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Abstract. GLOPT is a Fortran77 program for global minimization of a block-
separable objective function subject to bound constraints and block-separable con-
straints. It finds a nearly globally optimal point that is near a true local minimizer.
Unless there are several local minimizers that are nearly global, we thus find a good
approximation to the global minimizer.

GLOPT uses a branch and bound technique to split the problem recursively into
subproblems that are either eliminated or reduced in their size. This is done by an
extensive use of the block separable structure of the optimization problem.

In this paper we discuss a new reduction technique for boxes and new ways
for generating feasible points of constrained nonlinear programs. These are imple-
mented as the first stage of our GLOPT project. The current implementation of
GLOPT uses neither derivatives nor simultaneous information about several con-
straints. Numerical results are already encouraging. Work on an extension using
curvature information and quadratic programming techniques is in progress.
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1. Generalities

Optimization is one of the basic mathematical techniques that lie at
the heart of modern competitive management, design and develop-
ment. The oldest and best developed part, linear programming, is an
indispensable planning tool once the interrelations of tasks is com-
plex enough. Aircraft scheduling, the structural design of buildings or
bridges, the design of chemical production plants, the operation of elec-
tric power plants, the analysis of electrical circuits, and many other
problems can, however, be modeled only through nonlinear relation-
ships.

Except in special circumstances, this introduces the potentiality of
multiple minima, and in many cases, such multiple minima are indeed
known to occur. The optimum is in this case the global minimum. The
Global Optimization Home Page on the World Wide Web (WWW)
with URL http://solon.cma.univie.ac.at/~neum/glopt.html cur-
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rently has over 400 commented links to information relevant to global
optimization. (http://cad.bu.edu/go is the address of another useful
global optimization page.)

Methods for finding a local minimum were traditionally globalized
simply by repeatedly optimizing from various starting points, hop-
ing that one of them is close enough to the global minimizer so that
local optimization reaches it. Using suitable statistical techniques, this
approach can be refined further (Dixon & Szegö [8], Mockus [29],
Törn & Žilinskas [41]). More recently, a number of other techniques
like simulated annealing (Kirkpatrick et al. [24]) and genetic algo-
rithms (Holland [13], Davis [6]) have been developed, using analogies
to physics and biology to approach the global optimum. All these tech-
niques have in common the fact that they tend to find better and better
local minima, but – especially when there are lots of minima – not nec-
essarily the global one. Moreover, they become slower and slower as
one tries to increase the probability of success.

In combinatorial optimization, where also global optima are want-
ed but the variables are discrete and take a few values only, these
techniques have the same potential and draw-backs. However, for com-
binatorial problems there is a methodology, called branch and bound
(see, e.g., Nemhauser & Wolsey [31]) that permits a systematic
exploration of the full configuration space of allowed combinations of
variables, and yet avoids in many cases the exponential amount of work
that a naive exhaustive search would require. The basic idea is that the
configuration space is split recursively into smaller and smaller parts
(branching). Tests based on lower bounds on the objective eliminate
large portions of the configuration space early in the computation so
that only a tiny part of the resulting tree of subproblems must be gen-
erated and processed.

The same idea can be made to work also in the continuous case,
where the variables may take a continuous range of values (Pardalos
& Rosen [36], Horst & Pardalos [14]). Using techniques of interval
analysis (Moore [30], Neumaier [33]), it is possible to find lower
bounds for the objective over extended boxes in configuration space,
and the branching technique can be adapted from the combinatorial
situation by splitting such boxes. Indeed, interval branch and bound
methods have been successfully used on the related problem of finding
all solutions of nonlinear systems, and also in unconstrained global
optimization (Hansen [12]).

However, many practical problems involve general linear or nonlin-
ear constraints, and until recently there were no programs that can solve
such problems except in very small dimensions or special situations
(like indefinite quadratic programs or concave programs). Only recent-
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ly, general purpose constrained global optimization programs that do
not restrict the form of the constraints are becoming available (Epper-
ly [9], Kearfott [23], Maranas & Floudas [27, 28], Schnepper
& Stadtherr [39]). GLOPT is a long-term project aiming at the
development of software for fast and reliable constrained optimization
by exploiting the special structure of the problems so that higher-
dimensional problems become tractable.

The present paper concentrates on the zero-order techniques used in
GLOPT. For maximal efficiency, second-order techniques are needed,
but these will be discussed elsewhere.

