
myjournal manuscript No.
(will be inserted by the editor)

Bound constrained interval global

optimization in the COCONUT Environment

Mihály Csaba Markót, Hermann Schichl⋆

Faculty of Mathematics, University of Vienna, Nordbergstr. 15, 1090 Vienna, Aus-
tria

Received: date / Revised version: date

Abstract We introduce a new interval global optimization method for
solving bound constrained problems. The method originates from a small
standalone software and is implemented in the COCONUT Environment,
a framework designed for the development of complex algorithms, contain-
ing numerous state-of-the-art methods in a common software platform. The
original algorithm is enhanced by various new methods implemented in CO-
CONUT, regarding both interval function evaluations (such as first and sec-
ond order derivatives with backward automatic differentiation, slopes, slopes
of derivatives, bicentered forms, evaluations on the Karush-John conditions,
etc.) and algorithmic elements (inclusion/exclusion boxes, local search, con-
straint propagation). This resulted in a substantial performance increase as
compared to the original code. During the selection of the best combination
of options, we performed comparison tests that gave empirical answers to
long-lasting algorithmic questions (such as whether to use interval gradients
or use slopes instead), that have never been studied numerically in such
detail before. The new algorithm, called coco gop ex, was tested against
the prestigious BARON software on an extensive set of bound constrained
problems. We found that in addition to accepting a wider class of bound
constrained problems and providing more output information (by locating
all global minimizers), coco gop ex is competitive with BARON in terms
of the solution success rates (with the exception of a set of nonlinear least
squares problems), and it often outperforms BARON in running time. In
particular, coco gop ex was around 21% faster on average over the set of
problems solved by both software systems.

⋆ This research was supported by the Austrian Science Found (FWF) Grants
Nr. P18704-N13 and P22239-N13.



2 Mihály Csaba Markót, Hermann Schichl

Keywords. global optimization, bound constrained optimization, interval
arithmetic, branch–and–bound

1 Introduction

GOP ex is a bound constrained general purpose interval branch–and–bound
(B&B) algorithm for global optimization (GO). It is originating back to the
GOP ex sample program of the C–XSC Toolbox for Verified Computing
[8], further improved by M. C. Markót since 1997 and used successfully
in various scientific studies (see, e.g. [13–15]). The COCONUT Environ-
ment [4], developed under the leadership of H. Schichl, is an open-source
environment for developing and testing algorithms for global optimization.
The COCONUT Environment is highly modular, that is, it provides nu-
merous commercial and open-source solver components (inference engines),
as building blocks of complex algorithms. Since the GOP ex code has the
main disadvantage that it is hard to extend and hard to interface with other
interval related methods for global optimization, it is a straightforward idea
to implement the GOP ex algorithm as a new solver in the COCONUT
framework and extend it with novel tools available in COCONUT. The
paper introduces this implementation and improvement process.

The implementation of GOP ex within COCONUT thus has two goals:
on the one hand, it greatly facilitates the improvement of the original
GOP ex algorithm, and on the other hand, it demonstrates how COCONUT
can promote the development of high-quality solvers using novel compo-
nents.

The paper is organized as follows: in Section 2 we introduce the GOP ex
algorithm and discuss its components. Section 3 gives a brief introduction
to the COCONUT Environment. In Section 4 we discuss the first group of
improvements on the solver: advanced methods for evaluating the objective
and its higher order derivatives, and methods for tightening the respective
range enclosures. The comparison studies of the cost and efficiency of the
different routines (like forward vs. backward AD for gradients, slopes vs.
interval derivatives) and the discussion on the possible trade-offs between
them is presented in Section 5. In Section 6, the second group of improve-
ments, namely, newly added algorithmic tools are discussed, also one-by-one.
Our new solver is based on the proposed best combination of the new eval-
uation and algorithmic methods. This is compared with the BARON solver
in Section 7.

Notation and problem setting. The set of real compact intervals is
denoted by I. Intervals and interval vectors (boxes) are denoted in boldface.
The lower bound, the upper bound, the midpoint, the radius, and the width
of an interval x ∈ I are denoted by inf(x), sup(x), mid(x), rad(x), and
wid(x), resp. The interior of x is denoted by int(x). For interval vectors the
above functions are all defined componentwise.



Title Suppressed Due to Excessive Length 3

We solve bound constrained global optimization problems of the form

min f(x),

s.t. x ∈ x0,
(1)

where x0 ∈ In is the search box, and the objective function f : Rn → R is
twice continuously differentiable on x0.

Our goal is to provide mathematically rigorous interval enclosures of
all global minimizers and the global minimum, i.e., provide enclosures that
are correct even in the presence of the rounding errors caused by the com-
puter arithmetic. This is achieved by tools using interval arithmetic (IA).
For details on the theory and practice of interval calculations, we refer to
textbooks like [17,19].

The range of a function f over a box x is denoted by rg(f, x). Through-
out the paper, f(x) ∈ I denotes an interval enclosure of f over x; that
is, by definition, rg(f, x) ⊆ f(x). Except of some special cases, usually
rg(f, x) ( f (x) holds; that is, the constructed interval enclosure overesti-
mates the real range. We primarily use f (x) as a result of a single interval
evaluation method, e.g., the application of naive interval arithmetic. Equiv-
alently, f(x) also denotes the updated enclosure during the execution of
the algorithm, that is, the intersection of enclosures obtained by different
evaluation methods. The interval enclosures of the gradient and the Hessian
are denoted in a similar fashion by ∇f(x) and ∇2f(x), resp.

The interval evaluation on a point c is denoted by f(c). Of course, in
practice, such an evaluation is done by expanding c to an interval c, but
we prefer the notation f(c) to emphasize that the argument is actually a
point.

2 The GOP ex algorithm

We begin by specifying a pseudo-code of the algorithm together with a high
level description of the algorithm. The in-depth details of the function and
derivative evaluations, the management of the B&B search tree, the box
subdivision, the accelerating tests, and the stopping criterion are given in
the subsequent Sections 2.2 to 2.6.

2.1 High level description

The pseudo-code of GOP ex is given by Algorithms 1 and 2. During the
algorithm we manage a list L of working boxes waiting for further processing
– these correspond to the open leaves of the B&B search tree. L is initialized
with the search box x0 (Alg. 1, Step 1). In Step 2, we initialize f̃ , the current
best-known upper bound for the global minimum, to ∞.

Steps 3 to 22 of Alg. 1 contain the main B&B loop. We start by pick-
ing a box from L and subdividing it into s subboxes (Step 6). For each



4 Mihály Csaba Markót, Hermann Schichl

Algorithm 1: GOP ex

input : x0 – the search box
output: R – list of candidates for all global minimizers
output: m – enclosure of the global minimum value

L = {x0} ; /* working list of boxes */1

f̃ = ∞ ; /* best-known upper bound for the glob. min. */2

do3

y = Head(L);4

remove y from L;5

Split(y, u1, . . . , us);6

for i = 1, . . . , s do7

if ProcessBox(ui,L, f̃) then next i;8

if ui ⊆ int(x0) then9

fghEval(ui, f (u),∇f (u),∇2f (u));10

c = mid(ui);11

fgEval(c, f (c),∇f (c));12

if NewtonTest(ui,∇2f (u)),∇f (c), v1, . . . , vl) then next i;13

for j = 1, . . . , l do14

if ProcessBox(vj ,L, f̃) then next j;15

if Stopping crit(vj) then add vj in R; else add vj in L;16

end17

else18

if Stopping crit(ui) then add ui in R; else add ui in L;19

end20

end21

while L 6= ∅ ;22

m = [min y∈R inf(f (y)), f̃ ];23

subbox ui the ProcessBox() procedure is executed first. The primary goal
of ProcessBox() is to erase those parts of ui that are guaranteed to be
suboptimal, using function and derivative information up to first order. In
addition, by the update of f̃ suboptimal boxes from L are also removed. The
pseudo-code of ProcessBox() is given in Algorithm 2; a detailed description
of it will be given later in this section.

If ProcessBox() in Step 8 returns false (meaning that ui was not fully
erased), we turn to using second order function information. In GOP ex
the only accelerating test that uses second order derivatives is the interval
Newton test [19]. In its present implementation (see Sec. 2.5) the Newton
test applies only for boxes that are in the interior of the search space, so this
condition is tested first in Step 9. Then the interval Hessian ∇2f(u) and the
midpoint gradient ∇f (c) are calculated (Steps 10–12), and one step of the
interval Newton method is executed (Sec. 2.5). The Newton step can either
return the answer that u can be fully erased, or it returns l ≤ n+1 subboxes
vj after dividing and pruning (see [8] for the implementation details). In
Step 15, ProcessBox() is executed for all vj . In Step 16, the stopping



Title Suppressed Due to Excessive Length 5

Algorithm 2: ProcessBox

input/output: u – the current box
input/output: L – working list of boxes
input/output: f̃ – current best-known upper bound for the global

minimum
return value : true iff the whole box is sure to be eliminated

fgEval(u, f (u),∇f (u));1

if f̃ < inf(f (u)) then return true;2

c = mid(u);3

fEval(c, f (c));4

if sup(f (c)) < f̃ then5

f̃ = sup(f (c));6

CutoffTest(L, f̃);7

end8

f (u) := f (u) ∩ (f (c) + ∇f (u)(x − c)) ; /* 1st ord. mean value form */9

if f̃ < inf(f (u)) then return true;10

if MonotonicityTest(u,∇f (u)) then return true;11

if u is pruned by the MonotonicityTest then12

fEval(u, f (u));13

if f̃ < inf(f (u)) then return true;14

c = mid(u);15

fEval(c, f (c));16

if sup(f (c)) < f̃ then17

f̃ = sup(f (c));18

CutoffTest(L, f̃);19

end20

end21

return false;22

criterion is checked for the remaining part of vj (Sec. 2.6): if vj is proven
to be ‘small enough’, it is placed on the list of result boxes R, otherwise it
is inserted into L. If the condition of Step 9 does not hold for ui, we do not
proceed with second order procedures, just check the stopping criterion for
ui and store it as detailed above (Step 19).

