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Abstract. We consider locally trivial bundles over smooth manifolds, whose fibers

are finitely generated projective modules over a convenient algebra A. For such a
bundle E → X and a bounded reduced cyclic cocycle c on A we construct a sequence
chkc (E) of de–Rham cohomology classes on X, which are an analog of the classical

Chern character. We show that these classes depend only on the cohomology class
of c and behave natural under various constructions.

1. Introduction

This paper is devoted to the problem of assigning characteristic classes to locally
trivial bundles of finitely generated projective modules over a topological algebra
A, so called A–bundles, over finite dimensional manifolds. Such bundles occur
naturally for example in the theory of non simply connected manifolds, where one
studies bundles whose fibers are finitely generated projective modules over the group
C∗–algebra of the fundamental group.

In [4], M. Karoubi defined for a smooth manifold X and a Fréchet algebra A
a cohomology theory H∗A(X), the de–Rham cohomology of X with values in the
non–commutative de–Rham homology of A, and then constructs a Chern character
of A–bundles over X in these groups.
On the other hand, in [2] A. Connes constructed a pairing Heven

λ (A)×K0(A)→ C
between cyclic cohomology of an algebra A and its topological K–theory, which
can be viewed as an analog of a Chern character for finitely generated projective
modules over A.

In the present paper, we generalize the construction of Connes in the general
setting of convenient algebras, by constructing for an A–bundle E → X over X and
a reduced cyclic cohomology class [c] ∈ H̄∗λ(A) a sequence of de–Rham cohomology

classes chk[c](E) ∈⊕i≤2kH
i(X,C). In that way we obtain an analog of the Chern

character of Karoubi, without using the “exotic” cohomology theory H∗A(X).
We think that our approach has also some advantages from the point of view of

presentation: First, almost all constructions we carry out stay in the realm of vector
bundles (with infinite dimensional fibers) over X. Thus the “infinite dimensional
part” of the constructions is just done pointwise, and one only has to check that
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everything fits together smoothly, which is rather easy in the convenient setting.
Moreover, our construction makes transparent how cyclic cohomology enters the
construction: For traces on A (which are just cyclic zero–cocycles) one can construct
the corresponding Chern character forms directly as in the classical theory. In
general, there are only few traces on A, but usually there are lots of them on
the universal differential forms Ω∗(A). Thus one passes from A–bundles to the
associated Ω∗(A)–bundles, and adapts the classical construction by taking into
account that Ω∗(A) is not just an algebra but also a graded differential algebra.

2. Convenient vector spaces, algebras and modules

2.1. Convenient vector spaces. Convenient vector spaces were introduced as
the appropriate spaces for differentiation theory. It turns out that they also form a
very nice category of linear spaces, and this is the aspect we will mainly be interested
in. We will just give a very brief outline of the theory, detailed presentations can
be found in [3] or [6].

Let us start with a Hausdorff locally convex vector space V . Then a curve
c : R → V is called smooth if all derivatives exist and are continuous. If W is
another such space then a mapping f : V →W is called smooth iff for any smooth
curve c : R→ V the curve f ◦ c : R→ W is smooth. It is a non trivial result that
for Banach spaces this reproduces the usual notion of smoothness. For linear (and
multilinear) mappings one shows that smoothness is equivalent to boundedness, so
we denote by L(V,W ) ⊂ C∞(V,W ) the space of bounded linear maps.

The vector space V is called convenient iff for any smooth curve c1 there exists
a smooth curve c2 such that c1 = c′2, i.e. iff anti-derivatives of smooth curves exist.
It turns out that this is not a condition on the topology of V but only on the
associated bornology. In fact, this condition is equivalent to the condition that any
Mackey–Cauchy sequence converges. Thus this completeness condition is weaker
than sequential completeness.

It turns out that for any (even non Hausdorff) locally convex vector space V

one can form a separated completion i : V → Ṽ where Ṽ is convenient (and thus
Hausdorff) such that any bounded linear map ϕ : V → W with W convenient can

be uniquely written as ϕ̃ ◦ i for a bounded linear map ϕ̃ : Ṽ →W .

Using the completion it is easy to show that the category of convenient vector
spaces and bounded linear maps is complete and cocomplete, so all categorical
limits and colimits can be formed.

2.2. For convenient vector spaces V and W one can construct a natural topology
on C∞(V,W ) such that this is again a convenient vector space. Moreover, in this
topology the subspace L(V,W ) is closed and thus again a convenient vector space.

The main feature of the convenient setting is that the category of convenient
vector spaces and smooth maps is Cartesian closed, i.e. flipping coordinates induces
a natural isomorphism C∞(U × V,W ) ∼= C∞(U,C∞(V,W )), which is even an
isomorphism of convenient vector spaces.

Similarly as for linear mappings we can topologize spaces of multilinear maps.
For convenient vector spaces V1, . . . , Vn and W we denote by L(V1, . . . , Vn;W )
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the space of all bounded n–linear maps V1 × . . . × Vn → W , with the topology
induced by the inclusion into all smooth maps. One shows that flipping coordi-
nates gives a natural isomorphism of convenient vector spaces L(V1, . . . , Vn;W ) ∼=
L(V1, . . . , Vi;L(Vi+1, . . . , Vn;W )).

The next important feature of convenient vector spaces is the existence of an
appropriate tensor product. This is called the bornological tensor product, it is
denoted by ⊗̃ and it has the universal property that bounded bilinear maps corre-
spond exactly to bounded linear maps on the tensor product, so there is a natural
isomorphism L(U ⊗̃V,W ) ∼= L(U,L(V,W )).

