
December 31, 2010 18:54 Optimization Methods and Software griewank

Optimization Methods and Software

Vol. 00, No. 00, Month 200x, 1–16

RESEARCH ARTICLE

Algorithmic Differentiation Techniques for Global Optimization in

the COCONUT Environment

Hermann Schichl∗ and Mihály Csaba Markót.

Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria

(Received 00 Month 200x; in final form 00 Month 200x)

We describe algorithmic differentiation as it can be used in algorithms for global optimiza-
tion. We focus on the algorithmic differentiation methods implemented in the COCONUT
Environment for global nonlinear optimization.

The COCONUT Environment represents each factorable optimization problem as a directed
acyclic graph (DAG). Various inference modules implemented in this software environment
can serve as building blocks for solution algorithms. Many of them use techniques based on
various forms of algorithmic differentiation for computing approximations or enclosures of
functions or their derivatives.

The algorithmic differentiation in the COCONUT Environment does not only provide point
evaluations but also range enclosures of derivatives up to order 3, as well as slopes up to second
order. Care is taken to ensure that rounding errors are treated correctly. The ranges of the
enclosures can be tightened by combining the evaluation routines with constraint propagation.
Advantages and pitfalls of this method are also outlined.

Keywords: global optimization, directed acyclic graphs, automatic differentiation, slope,
interval analysis

AMS Subject Classification: 65G40, 90C26, 90C30

1. Introduction

The COCONUT Environment [50, 59] is a public domain software platform for im-
plementing algorithms for solving factorable global optimization problems [16, 43].
It is best tailored to implementing deterministic algorithms which usually use
branch-and-bound like schemes [2, 22, 30, 31, 35, 48, 56]. The success of such
methods heavily relies on the quality of the range estimates computed for the
functions involved, and since local optimization is usually indispensable for a suc-
cessful algorithm, also the quality and speed of function evaluation and evaluation
of derivatives is important. Derivatives of second order can significantly speed up

∗Corresponding author. Email: hermann.schichl@univie.ac.at
This research was supported by the Austrian Science Foundation FWF Grant nr. P22239-N13 and by the

Hungarian National Development Agency (NFÜ) Grant TÁMOP-4.2.2/08/1/2008-0008

ISSN: 1055-6788 print/ISSN 1029-4937 online
c© 200x Taylor & Francis
DOI: 10.1080/03081080xxxxxxxxx
http://www.informaworld.com

December 31, 2010 18:54 Optimization Methods and Software griewank

2 H. Schichl and M.C. Markót

local solvers [42], and are used in interval Newton-methods. Third derivatives can
be, e.g., used to avoid the cluster effect close to the global minima [36, 52].

The algorithmic differentiation (AD) in the COCONUT Environment has the ad-
vantage as compared to, e.g. ADIFOR [8, 9], ADOL-C [26], that it can not only
compute point evaluations for higher derivatives but also range enclosures, where
roundoff errors are treated rigorously. This rigor is provided to ensure mathemat-
ical correctness of the enclosures in a floating point environment. As compared
to other interval based libraries, like Profil/BIAS [37] and the C++ Toolbox for
Verified Computing [29] for C-XSC, it has the advantage that it provides higher
order enclosures. In addition it provides the only implementation for computing
slopes of first and second order, which have a clear advantage over interval gradi-
ents and Hessians for improving interval range enclosures. As a platform for global
optimization the AD tools enable the COCONUT Environment to solve problems
with general nonlinear factorable functions and to interface general nonlinear local
solvers [42].

In Section 2 we briefly recall the directed acyclic graphs (DAGs) used to repre-
sent optimization problems. They have traditionally been used in automatic differ-
entiation (AD) [27, 28] and have since proved very useful for global optimization,
too. We will shortly focus on the advantages DAGs provide in global optimization
and talk about the difference to computational trees and DAGs which are provided
by parsers of high-level programming language compilers like FORTRAN 90, C++, or
the parsers of modeling languages like AMPL [23] or GAMS [13].

Section 3 explains the basic evaluation algorithms used in the COCONUT Envi-
ronment for computing function values, ranges, first to third derivatives, and first
and second order slopes.

In [53] and [58] it was outlined that one of the strengths of the DAG concept is
that it is a suitable representation both for efficient evaluation and for perform-
ing efficient constraint propagation (CP). The results of constraint propagation,
especially the ranges of the inner nodes, can be used to improve the ranges of the
standard evaluation methods for interval derivatives, and slopes of all orders. The
principles and pitfalls are outlined in Section 4.

Our notation follows the notation suggested in [45]. In particular, inequalities be-
tween vectors are interpreted component-wise, I denotes the identity matrix, ei the
ith unit vector, intervals and boxes are written in bold face, and radx = 1

2(x− x)
denotes the radius of a box x = [x, x] ∈ IR

n, here IR is the set of real, possibly
unbounded, intervals.

2. Directed acyclic graphs

This section is devoted to a short review of the definition of the DAGs used to rep-
resent the global optimization problems as used in the [53] and in the COCONUT
Environment.