The main loop is executed until L becomes empty, that is, the whole
search space is processed (Step 22). At the end of the procedure, the en-
closure of the global minimum is evaluated (Step 23), and R contains the
interval enclosures of all global minimizers.

The ProcessBox() function (Algorithm 2) starts by computing the in-
terval function and gradient values on the current box u. In Step 2, a bound
test is performed to test the suboptimality of u. Then an attempt is made
to improve f̃ by midpoint information. If f̃ is updated, a cut-off test is run
on L: this removes all boxes x ∈ L for which f̃ < inf(f (x)) holds, that is,
those that are suboptimal due to their bounds (Alg. 2, Steps 3–8).



6 Mihály Csaba Markót, Hermann Schichl

In Steps 9–10, an update is tried on f(u), using a first order mean
value form (see Sec. 2.2), along with a repeated bound test. In Step 11, the
monotonicity test is run on u (Sec. 2.5). If u is shrinked by the latter test,
in Steps 13–21 we re-evaluate its function enclosure, perform a bound test,
then re-evaluate the new center and do a cut-off test with the new values,
as above.

2.2 Function and derivative evaluations.

Interval evaluations on f are done by naive interval arithmetic: substituting
real-type arithmetic operators and elementary functions with their interval
versions and computing the function enclosure with IA. Interval derivatives
and Hessians are evaluated with automatic differentiation (AD) [7] in for-
ward mode. A derivative evaluation in forward AD is done the following
way: during the computation of f over x ∈ Rn, for each subexpression q of
f the whole gradient vector ∇q(x) is also computed. For interval arguments
the evaluation is done the same way with IA. The evaluation of real and
interval Hessians are done similarly, computing the whole Hessian for each
occurring subexpression.

The advantage of the forward AD is that it does not require any special
representation of f , the derivatives are computed in parallel to the function
evaluation (up to the required order). The disadvantage of forward IA is its
cost: the time cost of computing ∇f(x) or ∇f (x) is expected to be equal to
n times the cost of computing f(x) or f(x), resp. For Hessians the cost is
n2 times the cost of the respective real or interval function evaluation.

In GOP ex, if f(x) and ∇f (x) are known for a box x, then the interval
enclosure over x can be tightened by a first order mean value form update:
for c ∈ x, rg(f, x) ⊆ fm(x, c) := f(c) +∇f(x) · (x− c), thus, one can take
f(x) := f (x)∩ fm(x, c). In the present algorithm the center c is chosen as
mid(x). Note that in Alg. 2 f(c) will be in hand for the mean value update,
since this is the value we use to improve f̃ .

In Algorithms 1 and 2, fEval(), fgEval(), and fghEval() denote the
interval function evaluation, interval function and gradient evaluation, and
interval function, gradient, and Hessian evaluation routines, resp.

2.3 Operations on the B&B ‘tree’.

In GOP ex, the working list L is implemented as an ordered linked list.
There are several list operations to be specified for the algorithm:

– Subbox selection. We select that subbox y from L for which inf(f (y))
is minimal. In case of a tie, we choose the oldest box among the tied
ones. This is known as the Moore-Skelboe type box selection rule. (In
GOP ex also the Hansen type is encoded, which simply chooses the
oldest box in L. However, throughout the years we found out that the



Title Suppressed Due to Excessive Length 7

Moore-Skelboe rule is usually superior to the latter one, e.g., because
the cut-off test below is faster.) The ordering of L is done according to
inf(f(y)) in increasing order, so that the selection operation is done in
constant time. That is, we always pick the first box from L, hence the
name Head() in Step 4 of Alg. 1.

– Storing the remaining part of a subbox. This operation (occurring in
Steps 16 and 19 of Alg. 1) is done according to the criterion discussed
above, so that the ordering of the list is respected.

– Cut-off test. Whenever f̃ is updated, all boxes u ∈ L with inf(f(u)) > f̃
can be erased by suboptimality. For the Moore-Skelboe type working list
this means that elements at the end of L can be detached and deleted
(hence the name cut-off).

2.4 Box subdivision.

The current box is subdivided in the procedure Split(), which is specified
by the following two criteria:

– number of subboxes: GOP ex offers bisection and multisection (in one
or two directions) [14], the default is bisection;

– subdivision direction selection: GOP ex contains the widest component
rule and the first order merit function rules by Csendes and Ratz [5],
the default setting is the first order rule named ‘Rule C’ in [5].

2.5 Accelerating tests.

The accelerating tests are used to eliminate parts of the current box x that
are proved to contain only suboptimal points. GOP ex has the following
three accelerating tests (in increasing order of the derivative information
required):

– Bound test: if inf(f (x)) > f̃ , then the whole box x can be erased. This
is essentially the same as the cut-off test above, applied to the current
box.

– Monotonicity test: if 0 6∈ ∇if (x) for some i, then x cannot contain a
global minimizer in its interior. Thus x can be fully erased, or its ith
component can be reduced to the respective lower or upper bound. In
the pseudo codes, the first parameter of MonotonicityTest(u,∇f(u))
thus serves as an input-output argument. MonotonicityTest() returns
true if and only if the whole x was erased.

– Newton test: in GOP ex, this test is used to search for all stationary
points of f in x, and is currently restricted to boxes that are in the
interior of x0. The method included in GOP ex is from the family of
the so-called interval Newton-methods and is referred to as the interval
Newton-Gauss-Seidel method in [8] and as the Hansen-Sengupta opera-
tor in a general theoretical treatment in [19].



8 Mihály Csaba Markót, Hermann Schichl

If x ∈ x is a solution of ∇f(x) = 0 and c ∈ x, then it is easy to see that
x − c will be in the set S given by

S = {y ∈ x − c : Ay = b for some A ∈ C∇2f(x), b ∈ −C∇f(c)}.

Informally, S is the solution set of the (preconditioned) interval linear
system of equations with coefficient matrix C∇2f (x) and right-hand side
−C∇f(c), truncated to the box x − c. GOP ex uses a midpoint inverse
preconditioner, that is, C = (mid(∇2f(x)))−1 in the formulas above.
Starting from x and y := x−c, one then applies an interval Gauss-Seidel
iteration to the above system to get an updated interval enclosure of the
truncated solution set. Denoting the output of the iteration step by y′

and x′ = y′ + c, the following statements holds:
– every stationary point of f in x is also located in x′;
– if x ∩ x′ = ∅, then f has no stationary point in x;
– if x′ ⊆ int(x), then f has a unique stationary point in x′.

In Algorithm 1, NewtonTest() returns true if and only if the box con-
tains no stationary point and thus the whole box can be erased.

2.6 Stopping criterion.

A box x is placed to the list of result boxes if wid(f (x)) is smaller than a
pre-given tolerance value.

3 The COCONUT Environment

The COCONUT Environment [4] (shortly called COCONUT), developed
at the University of Vienna under the leadership of Hermann Schichl, is
a modular open-source environment for global optimization and constraint
satisfaction problems. The original COCONUT project, started in 2000, was
funded by an IST programme of the European Community (IST-200-26063,
2000–2004). Since then, COCONUT has been developed in smaller scale
projects of the Austrian Science Fund.

The modularity of COCONUT means that it can be expanded by com-
mercial and open-source solver components (inference engines). Thus, it
integrates existing tools and methods, and promotes the development of
new, state-of-the-art solvers. Since the GOP ex code has the main disad-
vantage that it is hard to interface and improve with other interval related
methods for global optimization, it was a straightforward idea to implement
the GOP ex algorithm as a new solver in the COCONUT framework.

Below we give a very brief introduction to the basic concepts of CO-
CONUT. For more details on its structure and its components not used in
the present bound constrained settings, see [4,16,23].

COCONUT represents the optimization problems in the form of di-
rected acyclic graphs (DAGs). The leaves of the graphs are the variables,



Title Suppressed Due to Excessive Length 9

with initial interval bounds representing the bound constraints. The order
of evaluations is represented by directed edges in a natural way. The model
functions (objective function(s), constraints, auto-generated optimality con-
ditions) are located on the top level of the DAG. To reduce the size of the
DAG, multiplicative and additive constants of expressions are stored at the
respective nodes, and for many arithmetic operators and elementary func-
tions more flexible expression types are used (such as a ‘sum’ node is used
for addition with an arbitrary number of terms).

Furthermore, the B&B procedure is also represented in COCONUT as
a DAG, in the so-called search graph. Here each node of the search graph
actually corresponds to a node of the B&B search tree. The advantage of
this approach is that in each node it is enough to store the difference of the
actual node from its parent(s), in the form of data structures called deltas.
For bound constrained problems, most deltas are bound deltas (representing
the pruning of the search region) or split deltas (representing branching).

