local minimum indicator FS is a bit more tricky: for each problem p, if
at first FS = oo for all s, then we bet Fy =0 for all s (none of the solver results
passed the solcheck test). Otherwise, there is at least one solver for which Flf is finite;
let us denote by S’ the set of such solvers, and let f, ,, = InlIl{F; | s € S’}. For
s ¢ 5, we set F}j = 0. In order to avoid unfair scoring due to the different stopping

criteria and tolerances of the solvers, we consider the quality of F‘Zf and sz , s, te S’
to be the same if either the absolute or the relative difference of the two values is
at most 1073, Clearly, the above relation of “having the same quality” is reflexive
and symmetric, but not transitive. By making the transitive closure we turn the
relation into an equivalence relation that gives a partitioning of S’. (As experience
shows, taking the transitive closure does not significantly change the relation; indeed,
the absolute/relative difference between any two elements within a partition never
exceeded 2 - 1073.) Then, if s € S’ belongs to the partition P C S’, we replace
F3,s € P with min{F? | s € P}.

Now we set F3, s € S relative to fym. If [fpm| < 1073, then we decide by
the absolute difference of the (modified) local minimum indicators: for each s € S’, if
|F1f—fp7m| < 107%, then let F;¥ = 100; otherwise let ¥ = 15. If | f, | > 107, then we
decide by the relative difference of the (modified) local minimum indicators: for each
s €8, if r=[(E5 — fpm)/fpm| > 1, let F5 = 15; otherwise let F5 = 15+ 85 (1 —r).
That is, in the latter case we introduce a linear growth in the score between 15 and
100. This way we have F; = 0 whenever F‘; = 0o and have 15 < F; < 100 when F;
is finite. (The choice of the value 15 is based on experiments; we found that it is a
reasonable positive value to represent the lowest possible score for a finite F;)

When transforming the running time indicators T; we run into another difficulty:
since the fitting is done by taking linear combinations of the scores, the score must
be linear in the sense that if the differences between two pairs of running times are
“empirically” the same, then they should be mapped into a score where the respective
numerical differences are the same as well. (This criterion holds as well for S, and
Fy.) For instance, the differences between 0.09 and 0.1 seconds and between 100.09
and 100.1 seconds are empirically not the same; hence a nonlinear scaling is required.
We found that a logarithmic transformation is appropriate for this purpose: since



1380 MIHALY CSABA MARKOT AND HERMANN SCHICHL

T; varies between 0 and approximately 10° with the resolution of 0.01 when the
hard time limit is not passed, and T7 is set to 10'” otherwise, we define T)% as (10 —

log; (min(Tlf +0.01,1019)))-100/12. (The additive term and the multiplicative factor
outside the log are used to scale into [0, 100].)

6. A summary of the numerical results. Since we run altogether nine vari-
ants of six different state-of-the-art local optimization solvers on an especially wide
set of test problems, we believe that publishing the aggregate comparative results of
the tests is itself of value. Therefore, in Tables 2 and 3 we give a summary of these
results. The test set was split into bound-constrained optimization problems and
equality /inequality constrained optimization problems/CSPs, and both groups were
further divided by the problem size according to section 4. For the eight resulting
problem groups we ranked the solvers by their average scores for all three indica-
tors. (In the tables the three performance indicators are abbreviated by S, F, and T,
according to their formal notation in section 5.1.)

The most important consequence of the results is their diversity: there is no
unique best choice for all problem groups and indicators. Each solver variant performs
in an excellent way for one or more groups or indicators (ranked in the top three),
but occasionally performs worse on others. Although there are a few performance
trends that follow easily from the basic solver properties (such as that the ranking of
the dense DONLP3 solver drops while moving from smaller to bigger—thus, usually
sparser—problems or that SNOPT has difficulties with the obviously less well suited
large/huge bound-constrained problems with many degrees of freedom at the solu-
tions), most of them cannot be explained from such a traditional numerical summary.
It is worth emphasizing again that the present paper is targeted to explaining these
nonobvious performance facts, and therefore its ultimate goal is far beyond reporting
such aggregate results: in the next sections we introduce a much more sophisticated
analysis of the problem set (by categorical and numerical features) and a method to
predict future solver behavior from existing performance results.

7. Prediction methods. Predicting the most suitable solver for a problem
w.r.t. a performance indicator can be considered as a classification problem: we first
determine a feature space consisting of numerous categorical and numerical properties
of the optimization problems, and then we create a mapping (the prediction) from
the points of the feature space to the set of applicable solvers. The problem is then
classified by finding the solver with the best predicted value.