2.3. Convenient algebras. A convenient algebra is a convenient vector space A
equipped with a bounded bilinear associative multiplication µ : A × A → A. We
will mainly be interested in complex convenient algebras, i.e. complex algebras such
that the underlying real algebra is convenient. We will always assume that algebras
are unital and homomorphisms preserve the units.

A standard example of a convenient algebra is the space L(V, V ) of bounded
endomorphisms of a convenient vector space V . (Boundedness of the composition
mapping follows immediately from Cartesian closedness.) Another natural example
is the space C∞(X,A) with the pointwise operations, where X is a smooth manifold
and A is a convenient algebra.

For a convenient algebra A we denote by Aop the opposite algebra of A, which
is clearly a convenient algebra, too.

2.4. Convenient modules. Let A be a convenient algebra. A convenient left
(right) module over A is a convenient vector space M together with a bounded
algebra homomorphism λ : A → L(M,M) (ρ : A → L(M,M)op). By Cartesian
closedness this is equivalent to having bounded bilinear maps A×M →M respec-
tively M ×A→M , which satisfy the usual properties.

Let V be a convenient vector space. Then we can make V ⊗̃A into a right A–
module using the multiplication on A. One easily verifies that this is in fact a
convenient module, called the free module corresponding to V . (In fact, forming
the free module defines a functor from convenient vector spaces to convenient right
A–modules which is left adjoint to the forgetful functor.) In particular, if we take
V = Rn for some n we obtain the finitely generated free modules An.

An A–module M is called projective if there is a free module F and bounded
A–module homomorphisms i : M → F and p : F →M such that p ◦ i = idM . M is
called finitely generated projective (or f.g.p.) if this F can be chosen to be An for
some n.

2.5. In [1] it was shown that in the convenient setting there is a nice tensor product
of modules, so if M is a right convenient A–module and N is a left convenient A–
module then one can form a convenient vector space M ⊗̃AN which has the universal
property that bounded bilinear maps f : M × N → V into any convenient vector
space V such that f(m · a, n) = f(m, a · n) for any a ∈ A, correspond bijectively
to bounded linear maps M ⊗̃AN → V . This tensor product is well behaved with
respect to additional module structures on M and N . In particular, if N is also a
convenient right B module such that the actions of A and B on N commute, then
M⊗̃AN is a right B–module in a canonical way.
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In particular, if ϕ : A→ B is a bounded homomorphism between two convenient
algebras and M is a right A module, then via ϕ we can view B as a convenient left
A–module, so ϕ∗M := M⊗̃AB is canonically a right B–module. It is easy to verify
that if M is projective respectively f.g.p. then the same is true for ϕ∗M .

2.6. Traces. Let A be a convenient algebra, V a convenient vector space. A
V –valued trace on A is a bounded linear map t : A → V such that t(ab) = t(ba)
for all a, b ∈ A.

Let M be a f.g.p. right A–module and consider the space M ∗ := HomA(M,A)
of bounded right module homomorphisms (in fact any such homomorphism is
bounded). It is easy to show that multiplication from the left on the values
makes this space into a convenient left A–module. There is an obvious map
M ×M∗ → HomA(M,M) defined by mapping (m,ϕ) to the map m′ 7→ m · ϕ(m′)
and clearly (m ·a, ϕ) and (m, a ·ϕ) have the same image, so it gives rise to a unique

bounded linear map M ⊗̃AM∗ → HomA(M,M).
Next let i : M → An and p : An → M be bounded module homomorphisms

such that p ◦ i = idM , let ej be the j–th unit vector in An, πj : An → A the j–th
projection and put ϕj := πj ◦ i ∈ M∗. It is easy to verify that mapping a module
homomorphism Φ : M → M to

∑n
j=1 Φ(p(ej)) ⊗ ϕj defines a bounded linear map

HomA(M,M)→M⊗̃AM∗ which is inverse to the map constructed above. Thus for

a f.g.p. module M the space HomA(M,M) is canonically isomorphic to M ⊗̃AM∗.
Next let t : A → V be a trace, and consider the map M ×M ∗ → V defined

by (m,ϕ) 7→ t(ϕ(m)). By Cartesian closedness this map is bounded and since t
is a trace it induces a unique bounded linear map t̃ : M⊗̃AM∗ → V . Composing
this with the canonical isomorphism from above we get a bounded linear map Trt :
HomA(M,M)→ V . Now it is easy to verify that under the canonical isomorphism
from above the composition of homomorphisms corresponds to the map (m⊗ϕ,m′⊗
ϕ′) 7→ m⊗ϕ(m′)ϕ′, and using this one immediately verifies that Trt is again a trace.

2.7. Finally, we will need graded algebras and graded differential algebras and
modules over them. By a graded convenient algebra we just mean a convenient
algebra A such that the underlying vector space is a graded convenient vector
space, i.e. can be written as a direct sum A =

⊕
n∈ZAn of convenient vector

spaces. Similar as above, the bounded endomorphisms of any graded convenient
vector space form a graded convenient algebra, so the notion of a graded module
makes no problem. (We always assume that the corresponding homomorphism
A → L(M,M) is homogeneous of degree zero.) Also, the notion of free and
projective modules makes no problem in this setting.

By a convenient graded differential algebra we mean just a convenient graded
algebra A together with a bounded linear differential d = dA which is homogeneous
of degree one and a graded derivation.