Definition 2.1 A directed multigraph Γ = (V,E, f) consists of a finite set of
vertices (nodes) V , a finite set of edges E, and a mapping f : E → V × V . For
every edge e ∈ E we define the source of e as s(e) := Pr1 ◦ f(e) and the target of
e as t(e) := Pr2 ◦ f(e), where Pri denotes the projection onto the ith component in

December 31, 2010 18:54 Optimization Methods and Software griewank

Algorithmic Differentiation Techniques for Global Optimization 3

a Cartesian product. An edge e with s(e) = t(e) is called a loop. Edges e, e′ ∈ E
are called multiple if f(e) = f(e′).

For every vertex v ∈ V we define the set of in-edges

Ei(v) := {e ∈ E | t(e) = v}

as the set of all edges which have v as their target, and the set of out-edges
analogously as the set

Eo(v) := {e ∈ E | s(e) = v}

of all edges with source v. The indegree of a vertex v ∈ V is defined as the number
of in-edges indeg(v) = |Ei(v)|, and the outdegree of v as the number of out-edges
outdeg(v) = |Eo(v)|.

A vertex v ∈ V with indeg(v) = 0 is called a (local) source or leaf of the graph,
and a vertex v ∈ V with outdeg(v) = 0 is called a (local) sink or root of the
graph.

Let Γ = (V,E, f) be a directed multigraph. A directed path from v ∈ V to v′ ∈ V is
a sequence {e1, . . . , en} of edges with t(ei) = s(ei+1) for i = 1, . . . , n−1, v = s(e1),
and v′ = t(en). A directed path is called a closed path or a cycle, if v = v′. The
multigraph Γ is called acyclic if it does not contain a cycle.

A directed multigraph with ordered edges (DMGoe) Γ = (V,E, f,≤) is
a quadruple such that (V,E, f) is a directed multigraph and (E,≤) is a linearly
ordered set. As subsets of E, the in-edges Ei(v) and out-edges Eo(v) for every
vertex become linearly ordered as well.

Definition 2.2 A DMGoe together with a set OP of elementary operations and
two maps op : V → OP and mult : E → R is called a (computational) DAG.

Every factorable global optimization problem can represented as a DAG together
with a subset O ⊆ V of objective nodes and a map b : V → IR of bounds.
Semantically, the direction of the edges represents the computational flow, and for
an edge e the scalar mult(e) specifies a weight with which data passing through e
is multiplied.

As a simple example consider the factorable optimization problem

min (4x1 − x2x3)(x1x2 + x3),

s.t. x21 + x22 + x1x2 + x2x3 + x2 = 0,

exp(x1x2 + x2x3 + x2 +
√
x3) ∈ [−1, 1],

x1 ≥ 0, x2 ≥ 0, x3 ∈ [−1, 8].

(1)

This defines the DAG depicted in Figure 1.

In some sense, this DAG is optimally small, because it contains every subexpression
of the objective and constraint functions only once. Such DAGs are called reduced.
The COCONUT Environment represents all factorable global optimization prob-
lems internally as reduced DAGs. This is in contrast to the DAGs provided by most

December 31, 2010 18:54 Optimization Methods and Software griewank

4 H. Schichl and M.C. Markót

x1 x2 x3

∗ ∗

+ +

∗

4

−1

⊓⊔2 ⊓⊔2
√

+

exp

+

+

min [−1, 1][0, 0]

[0,∞) [0,∞) [−1, 8]

Figure 1. DAG representation of Problem (1)

parsers of high level languages like FORTRAN 90, C++, AMPL, or GAMS which usually
do not detect and merge common subexpressions except for the variable nodes.

3. Evaluation

There are several types of information which the COCONUT Environment provides
for functions represented as DAGs. All of them are based on a combination of
forward and backward evaluation schemes as described in [6, 27, 28].

The following evaluators are implemented for the COCONUT Environment:

• symbolic first derivatives,

• function values, first to third derivatives at points,

• function ranges over boxes,

• interval gradients, Hessians, and third derivatives over boxes,

• derivatives of arbitrary order for univariate functions,

• first and second order slopes over boxes with fixed center(s),

• linear and quadratic enclosures.

Derivatives and interval derivatives are commonly used in local and global opti-
mization. But since slopes are not so well known, we give a short definition here.
For a Lipschitz continuous function f : Rn → R we can always write

f(x)− f(z) = f [z, x](x− z)

for any two points x and z with a suitable vector f [z, x] ∈ R
n, called a slope vector

for f . While f [z, x] is not uniquely determined, except for univariate functions, we

December 31, 2010 18:54 Optimization Methods and Software griewank

Algorithmic Differentiation Techniques for Global Optimization 5

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

Figure 2. Directed Acyclic Graph representation of the objective function of Problem (1).

always have

f [z, z] = ∇f(z). (2)

Slopes obey a similar chain rule as derivatives, so recursive procedures to calculate
f [z, x] given x and z can be developed, see [38, 40, 47]. If the slope vector f [z, x]
is itself Lipschitz continuous we can further write for arbitrary x,w, z ∈ R

n

f [z, x] = f [z, w] + (x− w)T f [z, w, x] (3)

with a second order (bicentered) slope matrix f [z, w, x] ∈ R
n×n. If z = w

the formula above somewhat simplifies, because of (2), to

f [z, x] = ∇f(z) + (x− z)T f [z, z, x].