The B&B elements of Sec. 2 are all implemented in a straightforward
way in the COCONUT Environment. The only significant difference from
the original implementation of GOP ex is – as mentioned above – the data
structure representing the search procedure, i.e., the access to the open
leaves. Since with the search graph representation one loses the advantage
of keeping the open leaves in an ordered form, we additionally developed
a so-called leaves cache, that maintains a representation of the leaves in
parallel to their search graph representation. Furthermore, in contrast to
the original GOP ex, the leaves are stored in a binary search tree (using
the set container of Standard Template Library), thus, allowing optimized
performance for the insertion and deletion operations.

4 Improving the GOP ex algorithm in COCONUT I. – new

evaluation methods

4.1 Gradient evaluations with backward AD

In COCONUT, the DAG representation of the model functions makes it
possible to implement AD methods in the more efficient backward mode
[22]. In addition, for comparison reasons we have implemented gradient
evaluation with forward AD as well, as described in Sec. 2.2.

The cost of one first order derivative calculation with backward AD is
in general only a small constant multiple of one function evaluation (while
with forward AD it is around n-times the cost of a function evaluation), so
it is much more economic in both time and storage than the forward mode.
Therefore, the backward mode is always considered as the preferred method
of calculation, especially for interval arguments. In Sec. 5.2.1 we will show
that this superiority is not universally true in practice.



10 Mihály Csaba Markót, Hermann Schichl

4.2 Hessian evaluations with backward AD

In COCONUT, the basic way of evaluating Hessians is the computation
of Hessian-vector products with backward AD [25]. The whole Hessian is
evaluated by using the n unit vectors. Nevertheless, when the Hessian has a
sparser structure, the number of necessary Hessian-vector product evalua-
tions can usually be reduced. This reduction is done by a so-called Hessian
coloring algorithm, (Algorithm 4.1 in [6]), that is a heuristic that constructs
0 − 1 vectors so that all nonzero Hessian entries are computed explicitly.
By default, Hessian coloring is attempted when the sparsity ratio of the
Hessian is below 0.9.

According to [25], as a by-product of the backward Hessian evaluation
one also gets an enclosure of the gradient, which can be used to update the
current ∇f(x) value (or newly set it if it was not yet evaluated).

4.3 Acquiring derivatives from the Karush–John conditions

The KJgen module of COCONUT computes the DAGs of the Karush-John
first order necessary optimality conditions of any general constrained prob-
lem [23]. The generated conditions can be attached to the original DAG and
can be evaluated like any other model functions (objectives or constraints).
For bound constrained problems, a subset of these conditions is of the form

κ · ∇jf(x) − λj = 0, j = 1, . . . , n ,

where κ and λj , j = 1, . . . , n are the objective and constraint multipliers,
respectively. One can immediately recognize that the partial derivative func-
tions of the objective become available as subgraphs in these DAGs, that
is, evaluating the function/derivative/Hessian of the left-hand side of the
above equations at (x, κ, λ) = (x, 1, 0) by the ordinary COCONUT evalua-
tors, we gain access to ∇f (x),∇2f(x), and ∇3f (x), resp. For ∇f (x), this
method is usually an inferior alternative to backward AD, since it requires
n function evaluations. However, for ∇2f(x) it is a reasonable alternative of
the Hessian-vector product routines (although Hessian-coloring cannot be
used), and for ∇3f (x) this was actually the only way to compute third or-
der problem information before the recent implementation of explicit third
order evaluation routines. (Studying the use of third order information is
under development for COCONUT; methods utilizing it will be discussed
in forthcoming papers, such as in [26].)

4.4 Bicentered forms

As it is known from theory (see [1] and Theorem 2.3.6 in [19]), the first
order mean value form fm(x, c) := f(c) + ∇f (x) · (x − c) gives an interval
enclosure of minimal radius when the center c is chosen as the midpoint of



Title Suppressed Due to Excessive Length 11

x. Furthermore, inf(fm(x, c)) can be maximized and sup(fm(x, c)) can be
minimized by choosing different centers. Namely, by defining

di = mid(∇if(x))/rad(∇if(x)),

pi =







1 if di > 1;
−1 if di < −1;
di otherwise,

z∗,i = mid(xi) − pi rad(xi), z∗i = mid(xi) + pi rad(xi),

for i = 1, . . . , n, inf(fm(x, c)) attains its maximum at the center c = z∗, and
sup(fm(x, c)) attains its minimum at the center c = z∗. That is, by taking
these two centers and evaluating the intersection of the resulting two mean
value enclosures, a better range estimate can be obtained as compared to
the case of a single center. This is, of course, reached for the cost of an extra
interval function evaluation.

4.5 Slopes

Given two points x and c in the domain of f , the (row) vector f [x, c] ∈ Rn is
called a slope of f between x and c if f(x) = f(c)+f [x, c](x−c) holds. Fixing
c and bounding f [x, c] over all x ∈ x by the interval slope f [x, c] ∈ In, the
formula

f(c) + f [x, c](x − c) (2)

is an enclosure of rg(f, x) [12]. Just like the mean value form, (2) is also
a centered form, called slope form. Slopes can be calculated on DAGs in
backward mode in a similar fashion as the interval derivatives [2,22].

The advantage of slope forms over mean value forms is that they usually
provide better range enclosures, in particular, if the center of the slope is
carefully chosen. (But the theoretical convergence rate of the slope form
to the exact range is quadratic, just like the mean value form [19].) In
the COCONUT Environment, we determine the center by the following
heuristic method. We use interval derivative information to select a point of
x from which the slope is expected to have the smallest width. For instance,
if f is proven to be monotone in its ith component, a reasonable choice, for
each i = 1, . . . , n, is to set

ci =

{

sup(xi) if sup(∇if(x)) < 0;
inf(xi) if inf(∇if(x)) > 0,

i.e., to set ci to the respective lower or upper bound. Otherwise, if 0 ∈
∇if(x), for each i = 1, . . . , n we can apply the heuristic

ci =

{

sup(xi) if sup(∇if(x)) ≤ −inf(∇if(x));
inf(xi) if sup(∇if(x)) > −inf(∇if(x)),

so that c is set to a corner of x.



12 Mihály Csaba Markót, Hermann Schichl

A problem arising here is that in our algorithms ∇f (x) is often not
available at the time of computing the slope (because the slope itself is con-
structed in place of it). But in many cases the interval gradient is obtained
on the parent of x as a by-product of second order evaluation methods (see
Sec. 4.8), which can be used in place of ∇f (x). When the interval gradient
on the parent is also not available, we choose the midpoint as the center of
the slope. (An alternative would be to use ∇f(c)) instead of ∇f(x)) for the
heuristic; however, this idea also suffers from the possible lack of availability
of ∇f(c)).)

There is, however, a big disadvantage of interval slopes as compared
to interval derivatives, when applied in interval B&B algorithms: interval
slopes do not bound the gradient, therefore they cannot directly provide
monotonicity information. Thus, the monotonicity test must be ignored in
the first order evaluation phase when interval derivatives are replaced with
slopes.

Algorithmically, the slope evaluation is done in place of the fgEval()

function of ProcessBox() in Alg. 2, Step 1. Note that since the slope re-
quires a center, it must be computed before fgEval(), which means that
Steps 1–2 and Steps 3–8 of Alg. 2 have to be swapped in the slope-based
algorithm variants.

In the next two subsections (Sec. 4.6 and 4.7) we introduce a new accel-
eration test and a new evaluation method combining the available interval
derivative and slope data. These methods are developed and implemented
in the COCONUT Environment for the particular purpose of enhancing the
GOP ex algorithm.

4.6 Centered form pruning test

According to the first order mean value form, for a box x, for all x, c ∈ x

and for any i = 1, . . . , n it is true that

f(x) ∈ f(c) +

n
∑

j=1

j 6=i

∇jf (x)(xj − cj) + ∇if(x)(xi − ci) =

= ui + ∇if(x)(xi − ci). (3)

Whenever f(x) > f̃ , then x is surely suboptimal. That is, we can restrict
our attention to those xi ∈ xi points that are solutions of the interval
inequality

ui + ∇if (x)(xi − ci) ≤ f̃ ,

i.e., for which there exist real numbers u ∈ ui and d ∈ ∇if (x) such that u+
d(xi−ci) ≤ f̃ . The set of solutions can be found easily after rearrangements,
in a fashion similar to the so-called constraint propagation (Section 6.3).
Depending on the signs of ∇if(x) and f̃ −ui, the result is either an empty



Title Suppressed Due to Excessive Length 13

set, or the entire range R, or an interval with an infinite bound; and in the
case when ∇if(x) contains 0 in its interior, it is [−∞, a] ∪ [b,∞] for some
a, b ∈ R. This solution set can then be intersected with xi, leading to a
reduction in that component.

The test is easily seen to be superseded by the monotonicity test when
0 6∈ ∇if(x), but in other cases it often proves to be useful. Furthermore, the
test is equally valid for slope forms as well, using f i[x, c] in place of ∇if(x).
An advantage of the test for slopes is that it provides a good alternative to
the (otherwise inapplicable) monotonicity test (see Sec. 4.5).

The above procedure of reducing xi can be applied for all components,
and since the interval gradients and slopes are inclusion isotone, the already
reduced components can be used to construct ui in (3).

