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Abstract Branch and bound methods for finding all solutions of a global
optimization problem in a box frequently have the difficulty that subboxes
containing no solution cannot be easily eliminated if they are close to the
global minimum. This has the effect that near each global minimum, and in
the process of solving the problem also near the currently best found local min-
imum, many small boxes are created by repeated splitting, whose processing
often dominates the total work spent on the global search.

This paper discusses the reasons for the occurrence of this so-called cluster ef-
fect, and how to reduce the cluster effect by defining exclusion regions around
each local minimum found, that are guaranteed to contain no other local min-
imum and hence can safely be discarded. In addition, we will introduce a
method for verifying the existence of a feasible point close to an approximate
local minimum.

These exclusion regions are constructed using uniqueness tests based on the
Krawczyk operator and make use of first, second and third order information
on the objective and constraint functions.
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1 Introduction

Branch and bound methods for solving global optimization problems fre-
quently have the difficulty that subboxes containing no solution cannot be
easily eliminated if one of the best local optima found so far lies nearby the
box. This has the effect that near the best local minima found, many small
boxes are created by repeated splitting, whose processing often dominates the
total work spent on the global search.

This paper discusses in Section 2 the reasons for the occurrence of this so-
called cluster effect, and how to reduce the cluster effect by defining exclusion
regions around each local minimum found that are guaranteed to contain no
other local minimum and hence can safely be discarded. Such exclusion regions
in the shape of boxes are the basis for the back-boxing strategy that eliminates
the cluster effect in most cases. Back-boxing is a method for identifying a box
around a local minimum on which the objective function is strictly convex, and
which can therefore contain no other local minimum, see Van Iwaarden (1996).
Hence, this box, the exclusion box, can be excluded from the search region
during further branch and bound search. There are also other methods for
constructing such exclusion boxes like Kearfott (1987, Algorithm 2.6, Step 4)
(see also Kearfott (1997, 1996a)), or ε–inflation, a procedure which iteratively
tries to expand a uniqueness region around a local minimizer, again leading
to an exclusion box, see e.g. Mayer (1995). There is also the possibility to
construct pairs of exclusion and inclusion boxes; those have the property that
every solution inside the exclusion box necessarily is already in the inclusion
box, see e.g. Rump (1998). In this case, uniqueness of the solution within the
inclusion box is not necessarily proved. There is no mathematical necessity to
construct boxes which can be excluded from the branch and bound search.
Sometimes, it is more useful to construct exclusion and inclusion regions, that
are spherical, ellipsoidal, or have other shapes.

There are several ways to use a branch and bound

Exclusion regions for systems of equations are traditionally constructed
using uniqueness tests based on the Krawczyk operator (see, e.g., Neumaier
(1990, Chapter 5)), other interval Newton operators (see, e.g., Kearfott (1996a)),
or the Kantorovich theorem (see, e.g., Ortega and Rheinboldt (2000, Theorem
12.6.1)). They can also be constructed by a second order method by Schichl
and Neumaier (2005a). All of these methods applied to the Karush-John first
order necessary optimality conditions of an optimization problem can be in
principal used to construct exclusion regions for local optima.

However, the optimality conditions often lead to a degenerate system, caus-
ing this method to fail.

In Section 3 we review known methods for constructing exclusion regions
for optimization problems. Then in Section 4 we will revise the second order
method presented in Schichl and Neumaier (2005a) and extend it to more
generally shaped exclusion regions based on hypernorm balls. The main result
of the article will be presented in Sections 5 and 6. Numerical and analytical
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examples will be given in Section 7, where we will also show that the exclusion
regions are optimally big in a certain sense.

In the following, the notation is as in the book Neumaier (2001). In particu-
lar, inequalities are interpreted component-wise, I denotes the identity matrix,
intervals and boxes (= interval vectors) are in bold face, and radx = 1

2
(x−x)

denotes the radius of a box x = [x, x] ∈ IR
n. The interior of a set S ⊆ R

n is
denoted by int(S), and the interval hull by ⊓⊔S.

Throughout the article we consider the global optimization problem

min f(x)

s.t. F (x) = 0

x ∈ x,

(1)

where f : D ⊆ R
n → R and F : D ⊆ R

n → R
m are three times continuously

differentiable. (For some results, weaker conditions suffice; it will be clear from
the arguments used that continuity and the existence of the quantities in the
hypothesis of the theorems are sufficient.) Observe, that nonlinear inequality
constraints are also covered by (1) since they can be converted to bound con-
straints by the introduction of slack variables. It is a straighforward calculation
to eliminate the slack variables from the formulas developed in Sections 5 and
6. Since this increases the complexity of the formulas significantly, we refrained
from doing so in this presentation. For a proper implementation, however, that
step should be taken.

We will also consider the nonlinear system of equations

G(x) = 0, (2)

for a twice continuously differentiable function G : D′ ⊆ R
n → R

n.
For a Lipschitz continuous function G we can always write

G(x)−G(z) = G[z, x](x− z) (3)

for any two points x and z with a suitable matrix G[z, x] ∈ R
n×n, called a

slope matrix for G. While G[z, x] is not uniquely determined, we always have

G[z, z] = G′(z). (4)

Thus G[z, x] is a slope version of the Jacobian. There are recursive procedures
to calculate G[z, x] given x and z, see Krawczyk and Neumaier (1985), Rump
(1996), Kolev (1997), and Schichl and Neumaier (2005b); a Matlab implemen-
tation is in Intlab Rump (1999); also the COCONUT environment Schichl
and Markót (2012) provides algorithms.

If the slope matrix G[z, x] is Lipschitz-continuous we can further write

G[z, x] = G[z, z′] + (x− z′)TG[z, z′, x] (5)

with the second order slope tensor G[z, z′, x] ∈ R
n×n×n. Here, as through-

out this paper, we use the following notation for third order tensors.
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For a third order tensor T ∈ R
n×m×r, vectors u ∈ R

n, v ∈ R
r, w ∈ R

m,
and matrices A ∈ Rs×n, B ∈ Rr×s, and C ∈ Rs×m we write

(T T )ijk = Tjki (T T )ijk = Tkij
(uTT )ij =

∑

k

ukTkij (T v)ij =
∑

k

Tijkvk

(wT · T )ij =
∑

k

wkTikj (T · w)ij =
∑

k

Tikjwk

(AT )ijk =
∑

ℓ

AiℓTℓjk (T B)ijk =
∑

ℓ

TijℓBℓk

(C · T )ijk =
∑

ℓ

CjℓTiℓk (T · CT )ijk =
∑

ℓ

TiℓkCℓj

(uTT v)i =
∑

j,k

ukTkijvj uTwT · T v =
∑

i,j,k

uiwjTijkvk

(uTC · T )ij =
∑

k,ℓ

ukCiℓTkℓj (uTC · T v)i =
∑

j,k,ℓ

ukCiℓTkℓjvj .

It is important to note that the multiplication · binds more strongly than the
“standard implicitly noted multiplication”.

If z = z′ formula (5) above somewhat simplifies, because of (4), to

G[z, x] = G′(z) + (x− z)TG[z, z, x]. (6)

Throughout the article, the notion of a hypernorm will also be important.
This is a joint generalization of norms and componentwise absolute values,
originally introduced by Fischer (1974); see also Schichl and Neumaier (2011).
Here, we will only need real valued hypernorms on R

n.

Definition 1 A mapping ν : Rn → R
r is called a hypernorm on R

n if for
all v, w ∈ R

n and λ ∈ R we have

(HN1) ν(v) ≥ 0 and ν(v) = 0 iff v = 0,
(HN2) ν(λv) = |λ|ν(v),
(HN3) ν(v + w) ≤ ν(v) + ν(w).

The hypernorm is called monotone if

(HNM) 0 ≤ v ≤ w implies ν(v) ≤ ν(w).