Slopes are very useful for calculating range estimates via centered forms, e.g.

f(x) ∈ f(z) + f [z,x](x− z),

f(x) ∈ f(z) + (f [z, w] + (x− w)T f [z, w,x])(x− z)

for all x ∈ x. These estimates are in general tighter than analogous ones computed
by interval derivatives. In addition, slopes can be used for calculating large ex-
clusion boxes for solving systems of equations [54]. By defining a slope of order k
analogously to (3) as a slope of slopes of order k−1, we can get slopes of arbitrary
order.

To illustrate the techniques, we will, for simplicity, focus on evaluating the objective
function of Problem (1), whose DAG representation is depicted in Figure 2.

December 31, 2010 18:54 Optimization Methods and Software griewank

6 H. Schichl and M.C. Markót

3.1. Forward Evaluation Scheme

The forward mode in the COCONUT Environment works by propagating data for-
ward along the arrows in the DAG, starting from the variable nodes. The most basic
forward evaluator performs a point evaluation: function values are propagated, and
at every node the elementary operation is evaluated with those arguments provided
by the in-edges. The result is propagated further on the out-edges.

In the COCONUT Environment, for performance reasons only scalar functions are
propagated through the DAG in forward mode. All vector valued expressions are
computed in backward mode. There is only one exception to that rule: there is a
forward operator implemented for interval enclosures of gradients over a box.

Clearly, the effort for computing an interval gradient of an n-variate function in
forward mode is worst-case roughly n times higher than computing it in backward
mode. However, the backward mode depends on the chain rule

∂

∂xi
(f ◦ g)(x) =

∑

k

∂f

∂gk
(g(x)) · ∂gk

∂xi
(x)

for f : Rm → R, g : Rl → R
m and the distributive law:

∂

∂xi
(f ◦ g ◦ h)(x) =

∑

k

∂f

∂gk
(g(h(x))) · ∂(gk ◦ h)

∂xi
(x)

=
∑

k

∂f

∂gk
(g(h(x))) ·

∑

j

∂gk
∂hj

(h(x)) · ∂hj
∂xi

(x)

=
∑

k,j

∂f

∂gk
(g(h(x))) · ∂gk

∂hj
(h(x)) · ∂hj

∂xi
(x).

for h : Rn → R
l. However, in the interval case the distributive law does not hold,

but only the weaker subdistributive law

x(y + z) ⊆ xy + xz,

and thus for interval gradients we get two different “chain rules” for the forward
and backward modes, respectively

∂

∂xi
(f ◦ g ◦ h)(x) =

∑

k

∂f

∂gk
(g(h(x))) · ∂(gk ◦ h)

∂xi
(x)

=
∑

k

∂f

∂gk
(g(h(x))) ·

∑

j

∂gk
∂hj

(h(x)) · ∂hj
∂xi

(x) (4)

⊆
∑

k,j

∂f

∂gk
(g(h(x))) · ∂gk

∂hj
(h(x)) · ∂hj

∂xi
(x). (5)

Hence, interval gradients computed in forward mode, which makes use of the chain
rule (4), usually provide tighter enclosures than those computed in backward mode,
that depends on the chain rule (5). So in certain cases the higher effort needed for
computing them in forward mode is justified.

December 31, 2010 18:54 Optimization Methods and Software griewank

Algorithmic Differentiation Techniques for Global Optimization 7

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

(2, 1, 1, 0) (4, 1, 0, 0) (4, 1, 0, 0)

(16, 8, 0, 0)

(−8,−4, 4, 0) (12, 7, 4, 1)

(−96,−104, 16, 4)

(8, 6, 4, 1)

Figure 3. Hessian-two vector product evaluation for the objective in (1)

Apart from the function evaluation and the interval range evaluation by forward
propagation using interval arithmetic the following scalar valued forward evaluators
are provided:

(1) Evaluation of directional derivatives ∇f(x).v for arbitrary vectors v,
(2) Range enclosures of directional derivatives ∇f(x).v for arbitrary vectors v,
(3) First order directional slopes f [z,x].v for arbitrary vectors v,
(4) Second order directional derivatives vT .∇2f(x).w for arbitrary vectors v

and w,
(5) Range enclosures of second order directional derivatives vT .∇2f(x).w for

arbitrary vectors v and w,
(6) Second order directional (bicentered) slopes vT .f [z,y,x].w for arbitrary

vectors v and w.

All of those evaluators compute their result with an effort which is a small multiple
of one function evaluation.

As an example, we compute the expression (1, 1, 1)T .∇2f(2, 4, 4).e1 as de-
picted in Figure 3. The evaluator simultaneously propagates four expressions,
(f(x),∇f(x).v,∇f(x).w, vT .∇2f(x).w), through the DAG. In Figure 3, we have
written the values of these expressions for all nodes to the left of the circle repre-
senting them. What we find is that f(2, 4, 4) = −96, ∇f(2, 4, 4)T (1, 1, 1) = −104,
∇f(2, 4, 4)T e1 = 16, and (1, 1, 1)T∇2f(2, 4, 4)e1 = 4. Note that all these results
can be computed using ordinary (univariate) arithmetic on higher order differential
numbers, which are implemented in the COCONUT Environment for arbitrarily
high order.