3. Bounded Cyclic Cohomology

Following closely [2] we develop in this section bounded Hochschild and cyclic
cohomology for convenient algebras and discuss the relations of these to traces on
the algebra of universal differential forms.
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3.1. Definition. For a convenient algebra A and n ≥ 0 we denote by Cn(A)
the convenient vector space Ln+1(A,C) of bounded n + 1–linear maps from An+1

to C. By Cnλ (A) we denote the closed subspace of those maps ϕ ∈ Cn(A) which
are cyclically invariant, i.e. satisfy ϕ(an, a0, . . . , an−1) = (−1)nϕ(a0, . . . , an). Next
by C̄n(A) we denote the closed subspace of those maps ϕ ∈ Cn(A) which satisfy
ϕ(a0, . . . , an) = 0 if for some i ≥ 1 we have ai = 1. Finally, we put C̄nλ (A) :=
C̄n(A) ∩ Cnλ (A).

Next we denote by b : Cn−1(A)→ Cn(A) the Hochschild differential, defined as
usually by

(bϕ)(a0, . . . , an) =
n−1∑

i=0

(−1)iϕ(a0, . . . , aiai+1, . . . , an) + (−1)nϕ(ana0, a1, . . . , an−1)

Clearly, this is a bounded linear mapping. Obviously b(C̄n−1(A)) ⊂ C̄n(A). More-
over, it is well known, see [2] or [7], that b(Cn−1

λ (A)) ⊂ Cnλ (A), and thus also

b(C̄n−1
λ (A)) ⊂ C̄nλ (A). It is a classical result that b2 = b ◦ b = 0, so we have

the corresponding cohomologies which we denote by H∗(A), H̄∗(A), H∗λ(A) and
H̄∗λ(A) and call Hochschild cohomology, reduced Hochschild cohomology, cyclic co-
homology and reduced cyclic cohomology, respectively. Note that in general these
cohomology spaces are not Hausdorff.

3.2. Next, we need the B–operator of Connes. First we define B0 : Cn+1(A) →
Cn(A) by

(B0ϕ)(a0, . . . , an) := ϕ(1, a0, . . . , an)− (−1)n+1ϕ(a0, . . . , an, 1).

Let N : Cn(A)→ Cnλ (A) be the cyclization, which is given by

(Nϕ)(a0, . . . , an) :=
n∑

i=0

(−1)inϕ(ai, . . . , an, a0, . . . , ai−1).

Clearly, for ϕ ∈ Cnλ (A) we have Nϕ = (n + 1)ϕ. Now we put B := N ◦ B0 :
Cn+1(A) → Cnλ (A). One immediately verifies that, although N does not map
C̄n(A) to C̄nλ (A), we have B(C̄n+1(A)) ⊂ C̄nλ (A). It is well known, see [2] or [7],
that B2 = B ◦ B = 0 and B ◦ b + b ◦ B = 0. In particular, this shows that if
ϕ ∈ Z̄n+1(A) is a reduced Hochschild cocycle then Bϕ ∈ C̄nλ (A) is in fact a cyclic
cocycle and that B induces a well defined map from reduced Hochschild to reduced
cyclic cohomology.

3.3. Lemma. The space B̄nλ (A) of reduced cyclic n–coboundaries is contained in
the image of Z̄n+1(A) under B.

Proof. (see also [2]). Take ψ ∈ C̄n−1
λ (A) be a reduced cochain. Let f : A → C be

any linear functional such that f(1) = 1, and define ω ∈ C̄n(A) by ω(a0, . . . , an) :=
f(a0)ψ(a1, . . . , an). (Note that by cyclicity ψ vanishes if any of its arguments is
equal to one.) Obviously ψ = B0ω, so ψ = 1

nBω. But then bψ = 1
nbBω =

− 1
nBbω. ¤
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3.4. Cyclic Cohomology and universal differential forms. Recall the con-
struction of the convenient graded differential algebra Ω∗(A) of universal differential
forms over a convenient algebra A from [1, Section 2]. Here we use the analogous
construction for complex convenient algebras, but this means just that we replace
R by C in all constructions. Note that in the proof of theorem 2.9 of [1] it was
shown that Ωk(A) ∼= A⊗̃Ā⊗̃ . . . ⊗̃Ā, where there are k factors Ā = A/C · 1, and
⊗̃ denotes the bornological tensor product. This isomorphism is given by mapping
a0⊗̃ā1⊗̃ . . . ⊗̃ān to a0da1 . . . dan. By the universal property of the bornological ten-
sor product we see immediately that C̄n(A) ∼= L(Ωn(A),C), the space of bounded
linear maps. From now on we will always use the same letter for reduced cochains
and the corresponding functionals on the universal forms.

3.5. Proposition. Let ϕ ∈ C̄n(A) be a reduced cochain which we view as a map
Ωn(A)→ C. Then

(1) If ϕ is a graded trace, i.e. ϕ(βα) = (−1)|α||β|ϕ(αβ), then bϕ = 0.
(2) ϕ is a closed graded trace, i.e. in addition ϕ(dα) = 0 if and only if ϕ ∈

Z̄nλ (A).
(3) If ϕ ∈ Z̄nλ (A) then the trace defined by ϕ can be written as the composition

of a graded trace with d if and only if ϕ lies in B(Z̄n+1(A)).

Proof. (1) If ϕ defines a graded trace, then applying the trace property to the
0–form an+1 and the n–form a0da1 . . . dan we get

ϕ(an+1a0, a1, . . . , an) = ϕ(an+1(a0da1 . . . dan)) = ϕ((a0da1 . . . dan)an+1).

Using the formula d(ab) = (da)b + adb we can write (a0da1 . . . dan)an+1 as a
sum of terms of the form adb . . . dc, and doing this we arrive at a formula for
ϕ(an+1a0, a1, . . . , an) which is immediately seen to be equivalent to bϕ = 0.