Let νn : Rn → R
r and νm : Rm → R

s be two hypernorms. A hypernorm
νm×n : Rm×n → R

s×r is called compatible with νn and νm if for all A ∈
R

m×n and all v ∈ R
n we have

νm(Av) ≤ νm×n(A)νn(v).

The concept of compatibility is analogously extended from matrices to higher
order tensors.

Let ν : Rn → R
r be a hypernorm. A compatible hypernorm ν∗ : Rn∗ =

R
1×n → R

r∗ = R
1×r is called a dual hypernorm for ν.



Exclusion regions for optimization problems 5

Let ν : Rn → R
r be a hypernorm, and let 0 ≤ u ∈ R

r and x ∈ R
n. The set

Bu,ν(x) := {y ∈ R
n | ν(x− y) ≤ u}

is called the closed hypernorm ball with center x and (generalized) radius
u. A closed hypernorm ball is a nonempty convex set.

1. Every norm on R
n is a hypernorm, its dual norm is a dual hypernorm,

and a compatible operator norm on R
n×n is a compatible hypernorm on

R
n×n. The closed hypernorm balls of a norm are the closed norm balls. If

the norm is monotone, it is also monotone as a hypernorm.
2. The componentwise absolute value | | : Rn → R

n is a monotone hyper-
norm. It is dual to itself, and the componentwise absolute value on matrices
is a compatible hypernorm. Its closed hypernorm balls are boxes.

3. For two hypernorms ν1 : Rn → R
r and ν2 : Rm → R

s the mapping (ν1, ν2) :
R

n+m → R
r+s is again a hypernorm. Compatible and dual hypernorms can

then be stacked accordingly. If both hypernorms are monotone, the stacked
hypernorm is monotone, too.

2 The cluster effect

Branch and bound methods using constraint propagation methods (see, e.g.,
Van Hentenryck et al (1997)) for solving (1) in a verified way suffer from the so
called cluster effect, see Du and Kearfott (1994). The cluster effect consists
of excessive splitting of boxes close to a solution and failure to remove many
boxes not containing the solution. As a consequence, these methods slow down
considerably once they reach regions close to the solutions. The mathematical
reason for the cluster effect and how to avoid it will be reviewed in this section.

Lets consider the simplest case of (1), where m = 0 and x = Rn. In this
unrestricted case, the problem reduces to finding the best local minimum of
the function f . Let us assume that for arbitrary boxes x of maximal width ε
the computed expression f(x) overestimates the range of f over x by O(εk)

f(x) ∈ (1 + Cεk)⊓⊔({f(x) | x ∈ x}) (7)

for k ≥ 1 and ε sufficiently small. The exponent k depends on the method
used for the computation of f(x).

Let x∗ be a local minimum of f (so that ∇2f(x∗) is positive definite, i.e.
it satisfies the sufficient second order optimality conditions), and assume (7).
Then no box of diameter ε can be eliminated that contains a point x with

‖∇2f(x∗)(x− x∗)‖∞ ≤ ∆ = Cεk. (8)

This inequality describes a parallelepiped of volume

V =
∆n

det∇2f(x∗)
.
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Thus, any covering of this region by boxes of diameter ε contains at least V/εn

boxes.
The number of boxes of diameter ε which cannot be eliminated is therefore

proportional to at least

Cn

det∇2f(x∗)
if k = 2,

(Cε)n

det∇2f(x∗)
if k = 3.

For k = 2 this number grows exponentially with the dimension, with a growth
rate determined by the relative overestimation C and a proportionality factor
related to the condition of the Jacobian.

In contrast, for k = 3 the number is guaranteed to be small for sufficiently
small ε. The size of ε, the diameter of the boxes most efficient for covering
the solution, is essentially determined by the nth root of the determinant,
which, for a well-scaled problem, reflects the condition of the minimum. How-
ever, for ill-conditioned minima (with a tiny determinant in naturally scaled
coordinates), one already needs quite narrow boxes before the cluster effect
subsides.

So to avoid the cluster effect, we need at least the cubic approximation
property k = 3. Hence, Hessian information is essential, as well as techniques
to discover the shape of the uncertainty region.

A comparison of the typical techniques used for box elimination shows that
constraint propagation techniques (using inclusion functions constructed by
natural extension) lead to overestimation of order k = 1; hence they suffer from
the cluster effect. Centered forms using first order information (Jacobians) as
in Krawczyk’s method provide estimates with k = 2 and are therefore also
not sufficient to avoid the cluster effect. Interval Newton-methods (see, e.g.,
Hansen (1978), Kearfott (1996b)) and second order centered forms (see, e.g.,
Schichl and Markót (2012)) provide information with k = 3, except near ill-
conditioned or singular zeros.

For singular (and hence for sufficiently ill-conditioned) zeros, the argument
above does not apply, and no technique is known to remove the cluster effect
in this case. A heuristic that limits the work in this case by retaining a sin-
gle but larger box around an ill-conditioned approximate zero is described in
Algorithm 7 (Step 4(c)) of Kearfott (1996b).

3 Prerequisites

We consider the system of equations (2). We need the following theorem by
Kahan (1968).

Theorem 1 (Kahan) Let z ∈ S for a compact convex set S. If there is a
regular matrix C ∈ R

n×n such that the Krawczyk operator

K(z, x) := z − CG(z)− (CG[z, x]− I)(x− z) (9)
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satisfies K(z, x) ∈ S for all x ∈ S then S contains a zero of G.

Proof By Brouwer’s fixed point theorem we can conclude that K(z, . ) has a
fixed point x∗ ∈ S. Then

K(z, x∗) = z − CG(z)− (CG[z, x∗]− I)(x∗ − z) = x∗,

and so

0 = CG(z) + CG[z, x∗](x∗ − z) = C(G(z) +G[z, x∗](x∗ − z)) = CG(x∗).

Since C is regular, we conclude that G(x∗) = 0. ⊓⊔

4 Exclusion regions close to a zero of a system of equations

This section is devoted to proving a generalization of Schichl and Neumaier
(2005a, Theorem 4.3) to allow more generally shaped exclusion regions.

Suppose that z is an approximate solution of the nonlinear system of equa-
tions (2). We will construct a pair of regions around z, an inclusion region
Ri and an exclusion region Re with the property that every solution x∗ of
(2) which lies in the interior of Re must lie within Ri.

Take a fixed preconditioning matrix C ∈ R
n×n, and let ν0 : Rn → R

r be a
hypernorm, and ν1 : Rn×n → R

r×r and ν2 : Rn×n×n → R
r×r×r be compatible

hypernorms. In addition, assume that the hypernorm bounds

h ≥ ν0(CG(z)) ≥ h,

H0 ≥ ν1(CG′(z)− I),

H(x) ≥ ν2(C ·G[z, z, x])

(10)

are satisfied for all x ∈ X, where X is a closed convex set.
We take an approximate zero z of G, and we choose C to be an approxima-

tion of G′(z)−1. Now we prove a hypernorm version of Schichl and Neumaier
(2005a, Proposition 4.1).

Proposition 1 For every solution x ∈ X of (2), the deviation

s := ν0(x− z)

satisfies

0 ≤ s ≤
(
H0 + sTH(x)

)
s+ h. (11)

Proof By (3) we have G[z, x](x − z) = G(x) − G(z) = −G(z), because x is a
zero. Hence, using (6), we compute

−(x− z) = −(x− z) + C(G[z, x](x− z) +G(z) +G′(z)(x− z)

−G′(z)(x− z))

= C(G[z, x]−G′(z))(x− z) + (CG′(z)− I)(x− z) + CG(z)

=
(
CG′(z)− I + (x− z)TC ·G[z, z, x]

)
(x− z) + CG(z).
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Now we apply the hypernorms, use (10), and get

s = ν0(x− z) ≤
(
ν1(CG′(z)− I) + ν0(x− z)T ν2(C ·G[z, z, x])

)
ν0(x− z)

+ ν0(CG(z))

≤
(
H0 + sTH(x)

)
s+ h.