In an analogous way we can compute range estimates by replacing input values of
the variables with input intervals of their ranges and replacing ordinary arithmetic
with interval arithmetic.

December 31, 2010 18:54 Optimization Methods and Software griewank

8 H. Schichl and M.C. Markót

Slope evaluation runs similarly. However, it is very cumbersome and difficult to
calculate slopes of optimal quality for orders higher than 2, therefore in the CO-
CONUT Environment slopes are limited to second order.

3.2. Backward Evaluation Scheme

Calculating derivatives or slopes of any order could be done by the forward mode
as well, but then we would need to propagate vectors, matrices or higher order
tensors through the graph, and at every node we would have to perform at least
one “higher dimensional” addition, so the effort to calculate a derivative or slope of
order p would be np times the effort of calculating a function value, if the function
is n-variate.

However, it is well known from automatic differentiation [27] that the number of
operations can be reduced by one factor of n by reversing the direction of evalua-
tion.

The COCONUT Environment provides the following operators in backward mode.
They depend on data generated during the forward pass of some of the evaluators
described in Section 3.1.

(1) Evaluation of gradients ∇f(x),
(2) Range enclosures of gradients ∇f(x),
(3) First order slopes f [z,x],
(4) Hessian–vector products ∇2f(x).v for arbitrary vectors v,
(5) Range enclosures of Hessian–vector products∇2f(x).v for arbitrary vectors

v,
(6) Second order slope–vector products f [z,y,x].v for arbitrary vectors v,
(7) Third order derivative–vector products of the form

∑

i,j ∇3
ijkf(x)viwj for

arbitrary vectors v and w,
(8) Range enclosures of third order derivative–vector products of the form

∑

i,j ∇3
ijkf(x)viwj for arbitrary vectors v and w.

All of those evaluators compute their results with an effort which is a small multiple
of one function evaluation.

As an example, we will evaluate the third derivative of f at (2, 4, 4) multiplied
by the vectors (1, 1, 1) and e1. For that during the forward path we perform the
calculation of vT .∇2f(x).w as described in Section 3.1. At the in-edge of f with
index k we store a four dimensional vector ℓk which contains the information

ℓk =

∑

l,m

∂3f

∂gl∂gm∂gk
(g) ∇gl(x).v ∇gm(x).w +

∑

l

∂2f

∂gl∂gk
(g) vT .∇2gl(x).w

∑

l

∂2f

∂gl∂gk
(g) ∇gl(x).w

∑

l

∂2f

∂gl∂gk
(g) ∇gl(x).v

∂f

∂gk
(g)

,

where the vector g denotes all arguments on that f depends. Note that the f–term

December 31, 2010 18:54 Optimization Methods and Software griewank

Algorithmic Differentiation Techniques for Global Optimization 9

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

(1,4,7,12) (0,4,−4,−8)

(0,0,0,4) (0,0,0,1)

(0,0,1,4) (0,1,1,2) (0,0,1,4) (0,0,1,4)

(0,0,0,−1)
(0,0,0,1)

(−64,−56,−16,−8)(48,28,16,4)

+(−32,−24,16,4)

=(16,4,32,8)

(−56,−44,−12,−8)

(−8,−4,4,0) (−12,−7,−4,−1)

(12,7,4,1) (−8,−4,4,0)

(1,0,0,0)

Figure 4. Third derivative evaluation of the objective in (1)

in every formula is local to the node, since it is only a partial derivative with respect
to its input variables. The ∇gi–terms are scalar and computed during the forward
pass. During the backward process we accumulate another four dimensional vector
ϕ calculating (∇f,∇2f.v,∇2f.w, vT .∇3f.w).

The update formula for backward propagation along edge k is then ϕ′ =
(ℓk,4ϕ1, ℓk,3ϕ1 + ℓk,4ϕ3, ℓk,2ϕ1 + ℓk,4ϕ2, ℓ

T
k ϕ), where ϕ′ denotes the updated vec-

tor after proceeding backward along the edge. As usual in backward evaluation
schemes, on a node N all the results along all out-edges of N are summed.

The resulting vectors ℓ (at the edges) and ϕ (in bold face at the nodes) for the
example can be found in Figure 4. At the end, we can read off the result from
the variable nodes and get ∇f(2, 4, 4) = (16,−64,−56)T , ∇2f(2, 4, 4).(1, 1, 1)T =
(4,−56,−44)T , ∇2f(2, 4, 4).e1 = (32,−16,−12)T , and (1, 1, 1)T .∇3f(2, 4, 4).e1 =
(8,−8,−8)T . The effort of the backward process is about nine backward gradient
evaluations.

There is hardly any difference in computing interval derivatives or slopes. The
advantage of this approach for computing higher derivatives over interpolation
approaches [10] is that they can be carried over to interval enclosures without ad-
ditional wrapping. For second and third derivatives graph-coloring like techniques
[24] can be used to effectively compute the whole Hessian and tensor of third
derivatives in the sparse case.