4.7 Slopes of the gradient

When the partial derivative functions of the objective are available in forms
of DAGs according to Sec. 4.3, it is possible to evaluate the first order slopes
∇if [x, c] of these functions. Then for a box x and for all c and x ∈ x,

∇if(x) ∈ ∇if (c) + ∇if [x, c](x − c),

i.e., the right-hand side is an enclosure of rg(∇if, x). In vector form, we
have

∇f(x) ∈ ∇f (c) + Sf [x, c](x − c), (4)

where Sf [x, c] ∈ In×n is the matrix with the slopes ∇if [x, c] in the ith row,
called the slope matrix of the derivative of f .

An important observation here is that with this formula the solution set
of ∇f(x) = 0 can be bounded, just as with the ordinary Newton method,
but using the slope matrix Sf [x, c] instead of the interval Hessian ∇2f(x).
Since the ‘first order part’ of obtaining Sf [x, c] is symbolic and first order
slopes provide better enclosures than interval derivatives, we expect that the
width of Sf [x, c] will be significantly smaller than that of ∇2f(x), leading
to a more efficient Newton method.

4.8 Second order centered forms

The second order mean value form (see, e.g., [20]) is constructed in a similar
way as its first order version, but from the Taylor expansion with second
order remainder term: for a box x and for c ∈ x

f(x) ∈ f (c) + ∇f(c)(x − c) +
1

2
(x − c)T∇2f(x)(x − c) := fm,2(x, c).

In practice, fm,2(x, c) is evaluated as

f (c) +

(

∇f(c) +
1

2
∇2f (x)(x − c)

)

(x − c),



14 Mihály Csaba Markót, Hermann Schichl

in order to reduce the overestimation due to the so-called subdistributivity
[17,19]. Furthermore, during evaluation it is possible to compute an enclo-
sure of rg(∇f, x) by

∇f(c) + ∇2f(x)(x − c), (5)

and update the current interval gradient enclosure ∇f (x) by taking the
intersection with (5). If there is no interval gradient available at the time of
evaluation (e.g., because slopes were computed in the first order evaluation
phase), we set ∇f(x) to (5). Then, if the interval gradient is improved (or
becomes newly available) by the above process, a further enclosure of the
objective function is evaluated by the first order mean value form.

In view of Section 4.7, it turns out that there is a simple way of con-
structing a second order enclosure using the slope matrix of the derivative.
For a box x and for all x, c ∈ x a proper first order enclosure is given by
the range of the gradients:

f(x) ∈ f(c) + rg(∇f, x)(x − c),

and since rg(∇f, x) ⊆ ∇f (c) + Sf [x, c](x − c) from (4), we obtain

f(x) ∈ f(c) + (∇f(c) + Sf [x, c](x − c)) (x − c) := fms,2(x, c),

called the second order mixed mean value-slope form. Clearly, the interval
gradient update/construction method discussed above is applicable for this
form as well.

Algorithmically, the second order centered form evaluations are best to
invoke right before calling the interval Newton method. At this point all
required data, including ∇f (c), is available, thus, the centered form calcu-
lation requires no extra evaluation. Of course, after updating f(x) with the
second order centered form, a bound test on the current box is performed.

5 Numerical comparisons

This section is devoted to present numerous comparative results of the possi-
ble algorithm variants. The sequence of the comparisons shows the decision
path we actually went through to obtain a suggested set of parameters,
that we use as defaults in the competitive versions of the software (and
also, in later studies). Although it is not possible to compare and present
all combinations of options, however, we designed the sequence of compar-
isons in such a way, that with some of the tests we give empirical answers
to long-lasting questions about alternative methods of evaluations as parts of
an interval B&B algorithm (such as interval gradients versus slopes), that
have never been studied numerically in such detail before.



Title Suppressed Due to Excessive Length 15

5.1 The methodology of comparing algorithm variants

Throughout the paper we apply a uniform way of comparing different algo-
rithm variants. The test set consists of 164 bound constrained/unconstrained
problems from two different sources. First, we took all bound constrained
and unconstrained problems up to dimension 50 from the COCONUT test
set (that is itself part of the COCONUT Environment) that are the twice
continuously differentiable over the whole search domain (or, for uncon-
strained problems, over the artificial search box defined below), and ex-
tended this set by some standard interval GO test problems used in [5].
The problems are classified by their dimension as ‘small’ (1 ≤ n ≤ 5, 110
problems), ‘medium’ (6 ≤ n ≤ 20, 44 problems), and ‘large’ (21 ≤ n ≤ 50,
10 problems). Unconstrained variables were bounded to [−1000, 1000]. The
running time limit was set for 60, 300, and 600 seconds, respectively, for the
three problem groups. The tolerance for the stopping criterion of Sec. 2.6
was set to 10−3 for all problems.

5.2 Finding the best interval gradient based variant

In order to make the sequence of comparisons clear, we name the main
algorithm variants that are compared to each other; in each comparison we
compare two variants that usually differ by enabling/disabling one of the
algorithmic elements, or using a different method for evaluating the same
kind of data.

5.2.1 Forward vs. backward first order AD. The first and most obvious op-
tion we need to investigate is the advantage of backward interval gradient
evaluations over forward evaluations. Although theory predicts an all-round
advantage of the former methods, it turns out that in practice this is not
always the case: as we will see below, during the tests we found that in some
cases better performance can be reached with forward evaluation modes. A
detailed investigation of the phenomenon gave us also a theoretical expla-
nation that can be considered in later studies. This is a typical example
that shows the importance and the main strength of the COCONUT En-
vironment: the implementation of a wide range of methods in a uniform
framework is the only way to recognize such phenomena, trade-offs, etc.,
between different ideas and algorithm variants.

Thus, in Test 1 we compare algorithm version V0, denoting the original
GOP ex algorithm (with Hessian-vector products instead of forward mode
Hessians), and version V1, that differs from V0 by switching from forward
to backward mode in interval gradient evaluations. The results are presented
in Table 1.

The table (and also the subsequent ones in this section) is built as fol-
lows: it has four rows, showing data for the problem instances solved by
both, either, or none of the variants. The respective set mark is given in the



16 Mihály Csaba Markót, Hermann Schichl

first column of the table. The first group of data columns (columns 2–4)
shows the number of solved problem instances, grouped by problem size.
Column 5 shows the total of the previous 3 columns. Whenever a problem
is solved by both solvers, or neither of them, we have the chance to do a
more detailed analysis on the performance difference.

If a problem is solved by both variants, we take the execution time as
the performance indicator. Let us name the two algorithm variants ‘A’ and
‘B’ and denote tA and tB the execution times on such a problem instance.
Obviously, due to slight variances of the execution times on a computer
(that are magnified for problems that are solved very fast) we need to
add tolerances to these values: if |tA − tB| < 0.02 seconds, then the two
performances are considered equal. Otherwise, we consider the time ratio
r = max(tB, 0.01)/max(tA, 0.01). If r < 0.98 (i.e., variant B improves vari-
ant A by at least 2%), then we claim B performs better than A. If 1/r < 0.98
(i.e., variant A improves variant B by at least 2%), then we claim A per-
forms better than B. In all other cases we treat the performance of A and
B equal. The number of problems for which the two variants have equal
performance are given in column ‘eq’. The number of problems in which
A performs better than B and the average of the 1/r values over this par-
ticular problem set is displayed in the columns marked with ‘A (av.)’. The
columns ‘B (av.)’ are interpreted in an analogous way, using the average r
values over the respective problem set.

If a problem is solved by neither variant (i.e., a timeout occurred), we
can still compare the two algorithms by an indicator that shows the overall
progress within the common time budget. To get this, one can first compute
the total volume VR of the boxes remaining in the open leaves of the search
tree, and divide it by the volume V of the search box one, obtaining the
relative unprocessed volume of the search space. The disadvantage of VR/V
is its sensitivity to the dimension, so problems of different sizes are hard to
compare. To resolve this issue, for an n-dimensional problem one can take
n-th root and obtain v = (VR/V )1/n. Note that for an unsolved problem
v ∈ (0, 1], with v = 1 when no progress at all is reached by the algorithm.
Intuitively, v is the average decrease in one coordinate direction made by
the algorithm when locating the global minimizer(s). We will call this value
the overall progress measurement. Denoting the respective values by vA and
vB for the two algorithm variants, the ratio r = vB/vA is computed, and
the performance improvements are calculated the same way as for the time
ratios above. For the overall progress comparisons we also used a tolerance
of 2% to mark the range of equality.

If a problem is solved by only one of the variants, then we make no further
comparisons, since in such a case the performance difference is qualitative.

From Table 1 we conclude that 79% of the small problems were solved
by both algorithms (87 out of 110), but this ratio drops to 27% and 10%
for the medium and large problems, resp. Switching from forward to back-
ward mode did not yield any significant qualitative improvement in the
sense that only one (small) problem became solvable by the latter method.



Title Suppressed Due to Excessive Length 17

Table 1 Test 1: comparing algorithm variants V0 (forward first order AD) and
V1 (backward first order AD)

solved by sm. med. lg. tot. V0 (av.) eq. V1 (av.)

both 87 12 1 100 1 (0.58) 76 23 (0.88)

only V0 0 0 0 0 – – –

only V1 1 0 0 1 – – –

neither 22 32 9 63 1 (0.88) 59 3 (0.93)

The performance comparison columns show the expected overall advantage
of backward AD, with average gains of 12% and 7% for the two types of
performance comparisons. (Although not detailed here, we also found the
empirical validation of the fact that backward AD becomes more advanta-
geous as the problem dimension grows: we observed a positive correlation
of medium strength between the dimension and the performance improve-
ments.)