⊓⊔

Our next step will be to closely inspect the proof of Schichl and Neumaier
(2005a, Theorem 4.2) and to dissect the results in such a way that we can
make optimal use of them in the optimization setting.

Proposition 2 Let 0 ≤ u ∈ R
r be such that

(
H0 + uTH

)
u+ h ≤ u (12)

with H(x) ≤ H for all x ∈ Mu, where

Mu := Bu,ν0
(z) ∩X. (13)

Then for K(x) := x− CG(x) we find

K(x) ∈ Bu,ν0
(z) (14)

for all x ∈ Mu.

Proof Take any x ∈ Mu. We get

K(x) = x− CG(x) = z − CG(z)− (CG[z, x]− I)(x− z)

= z − CG(z)−
(
C
(
G′(z) + (x− z)TG[z, z, x]

)
− I
)
(x− z),

hence

K(x) = z − CG(z)−
(
CG′(z)− I + (x− z)TC ·G[z, z, x]

)
(x− z). (15)

Applying hypernorms we find

ν0(K(x)− z) = ν0

(
−CG(z)−

(
CG′(z)− I + (x− z)TC ·G[z, z, x]

)
(x− z)

)

≤ ν0(CG(z)) +
(
ν1(CG′(z)− I) + ν0(x− z)T ν2(C ·G[z, z, x])

)

· ν0(x− z)

≤ h+
(
H0 + uTH

)
u. (16)

Now assume (12). Then (16) gives ν0(K(x)− z) ≤ u, hence (14). ⊓⊔

Theorem 2 In the situation of Proposition 2 let Bu,ν0
(z) ⊆ X. Then there

exists a solution x∗ of (2) in Mu.
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Proof By Proposition 2 we have (14) for arbitrary x ∈ Mu. Since Bu,ν0
(z) ⊆ X

this implies K(x) ∈ Mu. Because Mu is compact and convex, by Theorem 1
there exists a solution of (2) which lies in Mu. ⊓⊔

Note that (12) implies H0u ≤ u. If J = {j | uj = 0} and V = 〈{eℓ | ℓ ∈
J}〉 ⊆ Rr is the subspace of all vectors v with vJ = 0, then H0(V ) ⊆ V and
the spectral radius ρ(H0|V ) ≤ 1. In the applications, we can make h very small
by choosing z as an approximate zero. For C we can choose an approximate
inverse of G′(z) such that CG′(z) ≈ I.

Now the only thing that remains is the hypernorm version of Schichl and
Neumaier (2005a, Theorem 4.3).

Theorem 3 Let S ⊆ X be any set containing z, and take

H ≥ H(x) for all x ∈ S. (17)

For 0 < v ∈ R
r, set

w := (I −H0)v, a := vTHv. (18)

We suppose that

Dj = w2
j − 4ajhj > 0 (19)

for all j = 1, . . . , r, and define

λe
j :=

wj +
√
Dj

2aj
, λi

j :=
hj

ajλe
j

, (20)

λe := min
j=1,...,r

λe
j , λi := max

j=1,...,r
λi
j . (21)

If λe > λi then there is at least one zero x∗ of (2) in the (inclusion) region

Ri := Bλiv,ν0
(z) ∩ S. (22)

The zeros in this region are the only zeros of G in the interior of the (exclusion)
region

Re := Bλev,ν0
(z) ∩ S. (23)

Proof Let 0 < v ∈ R
r be arbitrary, and set u = λv. We check for which λ the

vector u satisfies property (12) of Proposition 2. The requirement

λv = u ≥
(
H0 + uTH

)
u+ h =

(
H0 + λvTH

)
λv + h

= h+ λH0v + λ2vTHv,

considered component-wise, gives a system of quadratic inequalities for λ.
Hence, for every λ ∈ [λi, λe] (this interval is nonempty by assumption), the
vector u satisfies (12).
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Now assume that x is a solution of (2) in int(Re) \ Ri. Let λ be minimal
with ν0(x − z) ≤ λv. By construction, λi < λ < λe. By the properties of the
Krawczyk operator, we know that x = K(x) = K(z, x), hence

ν0(x− z) ≤ ν0(CG(z))

+
(
ν1(CG′(z)− I) + ν0(x− z)T ν2(C ·G[z, z, x])

)
ν0(x− z)

≤ h+ λH0v + λ2vTHv < λv,
(24)

since λ > λi. But this contradicts the minimality of λ. So there are indeed no
solutions of (2) in int(Re) \Ri. ⊓⊔

We will show in Example 1 that this hypernorm generalization is also the
best possible in some cases.

We observe that the inclusion region from Theorem 3 can usually be further
improved by noting that x∗ = K(z, x∗) and (15) imply

x∗ ∈ K(z,xi) = z − CG(z)−
(
CG′(z)− I + (xi − z)TC · F [z, z,xi]

)
(xi − z)

⊂ int(xi).

So after computing xi by Theorem 3, performing the iteration xi
n+1 = K(z,xi

n)
with xi

0 = xi will further shrink the inclusion region. A few iterations will be
sufficient, since usually xi is already quite small and the iteration converges
quadratically.

An important special case is when G(x) is quadratic in x. For such a
function G[z, x] is linear in x, and therefore all G[z, z, x] are constant in x.
This, in turn, means that H(x) = H is constant as well. So we can set H = H,
and the estimate (17) becomes valid everywhere.

If the hypernorms νi are norms ‖ ‖, then Theorem 3 simplifies, and no
vector v needs to be chosen.

Corollary 1 Let ‖ ‖ denote a norm on R
n and corresponding compatible

norms on Rn×n and Rn×n×n. Let furthermore for a fixed preconditioning
matrix C ∈ R

n×n the norm bounds

α ≥ ‖CG(z)‖,
β ≥ ‖CG′(z)− I‖,
γ ≥ ‖C ·G[z, z, x]‖

(25)

be satisfied for all x ∈ S, where S ⊆ X is a set containing z. We set

δ := (1− β)2 − 4αγ, λe :=
1− β +

√
δ

2γ
, λi :=

α

γλe
. (26)

If δ > 0 and λe > λi then there is at least one zero x∗ of (2) in the (inclusion)
region

xi := Bλi(z) ∩ S. (27)



Exclusion regions for optimization problems 11

The zeros in this region are the only zeros of G in the interior of the (exclusion)
region

xe := Bλe(z) ∩ S. (28)

Note that in general not only the choice of v matters in Theorem 3. The
choice of S is also very important. If S is chosen too big, then the overesti-
mation for H might be large. In this case, the positivity requirement for the
Dj will force the λe to be very small, much smaller than the size of S. Thus,
it is necessary to balance the size of S and the expected size of the exclusion
region.

One possible way to come up with a starting set S is to choose a box
z+ v[−r, r] where the radius r is computed by Algorithm 1. There, we use the
fact that |uT

1 C · G[z, z, x]u2| can be computed in O(p), where p is the effort
for one point evaluation of G, but computing H needs an effort of O(n2p). We
choose u1 = ei and u2 = v̂ with ν0(v̂) = v to get a rough estimate of the size
of vTHv.

FindTrialBox(z,x, v);1

input : z – the approximate zero
input : x – the search box
input : v – the vector v > 0
output: S – trial box S

rmax := max{r | z + [−r, r]v ⊆ x};2

C ≈ G′(z)−1;3

r := rmax;4

Compute v̂ with ν0(v̂) = v;5

for i := 1, . . . , n do6

while true do7

q := eT
i
C ·G

[

z, z, z + [−r, r]v̂
]

;8

ρ := 1/(‖v‖1‖ν0(q)‖1);9

if r = rmax ∧ ρ ≥ r then break;10

if max(ρ, r)/min(ρ, r) < 2 then11

r := min(rmax,max(ρ, r));12

break;13

end14

if ρ = 0 then15

r := 1

2

√
r;16

else17

r :=
√
ρr;18

end19

if r > rmax then r := r

2
;20

end21

rmax := r;22

end23

return S := z + 1

2
[−rmax, rmax];24

The tensor H can be constructed using interval arithmetic, for a given
reference box x around z. Using backward evaluation schemes (see e.g. Schichl
and Markót (2010)) the effort for computing this third order tensor is O(n2p).