(2) If ϕ defines a closed graded trace then by (1) it is a Hochschild cocycle.
Moreover, expanding (da1 . . . dan)a0 as above we get (−1)na1da2 . . . danda0 plus a
sum of closed forms. Thus applying the trace property to the zero form a0 and the
n–form da1 . . . dan we see that ϕ is cyclic.

Conversely, if ϕ is a reduced cyclic cocycle, then ϕ(1, a1, . . . , an) = 0, so ϕ
vanishes on closed forms. Moreover, the computation of (1) shows that ϕ has the
trace property if one of the forms has degree zero. Clearly, it suffices to show that
ϕ also has the trace property if one of the forms is an exact one form, i.e. that
ϕ(a0da1 . . . dan) = (−1)n−1ϕ(dan(a0da1 . . . dan−1)). But

dan(a0da1 . . . dan−1) = d(ana0)da1 . . . dan−1 − anda0 . . . dan−1,

so the result immediately follows from cyclicity of ϕ.
(3) If ϕ(ω) = τ(dω) for a graded trace τ , then clearly ϕ = B0τ and by (1) τ is a

Hochschild cocycle, and since ϕ is cyclic we have ϕ = 1
n+1Bτ .

Conversely, assume that ϕ = Bψ for some ψ ∈ Z̄n+1(A). Then consider

θ := (n+ 1)B0ψ − ϕ ∈ C̄n(A).

This is by construction in the kernel of N , so it can be written as τ − tτ for some
τ ∈ C̄n(A), where (tτ)(a0, . . . , an) = (−1)nτ(an, a0, . . . , an−1). (Explicitly, we can
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write τ = 1
n+1 (nθ + (n − 1)tθ + · · · + tn−1θ), and from this formula we see that

τ vanishes if any of its entries equals 1.) Thus, if we consider bτ ∈ C̄n+1(A), we
immediately get B0bτ = (1− t)τ , and hence ϕ = B0((n+ 1)ψ − bτ).

So ϕ = B0ψ for some ψ ∈ Z̄n+1(A). To finish the proof, we have to show that
this ψ in fact defines a graded trace on Ω(A), and as above it suffices to prove the
trace property if one of the forms is an exact one form. Now we have

ψ(dan(a0da1 . . . dan−1)) = B0ψ(ana0, a1, . . . , an−1)− ψ(an, a0, . . . , an−1).

Since B0ψ is a cocycle we can expand the right hand side as

− (−1)n
n−1∑

i=0

(−1)iB0ψ(a0, . . . , aiai+1, . . . , an)− ψ(an, a0, . . . , an−1) =

= (−1)n(bψ)(1, a0, . . . , an)− (−1)nψ(a0, . . . , an),

and since ψ is a cocycle the result follows. ¤

3.6. Corollary. The quotient of the space of all closed graded traces on Ω∗(A)
modulo those which may be written as the composition of a graded trace with d is
isomorphic to Z̄∗λ(A)/B(Z̄∗+1(A)) ∼= H̄∗λ(A)/B(H̄∗+1(A)).

Proof. The first isomorphism is clear by 3.5, (2) and (3), while the last isomorphism
follows using 3.3. ¤

4. Bundles of modules

4.1. The basic definitions and notions of the theory of vector bundles can be gener-
alized to vector bundles with fiber a convenient vector space without any problems.
So if V is a convenient vector space and X is a (finite dimensional, second count-
able, Hausdorff) smooth manifold, then it is clear, how to define locally trivial
vector bundles with standard fiber V , and one gets transition functions as in the
usual case. Moreover, it is simple to prove that the sections of such a bundle form
a convenient vector space (cf. [3, Section 4.6] for a more general approach).

4.2. Definition. Let A be a convenient algebra, X a smooth manifold as above.
An A–bundle over X is a locally trivial vector bundle with standard fiber a right
f.g.p. A–module and bounded A–module homomorphisms as transition functions.

A homomorphism of A–bundles is a smooth vector bundle homomorphism cov-
ering the identity such that the restriction to each fiber is an A–module homomor-
phism.

If E → X is such an A–bundle with fiber M then one shows that the pointwise
operations make the space Γ(E) of sections into a convenient right module over
the convenient algebra C∞(X,A) of A–valued smooth functions on X. In fact,
one can show that this module is f.g.p., but we will not use this fact. Clearly, any
homomorphism of A–bundles induces a C∞(X,A)–module homomorphism between
the spaces of sections. In fact, any such module homomorphism is of this form:
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4.3. Lemma. Let E → X be an A–bundle and F → X a bundle of A–modules (not
necessarily f.g.p.), and let Φ : Γ(E)→ Γ(F ) be a bounded linear C∞(X,A)–module
homomorphism. Then Φ is induced by a homomorphism of A–bundles.

Proof. Clearly, any such map is a local operator, i.e. if s is a section which is
identically zero locally around a point x ∈ X then also Φ(s) is identically zero
locally around x. Thus we may assume that E = X ×M for a f.g.p. A–module
M . What we have to show is just that Φ(s)(x) depends on s(x) only. Thus let
us assume that s(x) = 0. We can choose bounded A–module homomorphisms
i : M → Am, p : Am →M such that p◦ i = idM . Then i◦s can be written uniquely
as i(s(x)) =

∑
ej · sj(x) for the standard unit vectors ej and smooth functions

sj : X → A. Thus s(x) =
∑
p(ej) · sj(x) and thus Φ(s)(x) =

∑
Φ(p(ej)) · sj(x)

and all sj vanish in x. ¤

4.4. Constructions with A–bundles. In the classical theory of vector bundles
many constructions, like Whitney sums, tensor products, exterior powers and so on
can be carried out using smooth functors, see for example [5, Section 6.7]. A similar
approach is possible in the setting of convenient vector bundles and A–bundles.
For example, consider the map M 7→ ϕ∗(M) induced by an algebra homomorphism
ϕ : A→ B as in 2.5. This in fact defines a functor between the categories of f.g.p.
modules. In these categories any space of morphisms is canonically a convenient
vector space (see 2.2), and one easily verifies that this functor induces bounded
linear maps on the spaces of morphisms. Thus for an A–bundle E → X one gets a
B–bundle ϕ∗E → X by applying the functor ϕ∗ to each fiber.