4. Constraint Propagation on DAGs

As already mentioned, one strength of the DAG concept for global optimization
is that knowledge of feasible points and the constraints can be used to narrow the
ranges of the variables, cf. [4, 49, 57].

The COCONUT Environment implements various methods for interval constraint

December 31, 2010 18:54 Optimization Methods and Software griewank

10 H. Schichl and M.C. Markót

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[4,8] [12,16]

[−12,−8] [8,12]

[−144,−96]

[8,12] [−12,−8]

4
1

[3,4]

[1,2] [3,4] [3,4]

−1
1

=[−16,24]

[3,4][−12,−8]

4[8,12]+

[−72,−32] [−60,−32]

[−12,−8] [−12,−8]

[8,12] [−12,−8]

[1,1]

Figure 5. Interval gradient evaluation for the objective in (1) after constraint propagation.

propagation, most prominently HC4 [3, 25] and FBPD [58]. A specialty of FBPD
is that it also provides bounds on the intermediate nodes, and those can be used
to further tighten the range estimates for derivatives during back propagation, as
explained in [53].

For the discussion, we will review the improvement of the interval gradient of
the example function f on the box x = [1, 2] × [3, 4] × [3, 4] after constraint
propagation of the constraint f(x) ≤ f̃ = −144 (see Figure 5). Without us-
ing the intermediate node information of constraint propagation, the result is
f ′(x) ⊆ ([−24, 45]; [−72,−19]; [−60,−19])T . This enclosure significantly reduces
to f ′(x) ⊆ ([−16, 24]; [−72,−32]; [−60,−32])T if the intermediate node ranges of
the constraint propagator (displayed in bold face on the right of each intermediate
node) are used.

If these tightened enclosures are used during, e.g., a global optimization algorithm,
care must be taken to avoid various pitfalls.

Generally speaking, the interval gradient computed in Figure 5 is an enclosure g

of the set

M := {∇f(x) | x ∈ x ∧ f(x) ≤ f̃}.

This improved interval gradient can safely be used, e.g., for the monotonicity test.
This test checks for the objective function f of a bound constrained optimization
problem and a subbox x of the feasible domain whether 0 /∈ ∇if(x) for some i, to
conclude that x does not contain the global optimum (except possibly on the border
of the ith coordinate), because of the first order necessary optimality conditions.
If the enclosure g is used instead of ∇f(x), this remains true, because a global
optimum x∗, unless it is on the border, must satisfy f(x∗) ≤ f̃ and ∇f(x∗) = 0.
Hence, for the monotonicity test we can safely conclude that f does not have a
global minimum in the interior of x, provided 0 /∈ gi for some i.

December 31, 2010 18:54 Optimization Methods and Software griewank

Algorithmic Differentiation Techniques for Global Optimization 11

On the other hand, interval gradients are also used for range estimation via centered
forms:

f(x) ⊆ f(z) + f ′(x)(x− z), (6)

where z ∈ x is usually chosen as the center of the box x. A centered form can be
also used for enclosing f over an arbitrary set S, but it is in general valid only if
S is star-shaped with center z. Unfortunately, M is not always star shaped with
center z, even if z ∈ x. That can, e.g., be derived from Figure 5 for the point
(1, 3, 3). On the lower right + operator this point evaluates to 6, which is clearly
outside the range [8, 12]. Hence, (1, 3, 3) /∈ M , which cannot easily be seen without
propagating through the DAG. So if CP-improved interval gradients are intended
to be used in centered forms, care must be taken that the forward propagation
of the center through the DAG on every node gives a result which is inside the
CP-improved node range.

For slopes this problem does not appear since the slope form

f(x) ⊆ f(z) + f [z,x](x− z) (7)

remains true, even if z /∈ M .

Of course, the higher order derivatives and slopes can be used to generate higher
order centered forms for function estimation, and the COCONUT Environment
provides a module for those:

f(x) ⊆ f(z) + (f ′(z) + 1
2(x− z)T∇2f(x))(x− z)

f(x) ⊆ f(z) + (f [z, w] + (x− w)T f [z, w,x])(x− z)

f(x) ⊆ f(z) +
(

f ′(z) + 1
2(x− z)T

(

∇2f(z) + 1
3∇

3f(x)(x− z)
))

(x− z)

They have approximation properties of order 3 or 4, respectively, and are therefore
useful for reducing the cluster effect close to the optimizers [34]. Of course, for
all centered forms involving an interval derivative, the same discussion as in the
paragraph above applies to the center.

5. Linear and quadratic enclosures

As another application of higher order interval derivatives and slopes we consider
the general nonlinear global optimization problem

min f(x)

s.t. F (x) ∈ F

x ∈ x,

(8)

where f : Rn → R and F : Rn → R
m.

The linear approximations (6) and (7) of a function f provided by interval gradients
or slopes can be used to construct an enclosure of f by linear functions. This in
turn can be used to construct a linear relaxation of (8).

December 31, 2010 18:54 Optimization Methods and Software griewank

12 H. Schichl and M.C. Markót

We cite the following proposition from [53].