12 H. Schichl, M. C. Markót, and A. Neumaier

5 Exclusion regions for optimization problems

In this section we consider problem (1). We want to find an analogous result
to Theorem 3 in the situation of an optimization problem. We could formulate
the Karush-John first order necessary optimality conditions as a system of
equations and apply Theorem 3 directly. However, in many cases this system
is degenerate and hence cannot be verified. Therefore, we take a more direct
approach.

Throughout the section we will need the Karush-John first order optimality
conditions for (1), see Karush (1939); John (1948).

Theorem 4 (General first order optimality conditions) Let f : U → R

and F : U → R
m be functions continuously differentiable on a neighborhood U

of x∗ ∈ R
n. If x∗ is a locally optimal point of the nonlinear program (1), then

there exist a scalar κ∗ ≥ 0 ∈ R, a vector w∗ ∈ R
m, and a vector q∗ ∈ R

n such
that

q∗ = κ∗∇f(x∗) +∇F (x∗)w∗, (29)

q∗k





≥ 0 if xk = x∗
k < xk

≤ 0 if xk < x∗
k = xk

= 0 if xk < x∗
k < xk

(30)

and

κ∗, w∗ are not both zero. (31)

Let z ∈ R
n be an approximate local solution of (1), y ∈ R

m an approxima-
tion for the corresponding multiplier vector w∗, and σ ≥ 0 an approximation
for κ∗. As usual, we define the Lagrange function

L(x,w, κ) := κf(x) + wTF (x).

We set s := ∇xL(z, y, σ)
T ≈ q∗. Then we consider the complementarity con-

ditions for q∗, which are approximately satisfied for s. For 0 < α ∈ R
n

we define the α–active set Iα := {i | |si| ≥ αi} and the α–inactive set
Jα := {i | |si| < αi}. We choose α > 0 such that |Jα| ≥ m. This is needed,
since we need enough free variables to satisfy the equality constraints. If no
such α exists, this method does not work due to degeneracy. One common
source of such a degeneracy is the replacement of equality constraints by pairs
of inequality constraints in certain automatic reformulations. This is the rea-
son, why the COCONUT Environment (Schichl and Markót (2013)) auto-
matically detects and undoes such reformulations. There are, however, classes
of problems, e.g. those described in Kearfott et al (2012), that are naturally
degenerate. In an LP context some degeneracy can be removed by automatic
preprocessing. For nonlinear global optimization, symbolic preprocessing steps
or rational arithmetic are necessary for coping with degeneracy. On the other
hand, such methods are difficult to implement and computationally expensive
in general.
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Furthermore, we require for i ∈ Iα that

zi = xb
i :=

{
xi if si ≥ αi

xi if si ≤ −αi.

If this is not satisfied from the beginning, we change z accordingly.
In the following we fix 0 < α ∈ R

n and set J := Jα and I := Iα. We also
introduce the following short-hand notation for the larger formulas later:

t :=




xJ

w
κ
xI


 , t̄ :=



xJ

w
κ


 , u :=




zJ
y
σ
zI


 , ū :=



zJ
y
σ


 .

For the further estimates, especially on the third order tensors, we define W
to be the index set for the multipliers w and introduce the combined index set
M := J ∪W ∪ {κ}, so t̄W = tW = w, t̄J = tJ = xJ , uM = ū, etc.

Now we construct a function G for which we can apply Theorem 3. We use
the inactive part of equation (29), the original equality constraints, a smooth
version of (31), and the active boundary constraints

G(t) :=




∇JL(t)
F (x)

κ2 + wTw − 1
xI − xb

I


 . (32)

However, for the formulation of the final result we get rid of the simple
components corresponding to the bound constraints. So to properly apply
Theorem 3 we need to compute estimates analogous to (24) and before that
we must find a proper preconditioning matrix C. We set

C ′ :=



∇2

JJL(u) ∇JF (z) ∇Jf(z)
∇JF (z)T 0 0

0 2yT 2σ


 (33)

and C ≈ C ′−1
.

Using this preconditioning matrix we compute the hypernorm bounds (24)

for the special case we consider. We fix monotone hypernorms ν1 : R
Ñ →

R
r, ν0 : RĨ → R

r̃, and compatible hypernorms ν2,0 : RÑ×Ĩ → R
r×r̃, ν2,1 :

R
Ñ×Ñ → R

r×r, ν3,1 : RÑ×Ñ×N → R
r×r×(r+r̃), ν3,2 : RÑ×Ĩ×N → R

r×r̃×R,

where N = n+m+ 1, Ñ = |J |+m+ 1, Ĩ = |I|, and R = r+ r̃. Furthermore,
we let

b ≥ ν1


C




∇JL(u)
F (z)

z2 + yT y − 1






B0 ≥ ν2,1(CC ′ − I).

(34)
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For the estimation we define the tensor valued functions B̃ : RN → R
Ñ×Ñ×N

and T̃ : RN → R
Ñ×Ĩ×N in block form as

B̃J::(t, u) := C ·



(∇JL)[u, u, t]J:J 0 0
F [z, z, x]J:J 0 0

0 0 0


 B̃I::(t, u) := C ·



(∇JL)[u, u, t]I:J 0 0
F [z, z, x]I:J 0 0

0 0 0




B̃W ::(t, u) := C ·



∇2

JJF (z)T 0 0
0 0 0
0 eTW 0


 B̃κ::(t, u) := C ·



∇2

JJf(z) 0 0
0 0 0
0 0 1




T̃J::(t, u) := C ·



(∇JL)[u, u, t]J:I
F [z, z, x]J:I

0


 T̃I::(t, u) := C ·



(∇JL)[u, u, t]I:I
F [z, z, x]I:I

0




T̃W ::(t, u) := C ·



∇2

JIF (z)T

0
0


 T̃::κ(t, u) := C ·



∇2

JIf(z)
0
0


 .

(35)
For the next step we consider S ⊆ X and boxes w ⊆ R

m, k ⊆ R+ and
choose a vector 0 < vT = (vTJ , v

T
W , vκ, vI) ∈ R

R and analogously to (17)–(21)
proceed by requiring the estimates

B ≥ ν3,1(B̃(t, u))
T ≥ ν3,2(T̃ (t, u))

(36)

for all x ∈ S ⊆ X, w ∈ w, and κ ∈ k, and define

w := (I −B0)vM , a := vT (BvM + T vI). (37)

For all j ∈ {1, . . . , r} we set

Dj = w2
j − 4ajbj , (38)

and for all j ∈ M0 := {i ∈ {1, . . . , r} | Dj > 0}

λe
j :=

wj +
√
Dj

2aj
, λi

j :=
bj

ajλe
j

, λe := min
j∈M0

λe
j , λi := max

j∈M0

λi
j . (39)

In case that J = ∅, we set λe = ∞ and λi = 0.
Next we have to take care of the boundary. Until now we have fixed the

solution to the boundary in all components xi for i ∈ I. To extend the exclusion
region into those components we calculate the following estimates. We set
δ := ∇IL(u),

CB(t, u) :=
(
(∇IL)[u, t]:J , ∇IF (z), ∇If(z)

)
, (40)

and compute for all i ∈ I the estimates

Yi ≥ ν∗1 (CB(t, u)i:), and

Zi ≥ ν∗0 (Z
L
:i (t, u)),

(41)
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for all t ∈ Bλev,ξ0(u) with x ∈ x, where ξ0 := (ν1, ν0)
T : R

N → R
R is

the stacked hypernorm and ν∗0 and ν∗1 are dual hypernorms of ν0 and ν1,
respectively. Here we set for j, k ∈ I

ZL
jk(t, u) =

{
(∇kL)[u, t]j j ∈ I, (∇kL)[u, t]j < 0, zj active

0 otherwise.
(42)

Now we have assembled everything to formulate the exclusion box theorem.