Another construction which can be immediately generalized to vector bundles
with convenient fibers is the pullback. If f : X → Y is a smooth map between
smooth manifolds and E → X is such a vector bundle, then one defines f ∗E as
usual as a subset of E × Y and shows that it is a convenient vector bundle as in
the finite dimensional case. Clearly, if E is an A–bundle, then so is f ∗E.

5. Characteristic classes for A–bundles

5.1. The double complex Ω∗(X,Ω∗(A)). Let X be a finite dimensional smooth
manifold, and let E → X be a convenient vector bundle over X. Then we define
the space Ω∗(X,E) of E–valued smooth differential forms on X to be the space
of smooth sections of the convenient vector bundle L(Λ∗TX,E), whose fiber over
a point x ∈ X is the space L(Λ∗TxX,Ex) of bounded linear maps. (One easily
verifies that L( , ) is a smooth bifunctor and uses 4.4.)

In particular, if V is a convenient vector space we define Ω∗(X,V ) using the
trivial vector bundle X × V → X. In this case we have the exterior derivative
dX : Ω∗(X,V )→ Ω∗+1(X,V ) defined by the usual formula

dXω(ξ0, . . . , ξk) :=

k∑

i=0

(−1)iξi · ω(ξ0, . . . , ξ̂i, . . . , ξk)+

+
∑

i<j

(−1)i+jω([ξi, ξj ], ξ0, . . . , ξ̂i, . . . , ξ̂j , . . . , ξk)
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for smooth vector fields ξi on X. As in the case of finite dimensional V one verifies
that this is well defined and that d2

X = 0. Moreover dX is easily seen to be bounded.
Next let A be a convenient algebra and let Ω∗(A) be the convenient graded

differential algebra of universal differential forms on A. Then on Ω∗(X,Ω∗(A))
there is a second differential dA : Ω∗(X,Ω∗(A))→ Ω∗(X,Ω∗+1(A)) induced by the
differential on Ω∗(A). Since the latter differential is a bounded linear mapping we
may differentiate through it and thus from the formula for dX above we see that
dXdA = dAdX . Thus (Ω∗(X,Ω∗(A)), dX , dA) is a double complex with bounded
differentials. On Ω∗(X,Ω∗(A)) we define a multiplication as follows: For ω ∈
Ωk(X,Ω`(A)) and ω′ ∈ Ωk

′
(X,Ω`

′
(A)) and tangent vectors ξ1, . . . , ξk+k′ ∈ TxX we

define

(ωω′)(ξ1, . . . , ξk+k′) = (−1)k
′`

k!k′!

∑

σ∈Sk+k′

sgn(σ)ω(ξσ1, . . . , ξσk)ω′(ξσ(k+1), . . . , ξσ(k+k′)),

where the sum is over all permutations of k + k′ elements. The sign (−1)k
′` is

motivated by the usual definition of the graded tensor product of graded algebras.
Next, we define the differential d on Ω∗(X,Ω∗(A)) by putting d = dX +(−1)kdA on
Ωk(X,Ω∗(A)). One easily verifies that d is in fact a graded derivation (with respect
to the total degree) for the multiplication defined above.

5.2. Let E → X be an A–bundle. Then by 4.4 we can form the associated Ω∗(A)–

bundle Ẽ := i∗E = E⊗̃AΩ∗(A), where i : A → Ω∗(A) is the inclusion, and from

5.1 we get the space Ω∗(X, Ẽ) of differential forms on X with values in this bundle.
These forms are a convenient right module over Ω∗(X,Ω∗(A)) with action defined
by

(ϕ · ω)(ξ1, . . . , ξk+k′) = (−1)k
′`

k!k′!

∑

σ∈Sk+k′

sgn(σ)ϕ(ξσ1, . . . , ξσk)ω(ξσ(k+1), . . . , ξσ(k+k′)),

where ϕ ∈ Ωk(X, Ẽ`), ω ∈ Ωk
′
(X,Ω∗(A)), the ξi are tangent vectors and Ẽ` denotes

the homogeneous component of degree `. In fact, one can prove that Ω∗(X, Ẽ) is
a finitely generated projective module over Ω∗(X,Ω∗(A)), but we will not use this
fact.

5.3. Definition. A covariant derivative on E is a bounded linear map

D : Γ(E)→ Ω1(X,E)⊕ C∞(X, Ẽ1),

which satisfies the Leibniz rule D(sf) = D(s)f + s · df for any section s ∈ Γ(E)
and any f ∈ C∞(X,A).

5.4. Lemma. On any A–bundle E → X as above, there exists a covariant de-
rivative, and the space of all covariant derivatives is an affine space modeled on
the convenient vector space of bounded right C∞(X,A)–module homomorphisms

from Γ(E) to the degree one component of Ω∗(X, Ẽ), which by 4.3 is isomorphic to
the space of A–bundle homomorphisms from E to the degree one component of the
bundle L(Λ∗TX, Ẽ).
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Moreover, any covariant derivative D extends uniquely to a bounded linear map
D : Ω∗(X, Ẽ) → Ω∗(X, Ẽ), which is homogeneous of degree 1 and satisfies the

Leibniz rule D(ϕω) = D(ϕ)ω+ (−1)|ϕ|ϕ(dω) for any ϕ ∈ Ω∗(X, Ẽ) which is homo-
geneous of total degree |ϕ| and ω ∈ Ω∗(X,Ω∗(A)).