2. The GLOPT global optimization program: Overview

GLOPT is a branch and bound algorithm designed to solve the fol-
lowing optimization problem: Find the global minimizer of a block-
separable objective function subject to bound constraints and block-
separable constraints of the form

∑

k

fk(xJk) ∈ [q] (1)

or ∑

k

fk(xJk) + β = xj , (2)

where xJk is a subvector indexed by a one- or two-dimensional index
list Jk of size nk, fk : IRnk → IR, β ∈ IR, and [q] is a possibly unbounded
interval. The objective function has the form of the left-hand side of
(1).

Internally, slack variables are introduced to bring the problem into
our standard form

min xi
s.t. F (x) = 0, x ∈ [x]init (3)

where a box [x] is defined as

[x] := [x, x] = {x̃ ∈ IRn|x ≤ x̃ ≤ x}, (4)

and inequalities are understood componentwise. The internal structure
of the vector-valued function F resulting from transforming (1) and (2)
to the form (3) is retained.

For processing with GLOPT, constrained optimization problems are
coded in the input format NOP (Neumaier[35]) that explicitly displays
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Figure 1. Flowchart of GLOPT

the internal structure of the problem with very little overhead. The
NOP reader (see Section 3) accepts the more general formulation of
the problem in terms of (1) and (2) and transforms it into an internal
representation in standard form.

glopt_k.tex; 12/04/1996; 12:46; no v.; p.4
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GLOPT is written in Fortran77; since it does not use directed round-
ing, its reliability is that expected of other numerically stable floating
point calculations; i.e., because of rounding errors, we find a nearly
globally optimal point that is near a true local minimizer. Unless there
are several local minimizers that are nearly global, we thus find a good
approximation to the global minimizer. (With proper directed round-
ing, we could even achieve mathematical guarantees, at the expense of
machine dependence of the program and a time penalty for frequent
switching of rounding modes.)

GLOPT splits the problem recursively into subproblems that are
either eliminated or reduced in their size, making extensive use of the
block separable structure of the optimization problem. As in a method
by Jansson & Knüppel [19] for bound constrained global optimiza-
tion, no derivative information is used in GLOPT.

This information is used in three separate tasks called feas, tun-
nel and reduce. They are novel improvements of techniques known
from the literature, and are superior to the simple bound-and-discard
techniques of traditional (combinatorial) branch and bound algorithms.

Branching is done by splitting a box along the widest coordinate
into two smaller boxes; these boxes are kept on a stack until they are
too small to be processed further. The basic step of GLOPT is the
work done on each box; the order in which the boxes are processed is
determined by heuristics ensuring a proper balance between a depth
first and a breadth first search in the tree of boxes defined by the
branching process. We tested a number of options available and believe
to have found an efficient way of achieving this.

A rough outline of the structure of GLOPT is given in the flow chart
of Figure 1. The current implementation is further enhanced by a num-
ber of smaller features improving performance, such as details of box
selection and branching strategy. Possible techniques for doing this are
discussed, e.g., in [3, 5, 18, 23, 37, 38], mainly for the bound constraint
case. More general constraints may need deviations from these princi-
ples. Since our current implementaion is preliminary and it is unclear to
which extend these will have to be modified to work together with the
sequential quadratic programming and curvature exploiting techniques
currently under investigation, we refrain from giving details here but
concentrate on the new zero-order features of GLOPT.

3. NOP: Problem specification

Our global optimization algorithm requires that full details of the prob-
lem structure are available to those parts of the algorithm that provide
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global information by using analytic estimates. Therefore, we had to
decide on a uniform way to provide this information. For this purpose,
we designed and implemented a specification language for the input of
global optimization problems called NOP. The documentation of the
current version NOP1.0 of the specification format (Neumaier [35]) is
available under the URL

http://solon.cma.univie.ac.at/~neum/glopt/nop.html

on our WWW server.
The main feature of NOP is that it splits the problem description

into a number of small uniform units called elements; currently there
are about 30 different types of elements that allow an efficient coding of
the major types of formulas occuring in typical optimization problems.
Moreover, the user can specify new elements that are not predefined.

As a check for its usefulness and user friendliness, and simultane-
ously as a basis for testing various versions of our algorithm, we cod-
ed in NOP over 60 test problems from three well-known collections
[10, 19, 44] of global optimization test problems. While NOP is already
in a very useful stage, it still has some inefficiencies, and we are exper-
imenting with some modifications.