Proposition 5.1 Let s be a first order interval slope f [z,x] or an interval gradient
∇f(x) of the function f : Rn → R over the box x. If z ∈ x then the function

f(x) = f +
n
∑

i=1

si(xi − zi) +
si(xi − zi)− si(xi − zi)

xi − xi
(xi − xi)

is a linear function which underestimates f on x, i.e.,

f(x) ≤ f(x) for all x ∈ x,

and the function

f(x) = f +
n
∑

i=1

si(xi − zi) +
si(xi − zi)− si(xi − zi)

xi − xi
(xi − xi)

is a linear overestimating function for f over x, where f(z) ∈ [f, f].

Using this result, by enclosing all functions in pairs of linear over- and underestima-
tors, a linear relaxation can be computed for the optimization problem. Note that
this linear relaxation is different from reformulation linearization as, e.g., computed
in BARON [48], since it is of the same dimension as the original problem.

Similarly, as described in [51], quadratic underestimation functions q and quadratic
overestimation functions q can be constructed if enclosures of f(z) and f ′(z) and
either an interval Hessian ∇2f(x) or a second order slope of the form f [z, z,x] are
available.

Proposition 5.2 Let H := f [z, w,x] be a second order slope of the function

December 31, 2010 18:54 Optimization Methods and Software griewank

Algorithmic Differentiation Techniques for Global Optimization 13

f : Rn → R or an interval Hessian. If z, w ∈ x then the function

q(x) = f +
n
∑

i=1

n
∑

j=1

−
(

2
(H ij −H ij)(xj − wj)(wj − xj)

xj − xj
+ (gj − g

j
)

)

· (xi − zi)(zi − xi)

xi − xi

+

(

(H ij −H ij)(xj − wj)(wj − xj)(2zi − xi − xi)

xj − xj

+ g
j
(xi − zi) + gj(zi − xi)

)

xi − zi
xi − xi

+
(H ij −H ij)(xj + xj − 2wj)(xi − zi)(zi − xi)

(xi − xi)(xj − xj)
(xj − wj)

+

(

(H ij −H ij)(wj(xi + xi) + zi(xj + xj)− 2ziwj)

(xi − xi)(xj − xj)

+
−H ij(xixj + xixj) +H ij(xixj + xixj)

(xi − xi)(xj − xj)

)

(xi − zi)(xj − wj)

is a quadratic function which underestimates f on x, i.e.,

q(x) ≤ f(x) for all x ∈ x,

and the function

q(x) = f +
n
∑

i=1

n
∑

j=1

(

2
(H ij −H ij)(xj − wj)(wj − xj)

xj − xj
+ (gj − g

j
)

)

· (xi − zi)(zi − xi)

xi − xi

−
(

(H ij −H ij)(xj − wj)(wj − xj)(2zi − xi − xi)

xj − xj

− gj(xi − zi)− g
j
(zi − xi)

)

xi − zi
xi − xi

+
(H ij −H ij)(xj + xj − 2wj)(xi − zi)(zi − xi)

(xi − xi)(xj − xj)
(xj − wj)

+

(

(H ij −H ij)(wj(xi + xi) + zi(xj + xj)− 2ziwj)

(xi − xi)(xj − xj)

+
H ij(xixj + xixj)−H ij(xixj + xixj)

(xi − xi)(xj − xj)

)

(xi − zi)(xj − wj)

is a quadratic overestimating function for f over x, where f(z) ∈ [f, f] and
f [z, w] ∈ [g, g].

December 31, 2010 18:54 Optimization Methods and Software griewank

14 H. Schichl and M.C. Markót

If we then consider the constraints for problem (8) componentwise, for every compo-
nent Fj(x) ∈ F j the constraints Q

j
(x) ≤ F j and Qj(x) ≥ F j are valid quadratic

constraints; here Q
j
(x) and Qj(x) are the quadratic under- and overestimating

functions for Fj(x). Together with the quadratic underestimating function q(x) of
the objective function f , we get the QCQP (quadratically constrained quadratic
program) relaxation

min q(x)

s.t. Q(x) ≤ F

Q(x) ≥ F

x ∈ x

of (8), where Q(x) and Q(x) denote the vector of all underestimating and over-

estimating functions Q
j
and Qj , respectively, for all components Qj . The QCQP

is different from quadratic relaxations computed in αBB [2], because no explicit
decomposition into a difference of convex functions is used before computing the
quadratic underestimators. The QCQPs are also not convex in general. However,
there are specialized methods for nonconvex QCQPs, see [17–20].

If no QCQP solver is available, alternatively the constraint functions Fj can be
linearly relaxed by F j and F j leading to the QP relaxation

min q(x)

s.t. F (x) ≤ F

F (x) ≥ F

x ∈ x,

which captures the behaviour of the problem close to a local minimum z better than
the purely linear relaxation constructed by Proposition 5.1, if the local minimum
is chosen as the center. This is because the constant term of the linear relaxation
is of order radx whereas the constant term of the quadratic relaxation is of order
(radx)2, so at z the overestimation is smaller for small boxes. If z is in a corner of
x the constant term vanishes completely. The overall deviation |q(x)−f(x)| is also
O(radx) for linear and O((radx)2) for the quadratic relaxation, so for small boxes
x the quadratic relaxation indeed captures the behaviour of the problem better
than the linear relaxation.