Proof. For a trivial bundle with fiber An one can simply take the map d from 5.1 in
each component to get a covariant derivative. Next, for a trivial bundle with fiber
any f.g.p. module M one chooses homomorphisms i : M → An and p : An → M
such that p ◦ i = idM . Then p induces an Ω∗(X,Ω∗(A))–module homomorphism
p̃ : Ω∗(X,An⊗̃AΩ∗(A)) → Ω∗(X,M⊗̃AΩ∗(A)), and for any covariant derivative D

on the trivial An–bundle we get a covariant derivative D̂ on the trivial M–bundle
by defining D̂s = p̃(D(i ◦ s)).

On a general A–bundle, take an atlas corresponding to a covering {Uα} of X.
As above one can then define operators Dα which act as covariant derivatives on
sections having support in Uα. Then let {fα} be a partition of unity subordinate
to the covering {Uα} and define D(s) :=

∑
αDα(sfα). One immediately verifies

that this is in fact a covariant derivative.
The Leibniz rule immediately implies that the difference of two covariant deriva-

tives is a C∞(X,A)–module homomorphism. Conversely, a sum of a covariant de-
rivative and a C∞(X,A)–module homomorphism clearly satisfies the Leibniz rule,
and thus is again a covariant derivative, so the structure of an affine space follows.

To construct the extensions of covariant derivatives we start with the trivial
bundle with fiber An. In this case Ẽ ∼= X × Ω∗(A)n, so any form ϕ ∈ Ω∗(X, Ẽ)
can be uniquely written as ϕ =

∑
ei · ϕi for the constant sections ei ∈ Γ(E) and

forms ϕi ∈ Ω∗(X,Ω∗(A)). But then clearly D(ϕ) =
∑

(D(ei) · ϕi + ei · dϕi) is the
unique extension which has the required properties. For the trivial bundle with
fiber any f.g.p. module M we can first extend the covariant derivative to one which
is defined on the trivial bundle with fiber some An, then extend this and project
it down to the original bundle as above. Finally, for a non trivial bundle we can
construct from a given covariant derivative locally defined covariant derivatives on
trivial bundles over charts, extend these, and by uniqueness they fit together to
define a global extension. ¤
5.5. Curvature. Let D be a covariant derivative on an A–bundle E → X and
denote by D also the extension to all differential forms as constructed in 5.4 above.
Then we define the curvature of D to be the bounded linear map R = R(D) :

Ω∗(X, Ẽ)→ Ω∗(X, Ẽ) given by R = D2 = D ◦D = 1
2 [D,D].

From the general Leibniz rule it follows immediately that R(D) is a bounded
Ω∗(X,Ω∗(A))–module homomorphism, which is homogeneous of degree 2.

5.6. Consider a bounded Ω∗(X,Ω∗(A))–module homomorphism Φ : Ω∗(X, Ẽ) →
Ω∗(X, Ẽ). From 4.3 we know that this is induced by an Ω∗(A)–bundle endomor-

phism on L(Λ∗TX, Ẽ). (Note that since X is finite dimensional this is in fact
an Ω∗(A)–bundle.) In particular, this means that for each x ∈ X it induces a

bounded linear map Φx from L(Λ∗TxX, Ẽx) to itself. Since TxX is finite dimen-

sional, the latter space is isomorphic to Λ∗T ∗xX ⊗ Ẽx. From the fact that Φ is an
Ω∗(X,Ω∗(A))–module endomorphism one easily sees that Φx is actually determined

by its restriction to R ⊗ Ẽx ⊂ Λ∗T ∗xX ⊗ Ẽx, and this restriction is an element of
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HomΩ∗(A)(Ẽx,Λ
∗T ∗xX ⊗ Ẽx). A slight generalization of the argument used in 2.6

to describe the endomorphisms of a f.g.p. module shows that this space is actually

isomorphic to Λ∗T ∗xX⊗HomΩ∗(A)(Ẽx, Ẽx). Thus we may view Φ as a section of the

corresponding bundle, i.e. an element of Ω∗(X,HomΩ∗(A)(Ẽ, Ẽ)). In fact, one can
verify that the above construction actually describes a bounded linear isomorphism

HomΩ∗(X,Ω∗(A))(Ω∗(X, Ẽ),Ω∗(X, Ẽ))→ Ω∗(X,HomΩ∗(A)(Ẽ, Ẽ)).

Next let c be a bounded graded C–valued trace on Ω∗(A). From 2.6 we see
that this gives rise to a graded trace Trc on the space of endomorphisms of any
f.g.p. module over Ω∗(A). Now if we take the bundle Ẽ of f.g.p. Ω∗(A)–modules

then the transition functions of the convenient vector bundle HomΩ∗(A)(Ẽ, Ẽ) are

just the conjugations with the transition functions of Ẽ which are homogeneous of
degree zero. Thus the trace property implies that Trc gives rise to a vector bun-

dle homomorphism from HomΩ∗(A)(Ẽ, Ẽ) to the trivial complex line bundle over
X, which is a graded trace in each point. This in turn induces a vector bundle

homomorphism L(Λ∗TX,HomΩ∗(A)(Ẽ, Ẽ)) → L(Λ∗TX,C) and thus a bounded

linear map Trc : Ω∗(X,HomΩ∗(A)(Ẽ, Ẽ)) → Ω∗(X,C). Using the above isomor-
phism we can thus assign to the homomorphism Φ from above a differential form
Trc(Φ) ∈ Ω∗(X,C).