Theorem 5 Choose a vector 0 < v ∈ R
R such that all estimates in (34)–(41)

are valid in the set S. Assume further Di > 0 for all i = {1, . . . , r}. We define

µi :=
|δi|

Y T
i: vM + ZT

i: vI
, for i ∈ I, and µe := min(min

i∈I
µi, λ

e). (43)

If now µe > λi then there exists a KJ–point (x∗, w∗, κ∗) for (1) in the inclusion
region Ri := BλivM ,ν1

(zJ , y, σ)×{xb
I}∩S. All KJ–points of (1) in the interior

of the exclusion region Re := Bµev,ξ0(z, y, σ) ∩ S are in Ri.

Proof We start by considering the function G as defined in (32). The point
u = (z, y, σ) is an approximate solution of G(t) = 0. To apply Theorem 3 we
must calculate the hypernorm bounds (10). We find

G[u, t] =




(∇JL)[u, t]:J ∇JF (z) ∇Jf(z) (∇JL)(u, t):I
F [z, x]:J 0 0 F [z, x]:I

0 wT + yT κ+ σ 0
0 0 0 I


 , (44)

and hence

G′(u) =




∇2
JJL(u) ∇JF (z) ∇Jf(z) ∇2

JIL(u)
∇JF (z)T 0 0 ∇IF (z)T

0 2yT 2σ 0
0 0 0 I


 =

(
C ′ C ′′

0 I

)
. (45)

The second order slopes can also be calculated

G[u, u, t]J:: =




(∇JL)[u, u, t]J:J 0 0 (∇JL)[u, u, t]J:I
F [z, z, x]J:J 0 0 F [z, z, x]J:I

0 0 0 0
0 0 0 0


 , (46)

G[u, u, t]W :: =




∇2
JJF (z)T 0 0 ∇JIF (z)T

0 0 0 0
0 eTW 0 0
0 0 0 0


 , (47)

G[u, u, t]κ:: =




∇2
JJf(z) 0 0 ∇2

JIf(z)
0 0 0 0
0 0 1 0
0 0 0 I


 , (48)
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G[u, u, t]I:: =




(∇JL)[u, u, t]I:J 0 0 (∇JL)[u, u, t]I:I
F [z, z, x]I:J 0 0 F [z, z, x]I:I

0 0 0 0
0 0 0 0


 . (49)

We see that G′(u) is regular iff C ′ is, and that the matrix

CG :=

(
C −CC ′′

0 I

)

is an approximate inverse.
By comparing (46)–(49) and (35), we further note that B(t, u) =

(
CG ·

G[u, u, t]
)
:MM

, T (t, u) =
(
CG ·G[u, u, t]

)
:MI

, and that all the remaining com-
ponents of CG ·G[u, u, t] vanish.

We consider the hypernorm ξ0 := (ν1, ν0)
T : RN → R

R, the compatible
hypernorm

ξ1 :=

(
ν2,1 ν2,0
ν̂2,3 ν̂2,2

)
: RN×N → R

R×R,

where ν̂2,3 : RĨ×Ñ → R
r̃×r, and ν̂2,2 : RĨ×Ĩ → R

r̃×r̃ are hypernorms compati-
ble to ν0 and ν1, and the compatible hypernorm

ξ2 :=

(
ν3,1 ν3,2
ν̂3,3 ν̂3,4

)
: RN×N×N → R

R×R×R,

where ν̂3,3 : RĨ×Ñ×N → R
r̃×r×R and ν̂3,4 : RĨ×Ĩ×N → R

r̃×r̃×R are hyper-
norms compatible to ν0, ν1, ν2,0, ν2,1, ν̂2,2, and ν̂2,3.

Then

ξ0(CGG(z, w, σ)) ≤
(
b

0

)
=: h

ξ1(CGG
′(z)− I) ≤

(
B0 0
0 0

)
=: H0 and ξ2(CG ·G[u, u, t]) ≤

(
B T
0 0

)
=: H.

Now we calculate (17) and (18)

w̃ := (I −H0)v =

(
(I −B0)vM

vI

)
=

(
w

vI

)
,

ã := vTHv =

(
vT (BvM + T vI)

0

)
=

(
a

0

)
.

For (19)–(20) we split the indices in two parts. For those j that belong to the

last r̃ indices of Rr+r̃ we find D̃j = vj , λ̃
e
j = +∞, and λ̃i

j = 0, so they do
not play a role for calculating the sizes of the exclusion and inclusion regions,
respectively.

For the first r indices we find the expressions (37)–(39). The λe and λi

calculated in (39) define the sizes of exclusion and inclusion regions, provided
that the solution does not leave the boundary in the active indices I. So this
is the maximal size of an exclusion region we can expect.
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Let i ∈ I be an index of an active component. By the definition of I we
have |δi| > 0. We do not reach another KJ–point of (1) if we make sure that
∇iL(x,w, κ) stays away from 0 when the point moves from the boundary of
xi = xb

i into the relative interior of the feasible set.

Fix t ∈ intRe. Then

∇iL(t) = δi + (∇iL)[u, t](t− u)

= δi + (∇iL)[u, t]:I(xI − zI) + (∇iL)[u, t]:J (xJ − zJ) +∇iF (z)(w − y)

+∇if(z)(κ− σ)

= δi + CB(t, u)i:(t̄− ū) + (∇iL)[u, t]I(xI − zI).

Thus

∣∣∇iL(t)
∣∣ ≥

∣∣δi + (∇iL)[u, t]I(xI − zI)
∣∣−
∣∣CB(t, u)i:(t̄− ū)

∣∣

≥
∣∣δi + ZL

Ii(t, u)
T (xI − zI)

∣∣−
∣∣CB(t, u)i:(t̄− ū)

∣∣

≥ |δi| − ν∗0 (Z
L
Ii(t, u))

T ν0(xI − zI)− ν∗1 (CB(t, u)i:)
T ν1(t̄− ū)

> |δi| − µe(ZT
i vI + Y T

i vM )

≥ |δi| − µi(Z
T
i vI + Y T

i vM ) = 0,

because of (52), (43), and since the hypernorms are monotone. Hence, every
component of ∇IL is nonzero in the interior of Re, so there cannot be another
KJ–point there. This proves, that Re is indeed an exclusion region. ⊓⊔

A small disadvantage of Theorem 5 is that the inclusion/exclusion regions
also involve the multipliers. However, often it is possible to give good bounds
on the multipliers using the KJ–System. If this is the case, the exclusion regions
can often be projected to the x component.

Corollary 2 Let the situation be as in Theorem 5. If x ∈ Xe = intPrx(R
e)

and (29)–(31) imply (x,w, κ) ∈ intRe, then all solutions x∗ ∈ Xe are in the
inclusion region Xi = Prx(R

i). (Here Prx specifies the projection to the x
components.)

Proof Take a solution x∗ ∈ int Prx(R
e). Then by Theorem 4 there exist w∗

and κ∗ which satisfy the KJ–conditions (29)–(31). By assumption, we get
(x∗, w∗, κ∗) ∈ intRe. Then Theorem 5 implies (x∗, w∗, κ∗) ∈ Ri, and thus
x∗ ∈ Xi. ⊓⊔

Remark 1 – If DF (x̂) has full rank or F is linear, then κ 6= 0. In that case,
κ can be omitted from all equations, and the system simplifies.

– The KJ system provides a linear interval equation for w, which can be used
to get an estimate for w and prove the condition of Corollary 2.