We developed a NOP reader that translates the user-friendly exter-
nal NOP format into an internal code that is used by GLOPT to cal-
culate function values, ranges, and other estimates needed. Currently,
the NOP reader handles most elements correctly, but there are still a
few bugs that lead to the rejection of some of the coded test problems.

GLOPT has facilities to compute function values, ranges, and resid-
uals from the internal problem representation generated by the NOP
reader. For each of the many predefined NOP elements (described in
[35]) we derived and coded optimal analytical formulas; however, for
user-defined elements, ranges are computed by interval arithmetic [33],
giving suboptimal bounds.

Thus the only input needed for GLOPT is a NOP file with the
problem specification.

4. The search for feasible points

The routines feas and tunnel are a cheap and a more expensive way
of searching for better feasible points. Here we describe the techniques
in general terms; for examples see Section 6.

feas works by modifying the absolutely smallest point of the box,
sequentially going through the constraints (2) and replacing each pre-
viously unused variable xk on the right hand side by the left-hand side,
while checking an approximate satisfaction condition in case the right
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hand side variable was already used. At the end, the point obtained is
checked for lying in the original box. The total work is essentially that
of one evaluation of all constraints.

Of course there is no guarantee that feas is successful. However,
many problems have, in their original formulation, a feasible set with
strictly interior points. In such cases, the translation to the block sep-
arable format with equality constraints and bound constraints only is
achieved by introducing new variables for certain intermediate quanti-
ties and slacks. It is easy to see that if the constraints defining these
additional variables appear in the ordering in which they would be
computed naturally, the resulting block triangular structure implies
that feas works sucessfully in all cases where the midpoint of the box,
restricted to the original set of variables, is feasible in the original for-
mulation. Thus feas generalizes the well-known midpoint test of interval
algorithms for global optimization (e.g., Hansen [12]).

If feas does not work, and in particular always when there are intrin-
sic equality constraints, the more expensive tunneling strategy is tried.
The idea is taken from the tunneling method of Levy & Montalvo
[25] for unconstrained optimization, although the technique used there
is heuristic only, and completely different.

tunnel attempts to find a point better than the currently best point
by a procedure that can be visualized as tunneling through a mountain
to a deeper valley.

Mathematically, one looks for a feasible point of (3) in the subbox
[x] by solving the least squares problem

min ||F (x)||22
s.t. x ∈ [x].

(5)

Since the best point was already used to adapt the bounds of the
component containing the objective function value, any solution with
F (x) = 0 in the box is indeed at least as good as the currently best
point. Of course, tunnel may fail too, by getting stuck in a local mini-
mum or a saddle point, or by reaching a prespecified number of function
calls (in our current implementation, 10n2 function calls in presolve,
and 2n2 function calls later) without having converged.

For example, suppose that in minimizing

x2 = (x1 − 1)2(x1 − 4)(x1 − 6) + 40,

we have as best point the local minimizer at x =
( 1
40

)
and look at the

current subbox [x] =
([2.5,6.5]

[10,90]

)
, cf. Figure 2. The best function value
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Figure 2. Finding better points by tunnel

allows us to reduce [x2] to [10, 40], and (5) becomes

min ((x1 − 1)2(x1 − 4)(x1 − 6) + 40− x2)2

s.t. x1 ∈ [2.5, 6.5], x2 ∈ [10, 40].
(6)

A local optimization, if successful, might find any point on the portion
of the curve below the dotted line, corresponding to the minimum value
0. For example, the point x′ =

( 5
24

)
solves (6).

A slight modification of the least squares problem yields nearly fea-
sible points biased towards the minimum. The following result treats
a slightly more general situation with an arbitrary subset C of IRn

in place of a box, and a scaling vector u > 0 (of order O(1)) whose
components give a natural scale to constraint violations.

Theorem. Let f̂ be the global minimum value of

min f(x)
s.t. x ∈ C, F (x) = 0.

(7)

If f < f̄ and f̂ ∈ [f, f̄ ] then any global minimizer x̂ of the tunneling
problem

minφ(x) = ε2

(
f(x)− f
f̄ − f

)2

+
∑

i

(
Fi(x)

ui

)2

s.t. x ∈ C
(8)

with ε > 0 satisfies

f(x̂) ≤ f̂ , |F (x̂)| ≤ εu. (9)

(Absolute values are taken componentwise.)
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Proof. Let xl be a sequence of feasible points of (7) with f(xl)→ f̂
as l→∞. Then

φ(x̂) ≤ lim
l→∞

φ(xl) = ε2

(
f̂ − f
f̄ − f

)2

.