One can observe, however, that there are rare cases when forward AD
results in a much more advantageous method, as shown by the ‘V0 (av.)’
column. When looking for the reason of this phenomenon, we figured out
that for some problems the interval forward AD actually gives much tighter
enclosures than the backward one! The reason of this is that certain subex-
pressions of the form x(y + z) are sometimes evaluated as xy + xz in
backward mode, causing excess overestimation by subdistributivity, while
the forward one naturally avoids this pitfall; for a detailed theoretical ex-
planation, see [25]. (Of course, the phenomenon is not present for real-type
AD methods.) We found that this happened in around 5% of the present
test problems, but caused a significant performance difference in only the
two cases displayed in the table. Unfortunately, the expressions in which
this situation may occur are rather hard to detect in advance, but develop-
ers of interval algorithms must be aware of it. All in all, in the subsequent
algorithm variants of the present study we will use the generally far more
efficient backward mode interval gradient evaluations.

5.2.2 Switching on small tests with no extra evaluation needs. In the next
test we investigate the effect of enabling some minor tests, namely, second
order centered forms (Sec. 4.8), the gradient enclosure updates from second
order data (Sec. 4.2 and 4.8), and the centered form pruning test (Sec. 4.6).
The common property of these tests is that they need no extra function
evaluation effort, thus, they are comparatively cheap. In Test 2, algorithm
V1 is the same as in the previous section, while version V2 is defined as
V1 with the above three tests added. The comparison data is presented in
Table 2.

The results show that the three minor tests did not yield a big improve-
ment to the algorithm. (Actually, one reason of presenting them together



18 Mihály Csaba Markót, Hermann Schichl

Table 2 Test 2: comparing algorithm variants V1 (backward first order AD) and
V2 (backward first order AD, second order centered forms, gradient updates from
second order data, centered form pruning)

solved by sm. med. lg. tot. V1 (av.) eq. V2 (av.)

both 88 12 1 101 13 (0.92) 83 5 (0.75)

only V1 0 0 0 0 – – –

only V2 0 0 0 0 – – –

neither 22 32 9 63 1 (0.86) 58 4 (0.67)

Table 3 Test 3: comparing algorithm variants V2 (backward first order AD,
second order centered forms, gradient updates from second order data, centered
form pruning) and V3 (V2 with bicentered forms)

solved by sm. med. lg. tot. V2 (av.) eq. V3 (av.)

both 87 12 1 100 17 (0.85) 78 5 (0.40)

only V2 1 0 0 1 – – –

only V3 0 0 0 0 – – –

neither 22 32 9 63 2 (0.58) 53 8 (0.80)

is that individually none of them changed the behaviour of the algorithm
significantly.) Although V1 is slightly better on the solved problems, but
the gain (or in this case, the loss due to the newly added tests) is only
8% on average. V2 may cause bigger improvements (but more rarely) on
solved problem instances, and it is also proved to be slightly better in the
performance of the unsolved problems. Another reason of preferring V2 is
that for real-life problems, when the evaluation cost is often big, the relative
effort of invoking these tests further decreases, so there is just no particular
reason to skip them. Because of these facts we decided to opt for V2 and
continue with this variant in the subsequent testing.

5.2.3 Midpoints vs. bicentered forms. Next we consider the question of how
to evaluate the centers for the various tests. In Test 3, we consider version
V2 of the previous section, which contains simple midpoint evaluations. In
version V3 we apply all tools of V2 but exchange the midpoint evaluations
to the bicenter method of Sec. 4.4. The results are shown in Table 3. The
target of this test is to investigate an obvious algorithmic trade-off, namely,
whether the better function updates of the bicentered forms can compensate
the cost of the extra center evaluation.

The results display a pretty mixed picture: on problems solved by both
algorithms, V2 performs better on many more instances, but with less gains
on average, while for the unsolved problems just the opposite holds. In
addition, there was one instance that was solved by algorithm V2 only.



Title Suppressed Due to Excessive Length 19

Table 4 Test 4: comparing algorithm variants V4 (first order slopes, second order
centered forms, gradient updates from second order data, centered form pruning)
and V5 (V4 with corner-based slope centers)

solved by sm. med. lg. tot. V4 (av.) eq. V5 (av.)

both 85 11 1 97 29 (0.61) 48 20 (0.55)

only V4 1 0 0 1 – – –

only V5 0 1 0 1 – – –

neither 24 32 9 65 14 (0.76) 45 6 (0.87)

Our decision about selecting what version to proceed with finally came
after analyzing the improvements of V3: it turned out that the reason for
the better behaviour of V3 was caused essentially not by the better interval
enclosures, but instead, by the better capability of updating f̃ through more
frequent point evaluations. We found that this gain will quickly disappear on
sophisticated algorithm variants that target a fast update of f̃ (see Sec. 6),
but the extra function evaluation can burden the bicenter-based algorithm
on harder problems. Thus, in the sequel we will stick to version V2; noting
that the bicentered form can still be an interesting algorithmic switch for
the experimenting user, which may cause gains in some cases.

5.3 Algorithm variants with first order slopes

5.3.1 First order slopes with midpoint and corner centers. Next we discuss
some comparative tests on algorithm variants that use slopes (Sec. 4.5 and
4.7) in place of interval gradients and Hessians.

In Test 4 we compare the following two algorithm variants: version
V4, that consists of the original GOP ex algorithm, with interval gradients
exchanged with first order slopes, and the additional minor algorithmic
elements of Sec. 5.2.2. (Note that the latter tests are all also applicable
in the slope context; furthermore their overall performance improvements
were similar to those observed for the interval gradient versions, hence, are
not detailed here.) This version uses the midpoints as the slope centers.
Version V5 is identical to V4, except that the midpoints are replaced with
box corners, based on the heuristic method presented in Sec. 4.5. Note that
both variants use the interval Hessians for second order evaluations. The
results are given in Table 4.

Our first observation is that, in contrast to the comparisons of the previ-
ous section, the preferred algorithm variant becomes much less predictable
when slopes are used. In any case, the results show a clear advantage of V4
against V5, i.e., one can see no clear gain by switching from midpoints to
corners. A reason for this is that the interval gradient needed for picking
the ‘best’ corner is often coming only from the parent of the current box,
thus it is valid but somewhat outdated.



20 Mihály Csaba Markót, Hermann Schichl

Table 5 Test 5: comparing algorithm variants V4 (first order slopes, second order
centered forms, gradient updates from second order data, centered form pruning)
and V6 (V4 with slopes of derivatives)

solved by sm. med. lg. tot. V4 (av.) eq. V6 (av.)

both 86 11 1 98 11 (0.64) 49 38 (0.57)

only V4 0 0 0 0 – – –

only V6 2 1 0 3 – – –

neither 22 32 9 63 10 (0.75) 45 8 (0.70)

Table 6 Test 6: comparing algorithm variants V2 (interval gradients and Hes-
sians) and V6 (first order slopes, slopes of derivatives)

solved by sm. med. lg. tot. V2 (av.) eq. V6 (av.)

both 88 12 1 101 18 (0.59) 66 17 (0.58)

only V2 0 0 0 0 – – –

only V6 0 0 0 0 – – –

neither 22 32 9 63 12 (0.74) 45 6 (0.73)

5.3.2 Slopes of derivatives vs. interval Hessians. The next, important test
is devoted to check the differences between our two main methods to ac-
quire second order information. In Test 5, we compare version V4 above
with version V6, obtained by switching from interval Hessian-vector prod-
ucts to slope evaluations on the gradient expressions acquired from the KJ
conditions (Sec. 4.7).

Table 5 shows the clear advantage of slopes of derivatives over the in-
terval Hessians. There may be two explanations of this: first, as mentioned
before, the slope matrix Sf [x, c] is usually smaller in width than ∇2f (x), so
the second order updates and the interval Newton step may work more effi-
ciently. Second, according to Sec. 4.8, the interval gradient can be acquired
during the second order calculation, which enables us to apply the usually
very efficient monotonicity test also for the slope based algorithm. Conse-
quently, we propose V6 as the most promising algorithm variant involving
slopes.

5.4 Interval vs. slope based algorithms

In this section we present the comparison test (Test 6) between the best
found algorithm of Sec. 5.2 and 5.3, namely, V2 and V6. The difference be-
tween the two variants is that V2 has interval gradient and interval Hessian
evaluations, while V6 has the respective slope evaluations for both orders.