– If z is an approximate strict local minimum, then usually it can be proved
that there exists a strict local minimum in Ri.
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A very important special case is the bound constrained case, where m = 0:

min f(x)

s.t. x ∈ x.
(50)

Then, w does not appear in the KJ–conditions (29) and (31), and κ = 1 can
always be assumed. Hence, all estimates and Theorem 5 simplify significantly.

In this case s = ∇xf(z) and I and J are defined analogously as before with-
out any restrictions on J . The preconditioning matrix is C ≈ (∇2

JJf(z))
−1.

We choose again monotone hypernorms ν1 : R|J| → R
r, ν0 : R|I| → R

r̃ and
compatible operator hypernorms νi. We compute the following estimates:

b ≥ ν1(C∇Jf(z))

B0 ≥ ν2(C∇JJf(z)− I)

B̃(x, z) := C · (∇Jf)[z, z, x]

B ≥ ν3(B̃(x, z)) for all x ∈ S ⊆ X.

(51)

Choose 0 < v ∈ R
R and set w := (I − B0)v, a := vTBv. Define Dj for j ∈ J ,

λe, and λi as in (38) and (39).

We set δ := ∇If(z), and compute for all i ∈ I the estimates

Yi ≥ ν∗1 ((∇if)[z, x]J ), and

Zi ≥ ν∗0 (Z
L
:i (x, z))

(52)

for all x ∈ Bλev,ξ0(z) with x ∈ x, where ξ0 := (ν1, ν0)
T : RN → R

R is again
the stacked hypernorm and ν∗0 and ν∗1 are dual hypernorms of ν0 and ν1,
respectively. Here we set for j, k ∈ I

ZL
jk(x, z) =

{
(∇kf)[z, x]j j ∈ I, (∇kf)[z, x]j < 0, zj active

0 otherwise.
(53)

Corollary 3 Let the estimates (51) and (52) be valid in the set S and define

µi :=
|∇if(z)|

Y T
i vJ + ZT

i vI
, for i ∈ I

µe := min(min
i∈I

µi, λ
e).

If Dj > 0 for all j = 1, . . . , r and µe > λi then there exists a critical point
x∗ for (50) in the inclusion region Ri := BλivJ ,ν1

(zJ) × {xb
I} ∩ S. These are

the only critical points of (50) in the interior of the exclusion region Re :=
Bµev,ξ0(z) ∩ S.

Proof This follows directly from Theorem 5. ⊓⊔
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An even more special case is unconstrained optimization

min f(x),

s.t. x ∈ R
n (54)

for which the exclusion regions can be calculated with even less effort. We
fix a single monotone hypernorm ν1 : Rn → R

r, and get the following result.
Compute C ≈ (∇2f(z))−1.

Corollary 4 Let the estimates

b ≥ ν1(C∇f(z))

B0 ≥ ν2(C∇2f(z)− I)

B ≥ ν3(C · (∇f)[z, z, x]) for all x ∈ S ⊆ X

be valid. Fix 0 < v ∈ R
r and set w := (I − B0)v, a := vTBv. Define Dj for

j ∈ J , λe, and λi as in (38) and (39).
If now λe > λi then there exists a critical point x∗ for (54) in the inclusion

region Ri := Bλiv,ν1
(z) ∩ S. All critical points of (54) in the interior of the

exclusion region Re := Bλev,ν1
(z) ∩ S are in Ri.

Proof This follows directly from Corollary 3. ⊓⊔

Theorem 5 and Corollaries 3 and 4 rely heavily on third order information.
Great care has to be taken in the implementation that the effort for com-
puting this information is not too high. If implemented correctly the second
order slopes of a first derivative can be computed in two efficient ways. Either
they can be computed directly as second order slopes from the first derivative
expressions from the KJ conditions. Alternatively, they can be directly cal-
culated in backward mode like third derivatives as wT∇3Lv, as described in
Schichl and Markót (2010). Both methods require an effort of O(n2f), where f
denotes the computation time for one function evaluation. The direct method
has one big advantage, though: Preconditioning the third order tensors in the
form C · ∇3L does not cause additional effort, since the multiplication can be
evaluated by choosing the w as the rows of C. That keeps the computational
complexity at O(n2f) and avoids the additional O(n4) operations required
for explicitly evaluating the matrix-tensor product. All the remaining linear
algebra needed is O(n3), so that the overall effort for computing an inclu-
sion/exclusion region is O(n2(n+ f)).

If computation algorithms for first and second order slopes of first deriva-
tives are not available, then all expressions of the form (∇L)[z,x] can be re-
placed by ∇2L(x) and the second order slopes (∇L)[z, z,x] and (∇L)[z,x,x]
can be estimated by 1

2∇3L(x). In that case, Theorem 5 already proves unique-
ness of the local optimizer, and Theorem 7 below is not needed.

The question will be, whether it is possible to avoid the third order infor-
mation altogether. This is not easy. As discussed in Section 2, at least second
order information is needed to avoid the cluster effect.
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– We could apply first order methods to the KJ system. This does not work
very well, except in a backboxing setting, and does not provide large ex-
clusion regions in a single calculation.

– It might be possible to utilize the second order necessary optimality con-
ditions:

sJ = 0, F ′(x)s = 0 ⇒ sT Ĝ(x)s ≥ 0,

where Ĝ is the reduced Hessian of the Lagrange function. We could use
zero-order information on this system. But this does not work well either,
because it is difficult to represent the set of s satisfying the left hand side of
the implication properly by zero order information (F ′(x)s = 0 describes
a fairly complicated set if F ′(x) is enclosed in an interval matrix, see Rohn
(1989); Neumaier (1990)). Using the equation F ′(x)s = 0 efficiently directly
in the right hand side of the implication is only possible symbolically, and
only if the function F has a special structure (e.g. being affine, etc.).

– Interval Newton type methods could be tried, but those are even in the
unconstrained case significantly weaker than the presented approach using
third order information.

The regularity of C ′ in (33) implies that z is an approximate strict local
minimum. If this is not the case the problem is too degenerate, and Theorem 5
is not applicable. The prerequisite |Jα| ≥ m is absolutely necessary to ensure
regularity of the matrix C ′. This means that there are enough free variables
to make F (x) = 0 possible.

The exclusion regions are constructed not to contain another KJ–points,
even if they are just maxima or saddle-points. So incorporating the additional
constraint g(x) ≤ f for f ≥ f(Ri) in some form for a second iteration, where
g(x) ≤ f(x), might possibly increase the size of the exclusion region.

Of course, as for systems of equations, the size of the initial set S has a
significant influence on the size of the computed exclusion box. An analogue
to Algorithm 1 needs to be used to compute this initial box.

6 Uniqueness regions

An important aspect of exclusion regions is the notion of uniqueness regions,
where we can prove that strict local minima are unique.

Before we can approach that goal, we need to generalize the uniqueness
regions of Schichl and Neumaier (2005a, Theorem 6.1) to hypernorm variants.

Theorem 6 Take an approximate solution z ∈ xe of (2), and let B ∈ R
r×r

be a matrix such that

ν1(CG[z, x]− I) + ν0(x− z)T ν2(C ·G[z, x, x]) ≤ B (55)

for all x ∈ xi. If ‖B‖ < 1 for some monotone norm then xe contains at most
one solution x∗ of (2).
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Proof Assume that x and x′ are two solutions. Then we have

0 = G(x′)−G(x) = G[x, x′](x′ − x) =
(
G[x, z] + (x′ − z)TG[z, x, x′]

)
(x′ − x).

(56)
Using an approximate inverse C of G′(z) we further get

x− x′ =
(
(CG[z, x]− I) + (x′ − z)TC ·G[z, x, x′]

)
(x′ − x). (57)

Applying hypernorms, and using (55), we find

ν0(x
′ − x) ≤

(
ν1(CG[z, x]− I) + ν0(x

′ − z)T ν2(C ·G[z, x, x′])
)
ν0(x

′ − x)

≤ B ν0(x
′ − x).