COCONUT provides many tools for extracting categorical and numerical proper-
ties of optimization problems. These, like evaluators, propagate the respective pieces
of information through the model DAG. All problem information we use in this study
can be extracted quickly by COCONUT (with an effort proportional to a small con-
stant multiple of the number of nodes).

Our strategy consists of two phases. First, we group the problems by taking
into account the categorical features of the problems only. In the second phase, for
each such group, we create the prediction by an appropriate fitting method using the
numerical features.

7.1. Dealing with the categorical features. The categorical grouping should
be descriptive enough to catch the different behaviors of the local solvers, but on the
other hand, the size of each group should be large enough so that a colloquial fit
can be created. The grouping described below is therefore a somewhat subjective
compromise between these two goals, designed for the current set of problems.
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TABLE 2
Aggregate results on the bound-constrained problems (253 problem instances). The abbreviations
S, F, and T stand for the solcheck, function value, and runtime performance indicators, respectively.
For each problem group and performance indicator we list the solver rankings based on the average
scores. The respective scores are given in parentheses after the rank numbers. The sizes of the
problem groups are given next to the group names in the header lines.

Tiny (137) Small (24)
S F T S F T
DONLP3 1 (96.7) | 3 (914) | 1 (936) || 2 (992) | 2 (927) | 3 (82.6)
IPOPT-H 6 (93.6) | 1 (935) | 8 (84.0) || 6 (91.0) | 7 (84.9) | 9 (72.5)
IPOPT-gN | 3 (94.9) | 8 (835) | 9 (821) || 5 (91.3) | 5 (88.0) | 5 (77.6)
KNITRO-FD | 8 (91.9) | 9 (81.9) | 4 (91.3) || 8 (87.1) | 8 (83.6) | 4 (80.0)
KNITRO-H |4 (945) | 4 (913) | 5 (89.7) || 4 (915) | 4 (88.7) | 7 (75.8)
KNITRO-Hv | 5 (94.1) | 7 (84.7) | 6 (89.0) || 7 (89.4) | 6 (86.1) | 6 (76.1)
LOQO 9 ) |5 0.7 |7 (86.8) || 9 (865) | 9 (75.7) | 8 (72.8)
SNOPT 7 (92.8) | 2 (93.3) | 3 (933) || 3 (94.6) | 1 (929) | 2 (83.7)
L-BFGS-B 2 (95.4) | 6 (87.5) | 2 (935) || 1 (99.4) | 3 (91.8) | 1 (85.5)
Large (34) Huge (58)
S F T S F T
DONLP3 1 (99.9) | 1 (757) | 9 (621) || 6 (81.1) | 7 (33.6) | 9 (44.9)
IPOPT-H 8 (81.3) |5 (547) |8 (641) || 7 (77.5) | 8 (33.0) | 3 (57.3)
IPOPT-gN 7 (87.2) | 8 (385) |3 (66.9) || 8 (77.0) | 6 (353) | 4 (57.2)
KNITRO-FD | 3 (92.1) | 6 (52.2) | 4 (66.1) || 5 (87.0) | 5 (44.5) | 6 (54.9)
KNITRO-H | 4 (90.7) | 4 (643) | 6 (64.3) || 2 (92.0) | 3 (50.3) | 7 (54.0)
KNITRO-Hv | 4 (90.7) | 7 (481) | 5 (64.4) || 3 (91.1) | 4 (49.6) | 8 (52.2)
LOQO 6 (875) | 3 (647) | 7 (642) || 4 (89.7) | 2 (59.6) | 5 (56.8)
SNOPT 9 (393) |9 (287) |1 (746) || 9 (141) |9 (137) | 1 (7L6)
L-BFGS-B 2 (97.2) | 2 (67.9) | 2 (705) || 1 (92.6) | 1 (68.8) | 2 (60.9)
TABLE 3

Aggregate results on the equality/inequality constrained problems (1050 problem instances). The
table is organized in the same way as Table 2.