6. Conclusion

The COCONUT Environment for global optimization provides many inference
modules, which can be used for building solution strategies for global optimization
solvers, e.g. cocos [21] and coco gop ex [41]. Many of these modules heavily rely
on automatic differentiation techniques, that would not have been possible without
the major contributions to this field by Andreas Griewank.

December 31, 2010 18:54 Optimization Methods and Software griewank

REFERENCES 15

References

[1] ILOG Solver 5.1, 2001.
[2] I.P. Androulakis, C.D. Maranas, and C.A. Floudas. αBB: a global optimization method for general

constrained nonconvex problems. J. Global Optim., 7:337–363, 1995.
[3] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and Box Consistency. In:

Proceedings of the International Conference on Logic Programming (ICLP’99), 230–244, 1999.
[4] F. Benhamou and W. Older. Applying interval arithmetic to real, integer, and boolean constraints.

Journal of Logic Programming, 1997.
[5] M. Berz. COSY INFINITY version 8 reference manual. Technical report, National Superconducting

Cyclotron Lab., Michigan State University, East Lansing, Mich., 1997. MSUCL–1008.
[6] M. Berz, C. Bischof, G. Corliss, and A. Griewank. Computational Differentiation. SIAM Publications,

Philadelphia, 1996.
[7] M. Berz and K. Makino. Verified integration of ODEs and flows using differential algebraic methods

on high-order Taylor models. Reliable Computing, 4:361–369, 1998.
[8] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR–generating derivative codes

from Fortran programs. Scientific Programming, 1(1):11–29, 1992.
[9] C. Bischof, P. Khademi, A. Mauer, and A. Carle. ADIFOR 2.0: Automatic differentiation of Fortran

77 programs. Computational Science & Engineering, IEEE, 3(3):18–32, 2002.
[10] C. Bischof, G. Corliss, and A. Griewank. Structured second-and higher-order derivatives through

univariate Taylor series. Optimization Methods and Software, 2(3&4):211–232, 1993.
[11] C. Bliek. Computer methods for design automation. PhD thesis, Dept. of Ocean Engineering, Mas-

sachusetts Institute of Technology, 1992.
[12] C. Bliek, P. Spellucci, L.N. Vicente, A. Neumaier, L. Granvilliers, E. Monfroy, F. Benhamouand,

E. Huens, P. Van Hentenryck, D. Sam-Haroud, and B. Faltings. Algorithms for Solving Non-
linear Constrained and Optimization Problems: The State of the Art. Report of the Euro-
pean Community funded project COCONUT, Mathematisches Institut der Universität Wien,
http://www.mat.univie.ac.at/∼neum/glopt/coconut/StArt.html, 2001.

[13] A. Brooke, D. Kendrick, and A. Meeraus. GAMS — A User’s Guide (Release 2.25). Boyd & Fraser
Publishing Company, Danvers, Massachusetts, 1992.

[14] C. Chekuri, R. Johnson, R. Motwani, B. Natarajan, B. Ramakrishna Rau, and M. S. Schlansker.
Profile-driven instruction level parallel scheduling with application to super blocks. In International
Symposium on Microarchitecture, pages 58–67, 1996.

[15] S. Dallwig, A. Neumaier, and H. Schichl. GLOPT — A Program for Constrained Global Optimiza-
tion. In I. M. Bomze, T. Csendes, R. Horst, and P.M. Pardalos, editors, Developments in Global
Optimization, pages 19–36. Kluwer, Dordrecht, 1997.

[16] L.C.W. Dixon and G.P. Szegö. Towards global optimization. Elsevier, New York, 1975.
[17] F. Domes. Rigorous techniques for continuous constraint satisfaction problems. PhD Thesis, Univer-

sität Wien, 2010
[18] F. Domes and A. Neumaier. Quadratic constraint propagation, Constraints, 15(3):404-429, 2010.
[19] F. Domes and A. Neumaier. Rigorous enclosures of ellipsoids and Directed Cholesky factorizations.

Manuscript, 2010. http://www.mat.univie.ac.at/~dferi/research/Cholesky.pdf.
[20] F. Domes and A. Neumaier. Linear methods for quadratic constraint satisfaction problems.

Manuscript, 2010. http://www.mat.univie.ac.at/~dferi/research/Linear.pdf
[21] F. Domes, M. Fuchs, and H. Schichl. The Optimization Test Environment. To appear in Optimization

Methods and Software, 2010.
[22] C.A. Floudas, Deterministic Global Optimization: Theory, Algorithms and Applications, Kluwer,

Dordrecht 1999.
[23] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL — A Mathematical Programming Language.

Thomson, second edition, 2003.
[24] A.H. Gebremedhin, F. Manne, and A. Pothen. What Color Is Your Jacobian? Graph Coloring For

Computing Derivatives, SIAM Rev., 47:629–705, 2005.
[25] L. Granvilliers, F. Goualard, and F. Benhamou. Box Consistency through Weak Box Consistency.