This, in turn, implies ‖ν0(x′ − x)‖ ≤ ‖B‖ ‖ν0(x′ − x)‖. If ‖B‖ < 1 we imme-
diately conclude ν0(x

′ − x) = 0, hence x = x′. ⊓⊔

Using this result we can construct regions in which there is a unique strict
local minimum, in the following way. First one verifies as in Section 5 an
exclusion region Re which contains no local minimum except in a much smaller
inclusion region Ri. Then we try to further refine the inclusion region by some
iterations similar to Krawczyk’s method, which generally converges quickly if
the initial inclusion box is already verified, as follows:

We define the function Ĝ : RÑ → R
Ñ by

Ĝ(t̄) :=



(∇JL|xI=xb

I

)(t̄)

(F |xI=xb

I

)(xJ)

κ2 + wTw − 1


 ,

and the third order Krawczyk-type operator

K(S, ū) :=
{
ū− CĜ(ū)−

(
CC ′ − I − (t̄− ū)T B̃J::(t̄)

)
(t̄− ū)

∣∣ t̄ ∈ S
}
,

where C and C ′ were defined in (33) and B̃ was defined in (35). Then we
compute a smaller inclusion region by the iteration

Ri
1 := Ri|xI=xb

I

, and Ri
k+1 := K(Ri

k, ūk) ∩Ri
k, (58)

where ūk ∈ Ri. Let Ri
0 be the approximate limit set of this iteration. It is

usually a really tiny set, whose width is determined by rounding errors only.

Clearly, int(Re) contains a unique minimum iff Ri
0×{xb

I} contains at most
one minimum. Thus, it suffices to have a condition under which a tiny region
contains at most one local minimum. This can be done even in fairly ill-
conditioned cases by the following test.
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Theorem 7 Take an approximate solution u ∈ Ri
0 ×{xb

I} of (1), where Ri
0 is

computed by the iteration (58) from an inclusion region as provided by Theo-
rem 5. Let the hypernorms ν1, ν2,1, and ν3,1 be as in Section 5 and define

CU (t̄, ū) :=



(∇JL|xI=xb

I

)[ū, t̄] ∇JF (z)T ∇Jf(z)
T

(F |xI=xb

I

)[zJ , xJ ] 0 0

0 2yT 2σ


 ,

B̂(t̄, ū) :=




(∇JL|xI=xb

I

)[ū, t̄, t̄] (∇JF |xI=xb

I

)[zJ , xJ ]
T (∇Jf |xI=xb

I

)[zJ , xJ ]
T

(F |xI=xb

I

)[zJ , xJ , xJ ] 0 0

0 0 0


 .

If there exists a matrix B ∈ R
r×r with ‖B‖ < 1 for some monotone matrix

norm such that

ν2,1
(
CCU (t̄, ū)− I

)
+ ν1(t̄− ū)T ν3,1

(
C · B̂(t̄, ū)

)
≤ B, (59)

for all t̄ ∈ Ri
0 then Ri

0×{xb
I} contains at most one solution (x∗, w∗, κ∗) of (1).

Proof We compute Ĝ[t, s] = CU (t, s) and Ĝ[t, s, s] = B̂(t, s); thus the result
follows from Theorem 6. ⊓⊔

Since B is nonnegative, ‖B‖ < 1 holds for some norm iff the spectral
radius of B is less than one (see, e.g., (Neumaier, 1990, Corollary 3.2.3)); a
necessary condition for this is that maxBkk < 1, and a sufficient condition is
that |B|u < u for some vector u > 0.

So one first checks whether maxBkk < 1. If this holds, one checks whether
‖B‖∞ < 1; if this fails, one computes an approximate solution u of (I−B)u =
e, where e is the all-one vector, and checks whether u > 0 and |B|u < u. If
this fails, the spectral radius of B is very close to 1 or is larger. (Essentially,
this amounts to testing I − B for being an H-matrix; cf. (Neumaier, 1990,
Proposition 3.2.3).) A candidate matrix B can be efficiently calculated by
interval analysis.

How much ill-condition can be tolerated by the test in Theorem 7 depends
primarily on the size of the inclusion region Ri

0. If this set is small enough
then CU (t, u) is a very thin interval matrix, and C is an approximate midpoint
inverse of CU , making the first matrix in (59) close to zero. The second matrix
is multiplied by ν1(t−u) which is also close to zero. The size of the components

of B̂ is mostly determined by the curvature of the Lagrangian. Their size has
to be significantly smaller than 1/ (width)(Ri

0) to make the test work.

7 Examples

We illustrate the theory with a few low-dimensional examples. Some prelimi-
nary test calculations on the COCONUT test set Shcherbina et al (2003) have
shown evidence that the difference of the radii of the exclusion box computed
by Theorem 5 and the one computed by a backboxing scheme based on the
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interval Newton method increases with increasing dimension. In a branch and
bound context this leads to a higher portion of the search space that can be
removed by a number of branching steps which is linear in the dimension. Since
the cluster effect is one reason why a branch and bound method needs expo-
nential effort for some problems, a large enough exclusion box that eliminates
the cluster effect can cause hitherto intractable problems to become tractable,
see Example 4.

Example 1 In this example we will do all calculations symbolically, hence free
of rounding errors, assuming a known zero. (This idealizes the practically
relevant case where a good approximation of a local minimum is available
from a standard optimization algorithm.)

We consider the bound constrained optimization problem

min 1
3x

3
1 + x1x

2
2 − 25x1 − 24x2

s.t. xi ∈ [−10, 10],

which has 3 local solutions (−10,−10), (−10, 10), and (4, 3).
We start with the solution x∗ = (4, 3). We have no active constraints, so

we choose I = ∅. Hence, we can use Corollary 3. We find

∇f(x) =

(
x2
1 + x2

2 − 25
2x1x2 − 24

)
.

With respect to the solution x∗ =
(
4
3

)
, we have

∇f(x)−∇f(x∗) =

(
x2
1 − 42 + x2

2 − 32

2x1x2 − 2 · 4 · 3

)

=

(
(x1 + 4)(x1 − 4) + (x2 + 3)(x2 − 3)

2x2(x1 − 4) + 2 · 4(x2 − 3)

)
,

so that we can take

(∇f)[x∗, x] =

(
x1 + 4 x2 + 3
2x2 8

)
.

This has the form (6) with

∇2f(x∗) =

(
8 6
6 8

)
, (∇f)[x∗, x∗, x] =

((
1 0
0 0

)∣∣∣∣
(
0 1
2 0

))
,

and we obtain

B =
1

28

((
8 0
6 0

)∣∣∣∣
(
12 8
16 6

))
.

Since we calculate without rounding errors and we have a true zero, both B0

and b vanish. From (39) we get

wj = vj , Dj = v2j (j = 1, 2),
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a1 = 1
28 (8v

2
1 + 12v1v2 + 8v22), a2 = 1

28 (6v
2
1 + 16v1v2 + 6v22),

and for the particular choice v =
(
1
1

)
, we get from (39)

λi = 0, λe = 1. (60)

Thus, Corollary 1 implies that the interior of the box

[x∗ − v, x∗ + v] = B1,| |(4, 3) =

(
[3, 5]
[2, 4]

)

contains no solution apart form
(
4
3

)
. This is best possible, since there is another

Kuhn-Tucker point
(
3
4

)
at a vertex of this box. The choice v =

(
1
2

)
, ω(v) = 8

7
gives another exclusion box, neither contained in nor containing the other box.

Next we consider the optimizer z = (−10,−10). In this situation, we need
to apply Corollary 3. We have J = ∅, and so by definition λe = ∞ while
λi = 0. We calculate

δ = ∇f(z) =

(
175
176

)
, (∇f)[z, x] =

(
x1 − 10 x2 − 10
2x2 −20

)
,

since J = ∅ also Y is empty, and

ZL(x, z) =

(
x1 − 10 2x2

x2 − 10 −20

)
,

if x2 ≤ 0 and x1 ≤ 10. Hence,

Z =

(
20 20
20 20

)
.

