
Global Optimization in the COCONUT

project

Hermann Schichl?

Institut für Mathematik der Universität Wien
Strudlhofg. 4
A–1090 Wien

Hermann.Schichl@esi.ac.at

Abstract. In this article, a solver platform for global optimization is
presented, as it is developed in the COCONUT project. After a short
introduction, a short description is given of the basic algorithmic concept
and of all relevant components, the strategy engine, inferenence engines,
and the remaining modules. A compact description of the search graph
and its nodes and of the internal model representation using directed
acyclic graphs (DAGs) completes the presentation.

1 Introduction

The COCONUT project [2] is aimed at the integration of the ex-
isting approaches to continuous global optimization and constraint
satisfaction. It is a project funded by the Future and Emerging Tech-
nologies (FET) arm of the IST programme FET-Open scheme of the
European Community (IST-2000-26063). Six academic and one in-
dustrial partner are involved:

– ILOG Inc., Paris — the industrial partner and project coordina-
tor,

– TU Darmstadt, Germany,
– IRIN Nantes, France,
– EPFL Lausanne, Switzerland,
– University of Vienna, Austria,
– University of Louvain-la-Neuve, Belgium,
– University of Coimbra, Portugal.

The COCONUT consortium is planning to provide at the end of the
project (February 2004) a modular solver environment for nonlin-
ear global optimization problems with an open-source kernel, which

? supported by the EU project COCONUT (IST-2000-26063)

Strategy Engine

Inference Engines Report Modules
Management

Modules

Fig. 1. Basic Scheme of the Algorith

can be expanded by commercial and open-source solver components
(inference engines, see Section 5).

The application programmer’s interface (API) is designed to make
the development of the various module types independent of each
other and independent of the internal model representation. It will
be a collection of open-source C++ classes protected by the LGPL
license model, so that it could be used as part of commercial soft-
ware. It uses the FILIB++ [5] library for interval computations and
the matrix template library (MTL) [8] for the internal representation
of various matrix classes. Support for dynamic linking will relieve
the user from recompilation when modules are added or removed. In
addition, it is designed for distributed computing, and will probably
be developed further (in the years after the end of the COCONUT
project) to support parallel computing as well.

The API kernel implementation consists of more than 50.000 lines
of C++ code and a few perl scripts, organized into about 150 files,
occupying 1.5 MB of disk space.

The algorithmic design follows the scheme depicted in Figure 1;
its various parts are described in more detail in the following sections.

2 Models and the Search Graph

The solution algorithm is an advanced branch-and-bound scheme
which proceeds by working on the search graph, a directed acyclic
graph (DAG) of search nodes, each representing an optimization
problem, a model. The search nodes come in two flavors: full

nodes which record the complete description of a model, and delta
nodes which only contain the difference between the model rep-
resented by the node and its (then only) parent. All search nodes
“know” in addition their relation to their ancestors. They can be
splits, reductions, relaxations, or glueings. The latter turn the graph
into a DAG instead of a tree, as usual in branch-and-bound algo-
rithms. The search graph is implemented using the Vienna Graph
Template Library (VGTL), a library following the generic program-
ming spirit of the C++ STL (Standard Template Library).

A reduction is a problem, with additional or stronger constraints
(cuts or tightenings), whose solution set can be shown to be equal
to the solution set of its parent. A relaxation is a problem with fewer
or weakened constraints, or a “weaker” objective function, whose
solution set contains the solution set of its parent. Usually, relaxed
problems have a simpler structure than its original. Typically linear
or convex relaxations are used.

A problem is a split of its parent if it is one of at least two
descendants and the union of the solution sets of all splits equals the
solution set of their parent. Finally, a model is a glueing of several
problems, if its solution set equals the solution sets of all the glued
problems.