Tiny (551) Small (208)
S F T S F T
DONLP3 2 (833) | 1 (947) | 2 (931) || 4 (71.6) | 5 (82.8) | 2 (8L.3)
IPOPT-H 3 (81.4) | 3 (93.0) | 7 (846) || 3 (781) | 2 (83.4) | 5 (79.5)
IPOPT-gN 1 (84.0) |2 (931) |8 (844) || 1 (839 | 1 (86.2) | 3 (80.2)
KNITRO-FD | 7 (69.3) | 7 (86.8) | 3 (88.4) || 7 (657) | 7 (80.6) | 4 (79.9)
KNITRO-H |5 (729) | 4 (90.4) | 4 (87.9) || 5 (70.4) | 4 (82.9) | 6 (79.0)
KNITRO-Hv | 6 (69.8) | 6 (87.3) | 6 (86.1) 6 (66.3) | 6 (8L7) | 8 (76.6)
LOQO 8 (68.6) | 8 (84.6) | 5 (87.0) 8 (40.8) | 8 (57.7) | 7 (77.8)
SNOPT 4 (785) | 5 (89.3) | 1 (94.4) 2 (797) | 3 (833) | 1 (88.5)
Large (138) Huge (153)
S F T S F T
DONLP3 7 (455) | 7 (483) | 8 (56.7) || 8 (42) |8 (55) | 8 (11.9)
IPOPT-H 3 (67.2) |3 (714) | 3 (66.2) || 2 (60.7) | 4 (63.9) | 3 (55.0)
IPOPT-gN 1 (730) | 2 (75.5) | 2 (687) || 1 (787 |1 (84.8) | 2 (60.5)
KNITRO-FD | 4 (57.6) | 5 (655) | 3 (66.2) || 4 (50.4) | 2 (69.3) | 4 (53.1)
KNITRO-H |5 (56.7) | 4 (66.2) | 6 (65.1) || 3 (54.5) | 5 (60.4) | 5 (53.0)
KNITRO-Hv | 6 (53.7) | 6 (63.6) | 7 (63.3) || 5 (49.6) | 3 (64.8) | 5 (53.0)
LOQO 8 (129) |8 (26.9) |5 (653) || 7 (95 |7 (232) | 7 (52.0)
SNOPT 2 (69.0) |1 (763) | 1 (721) || 6 (37.7) | 6 (45.3) | 1 (61.2)
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TABLE 4
Grouping the test problems by the categorical features.

Obj\cstr no bnd lin g-CVx 0-CVX g-ncvx  0-ncvx
const 0 0 0 6 6 6 6
lin 0 0 0 5 5 1 2
g-Ccvx 0 0 0 5 5 1 2
0-CVX 4 4 5 5 5 2 2
Q-ncvx 0 4 3 3 3 1 2
o-ncvx 4 4 3 3 3 2 2

The two most important categorical features are the polynomial degree and the
convexity information about both the objective and the constraints. Since all local
solvers use at most second-order function information, the polynomial degree feature
will be differentiated up to degree two; higher-order polynomial degrees and non-
polynomial functions will be referred to as “other” w.r.t. this feature. The analyzer
for the convexity information [20] returns “verified convexity,” “verified concavity,”
or “unproven convexity” (i.e., uncertainty w.r.t. convexity). We refer to the last two
types of outputs as “nonconvex” below. After some experimentation, we ended up
with the categorization displayed in the row and column headers of Table 4.

For the objective function (table row headers), we have const for constant (or miss-
ing) objective, lin for linear, ¢-cvz for quadratic convex, o-cvz for other convex, g-ncvzx
for quadratic nonconvex, and o-ncvx for other nonconvex functions, respectively.

For the constraints and the feasible set (table column headers), we have no for
unconstrained problems, bnd for bound-constrained problems, lin for linearly con-
strained problems, ¢-cvz for quadratically constrained problems with convex feasible
set, o-cvz for other problems with convex feasible set, ¢-ncvx for quadratically con-
strained problems with nonconvex feasible set, and o-ncvz for other problems with
nonconvex feasible set.

The above categorization gives a good resolution according to the possible solver
behaviors. However, many cells of the table do not contain enough problems to create
a fit. To satisfy the second goal mentioned above, we merged some cells, as described
by the numbers in the table. The resulting seven groups are those used throughout
the analysis of the numerical features. These are

0: the problems that are treated as “trivial” from the global optimization point
of view; these problems either have no solution or can be solved as a system of
linear equations, a linear program, or a convex quadratic program. This can be done
efficiently by standard linear programming software, such as CPLEX or FICO Xpress
(139 problem instances);

1: nonconvex general convexly constrained quadratic programs (QCQPs) (137);
nonconvex, non-quadratic problems (290);
convexly constrained general nonconvex optimization problems (132);
unconstrained /bound-constrained problems (218);
general convex optimization problems (39); and
: nonlinear CSPs (352).

In what follows, G(p) denotes the categorization of a given problem p; that is, G
maps p into the respective categorical group.

7.2. Dealing with the numerical features. Throughout the study we use
eight different numerical features to represent the problem characteristics. These are
— the number of variables (denoted by 7, for problem p);
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— the number of nodes in the DAG representation (cfp), which is one way to
represent the complexity of evaluating the objective and the constraints;

~ the number of bound constraints (b,);

— the number of equality constraints (é,);

~ the number of inequality constraints that are not bound constraints (i,);

— the sparsity ratio of the extended Jacobian matrix (the Jacobian extended with
the objective gradient), i.e., the ratio of the number of nonzeros and the total number
of elements (jp);

— the sparsity ratio of the Hessian of the Lagrangian (ﬁp); and

— the average [; norm of the constraint violation vector of the 20 starting points,
as a rough indicator of the shape and size of the feasible set ().