Choosing v = (1, 1) we get

µ1 = 175
40 , µ2 = 176

40 , µe = µ1 = 35
8 ,

and therefore the exclusion region is

intB 35
8 ,| |(−10, 10) ∩ x =

(
[−10,−5.625 [

[−10,−5.625 [

)
,

not of perfect size but still reasonably big.

Example 2 Consider the optimization problem

min (x1 + 2)2 + (x2 − 2)2

s.t. 4x1 + x2
1 − x3

2 + 2x2
2 = −1

x1 ∈ [−5, 5], x2 ∈ [−2, 1]

(61)

which has 3 local solutions (−2,−1), (−2−
√
2, 1), (−2+

√
2, 1), see Figure 1.
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If we calculate without rounding errors and start with the solution z =

x∗ = (−2−
√
2, 1), we get y = −

√
2
2 , σ =

√
2
2 , and ∇L(z, y, σ) = (0,− 3

√
2

2 ), so
J = {1} and I = {2}. Then we compute

C ′ =




0 −2
√
2 −2

√
2

−2
√
2 0 0

0 −
√
2

√
2


 , C =




0 −
√
2
4 0

−
√
2
8 0 −

√
2
4

−
√
2
8 0

√
2
4


 .

Since we calculate without rounding errors, the terms b and B0 both vanish.
For the third order tensors we compute

B̃J::(t, u) := C ·



0 0 0
1 0 0
0 0 0


 =



− 1

2
√
2
0 0

0 0 0
0 0 0


 , T̃J::(t, u) := C · 0 = 0,

B̃W ::(t, u) := C ·



2 0 0
0 0 0
0 1 0


 =




0 0 0
− 1

2
√
2
− 1

2
√
2
0

− 1
2
√
2

1
2
√
2

0


 , T̃W ::(t, u) := C · 0 = 0,

B̃κ::(t, u) := C ·



2 0 0
0 0 0
0 0 1


 =




0 0 0
− 1

2
√
2
0 − 1

2
√
2

− 1
2
√
2
0 1

2
√
2


 , T̃::κ(t, u) := C · 0 = 0,

T̃I::(t, u) := C ·




0
−x2

0


 =




x2

2
√
2

0
0


 , B̃I::(t, u) := C · 0 = 0.

(62)
As hypernorms we choose the componentwise absolute value. Thus, the only
term which is not straightforward is in T̃ where x2 will be estimated as |x2| =
2. We choose v = e and calculate

w = v = e, a =




3
2
√
2√
2√
2


 , D = e, λe

: =




2
√
2

3√
2
2√
2
2


 , λe =

√
2

2
, λi = 0.

For the border terms we find

δ = −3
√
2

2
, CB(t, u) = (0, 1,−1), ZL

22(t, u) =

{
1+3x2√

2
x2 ≤ − 1

3

0 otherwise

Y = (0, 1, 1), Z = 0, x2 ≥ − 1
3

µ2 = −3
√
2

4
, µe =

√
2
2 .

Theorem 5 tells us therefore that there is no solution in the interior of the box

Re = [−2− 3
√
2

2 ,−2−
√
2
2 ]× [1−

√
2
2 , 1]

except for x∗. The box again is of considerable size, although it is not optimal.
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-4 -2 0 2 4

-4

-2

0

2

4

Fig. 1 Exclusion Box for Problem (61).

Example 3 The system of equations (2) with

G(x) =

(
x2
1 + x1x2 + 2x2

2 − x1 − x2 − 2
2x2

1 + x1x2 + 3x2
2 − x1 − x2 − 4

)
(63)

has the solutions
(
1
1

)
,
(

1
−1

)
,
(−1

1

)
, cf. Figure 2. We consider the first solution

x∗ =
(
1
1

)
. We can easily compute that

G[z, x] =

(
x1 + x2 + z1 − 1 2x2 + z1 + 2z2 − 1
2x1 + x2 + 2z1 − 1 3x2 + z1 + 3z2 − 1

)
,

G′(z) =

(
2z1 + z2 − 1 z1 + 4z2 − 1
4z1 + z2 − 1 z1 + 6z2 − 1

)
,

G[z, z, x] =

((
1 0
2 0

)∣∣∣∣
(
1 2
1 3

))
.
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-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

Fig. 2 Two quadratic equations in two variables.

For

C := G′(x∗)−1 =

(
−1.5 1
1 −0.5

)

we get CG(x∗) = 0 and CG′(x∗)− I = 0, since we calculate without rounding
errors. Then

C ·G[x∗, x∗, x] =

((
0.5 0
0 0

)∣∣∣∣
(
−0.5 0
0.5 0.5

))

We choose the 2–norm as hypernorms ν0 and ν1, then compatible hypernorms
are the matrix 2–norm, i.e. the maximal singular value, and the 3–tensor 2–
norm for the second index, i.e. the maximal mode-2 singular value. Computing
the HOSVD of C · G[x∗, x∗, x] (see De Lathauwer et al (2000)) we get the
singular value tensor

S =

((
−0.8536 0

0 0.3536

)∣∣∣∣
(

0 −0.3536
0.1464 0

))

and the norm ‖C · G[x∗, x∗, x]‖2,2 = ‖S‖2,2 = 0.866. We use Corollary 1 to
compute δ = 1, λi = 0, and λe = 1/0.866 = 1.1547. The exclusion region Re

is therefore the circle with center (1, 1) and radius 1.1547.

The box exclusion region for this example was already calculated in Schichl
and Neumaier (2005a) as [0, 2]× [0, 2]. Its radius and its volume as compared
to the exclusion circle are slightly smaller.

There it was already shown that the other known methods for computing
uniqueness areas perform worse by at least an order of magnitude.
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Example 4 This example is from Kieffer et al (2011), where the authors con-
sidered the nonlinear parameter estimation problem

min f(x) =

N∑

i=1

(ym(x, ti)− yi)
2

s.t. x ∈ [0.01, 1]3,

where the yi are constants values, ym is specified as

ym(x, ti) =
(
x1e

−x1ti/2
)(

e−x2ti/2
)(

e−x3ti/2
)(

− 2√
a(x)

sinh(
√

a(x)ti/2)

)
,

with
a(x) = (x3 − x2 + x1)

2 + 4x1x2,

for all i = 1, . . . , N , and we set N := 15 and ti := i. We solved the above
bound constrained problem with an interval branch and bound method using
Corollary 3 for the exclusion/inclusion box techniques.

Backboxing techniques using interval Newton operator were not able to find
an inclusion/exclusion pair. They could be used to generate some exclusion
boxes which did not contain a solution.

The best approximate solution to the problem found by the local optimizer
IPOPT Waechter et al (2009) was

z =[0.6049537177358995, 0.6049537177358995],

[0.1444752644582018, 0.1444752644582018],

[0.3660122310991678, 0.3660122310991678]

with a function value enclosure of

f(z) ∈ [6.721779280230305, 6.721779280254950] · 10−5.

The exclusion and inclusion boxes computed using the result of Corollary 3
were

Re = ([0.6048367258681456, 0.6050707096036533],

[0.1443582725904481, 0.1445922563259555],

[0.3658952392314140, 0.36612922296692150]),

and
Ri = ([0.6049444542702035, 0.6049629812015954],

[0.1444660009925059, 0.1444845279238977],

[0.3660029676334718, 0.3660214945648637]).

The inclusion box could be further improved by a third order Krawczyk–
like iteration to

([0.604961728242, 0.604961728246],

[0.144474180373, 0.144474180376],

[0.366021184203, 0.366021184210])
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with an enclosure of the global optimum of

[6.72177710824, 6.72177710827] · 10−5,

close to the maximal precision possible with standard double-precision floating-
point computations.
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