Therefore
f(x̂)− f
f̄ − f ≤ 1

ε

√
φ(x̂) ≤ f̂ − f

f̄ − f ,

so that f(x̂) ≤ f̂ . Moreover,

|Fi(x̂)|
ui

≤
√
φ(x̂) ≤ ε f̂ − f

f̄ − f ≤ ε,

so that |F (x̂)| ≤ εu. 2

In our applications, f(x) = xi and C = [x] is the current box.
Unfortunately, to get high accuracy one needs a small ε, and that

makes the Hessian ill-conditioned. So there is no guarantee that we get
close to f̂ without resolving this ill-condition by using proper linear
algebra techniques. However, unless the Fi(x)/ui are also badly scaled,
just using a standard descent method, we get at least a nearly feasible
point, since the ill-condition does not affect the reduction of the sum
in (8). Indeed, the problem (5) is the limiting case ε→ 0 of (8).

In our GLOPT implementation, we solve the bound constrained tun-
neling least squares problem using the PORT routine nf2b, an imple-
mentation by David Gay based on the NL2SOL code of Dennis et al.
[7].

5. Box reduction

The routine reduce attempts to shrink a box by elimination of a part
of it that can be shown not to contain a point better than the best
point found already.

At the moment, this is done equation by equation only, using reduc-
tion formulas that are optimal for constraints coded with predefined
NOP element functions, and valid but often suboptimal for constraints
coded with user-defined element functions. Here the (block) separabil-
ity is crucial.

In the following, we show how separable constraints can be used
to tighten the box constraints. (The block separable case is very sim-
ilar and will not be discussed explicitly.) The technique is a nonlinear
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Figure 3. Shrinking a box by reduce

version of the generalized Gauss-Seidel method for linear interval equa-
tions, introduced in Neumaier [32], p.180, and later used by Kear-
fott and his students [21, 22, 40].

For the mathematical formulation we need the inner addition

[a, a]
◦
+ [b, b] := [a+ b, a+ b]

of intervals. This differs from the standard interval operations, where

[a, a] + [b, b] := [a+ b, a+ b],

[a, a]− [b, b] := [a− b, a− b].

Note that [a]− [b] = [c] ⇐⇒ [a] = [c]
◦
+ [b].

Proposition Suppose that

∑

k

qk(xk) = xl, x ∈ [x], (10)

[qk] := ut{qk(xk) | xk ∈ [xk]}, (11)

[s] :=
∑

k

[qk]. (12)

(i) If 0 6∈ [r] := [xl]− [s]: then the box [x] contains no feasible point.
(ii) If 0 ∈ [r] then

qk(xk) ∈ [r]
◦
+ [qk] for all k. (13)
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Proof. (10) implies

0 = xl −
∑

k

qk(xk) ∈ [xl]−
∑

k

[qk] = [r]

and

qk = xl −
∑

k

qk + qk ∈ [r]
◦
+ [qk]. 2

The reduce process has two directions: In the forward reduce step,
the enclosure for the right hand side is improved,

xl ∈ [s] ∩ [xl].

In the backward reduce step, the enclosures for the variables in the left
hand side are improved,

xk ∈ q−1
k ([r]

◦
+ [qk]) ∩ [xk].

For simple functions qk such as they occur in the predefined NOP ele-
ments, exact ranges are easy to compute. For more complicated func-
tions qk, enclosures for the ranges can be found using interval arith-
metic; note that the proposition remains valid (but becomes less useful)
when overestimating enclosures for (11) are used in place of the qk.

If some intersection is empty, the box can be discarded. Of course,
it may (and often does) happen that the intersection does not lead to
a strict improvement of the box.

Mathematically equivalent but computationally slower forms of the
above reduction process have been used in the Unicalc branch and
bound zero finder [1] under the name of subdefinite programming, and
in [2, 4, 11, 15, 16, 17, 26, 42] under the name of interval constraint
propagation, used in a branch and bound context (for zeros of nonlinear
systems) by van Hentenryck et al. [43].