5.7. Lemma.

(1) The map Trc : HomΩ∗(X,Ω∗(A))(Ω∗(X, Ẽ),Ω∗(X, Ẽ)) → Ω∗(X,C) defined
above is a bounded graded trace.

(2) Let D be a covariant derivative on the A–bundle E → X. Then for a

Ω∗(X,Ω∗(A))–module endomorphism Φ of Ω∗(X, Ẽ) which is homogeneous

of total degree |Φ|, the map D̃(Φ) defined by

D̃(Φ)(ω) = D(Φ(ω))− (−1)|Φ|Φ(D(ω))

is a module endomorphism, too.
(3) The curvature R satisfies the Bianchi–identity D̃(R) = 0, even D̃(Rk) = 0.

Proof. (1) From 5.6 we know that a homomorphism Φ in the left hand space is
induced by a homomorphism of Ω∗(A)–bundles, and by construction Trc(Φ)(x)
depends only on Φx. Thus we can verify the trace property in one fiber, which is
of the form Λ∗T ∗xX ⊗ Ẽ. Choosing a basis for T ∗xX one verifies the trace property
by a direct computation.
(2) follows directly from the Leibniz rule.
(3) This is just the fact, that D2k commutes with D. ¤

5.8 Chern–character forms. From 3.5(2) and 5.7 we now see that given a
covariant derivative D on an A–bundle, any bounded reduced cyclic cocycle c
on A gives rise to a sequence {chkc (D)} of differential forms on X, defined by

chkc (D) := 1
k! Trc(R(D)k) ∈ ⊕i≤2k Ωi(X,C). The form chkc (D) is called the k–th

Chern–character form of D corresponding to c.
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Theorem. Let c ∈ Z̄nλ (A) be a bounded reduced cyclic cocycle, E → X an A–
bundle, and D a covariant derivative on E. Then

(1) d chkc (D) = 0.
(2) If c ∈ B̄nλ (A) a bounded reduced cyclic coboundary. Then the differential

form chkc (D) is exact.

(3) The cohomology class of chkc (D) is independent of the choice of D.

Proof. Since the questions above are local questions, we may assume that the bundle
is trivial, so we assume E = X ×M for a f.g.p. A–module M . Choose A–module
homomorphisms i : M → Am and p : Am →M such that p ◦ i = idM . Using these

homomorphisms we define d̂ : Ω∗(X, Ẽ) → Ω∗(X, Ẽ) as the covariant derivative
induced by the canonical covariant derivative on the trivial Am–bundle as in the

proof of 5.4. By d̂X and d̂A we denote the two “components” of this derivative,
where we include the sign in the second one.

Now let Φ ∈ HomΩ∗(X,Ω∗(A))(Ω∗(X, Ẽ),Ω∗(X, Ẽ)) be any homomorphism and
let c : Ω∗(A) → C be a bounded graded trace. Then we get the differential form
Trc(Φ) as above.

Claim: dTrc(Φ) = Trc(D̃(Φ))− Trc(d̂A ◦ Φ)

Proof of the Claim. For j = 1, . . . ,m let ej be the image under p̃ of the constant unit

section of the trivial bundle X×Ω∗(A)m. Using Lemma 5.4 we see that Ψ = D− d̂,

the difference of the extensions of the covariant derivatives D and d̂, is a bounded
Ω∗(X,Ω∗(A))–module homomorphism of total degree one. Then a simple direct

computation using that d̂(ej) = 0 shows that D̃(Φ)(ej) = d̂(Φ(ej)) + [Ψ,Φ](ej).

Next let πj : Ω∗(X, Ẽ) → Ω∗(X,Ω∗(A)) be the Ω∗(X,Ω∗(A))–module homo-
morphism induced by the composition of the j–th projection Am → A with the
inclusion i : M → Am, and let c∗ : Ω∗(X,Ω∗(A))→ Ω∗(X,C) be the map induced
by c : Ω∗(A) → C. Specializing the definition of Trc(Φ) to the case of a trivial
bundle we see that Trc(Φ) =

∑m
j=1 c∗(πj(Φ(ej))).

Now we compute

Trc(D̃(Φ)) =
∑

j

c∗(πj(d̂(Φ(ej)) + [Φ,Ψ](ej))) =

=
∑

j

c∗(πj(d̂X(Φ(ej)))) +
∑

j

c∗(πj(d̂A(Φ(ej)))),

since Trc is a graded trace. Since c∗ ◦ πj is the map Ω∗(X, Ẽ)→ Ω∗(X,C) induced

by a bounded linear map Ẽ → X×C it is clear that c∗ ◦πj ◦ d̂X = d◦ c∗ ◦πj , so the

first term just gives dTrc(Φ), while the second one obviously gives Trc(d̂A ◦Φ). ¤
Note that if c ∈ Z̄nλ (A), then c defines a closed graded trace, and therefore

Trc(d̂A ◦ Φ) = 0 in this case.

(1) d chkc (D) = dTrc(R
k) = Trc(D̃(Rk)) = 0 by the claim above and Lemma 5.7(3).