Scaling the feature values. For each problem group of section 7.1, the feature
space in which we create the fit consists of the above features. To be able to use scaled
Euclidean distances to measure the distance of two problems in the feature space, we
need to scale the feature values nonlinearly in the same way we did for the performance
scores in section 5.2. That is, if the intuitive difference of the feature values between
a pair of problems is the same as the intuitive difference of the feature values between
another pair, then the respective numerical difference of the transformed feature values
should also be approximately the same. For simplicity we scale all feature values into
[0,1]. The scaled feature values are denoted by the respective letter of the unscaled
feature without the “hat” accent.

Given a set of problems @ that belong to the same category according to sec-
tion 7.1, the numerical features of all p € @ are scaled as follows: for n,, dp,
Ep, ép, fp, and 7, first we apply a logarithmic scaling, and then we scale the re-
sults into [0, 1], dividing by the maximal feature value within the respective problem
category. That is, for the numerical feature f € {fz,cf, l;,é,%,ﬁ} we first evaluate
my := max{log;o(f; + s7)|¢ € Q}, where s; is a small shift constant introduced
to avoid domain errors for the logarithm (s; = 1 for f e {be,i, o} and sy = 0 for
f € {n,d}). Then for all p € Q we set f, := log,o(fp+5s)/my, if mp #0, and f, := 1
otherwise. (The latter case occurs only if fq is constant over ), and thus all scaled
feature values can be considered equal.)

For jp and ﬁp we apply a scaling by taking their square roots: for f € {j JH }
and V p € Q we set f, := 2/2.

8. Creating the fit. Up to this point, we have defined the three performance
scores for all solvers and problems, we have grouped the problems by their categorical
features, and we have evaluated an 8-dimensional (scaled) numerical feature vector
for all problems. Given a new optimization problem instance p (as a trial problem)
and a set Py of problems with known performance and feature values (as the training
set), we predict the performance scores of all available solvers on p by a k-nearest
neighbor method, as described next.

First, we analyze the problem structure with the COCONUT tools and determine
the categorical and numerical feature values described in sections 7.1 and 7.2. Then
we determine the respective problem category G(p) = g by section 7.1, together with
the problem group P, := {q € Py | G(¢q) = g}, and scale the numerical features to get
fp € [0,1]8. The logarithmic scaling needs a small adjustment as compared to those
given in section 7.2, because p is now not in Py: we keep my as above (i.e., do not
rescale the features of the training set), but evaluate f, := min{log,(f, + sf)/myg, 1}
if my #0, and f;, := 1 otherwise.
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Next we find the £ problems in P, that are closest to f, in the numerical feature
space. After some experimentation we found that & = 5 is a suitable value. The
distances in the feature space are defined as weighted Euclidean distances.

In this study we use an easy to obtain, uniform weighting of the numerical features.
The weights are set in the following way: we group the numerical features into smaller
sets—the set of features reflecting problem dimensionality (n,d), constraints (b, e, %),
sparsity (J, H), and infeasibility (v), respectively—and give the same weights to these
feature sets, dividing these weights equally among the relevant individual features of
that set. Formally, we have w = (1,1,2,0,0,0,2,0)%/6 for problem group 4 (since for
unconstrained/bound-constrained problems e, =i, =0, J, = 1, and v, = 0, so the
features actually vary in a 4-dimensional subspace) and w = (3,3,2,2,2,3,3,6)7/24
for all other problem groups.

Finally, to create the k-nearest neighbor fit for the fixed p, for all T € {S,T, F'},
and for all applicable solvers s, we look for the £ problems ¢;, i = 1,...,k, ¢; € P,
with the smallest d,, = (3)_, wO (£ — £80)2)1/2 weighted distance values. (The
upper index [ denotes the {th component of the respective vectors.) The predicted
performance score will be the weighted sum of the performance scores of ¢;, with
weights W, defined to be proportional to the inverse of the distances (with some

correction to avoid division by zero): we set d,, := 1/ max{d,,,1073} and W,, :=
dg;/ >_; dg;- Thus, the predicted performance scores are formally given as Iy =
Z’i WQi I‘qsI .