The results of Table 6 show that the improvements reached along the
interval gradient and the slope experiments of Sec. 5.2 and 5.3 are almost



Title Suppressed Due to Excessive Length 21

Table 7 Test 7: comparing algorithm variants V2 (interval gradient/Hessians)
and V7 (interval gradients, slopes of derivatives)

solved by sm. med. lg. tot. V2 (av.) eq. V7 (av.)

both 88 12 1 101 2 (0.77) 72 27 (0.67)

only V2 0 0 0 0 – – –

only V7 0 0 1 1 – – –

neither 22 32 8 62 0 ( – ) 59 3 (0.80)

Table 8 Test 8: comparing algorithm variants V6 (first order slopes, slopes of
derivatives) and V7 (interval gradients, slopes of derivatives)

solved by sm. med. lg. tot. V6 (av.) eq. V7 (av.)

both 88 12 1 101 9 (0.66) 66 26 (0.62)

only V6 0 0 0 0 – – –

only V7 0 0 1 1 – – –

neither 22 32 8 62 3 (0.94) 44 15 (0.78)

equal. (There is a slight advantage of the interval gradient version, mainly
due to its better performance on the unsolved problems.) A natural question
arising here is whether it is possible to combine the advantages of these two
versions by mixing the most promising algorithmic elements. More specifi-
cally, if switching from interval Hessians to slopes of derivatives turned out
to help improving the first order slope-based method, then is it possible that
the same switch would improve the interval gradient method as well? This
question led us to a mixed interval derivative – slope based method, version
V7: V7 is the same as V2, except that the interval Hessians are replaced
with the slopes of the derivatives.

Tables 7 and 8 compare algorithm V7 with its ‘parents’ V2 and V6, re-
spectively, in Test 7 and Test 8. The outcome is clear: in both comparisons
V7 solved one more (large) problem instance, and proved to be better than
either V2 or V6 in all performance indicator categories. Therefore, after in-
vestigating the possible ways of function evaluations and the combinations
of the related tools, we will continue the comparison tests with the options
included in version V7, namely, with backward AD, centered form pruning,
interval Hessians computed from the slopes of the derivatives, second order
centered forms, and gradient updates from second order information.

6 Improving the GOP ex algorithm in COCONUT II. – new

algorithmic elements

In the next steps we further improve the interval B&B method starting from
V7, with new algorithmic elements.



22 Mihály Csaba Markót, Hermann Schichl

Table 9 Test 9: comparing algorithm variants V7 and V8 (V7 + local search)

solved by sm. med. lg. tot. V7 (av.) eq. V8 (av.)

both 88 12 2 102 2 (0.78) 84 16 (0.78)

only V7 0 0 0 0 – – –

only V8 0 0 0 0 – – –

neither 22 32 8 62 0 ( – ) 50 12 (0.81)

6.1 Local optimization

The primary goal of adding a local search method to an interval B&B algo-
rithm is to update f̃ , the best known upper bound of the global minimum;
with a better f̃ value the bound test and the cut-off test are working more
efficiently. The candidate minimizer returned by the solver is checked, and
if necessary, modified to by surely feasible (this is easy when only bound
constraints are present), then it is extended to a point interval on which
an interval function evaluation is done. Another tool that utilizes a good f̃
value is constraint propagation; this will be introduced in Sec. 6.3.

COCONUT has several local solvers as inference modules and it con-
tains a heuristic prediction mechanism for selecting an appropriate solver
based on the problem characteristics. For more details, see [16]. In that
work we found that for bound constrained problems the limited memory
quasi-Newton solver LBFGS-B by Byrd et al. [3] is the one with the best
performance in almost all cases. Thus, in the present study we do not invoke
the solver selection algorithm, just call LBFGS-B for all test problems.

A trade-off to resolve here is related to the frequency of invoking local
search: rare calls to it may slow down the update, but calling it too often may
become time-consuming. The strategy we included in the present method
is that whenever f̃ is improved by the evaluation of a center, a local search
is run from this point – guessing that the algorithm discovered a basin of
attraction of a new local minimizer.

Test 9 compares version V7 from the previous section, and version V8,
with the local search added (Table 9). As expected, a significant improve-
ment can be observed for both solved and unsolved problems by adding
local search, while a slowdown was experienced in two problems only.

It is worth to mention that in 80% of the problems the local search was
started only once; this means that the algorithm was able to locate the
global minimizer easily (at least on the solvable problems). Although the
test set is known to contain many problems with a large number of local
minimizers, there were only six problems with at least four calls to the local
search. The largest number of calls was eight, occurring for one problem
only. Our consequence is that since the cost of local optimization is very
small relative to the main algorithm, it may be worth to enable a more



Title Suppressed Due to Excessive Length 23

thorough exploration of the search space initially and/or on problems on
which the B&B algorithm shows small or no improvement.

6.2 Exclusion and inclusion boxes

Interval B&B methods for global optimization often suffer from the diffi-
culty that subboxes near the global or local minimizers cannot be easily
eliminated. The resulting excessive subdivision generated in these regions is
called the cluster effect [10].

A possible solution to this problem is the construction of so-called ex-
clusion boxes that are guaranteed to contain a unique minimizer, optionally
together with an inclusion box that is a high precision enclosure of the
particular minimizer. Then, the set of points forming the difference of the
exclusion and inclusion box can be discarded from each subbox. (In particu-
lar, if a subbox is contained in the exclusion box and contains the inclusion
box, then it can be shrinked to the inclusion box.)

A method for creating exclusion boxes, known to behave good for well-
conditioned minimizers is called backboxing. The backboxing method im-
plemented in COCONUT uses the interval Newton step to test the contrac-
tion of a box (and thus, the uniqueness of a stationary point in its interior).
Care is taken to limit the number of calls to the Newton step (and thus, the
number of Hessian evaluations needed) in order to stay within a reasonable
runtime budget. The sketch of the algorithm is the following:

1. Start from an approximate local minimizer x̃, returned, e.g., by local
search, and create xout as the largest possible symmetric box centered
at x̃ and contained in x0.

2. Create xin with center x̃ and width wid(xin) = wid(xout)/104. (We
consider xin as the smallest possible exclusion box with a reasonably
large size.)

3. Run a Newton step on xout; if xout contracts and the bounds of x0 are
softcoded (e.g., set for unconstrained problems in this study), then set
xout = x0 +[−ε, ε] with some small positive ε, and run the Newton step
on xout, otherwise go to Step 5.

4. If again, a contraction is reached, then xexcl = xout, and x0 can be
shrinked to the inclusion box of the method (to be found later). Try the
Newton step on xin (presumably, xin will contract), and go to Step 8.

5. If xout does not contract in Step 3, then try the Newton step to xin.
6. If there is no contraction on xin either, then STOP with a failure.
7. At this point, we have a contracting xin and a non-contracting xout.

Find the largest contracting box between these two iteratively: set a
trial box xt centered at x̃ with wid(xt) = (wid(xin) · wid(xout))

1/2. If
contraction is reached on xt, then xin = xt, otherwise xout = xt. The
iteration limit is set to 5 to bound the number of Hessian and Newton
step calls. At the end of the iteration loop, let xexcl = xin.



24 Mihály Csaba Markót, Hermann Schichl

Table 10 Test 10: comparing algorithm variants V8 and V9 (V8 + exclu-
sion/inclusion boxes)

solved by sm. med. lg. tot. V8 (av.) eq. V9 (av.)

both 88 12 2 102 10 (0.80) 88 4 (0.26)

only V8 0 0 0 0 – – –

only V9 0 8 2 10 – – –

neither 22 24 6 52 0 ( – ) 51 1 (0.02)

8. Set the inclusion box xincl to the smallest contracted box found so far.
Refine it by successive Newton steps until either 5 steps are called, or
wid(xincl) drops below 10−6.

9. Output xexcl and xincl as the exclusion and inclusion boxes, resp.

An alternative method to construct exclusion regions consists of the
existence and uniqueness tests from Schichl and Neumaier [24], based on
the Krawczyk operator and the Kantorovich theorem. Recently these results
have been further refined with the use of third order evaluation information,
and a respective implementation was done in COCONUT [11,26]. We will
present the numerical study of the latter methods in a forthcoming paper.

Table 10 displays the comparative results of Test 10, between version
V8 and the improved version V9, with the additional backboxing-based
exclusion/inclusion box method. The most important observation is that
there were ten new medium and large problem instances, that became solv-
able with V9. (Actually, these problems turned out to be well-conditioned
convex problems, that were unsolvable with the ‘careful’ original application
of the Newton step and the use of first order tools, but caused no difficulty
to the Newton step when it was run on the whole search space.) Apart from
these problems there were a few more ones on which the exclusion boxes
helped significantly. The problems in which V9 proved to be slightly less ef-
ficient were only very easy-to-solve ones, where the total solution time was
actually comparable with the time of the few additional Hessian evaluations.

6.3 Constraint propagation

Interval constraint propagation (CP) is a technique that attempts to reduce
the current box in the presence of problem-related constraints, see e.g. [9,
18]. In particular, given a (factorable) expression p(x), with known bounds
for the variables and for the range of the expression itself (i.e., having x ∈ x,
and rg(p, x) ⊂ p(x)), each xi is tried to be tightened (iteratively) using
p(x), and xj , j 6= i.

COCONUT contains a particularly efficient method for CP, designed
specifically for computations on DAGs. It is called the PAID propagator,
developed jointly by EPFL Lausanne and the University of Vienna [22,28].



Title Suppressed Due to Excessive Length 25

Table 11 Test 11: comparing algorithm variants V9 and V10 (V9 + constraint
propagation)

solved by sm. med. lg. tot. V9 (av.) eq. V10 (av.)

both 88 20 4 112 7 (0.73) 46 59 (0.20)

only V9 0 0 0 0 – – –

only V10 7 1 1 9 – – –

neither 15 23 5 43 1 (0.95) 13 29 (0.40)

PAID is based on an iterative application of forward evaluation and back-
ward propagation steps on the DAG. The steps are repeated until either the
variable bounds become tight, a slow convergence or no more improvement
in the reduction of the bounds is experienced, or infeasibility according to
the specified constraints is proven.