In: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence (IC-
TAI’99) 373–380, 1999.

[26] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: a package for the automatic differ-
entiation of algorithms written in C/C++. ACM Transactions on Mathematical Software (TOMS),
22(2):131–167, 1996.

[27] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. 2nd Edition. SIAM Publications, Philadelphia, 2008.

[28] A. Griewank and G.F. Corliss. Automatic Differentiation of Algorithms. SIAM Publications, Philadel-
phia, 1991.

[29] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. C++ Toolbox for Verified Computing I, Basic
Numerical Problems: Theory, Algorithms, and Programs, Springer, 1995.

[30] R. Horst. A General Class of Branch-and-Bound Methods in Global Optimization with Some New
Approaches for Concave Minimization. Journal of Optimization Theory and Applications, 51:271–291,
1986.

[31] R. Horst. Deterministic Global Optimization with Partition Sets Whose Feasibility Is Not Known: Ap-
plication to Concave Minimization, Reverse Convex Constraints, DC-Programming, and Lipschitzian
Optimization. Journal of Optimization Theory and Applications, 58:11–37, 1988.

[32] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic Programming,
19/20:503–581, 1994.

[33] R.B. Kearfott. Decomposition of Arithmetic Expressions to Improve the Behavior of Interval Iteration
for Nonlinear Systems, Computing, 47:169–191, 1991.

[34] R.B. Kearfott and K. Du. The cluster problem in multivariate global optimization. J. Global Opti-

December 31, 2010 18:54 Optimization Methods and Software griewank

16 REFERENCES

mization, 5:253–265, 1994.
[35] R.B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht, 1996.
[36] M. Kieffer, M.C. Markót, H. Schichl, and E. Walter, Verified global optimization for estimating the

parameters of nonlinear models. Submitted. http://www.mat.univie.ac.at/~herman/papers/Guar_
Optim_2010_v4.pdf

[37] O. Knüppel PROFIL/BIASa fast interval library. Computing, 53(3):277–287, 1994.
[38] L.V. Kolev. Use of interval slopes for the irrational part of factorable functions. Reliable Computing,

3:83–93, 1997.
[39] L.V. Kolev An improved interval linearization for solving non-linear problems, Manuscript (2002)
[40] R. Krawczyk and A. Neumaier, Interval slopes for rational functions and associated centered forms,

SIAM J. Numer. Anal. 22:604–616, 1985.
[41] M.C. Markót and H. Schichl. Bound constrained optimization in the COCONUT Environment.

Manuscript, 2010.
[42] M.C. Markót and H. Schichl. Comparison and automated selection of local optimization solvers for

interval global optimization methods. Submitted, 2010. http://www.mat.univie.ac.at/~markot/
loptcomp.pdf

[43] G.P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I —
Convex underestimating problems Math. Programming, 10:147–175, 1976.

[44] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge, 1990.
[45] A. Neumaier. Introduction to Numerical Analysis. Cambridge Univ. Press, Cambridge, 2001.
[46] A. Neumaier. Taylor forms — use and limits. Reliable Computing, 9:43–79, 2002.
[47] S.M. Rump. Expansion and estimation of the range of nonlinear functions, Math. Comp. 65:1503–

1512, 1996.
[48] N.V. Sahinidis. BARON: A general purpose global optimization software package. J. Global Optim.,

8:201–205, 1996.
[49] D. Sam-Haroud and B. Faltings. Consistency techniques for continuous constraints. Constraints,

1(1&2):85–118, 1996.
[50] H. Schichl. Global Optimization in the COCONUT project. In Proceedings of the Dagstuhl Seminar

“Numerical Software with Result Verification”, Springer Lecture Notes in Computer Science, page 9,
2003.

[51] H. Schichl and M.C. Markót. Interval analysis on directed acyclic graphs for global optimization.
Higher order methods. Manuscript, 2010.

[52] H. Schichl and M.C. Markót. Exclusion regions for optimization problems. Manuscript, 2010.
[53] H. Schichl and A. Neumaier. Interval analysis on directed acyclic graphs for global optimization.

Journal of Global Optimization, 33(4):541–562, 2006.
[54] H. Schichl and A. Neumaier. Exclusion regions for systems of equations. SIAM J. Numer. Anal.,

42:383–408, 2004.
[55] Z. Shen and A. Neumaier. The Krawczyk operator and Kantorovich’s theorem. J. Math. Anal. Appl.,

149:437–443, 1990.
[56] M. Tawarmalani and N.V. Sahinidis, Convexification and Global Optimization in Continuous and

Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer,
Dordrecht 2002.

[57] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica — A Modeling Language for Global Opti-
mization. MIT Press, Cambridge, MA, 1997.

[58] X.-H. Vu, H. Schichl and D. Sam-Haroud. Using Directed Acyclic Graphs to Coordinate Propaga-
tion and Search for Numerical Constraint Satisfaction Problems. In Proceedings of the 16th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2004). Florida, USA, 2004.

[59] The COCONUT Environment. www.mat.univie.ac.at/coconut-environment