Remark 8.1. During our experiments we also tried seemingly more sophisticated
weighting of the numerical features, based on the idea that the weights reflect the
effect of the numerical features on the preknown performance scores on P,. This was
done by two different methods. In the first we computed the linear correlation between
the feature values and the scores on P, and set the weights on the basis of the absolute
values of the correlation coefficients. In the second method we scaled the scores into
[0,1] and computed the mean absolute differences between the features and scores (as
if only one feature value were at hand to create the prediction) and set the weights
of the features on the basis of these error estimates. Both of these methods produce
different weights for all training samples. However, somewhat surprisingly, we found
that in terms of the overall quality-of-fit measurements of section 9 these dynamic
weighting methods did not give any significant improvements when compared to the
fixed scaling. Our conclusion is that in the k-nearest neighbor prediction method,
most information on the effect of the numerical features on the performance scores
can be acquired by the fixed feature weighting; further (tuned) weighting methods
would lead only to minor (if any) improvements.

9. Comparative results. In this section we investigate the quality of the pro-
posed k-nearest neighbor fit—based prediction compared to other prediction methods
utilizing less problem information. Since the local solver predictions are needed only
for problems that indeed require global optimization (i.e., are not in the trivial cate-
gory 0), we make the comparisons only over the test problems from the categories 1
to 6 (a total of 1168 problems). In what follows, P denotes this problem set. With
the methodology of section 5, we first compute the performance indicator scores for
all problems p € P and available solvers. These will be called the preknown scores.
Then the predicted scores are computed for all problems p € P and solvers using the
preknown performance scores of all other available problems P\ {p}. (This models
the scenario of predicting solver performance on a new problem instance.) In other
words, we create the prediction for all p by using Py = P\ {p} as the training sample.
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TABLE 5
Quality of predictions for the three performance indicators. The four quality measurements
are by (probability of picking a best solver, with score tolerance t = 1), w1 (probability of avoiding
all useless solvers, with score tolerance t = 1), ES (mean absolute error between the preknown and
predicted scores), and ER (mean absolute error between the preknown and predicted ranks). Larger
values for by and w1, and smaller values for ES and ER, mean better prediction power. The proposed
k-nearest neighbor fit is compared with the trivial, the purely categorical-based, and the combined fit.

Measurememt | Performance indicator | Trivial Categorical Combined  k-nearest
S 0.82 0.82 0.83 0.84
b1 F 0.83 0.87 0.89 0.89
T 0.55 0.55 0.60 0.66
S 0.95 0.96 0.96 0.97
w1 F 0.94 0.96 0.96 0.95
T 0.99 0.99 1.00 0.99
S 34.33 29.99 24.28 15.94
ES F 34.02 32.62 24.55 15.79
T 13.32 12.92 6.63 4.76
S 1.87 1.72 1.67 1.32
ER F 2.05 1.92 1.85 1.05
T 2.08 1.86 1.44 1.23

Another way of testing the fit, namely cross-validation, is done in section 10, where
we gradually restrict the training sample to smaller and smaller sets.

The quality of the prediction can be measured either per optimization problem
(i.e., what are the predicted performance indicators of all available solvers for a given
problem) or per solver (i.e., how does the prediction of the solver performance change
from problem to problem). For our current purpose, the first type of measurement
is more relevant. The per solver predictions can be useful for studies related to the
“sensitivity” of a solver to the changes of the features. For the per optimization type
of analysis we introduce the following measurements.

Probability of picking one of the best solvers (b;). Let 0 <t < 100 be a tolerance
value. Given a performance indicator and problem, a solver s is considered best with
tolerance t if its indicator score differs by at most ¢ from that of the best performing
one (as in section 6). The set of such best solvers can thus be computed for both
the predicted and preknown scores. Given these two sets and assuming that we pick
a solver among the predicted best solvers with equal probability, we can, for each
indicator and problem, determine the probability of choosing a solver from the set of
preknown best ones. In Table 5 we display the average of these probabilities over all
problems; that is, we have an aggregate measurement for each performance indicator.

Probability of avoiding all “useless” solvers (wy). Similarly to the best pick dis-
cussed above, for each performance indicator and solver we can define the set of solvers
that are considered the poorest performing (“useless”) with tolerance value ¢ as those
with performance indicator scores at most ¢. Given the set of preknown “useless”
solvers and the set of predicted best solvers (both with tolerance t), we can evaluate
the probability of not selecting a useless solver. When all solvers are known to be
useless, we do not consider that problem in the analysis (there are 43 and 44 such
problems for the S and F indicators, respectively). In Table 5 we display the average
of the probabilities over all problems (with at least one nonuseless choice).