Note, that although interval CP is developed for solving CSPs and gen-
eral constrained optimization problems, it is still applicable in the present
bound constrained context. First, since every global minimizer f∗ has to
satisfy f∗ ≤ f̃ , we can pose the additional constraint sup(f(x)) ≤ f̃ . Tech-
nically, this means that the actual bound f(x) of the objective node is
temporarily set to [inf(f (x)), f̃ ] and CP is run on the resulting DAG. Sec-
ond, CP is run also on the automatically generated KJ-constraints of the
problem (Sec. 4.3).

After some experiments we found that since CP is a relatively cheap
process (the total cost of one CP call is usually a small constant multiple
of the cost of a function evaluation on the respective model functions), but
with potentially large gains, it is worth to apply it in the present method
in an aggressive fashion, namely, to run it every time in the ProcessBox()

function, as its first step. In Test 11, the comparison of algorithm variants
V9, and V10 was made, where V10 was constructed by adding CP to V9.

According to Table 11, CP improves the performance of the algorithm
substantially. Nine new problem instances were solved with the aid of CP.
Actually, we have found that the average of the relative speedups r =
max(tV 10, 0.01)/ max(tV 9, 0.01) and the average of the relative overall im-
provements r = vV 10/vV 9 (thus, the figures marked with ’av.’ in the V10
columns) are not descriptive anymore: these averages are usually useful only
when the individual ratios are close to 1. However, for CP the improvements
are so large that many of the measurements fall into the range 0−0.1. Thus,
instead, we can consider the inverse r values, showing how much faster the
V10 variant, and how much bigger the overall progress of V10 as compared
to V9, respectively. Table 12 contains the average r−1 values computed for
all solved problems (column ‘all’) and for all problems where V10 actually
improved (column ‘V10’). Thus, we found that CP improves the algorithm
so that it is on average 21 times faster on the solved problems, and it results
in a 10 times increase in the overall progress on the unsolved ones.



26 Mihály Csaba Markót, Hermann Schichl

Table 12 r−1 values for comparing variants V9 and V10

solved by all V10

both 21.19 39.36

neither 10.22 14.68

Table 13 Test 12: comparing algorithm variants V0 and V10

solved by sm. med. lg. tot. V0 (av.) eq. V10 (av.)

both 87 12 1 100 2 (0.65) 35 63 (0.17)

only V0 0 0 0 0 – – –

only V10 8 9 4 21 – – –

neither 15 23 5 43 0 ( – ) 11 32 (0.38)

Table 14 r−1 values for comparing variants V0 and V10

solved by all V10

both 45.15 71.09

neither 11.99 15.77

6.4 Summary of the algorithmic comparisons

As an overall comparison of the developed algorithm variants, in Test 12 we
show the improvement reached by the best proposed one, V10, compared
to the initial GOP ex variant V0. The comparisons and the respective r−1

values are given in Tables 13 and 14. According to the tables, we conclude
that the additions provided by the COCONUT Environment resulted in 21
newly solved problem instances, increasing the success rate from 79% to
86% on small, from 27% to 48% on medium, and from 10% to 50% on large
problems. In addition, with the exception of a few rare instances, a drastic
speedup was reached in about two-third (63 out of 100) of the problems
solved by both variants, and also, a substantial improvement in the overall
progress was experienced in about 75% (32 out of 43) of the problems that
still remained unsolved.

Comparing the respective entries of Tables 12 and 14, we arrive at the
following main conclusions regarding the algorithmic improvements: on the
solvable problems, the techniques of Sec. 4 regarding function evaluations
and the addition of local search and exclusion boxes altogether made the
initial algorithm about twice as fast on average (from the ratio of 45.15 and
21.19), while CP alone resulted in an additional speedup of around 20 times.
For unsolved problems, the gain of all additions except CP was about 15%
only (the ratio of 11.99 and 10.22), while CP caused an about 10 times
improvement in the overall progress.



Title Suppressed Due to Excessive Length 27

Table 15 Algorithm variants for the performance profile comparison

name features

V0 basic GOP ex algorithm implemented in COCONUT

V1 V0 with backward AD

V2 V1 + centered form pruning, second order centered forms,

and gradient updates from second order information

V7 V2 with interval Hessians computed from slopes of derivatives

V8 V7 + local search

V9 V8 + exclusion/inclusion boxes

V10 V9 + constraint propagation

As our final comparison, demonstrating the improvements reached by
the more and more sophisticated algorithm variants, we present a perfor-
mance profile of the most relevant versions, namely, V0, V1, V2, V7, V8,
V9, and V10, with respect to the running times. A summary of these algo-
rithms is given in Table 15. The profile is created as follows: let us denote
the execution time of algorithm A on problem P by tA,P . To be able to cre-
ate runtime ratios, we set t′A,P = max(tA,P , 0.01). If a problem is unsolved
by an algorithm, then we assign t′A,P := ∞. Then on each problem P , we
compute a time performance ratio rA,P for all A: if a problem is unsolved
by all algorithms, then let rA,P := ∞ for all A. Otherwise, we determine the
running time of the fastest successful algorithm on P , t′best,P , and set the
performance ratios as the particular solver runtime relative to t′best,P , i.e.,
rA,P := t′A,P /t′best,P , very similarly to the relative speedup measurements
introduced in Sec. 5.2.1. To stay unbiased with the CPU time measurements,
we declare an algorithm equal to the best one (and thus assign a perfor-
mance ratio of 1 to it), if its running time is within the absolute and relative
tolerances (0.02 seconds and 2%, respectively) defined as in Sec. 5.2.1.

Now, for each given performance ratio r and for each algorithm, one
can count the number of problems on which the performance ratio of the
particular algorithm is at most r. The performance profile graph of each
algorithm, shown in Figure 1, is constructed by displaying the resulting
relative problem frequencies evaluated for different r values. In particular,
at r = 1 the profile shows the relative problem frequencies for which an
algorithm performs the best (or equally best). This grows from around 13%
(by V0) to around two third of the problems (by V10). On the other hand,
at r = ∞ the graphs give the relative amount of problems solved by a
given algorithm. This quantity grows from around 55% to about 75%. In
general, for a fixed r value a data point shows the frequency for which the
respective solver performs by at most r times worse than the best one. Thus,
an algorithm is preferred against others if its performance profile graph is
located higher.



28 Mihály Csaba Markót, Hermann Schichl

Fig. 1 Performance profile of the selected algorithm variants.

The performance profile shows the substantial advance of V10 against
the other algorithms in all measurements. It also shows that the more ba-
sic algorithmic variants with different function and derivative methods and
the related tools (i.e., improving to V1 and then to V2 from V0) result in
relatively small performance increase, while adding local search (V8) and
the exclusion/inclusion box method (V9) boost the algorithmic performance
much more. Finally, note that for our other performance indicator, namely,
for the remaining relative volume of the search space, a very similar perfor-
mance profile can be drawn.

7 Comparisons with BARON

In this section, we compare the proposed competitive version V10 of our al-
gorithm (called ‘coco gop ex’ in the sequel) with the BARON global solver.
BARON (Branch and Reduce Optimization Navigator), the winner of the
2006 Beale-Orchard-Hays Prize, is developed by Nick Sahinidis’s optimiza-
tion group at the Carnegie Mellon University [21,27]. It is designed for gen-
eral constrained global optimization including mixed integer programming;
it has a branch–and–bound framework with sophisticated bound reduction
techniques incorporating interval analysis, convex relaxations and duality.
Due to its successes in numerous real-life applications and in various opti-
mization benchmarks, BARON is considered by many as the currently best
available deterministic global solver.

When running BARON on the test problems, the absolute tolerance re-
garding the global optimum value was set to 10−3 (as we will see later, this
is only similar, but not equivalent to the stopping criterion of coco gop ex);



Title Suppressed Due to Excessive Length 29

and the time limits were set to the same values as discussed in Sec. 5.
For the other settings we used the BARON defaults. Table 16 contains a
summary of the comparison. Since BARON cannot deal with trigonomet-
ric expressions, it accepted only 130 out of the total of 164 problems; the
table is thus grouped by the respective acceptance categories. According to
the table we can observe that on the accepted problems BARON performs
slightly better, with 107 vs. 88 solved problems in total. It is significantly
better in the medium category, where there are actually a bunch of problems
with similar characteristic – nonlinear least squares problems with exponen-
tial and rational terms – that caused difficulties to coco gop ex. However,
coco gop ex was more successful in the large problem category, and it was
able to solve a total of seven problems (at least one in each size category)
that BARON could not cope with. Furthermore, coco gop ex was very ef-
ficient on the problem set that BARON did not accept: it solved 33 out of
the 34 problems.

On problems solved by both software systems, a runtime performance
comparison can be carried out using the r relative speedup values introduced
in Sec. 5.2.1. Similarly to those earlier tests, we again used an absolute differ-
ence of 0.02 seconds marking ‘equal’ performance with r := 1. Otherwise we
set t′BARON = max(tBARON , 0.01), t′coco gop ex = max(tcoco gop ex, 0.01) as
before, and evaluated r = t′BARON/t′coco gop ex. A histogram of the log10(r)
values are displayed by the dark gray bars of Figure 2. The logarithmic
ratios show a clear advantage of our method. In particular, on 15 instances
coco gop ex was faster than BARON by about one magnitude or more,
while it was slower by the same amount for only six problems. In two cases
we observed the advantage of coco gop ex with two orders of magnitudes
or more.