During the solution process some, and hopefully most, of the
generated nodes will be solved, and hence become terminal nodes.
These can be removed from the graph after their consequences (e.g.,
optimal solutions, . . .) have been stored in the search database.
This has the consequence that the ancestor relation of a node can
change in the course of the algorithm. If, e.g., all the splits but one
have become terminal nodes, this split turns into a reduction. If all
children of a node become terminal, the node itself becomes terminal,
and so on.

The search graph has a focus pointing to the model which is
worked upon. This model is copied into an enhanced structure - the
work node. A reference to this work node is passed to each inference
engine activated by the strategy engine. The graph itself can be
analyzed by the strategy engine using so-called search inspectors.

x1 x2 x3

∗ ∗

+ +

∗

4

−1

¤2 ¤2
√

+

exp

+

+

min [−1, 1][0, 0]

[0,∞) [0,∞) [−1, 8]

Fig. 2. DAG representation of problem (1)

3 Mathematical Representation of Problems,
Directed Acyclic Graphs

The optimization problems stored in the work nodes, which are
passed to the various inference engines, are kept as directed acyclic
graphs (DAG), as well. This representation has big advantages; see
[7] for a detailed analysis.

A complete optimization problem is always represented by a sin-
gle DAG. The vertices of the graph represent operators similar to
computational trees. Constants and variables are sources, objective
and constraints are sinks of the DAG. Consider for example the op-
timization problem

min (4x1 − x2x3)(x1x2 + x3)

s.t. x2
1 + x2

2 + x1x2 + x2x3 + x2 = 0

ex1x2+x2x3+x2+
√
x3 ∈ [−1, 1].

(1)

This defines the DAG depicted in Figure 2.
This DAG is optimally small in the sense that it contains every

subexpression of objective function and constraints only once.
Every vertex represents a function F : RN → R for some N .

Predefined functions include sum, product, max, min, elementary real

Fig. 3. The Strategy Engine Component Framework

functions (exp, log, pow, sqrt, . . .), and also some discrete operators
like all diff and count.

For expression graphs (DAG or tree), special forward and back-
ward evaluators are provided. Currently implemented are real func-
tion values , function ranges , gradients (real, interval), and slopes. In
the near future evaluators for Hessians (real, interval) and second
order slopes (see, e.g., [6]) will be provided, as well.

4 The Strategy Engine

The strategy engine is the main part of the algorithm. It makes
decisions, directs the search, and invokes the various modules.

The strategy engine consists of the logic core (“search”) which
is essentially the main solution loop, special decision makers (very
specialized inference engines, see Section 5) for determining the next
action at every point in the algorithm. It calls the management mod-
ules, the report modules, and the inference engines in a sequence
defined by programmable search strategies.

The engine can be programmed using a simple strategy lan-
guage, an interpreted language based on Python. Since it is inter-
preted, (semi-)interactive and automatic solution processes are pos-
sible, and even debugging and single-stepping of strategies is sup-
ported. The language is object oriented, garbage collecting, and pro-
vides dynamically typed objects. These features make the system

easily extendable.
Furthermore, the strategy engine manages the search graph via

the search graph manager, and the search database via the data-
base manager.

The strategy engine uses a component framework (see Figure 3)
to communicate with the inference engines. This makes it possible to
launch inference engines dynamically (on need, also remote) to avoid
memory overload. Since the strategy engine is itself a component,
even multilevel strategies are possible.

5 Inference Engines

For the solution strategy, the most important class of modules are
the inference engines. They provide the computational base for
the algorithm, namely methods for problem structure analysis, local
optimization, constraint propagation, interval analysis, linear relax-
ation, convex optimization, bisection,

Corresponding to every type of problem change, a class of infer-
ence engines is designed: model analysis (e.g. find convex part),
model reduction (e.g. pruning, fathoming), model relaxation
(e.g. linear relaxation), model splitting (e.g. bisection), model
glueing (e.g. undo excessive splitting), computing of local infor-
mation (e.g. probing, local optimization).