Mean absolute error between the preknown and predicted scores (ES). While the
above two measurements describe the predicting power related to the best pick, this
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measurement gives insight into the relations among all the solvers (which is somewhat
more informative in cases when the user does not have all local solvers of our test).
For each problem and performance indicator, we consider the vectors of preknown and
predicted scores (with lengths equal to the number of available solvers) and evaluate
the mean of the componentwise absolute difference between them. These values are
displayed as averages over all problems.

Mean absolute error between the preknown and predicted rank numbers (ER).
This measurement is similar to the previous one except that we rank the solvers by
their preknown and predicted scores, respectively, and we evaluate the mean absolute
difference between these two vectors. (In case there is a tie in positions p,...,p + i,
we award the average “rank” p + i/2 to all tied solvers.) The mean absolute rank
error values are also given as averages over all problems.

Remark 9.1. One might guess that the linear correlation and rank correlation
between the preknown and predicted scores/ranks could also be appropriate measures.
However, it often happens that either the preknown or the predicted scores/ranks
have uniform values (most often 100)—in around 20% and 40% of the problems for the
solcheck and function value indicators, respectively—so that the correlation coefficient
cannot be interpreted. This makes correlation-based quality indicators inappropriate
for presenting aggregated results.

To demonstrate the power of the fit created in section 8, we compare its re-
sults with three others involving more and more information on the features. First,
we consider the “trivial fit.” For each problem p, each (applicable) solver s, and
each performance indicator I € {S,T, F}, the prediction of the indicator value is
defined as the average of the respective indicator scores over all training problems:
I3 = (>gep, 13)/1Po]. That is, for given s and I, the prediction is constant over
all p. Second, we consider the “categorical fit.” For each p with G(p) = g, let
P, = {q € Py|G(q) = g}, the set of training problems in the same category
as p. Then for each p, s, I, the categorical-based prediction of the indicator value
is given as the average of the respective indicator scores over all elements of P,:
Is = (>_qep, 13)/1Pg|. Third, we introduce the “combined fit.” Here we involve the
most descriptive numerical feature as well: the problems within each category are
further refined by their dimensionality (just like in section 6), resulting in 4 - 6 = 24
problem groups. Defining P’ C Py as the set of test problems in the same re-
fined categorical group as p, for each p,s, I the combined prediction of the indica-
tor is given as the average of the respective indicator scores over all elements of P’
Iy = (Spep I)/IP.

Summarizing the above discussion, for the comparison analysis we determined
the predictions with the k-nearest neighbor fit and the above three reference methods
for all test problems p € P using the training set Py = P\ {p}.

Table 5 contains the comparative results for the four fitting methods and the four
quality measurements, with ¢ = 1 for b; and w;. According to the transformations
of section 4, the interpretation of the tolerance value of 1 in the context of the raw
indicators is the following: a solver just passed the solcheck test the same number
of times as the best one (since the solcheck scores are nonnegative multiples of 5),
the best known function value differs from the overall best one by at most 1073 (for
absolute difference) or around 1% (for relative difference), and the solver running time
is at most around 30% worse than the fastest.

We can observe that, as expected, the quality measurements become better when
the fitting involves more and more information about the problem. (The two excep-
tions are w; for F, T, where the measurement values are almost constant.) The useless
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TABLE 6
Quality of the k-nearest prediction for the three performance indicators, grouped by problem
categories. The problem categories are the ones denoted by 1 to 6 in section 7.1. The four quality
measurements by, w1, ES, and ER are the same as in Table 5.

Measurement | Performance indicator Problem categories
1 2 3 4 5 6
S 0.84 0.84 0.94 0.93 0.78 0.74
b1 F 0.90 0.87 0.94 0.83 0.91 0.93
T 0.63 0.60 0.66 0.72 0.66 0.67
S 0.96 0.98 0.98 0.99 0.94 0.94
w1 F 0.96 0.97 0.98 0.98 0.92 0.92
T 1.00 0.98 1.00 1.00 1.00 1.00
S 13.29 1841 10.68 11.31 17.72 19.59
ES F 12.46 19.71 10.54 18.89 15.12 13.98
T 3.74 5.53 3.92 3.98 6.29 5.15
S 1.47 1.37 0.98 1.28 1.64 1.35
ER F 1.01 1.12 0.86 1.35 0.88 0.91
T 1.11 1.29 0.99 1.16 1.50 1.34

solvers are always avoided with very high probability (whenever there is a nonuseless
alternative), even for the simplest fit. The k-nearest neighbor fit method picks a best
solver in 84%, 89%, and 66% of all cases, for S, F', and T, respectively, which is very
convincing. The increase in the quality of the fit is even more substantial for the
mean error measurements. In particular, the k-nearest neighbor fit is 54-64% better
for ES and 29-49% better for ER than the trivial fit, and it is 28-36% better for ES
and 15-43% better for ER than the combined fit. This shows that the investigated
categorical and numerical features indeed influence solver performance, and a good
part of their effect can be acquired by the proposed k-nearest neighbor fit. The k-
nearest neighbor fit approximates the scores on average by around 16 for S, F' and by
around 5 for 7', and it approximates the ranks on average by slightly more than 1 for
all three indicators.