6. Examples and test results

We first give a simple illustration for the working of feas and reduce.
The NOP file for minimizing the well-known Rosenbrock function

f(x) = (10x2
1 − 10x2)2 + (x1 − 1)2

in the box x1, x2 ∈ [−2, 8] is

glopt_k.tex; 12/04/1996; 12:46; no v.; p.11
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! Rosenbrock function
min dim4
bnd 1..2 in -2,8
! element list
qu4 1 2; 0 -10 10 0 x3
qu2 3 1; 0 1 x4

(cf. [35]; the last two lines contain indices and coefficients specifying
separable quadratic equations). Expanded to mathematical notation,
the NOP file requests the minimization of x4 subject to the constraints

x3 = 0x1 − 10x2 + 10x2
1 + 0x2

2 = 10x2
1 − 10x2,

and
x4 = (x3 − 0)2 + (x1 − 1)2 = x2

3 + (x1 − 1)2.

The initially missing bound constraints for x3 and x4 are taken in the
program to be [−109, 109]. The absolutely smallest point of the initial
box is (0, 0, 0, 0), and is modified by feas to the feasible point (0, 0, 0, 1).
This gives an objective function value of x4 = 1 and hence an improved
bound [x4] = [−109, 1]. If we now apply reduce we get from the first
constraint

[x3] = (10[−2, 8]2 − 10[−2, 8]) ∩ [−109, 109]

= [−80, 660] ∩ [−109, 109] = [−80, 660]

(forward reduce; backward reduce gives nothing new), and from the
second constraint

[x4] = ([−80, 660]2 + ([−2, 8]− 1)2) ∩ [−109, 1]

= ([0, 435600] + [0, 49]) ∩ [−109, 1]

= [0, 435649] ∩ [−109, 1] = [0, 1]

(forward reduce) and then, with [x]+ = [max(x, 0), x],

[x3] =
√

([0, 1]− [0, 49])+ ∩ [−80, 660] = [0, 1] ∩ [−80, 660] = [0, 1],

[x1] =

(
1 +

√
([0, 1]− [0, 435649])+

)
∩ [−2, 8]

= [1, 2] ∩ [−2, 8] = [1, 2]

(backward reduce). The next pass of reduce still gives a nontrivial back-
ward reduce for the first constraint:

[x2] = (10[1, 2]2 − [0, 1])/10 ∩ [−2, 8]

glopt_k.tex; 12/04/1996; 12:46; no v.; p.12
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= [0.9, 4] ∩ [−2, 8] = [0.9, 4].

Thus the initial box is reduced to ([1, 2], [0.9, 4], [0, 1], [0, 1]). Note
that we’d have got precisely the same results if we’d have optimized
Rosenbrock’s function with much looser bound constraints for x1 and
x2!

For the behavior of the algorithm, a typical example is Problem 3
from Chapter 4 of Floudas & Pardalos [10]:

min x0.6
1 + x0.6

2 − 6x1 − 4u1 + 3u2

s.t. x2 − 3x1 − 3u1 = 0
x1 + 2u1 ≤ 4
x2 + 2u2 ≤ 4

x1 ≤ 3
u2 ≤ 1

x1, x2, u1, u2 ≥ 0

min dim6

bnd 1 in 0,3

bnd 2 3 >= 0

bnd 4 in 0,1

pow 1 2; 0.6 x5

lin 5 1 3 4; 1 -6 -4 3 x6

lin 1 3; 3 3 x2

lin 1 3; 1 2 <= 4

lin 2 4; 1 2 <= 4
The output of our program (with a little more than minimal ver-

bosity) looks as follows:

***********************************
initial FEAS found feasible point, f= 0.
0. 0. 0. 0. 0. 0. 0. 0.
FEAS found a better point with f= -.716202736
FEAS found a better point with f= -4.02154303

...
(some lines cancelled in output)

...
FEAS found a better point with f= -4.51420116
FEAS found a better point with f= -4.51420164
TUNNEL used 9 function calls
TUNNEL failed to find a better point
first narrow box discarded at nbox= 263
FEAS found a better point with f= -4.51420212
best point:
1.33333302 4. 4.17232513E-07 7.94728621E-08
3.48579812 -4.51420212 1.33333385 4.
first wide box discarded at nbox= 264
lower bound for minimum: -4.51420259
upper bound for minimum: -4.51420212
lower bound remained fixed since nbox= 263
best point defined at nbox= 264
264 boxes, 524 reduce calls, 277 f-values, 126 stack pos.
**************************************************