To obtain a descriptive statistic of the average improvement reached
by coco gop ex, we compute the mean µ and standard deviation σ of the
logarithmic ratios, cut off outliers by considering values in [µ − 3σ, µ + 3σ]
only, and compute the average µ′ of the remaining values. Raising the result
to the power of 10, we get 10µ = 1.45 and 10µ′

= 1.35, thus, the average
time ratio (relative to BARON) is 1/1.35 ≈ 0.74. That is, we can conclude
that coco gop ex is around 26% faster on average over the set of problems
solved by both software systems.

It is important to note that BARON attempts to bound the global mini-
mum value within the prescribed tolerance value and to provide a candidate
optimizer with the best found function value so far. Instead, coco gop ex
performs an exhaustive search to find all possible global minimizers. Fur-
thermore, it is easy to see that if the stopping tolerance on the global min-
imum for BARON is set to the same ε value as the stopping tolerance of
coco gop ex on the boxes (i.e., wid(f (y)) < ε), then the width of the en-
closure of the global minimum by coco gop ex will be at least as tight as
that of by BARON: from Alg. 1, wid(m) = wid([min y∈R inf(f (y)), f̃ ]) <
wid(f (z)) < ε, with z ∈ R. Thus, we can conclude that the output of
coco gop ex is more informative than BARON regarding the global mini-



30 Mihály Csaba Markót, Hermann Schichl

Table 16 Comparing coco gop ex against BARON

solved by sm. med. lg. tot.

on problems accepted by BARON (130)

both 64 14 3 81

only coco gop ex 4 1 2 7

only BARON 10 15 1 26

neither 5 7 4 16

coco gop ex (total) 68 15 5 88

BARON (total) 74 29 4 107

on problems not accepted by BARON (34)

only coco gop ex 27 6 0 33

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

45

50

fr
eq

ue
nc

y

 

 

log
10

(t’
BARON

/t’
coco_gop_ex

)

log
10

(t’
BARON

/t’
coco_gop_ex_B

)

Fig. 2 Runtime comparisons between coco gop ex / coco gop ex B and BARON,
on problems solved by both methods.

mizers, and at least as informative as BARON regarding the global mini-
mum.

The line of thoughts above leads to the natural conclusion that another
comparison of coco gop ex and BARON can be made if we ignore exhaus-
tiveness in coco gop ex and stop the search if wid(m) becomes smaller than
ε, somewhat ‘simulating’ the behaviour of BARON. This modification can
be easily done in the coco gop ex algorithm; we call this new algorithm
‘coco gop ex B’.

Table 17 contains the comparison of coco gop ex B and BARON in the
same way as shown in Table 16. The difference between the two comparisons
is that coco gop ex B solved nine previously unsolved instances, all of which
were solvable by BARON. As a result, on the accepted set of problems



Title Suppressed Due to Excessive Length 31

Table 17 Comparing coco gop ex B against BARON

solved by sm. med. lg. tot.

on problems accepted by BARON (130)

both 71 15 4 90

only coco gop ex B 4 1 2 7

only BARON 3 14 0 17

neither 5 7 4 16

coco gop ex B (total) 75 16 6 97

BARON (total) 74 29 4 107

on problems not accepted by BARON (34)

only coco gop ex B 27 6 0 33

coco gop ex B had better success rates in both the small and the large
classes than BARON, with the overall success difference decreasing to 10
problems (97 vs. 107). On the problem set that BARON did not accept,
coco gop ex B performed similar to coco gop ex, by solving 33 out of the
34 problems.

The runtime performance comparison over all problems solved by both
methods is displayed by the light gray bars of Figure 2. The histogram
shows essentially the same results as we experienced for coco gop ex. The
average improvement of coco gop ex B as compared to BARON was found
to be approximately 21%.

8 Conclusion

We developed coco gop ex, an interval B&B solver for bound constrained
global optimization, written in the COCONUT Environment. The solver
contains a wide range of state-of-the-art interval methods with numerous
options w.r.t. interval evaluations and algorithmic accelerating tools. It is a
completely rigorous solver which is still competitive in speed with BARON
on the bound constrained problem class, showing significant advantages in
many cases, and it possesses a large potential for further improvements.
These improvements (third order tools, advanced exclusion box methods,
etc.) will be investigated in our ongoing and future studies.

Acknowledgments

We are grateful to Nick Sahinidis (Carnegie Mellon University) and to
Michael R. Bussieck (GAMS) for providing us licenses to BARON and
GAMS to carry out our numerical tests. We also thank Arnold Neumaier



32 Mihály Csaba Markót, Hermann Schichl

(University of Vienna) for his numerous suggestions during the development
of our software.

References

1. E. Baumann, Optimal Centered Forms, BIT Numer. Math. 28 (1988), 80–87.

2. C. Bliek, Computer methods for design automation. PhD thesis, Dept. of
Ocean Engineering, Massachusetts Institute of Technology, 1992.

3. R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for
bound constrained optimization, SIAM J. Sci. Comput. 16 (1995), 1190–1208.

4. COCONUT Environment. Software, University of Vienna.
http://www.mat.univie.ac.at/coconut-environment.

5. T. Csendes and D. Ratz, Subdivision Direction Selection In Interval Methods
For Global Optimization, SIAM J. Numer. Anal. 34 (1997), 922–938.

6. A.H. Gebremedhin, F. Manne, and A. Pothen, What Color Is Your Jacobian?
Graph Coloring For Computing Derivatives, SIAM Rev. 47 (2005), 629–705.

7. A. Griewank and G. F. Corliss, Automatic Differentiation of Algorithms.

SIAM Publications, Philadelphia, 1991.

8. R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, C++ Toolbox for Verified

Computing. Springer-Verlag, Heidelberg, New York, 1995.

9. P. Van Hentenryck, Numerica: A Modeling Language for Global Optimiza-
tion. In: Proceedings of the 15th International Joint Conference on Artificial
Intelligence (IJCAI- 97), 1997.

10. R.B. Kearfott and K. Du, The cluster problem in multivariate global opti-
mization, J. Global Optim. 5 (1994), 253–265.

11. M. Kieffer, M. C. Markót, H. Schichl, and E. Walter. Verified global optimiza-
tion for estimating the parameters of nonlinear models. In: Modeling, Design,
and Simulation of Systems with Uncertainties (ed.: A. Rauh and E. Auer),
Chapter 7, Mathematical Engineering, Springer, 2011.

12. L.V. Kolev, Use of interval slopes for the irrational part of factorable functions,
Reliab. Comput. 3 (1997), 83–93.

13. M.C. Markót and T. Csendes, A New Verified Optimization Technique for
the “Packing Circles in a Unit Square” Problems, SIAM J. Optim. 16 (2005),
193–219.

14. M.C. Markót, T. Csendes, and A.E. Csallner, Multisection in Interval Branch-
and-Bound Methods for Global Optimization II. Numerical Tests, J. Global
Optim. 16 (2000), 219–228.

15. M.C. Markót, J. Fernández, L. G. Casado, and T. Csendes, New interval
methods for constrained global optimization, Math. Program. 106 (2006),
287–318.

16. M.C. Markót and H. Schichl, Comparison and automated selection of local
optimization solvers for interval global optimization methods, SIAM J. Optim.
21 (2011), 1371 –1391.

17. R.E. Moore, R.B. Kearfott, and M.J. Cloud, Introduction to Interval Analysis.

SIAM, Philadelphia, USA, 2009.

18. A. Neumaier, The enclosure of solutions of parameter-dependent systems of
equations. In: Reliability in Computing (ed. by R.E. Moore). Acad. Press,
San Diego, 269–286, 1988.



Title Suppressed Due to Excessive Length 33

19. A. Neumaier, Interval Methods for Systems of Equations. Vol. 37 of Encyclope-
dia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge,
1990.

20. H. Ratschek, Centered Forms, SIAM J. Numer. Anal. 17, (1980), 656–662.
21. N. V. Sahinidis and M. Tawarmalani, BARON 9.0.4: Global Optimization of

Mixed-Integer Nonlinear Programs, User’s manual, 2010. Available at
http://www.gams.com/dd/docs/solvers/baron.pdf.

22. H. Schichl and A. Neumaier, Interval Analysis on Directed Acyclic Graphs
for Global Optimization, J. Global Optim. 33 (2005), 541–562.

23. H. Schichl, Mathematical Modeling and Global Optimization. Habilitation
Thesis, draft of a book, Cambridge Univ. Press, to appear.

24. H. Schichl and A. Neumaier, Exclusion regions for systems of equations, SIAM
J. Numer. Anal. 42 (2004), 383–408.

25. H. Schichl and M. C. Markót, Algorithmic Differentiation Techniques for
Global Optimization in the COCONUT Environment, Optim. Methods Softw.
27 (2012), 359–372.

26. H. Schichl, M. C. Markót, and A. Neumaier, Exclusion Regions for Optimiza-
tion Problems. In preparation.

27. M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach
to global optimization, Math. Program. 103 (2005), 225–249.

28. X-H. Vu, H. Schichl, and D. Sam-Haroud, Interval Propagation and Search on
Directed Acyclic Graphs for Numerical Constraint Solving, J. Global Optim.
45 (2009), 499–531.