Table 5 contains the prediction measurements aggregated over all problems. How-
ever, it is also interesting to investigate the k-nearest prediction separately for each
problem category, as given in Table 6. One can observe that in most cases there are
significant deviations around the aggregated values of Table 5, which shows that on
some problem categories the solver performance is more predictable than on others.
In particular, the solcheck indicators can be significantly better predicted (for all four
measurements) for categories 3 and 4 (convexly constrained general nonconvex and
unconstrained /bound-constrained problems) than for the other four categories. The
function value indicator can be in general the best predicted for categories 1 (gen-
eral nonconvex QCQPs), 3, and 6 (nonlinear CSPs). The running time is the most
predictable also for categories 3 and 4, and—except for the b; measurement—for cat-
egory 1. The solver performance on category 2 (nonconvex, nonquadratic problems)
is usually among the least predictable performance indicators for all measurements.

The per solver quality of the fit is measured by the (cumulative) frequencies of
the differences between the preknown and predicted scores, called prediction error,
aggregated for each solver separately over each problem. (Due to size limitations of the
current analysis, we do not present comparative results with the reference fits above—
but for this type of measurement one can observe the same kind of improvements on
the quality of the fits as we have given for the per problem measurements above.)
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TABLE 7

Cumulative relative frequencies of the differences between the preknown and predicted scores.

For each given t, the respective column contains the relative frequencies of the problems for which
the predicted and preknown scores differ by at most t.

t=1 t=5 t=10 t=20 t=250
DONLP3 36 49 59 72 90
IPOPT-H 35 45 55 69 88
IPOPT-gN 37 53 63 7 91
KNITRO-FD 27 43 54 73 93
KNITRO-H 33 47 57 74 93
KNITRO-Hv 30 45 57 73 94
LOQO 25 37 46 61 87
SNOPT 31 47 57 72 91
L-BFGS-B 60 79 87 88 98

F
DONLP3 62 64 68 78 90
IPOPT-H 56 60 63 75 87
IPOPT-gN 61 64 67 79 90
KNITRO-FD 53 57 61 74 85
KNITRO-H 55 59 62 72 87
KNITRO-Hv 55 59 62 74 86
LOQO 48 50 54 66 85
SNOPT 59 63 67 79 89
L-BFGS-B 44 50 53 75 87
T

DONLP3 24 67 86 96 99
IPOPT-H 25 70 90 99 100
IPOPT-gN 26 72 90 99 100
KNITRO-FD 18 59 82 97 99
KNITRO-H 18 60 83 97 100
KNITRO-Hv 19 62 83 97 100
LOQO 28 75 93 98 99
SNOPT 32 82 93 99 99
L-BFGS-B 25 78 93 100 100

For each solver s, performance indicator I € {S,T, F} and threshold ¢, 0 < ¢ <
100 we count the frequencies |I; — I;f| < t over all p € P. The relative frequencies
(given as percentages rounded to the nearest integer) are displayed in Table 7 for
t = 1,5,10,20, and 50. That is, for instance, for the solcheck indicator S and the
solver DONLP3, the preknown and predicted scores differ by at most 1 in about 36%
of the problems, and they differ by at most 5 in around 49% of the problems.

Concerning the solcheck indicator S, the prediction error is at most 1 in 25-37%
of the problems for the first 8 solver variants and in 60% for L-BFGS-B. It is at most
50 in 87-98% of the problems and is best again for L-BFGS-B. (Thus, one may say
that for the indicator S L-BFGS-B is the “most predictable” solver.) Note that L-
BFGS-B was run on bound constrained problems only; that is, in Table 7 it appears
with a different basis of aggregation. The frequencies show that, somewhat naturally,
on bound-constrained problems it is relatively easy to find useful solutions, i.e., reach
high solcheck scores.

For the function value indicator F', the prediction error is within 1 and 50 in
44-62% and 85-90% of the problems, respectively. Here DONLP3 is the “most pre-
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dictable” variant, closely followed by IPOPT-gN and SNOPT. Finally, for the time
indicator T, the prediction error is at most 1 (i.e., within &~ 30% w.r.t. the real running
time) in 18-32% of the problems, with SNOPT as the “most predictable solver” and
it is at most 50 for virtually all problems. A possible explanation of the predictability
of SNOPT is that it is in general the fastest on all problems (see Tables 2 and 3),
including problem classes that are less well suited for the solver.