(2) If c ∈ B̄nλ (A), then by Lemma 3.3 c ∈ B(Z̄n+1(A)). Therefore, by Propo-
sition 3.5(3) we can find a graded trace τ on Ω∗(A) with c(ω) = τ(dω). Then
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dTrτ (Rk) = Trτ (D̃(Rk)) − Trτ (d̂A ◦ Rk) = (−1)n+1 Trc(R
k) by the claim and the

fact that Trτ (d̂A ◦ Φ) = (−1)|Φ|−n Trc(Φ), which can be easily verified directly.
(3) Let Dt be a smooth curve of covariant derivatives. Let Rt be the corresponding

curve of curvatures. Then d
dtRt = D̃t(

d
dtDt). Using the trace property of Trc,

Lemma 5.7(3), and the claim we get
d
dt

1
k Trc(R

k
t ) = Trc((

d
dtRt)R

k−1
t ) = Trc([Dt,

d
dtDt]R

k−1
t ) =

= Trc([Dt, (
d
dtDt)R

k−1
t ]) = dTrc((

d
dtDt)R

k−1
t ).

Now let D0 and D1 be two covariant derivatives. Define Dt := (1 − t)D0 + tD1,
Ψ := d

dtDt = D1 −D0. Then, using the calculation above, we get

chkc (D1)− chkc (D0) = 1
(k−1)!d

∫ 1

0

Trc(ΨR
k−1
t ) dt. ¤

5.9. From theorem 5.8 above it is now clear that if E → X is an A–bundle, D
is a covariant derivative on E, and [c] ∈ H̄∗λ(A) is a reduced cyclic cohomology

class, then the cohomology class of chkc (D) in the de–Rham cohomology of X is

independent of the choices of D and c. We denote this class by chk[c](E), and call it

the k–th Chern character class of E corresponding to [c].

5.10 Proposition (Properties of Chern character classes). Let X and Y be
smooth manifolds, A and B convenient algebras, f : Y → X a smooth map, ϕ :
A → B a bounded homomorphism, E → X and F → X A–bundles, c, c′ ∈ Z̄∗λ(A),
and c′′ ∈ Z̄∗λ(B). Then

(1) chk[c](f
∗E) = f∗(chk[c](E))

(2) chk[ϕ∗c′′](E) = chk[c′′](ϕ∗E)

(3) chk[c]+[c′](E) = chk[c](E) + chk[c′](E)

(4) chk[c](E ⊕ F ) = chk[c](E) + chk[c](F )

Proof. (1) First note that f̃∗E = f∗Ẽ, which follows immediately from the fact

that the passage from E to Ẽ is just a fiberwise construction. Using this it is easy

to verify that HomΩ∗(A)(f∗Ẽ, f∗Ẽ) ∼= f∗HomΩ∗(A)(Ẽ, Ẽ) as a vector bundle.
As for finite dimensional vector bundles one then shows that if D is a covariant

derivative on E, then there is a unique covariant derivative f ∗D on f∗E character-
ized by f∗D(f∗s) = f∗(D(s)).

Next, since the curvature R(f∗D) is a module homomorphism it immediately
follows that it is determined by its value on sections of the form f ∗s. Using this

one easily sees that, viewed as an element of Ω∗(Y, f∗HomΩ∗(A)(Ẽ, Ẽ)) we have
R(f∗D) = f∗(R(D)). Then the result is obvious from the construction.
(2) This follows easily from the construction, taking into account that, viewed as a
trace Ω∗(A) → C we have ϕ∗(c′′) = c′′ ◦ Ω∗(ϕ), where Ω∗(ϕ) : Ω∗(A) → Ω∗(B) is
the homomorphism induced by ϕ.
(3) By definition of Trc.
(4) As in the finite dimensional case one shows that two covariant derivatives DE

and DF on E and F induce a covariant derivative D = DE ⊕DF on E ⊕ F with
curvature R = R(DE)⊕R(DF ). As in the finite dimensional case this implies that
Trc(R

k) = Trc(R(DE)k) + Trc(R(DF )k). ¤
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5.11. Remarks. (1) The (inhomogeneous) total Chern character ch[c](E) =∑
k chk[c](E) is not well defined in general, since it could be necessary to sum up

infinitely many non–trivial terms in each component. However, if it is possible
to form eR as a homomorphism defined by the power series, then ch[c](E) can be
formed for any c. This is for example automatically the case if A is a Banach
algebra.
(2) By 5.10(4) it is clear that each chk[c] induces a map from the Grothendieck group

KA(X) of the monoid of isomorphism classes of A–bundles over X to H∗(X,C).
Thus our construction (for each k) can be interpreted as a pairing H̄∗λ(A)×KA(X)→
H∗(X,C).
(3) Going through our constructions one easily verifies that for a fixed covariant
derivative D on an A–bundle E → X the mapping Z̄nλ (A) → H∗(X,C) given by

c 7→ chkc (D) is bounded, and thus continuous for the bornological topology on
Z̄nλ (A). Now suppose that the de–Rham cohomology of X is finite dimensional.
Since the projection from differential forms to de–Rham cohomology is continuous
it is clear that the cohomology class of chkc (D) depends only on the class of c in the
quotient of the kernel of b by the closure (in the bornological topology) of the image
of b. Thus in this case we may pass to the separated reduced cyclic cohomology of
A.

5.12. Examples. (1) Let us consider these mappings for A = C. A C–bundle
is just a normal complex vector bundle E and Ω∗(C) = C. H̄0

λ(C) = C and
H̄n
λ (C) = 0 for n > 0. A covariant derivative on the C–bundle E is just a usual

covariant derivative and R the usual curvature. Thus, if we take [c] = [1], we get

chk[c](E) = chk(E) the classical k-th Chern character of E up to a scalar multiple.

(2) Consider the case where X = pt is a single point. Then H∗(X,C) = C, and
going through our constructions it is obvious that only classes in H̄even

λ (A) can give
rise to nontrivial results. Passing to K–theory, we clearly have KA(pt) ∼= K0(A),
and our construction gives the pairing H̄even

λ (A)×K0(A)→ C constructed in [2].
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