The first line says that in presolve, feas found a feasible point, given
in line 2. Whenever better feasible points are found, their source (feas

glopt_k.tex; 12/04/1996; 12:46; no v.; p.13
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or tunnel) and their function values are displayed. Whenever tunnel
is called, the effort spent on it is recorded, and whether it actually
improved the best point. Here, this is not the case; tunnel tends to be
efficient mainly in problems where feas performs poorly. Since without
second order techniques, many narrow boxes may be generated, we drop
boxes all of whose sides have length less than one millions of the box size
after presolve. The first narrow box box dropped is monitored. When
this occurs, the lowest lower bound fthresh of function values over the
set of dropped boxes cannot be superseded by later optimization steps,
and wider boxes above this threshold are also discarded (again, when it
occurs for the first time, it is recorded in the output). When the stack
is empty, fthresh is also taken as the final lower bound for the minimum;
the upper bound is the best function value found. Finally, as a measure
of performance, we record the total number of boxes processed, the
total number of reduce calls, the total number of function evaluations
in feas and tunnel steps, and the maximal number of boxes in the
stack.

In Table I, we list the test problems (from three well-known col-
lections [10, 19, 44] of global optimization test problems) that succes-
fully passed our NOP reader. The first column contains the name of
the problem, the second the types of constraints present (B bounds,
L linear inequality, LE linear equality, Q quadratic inequality). The
next two columns give the original dimension of the problem and its
dimension in the NOP format. The final column indicates the extent to
which GLOPT was able to solve the problems (+ successful global opti-
mization with a narrow bound on the objective function value, ◦ good
feasible points found but some wide boxes remained unexplored, − no
feasible point was found though the feasible region was nonempty). The
number of boxes treated was limited to 10 000.

A number of problems were not solved to optimality since in our
present implementation we neither incorporated local optimization steps
nor higher order information or techniques from linear algebra. It is
well-known that these are needed for high efficiency. The main pur-
pose of the present study was to see how far one can go with the new
zero-order techniques introduced here. For many problems these were
already sufficient, and with not too many boxes processed.

The main source of inefficiency for the unsolved problems is the
fact that one cannot yet combine simultaneous information from sev-
eral constraints. In some problems, the failure was due to the fact that
the reduction formulas for user-defined elements are so far implemented
only in the forward mode, and with some overestimation due to the use
of interval arithmetic. We are looking at ways to overcome these inef-
ficiencies. Improving the reduction formulas for user-defined elements
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Table I. Summary of test results

Name constraint dim. dim. NOP status

Six Hump Camel Back B 2 3 +

Rastrigin B 2 3 +

Griewank 2 B 2 3 +

Matyas B 2 3 +

Rosenbrock B 2 4 +

Simpl. Rosenbrock B 2 4 +

Trecani B 2 4 +

Booth B 2 5 +

Goldstein-Price B 2 5 ◦
Price B 2 6 +

Schwefel 3.2 B 3 6 +

Schwefel 3.1 B 3 7 +

Schwefel 1.2 B 4 9 +

Powell B 4 11 +

Kowalik B 4 16 +

Schwefel 3.7 B 5 6 +

Griewank 10 B 10 13 +

Floudas/Pardalos 2T1 L,B 2 8 ◦
Floudas/Pardalos 2T2 L,B 6 9 +

Floudas/Pardalos 2T3 L,B 13 17 +

Floudas/Pardalos 2T4 L 6 8 +

Floudas/Pardalos 2T5 L,B 10 12 ◦
Floudas/Pardalos 2T6 L,B 10 12 +

Floudas/Pardalos 2T7.1 L 20 21 ◦
Floudas/Pardalos 2T7.2 L 20 21 ◦
Floudas/Pardalos 2T7.3 L 20 21 ◦
Floudas/Pardalos 2T7.4 L 20 21 ◦
Floudas/Pardalos 2T7.5 L 20 21 −
Floudas/Pardalos 2T8 LE,L 24 25 −
Floudas/Pardalos 2T9 LE,L 10 11 ◦
Floudas/Pardalos 2T10 LE,L 20 23 ◦
Floudas/Pardalos 3T3 Q,B 6 9 ◦
Floudas/Pardalos 4T3 LE,B 4 6 +

Floudas/Pardalos 4T4 LE,B 4 7 +

Floudas/Pardalos 4T5 LE,B 6 9 +

is not too difficult, but it seriously affects only a very small number
of our test problems. We are currently working on an implementation
of underestimation techniques and second order techniques (related to
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Neumaier [34]) that eliminate the problem of not using simultaneous
information, thus overcoming the main inefficiency.
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19. C. Jansson and O. Knüppel, A global minimization method: The multi-
dimensional case, Preprint, 1992.
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