Thus, with the k-nearest neighbor method we can predict all performance score
values for all problems and all applicable solvers. This enables us to define a new
“solver”: on each problem and solver we aggregate the three performance scores by
taking their weighted sum (we just now simply use the weights 1/3), and then to
each problem we assign a solver with the smallest respective aggregated score. Ag-
gregating the individual solver scores the same way enables us to compare the new
prediction-based “solver” with the others, as we did in Tables 2 and 3 (but now with
one aggregated score value for each problem group). We found that the new strategy
was ranked first in seven out of the eight groups, and it was ranked second once (by
a score difference of two behind IPOPT-gN for huge equality/inequality problems).
Thus it was performing well uniformly. Furthermore, the average placing was also by
far the best: it was 1.00 for the bound-constrained problems, followed by L-BFGS-B
(2.75) and DONLP3 (4.00), and 1.25 for the equality/inequality constrained prob-
lems, followed by IPOPT-gN (2.75) and SNOPT (3.5). When aggregated over all
bound-constrained problems, the prediction-based solver had the best average aggre-
gate score of 88.8, followed by L-BFGS-B (86.2) and KNITRO-H (82.6). The same
numbers for equality/inequality constrained problems were 85.7 for the prediction-
based solver, followed by IPOPT-qN (82.7) and SNOPT (79.0). These facts indicate
that the prediction-based solver selection method results in by far the most efficient
local optimization “solver” for our purposes.

10. Cross-validating the fit. Finally, we demonstrate the robustness of the
k-nearest neighbor fit with cross-validation. Here a given percentage p of the whole
problem set P is taken as the training set. Then the scores for the test set (i.e.,
for the remaining problems) are predicted. The preknown and predicted scores are
compared by the same four measurements as above. For p = 80, 60, 40, 20, we picked
20 different random training samples; the results displayed in Table 8 are the means of
the respective measurements (which are themselves averages as well) over the different
samples. The column p = 100 is included for reference and corresponds to the case
studies in section 9, i.e., when the whole problem set (except the problem to be
predicted) is taken as the training set.

As Table 8 shows, the prediction quality drops continuously for all performance
indicators and quality measurements, but the loss of prediction power is relatively
small; e.g., the quality decrease is only 2-9% for by, 0-2% for w1, 24-32% for ES, and
15-23% for ER, respectively, when the size of the training set is reduced from 100 to
20 percent. Thus, with the proposed k-nearest neighbor fit we avoid overfitting, and
the method is robust enough for predicting the solver behavior on future problems.

11. Summary. We designed a method for predicting the performance of local
solvers when used in interval global optimization algorithms. The method consists
of two stages: first, the problem to be solved is classified by its categorical features,
with respect to the polynomial order and convexity of its objective function and
constraints. Then the k-nearest neighbor predictions of the performance indicators
are calculated by using the indicators on the preknown problem instances from the
respective problem class. The predictions are made on an 8-dimensional feature space
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TABLE 8
Cross-validation for the k-nearest neighbor fit prediction for the three performance indicators.
The four quality measurements are the same as in Table 5. The size of the training samples is p
percent of the whole problem set.

Measurement | Performance indicator | p=100 p=80 p=60 p=40 p=20
S 0.84 0.84 0.82 0.82 0.79
b1 F 0.89 0.89 0.88 0.88 0.87
T 0.66 0.64 0.65 0.63 0.60
S 0.97 0.97 0.96 0.96 0.95
w1 F 0.95 0.95 0.95 0.95 0.94
T 0.99 0.99 0.99 0.99 0.99
S 15.94 17.09 17.22 17.87 19.76
ES F 15.79 17.00 17.26 17.97 19.59
T 4.76 5.25 5.27 5.54 6.26
S 1.32 1.37 1.41 1.44 1.55
ER F 1.05 1.13 1.14 1.19 1.29
T 1.23 1.29 1.29 1.32 1.41

consisting of the numerical features of the problems. We demonstrated the superiority
of the proposed prediction method to others that use less information on the problems,
and showed its robustness with cross-validation. The prediction can be made for each
available and applicable local solver; therefore its ultimate use is to help to select
the best possible local solver. We showed that this new solver selecting strategy
substantially improves the performance of the individual solvers; thus, it mixes their
advantages on a wide set of test problems. The solver selection strategy (including the
data tables of the preknown solver performances on the test problems) is implemented
in the locopt_chooser inference engine of the COCONUT Environment and has been
available there for public use since December 2009.

Acknowledgment. The authors thank Arnold Neumaier for his valuable sug-
gestions which improved the paper.
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