Inference engines calculate changes to a model that do not change
the solution set. But they never change the model; the decision to
apply the changes if they are considered useful is left to the strategy
engine. Therefore, the result of an inference engine is a list of changes
to the model together with a weight (the higher the weight the more
important the change). Whether an advertised change is actually
performed is decided by the strategy engine, and the actual change
is executed by an appropriate management module. The inference
engines are implemented as subclass of a single C++ base class. In
addition, there is a fixed documentation structure defined.

Several state of the art techniqnes are already provided:

– DONLP2-INTV, a general purpose nonlinear local optimizer for
continuous variables ,

– STOP, a heuristic starting point generator ,

– Karush-John-Condition generator using symbolic differentiation,
– Point Verifier for verifying solution points,
– Exclusion Box generator, calculating an exclusion region around

local optima [6],
– Interval constraint propagation ,
– Linear Relaxation,
– CPLEX, a wrapper for the state of the art commercial linear

programming solver by ILOG,
– Basic Splitter,
– BCS, a box covering solver ,
– Convexity detection, for simple convexity analysis.

6 Management and Report Modules

Management modules are the interface between the strategy en-
gine and the internal representation of data and modules, taking care
of the management of models, resources, initialization, the search
graph, the search database,

They are provided to make it possible to change the implementa-
tion of the search graph and the internal representation of problems
without having to change all of the modules. Management modiles
just perform some of the changes which have been advertised by
inference engines; they never calculate anything.

The final class of modules, called report modules, produce out-
put. Human or machine readable progress indicators, solution re-
ports, the interface to modeling languages [4] (currently only AMPL

[3] is supported), and the biggest part of the checkpointing is realized
via report modules.

7 Conclusion

The open design of the solver architecture, and its extensibility to
include both open source modules and commercial programs, was
chosen in the hope that the system will be a unique platform for
global optimization in the future, serving the major part of the com-
munity, bringing their members closer together.

We are happy that researchers and companies from outside the
COCONUT project have already agreed to complement our efforts

in integrating the known techniques. Thus there will be in the near
future Bernstein modules by J. Garloff and A. Smith (U. Kon-
stanz), verified lower bounds for convex relaxations by Ch.
Jansson (TU Hamburg-Harburg), a GAMS reader by the GAMS
consortium [1], Taylor arithmetic by G. Corliss (Marquette U.),
asymptotic arithmetic by K. Petras (U. Braunschweig), and an
interface to XPRESS, a commercial LP-solver by Dash Optimiza-
tion.

Acknowledgments

I want to thank Arnold Neumaier (University of Vienna) for his
support and his advice, and Eric Monfroy (IRIN, Nantes) for the
picture of the strategy engine components.

References

1. Anthony Brooke, David Kendrick, and Alexander Meeraus. GAMS - A User’s Guide
(Release 2.25). Boyd & Fraser Publishing Company, Danvers, Massachusetts, 1992.

2. The COCONUT project home page. http://www.mat.univie.ac.at/coconut.
3. Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL — A Mathematical

Programming Language. Thomson, second edition, 2003.
4. Josef Kallrath, editor. Modeling Languages in Mathematical Optimization. Kluwer

Academic Publishers, Boston Dordrecht London, 2003.
5. M. Lerch, G. Tischler, and J. Wolff von Gudenberg. filib++–Interval Library, Spec-

ification and Reference Manual. Informatik, Universität Würzburg, techn. report
279 edition, August 2001.

6. Hermann Schichl and Arnold Neumaier. Exclusion regions for systems of equations.
SIAM J. Num. Analysis, 2003. to appear.

7. Hermann Schichl and Arnold Neumaier. Interval analysis on directed acyclic graphs
for global optimization, 2003. Preprint.

8. J. Siek, A. Lumsdaine, and L.-Q. Lee. Generic programming for high performance
numerical linear algebra. In Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering Computing (OO’98). SIAM
Press, 1999.

