
“habil”
2004/11/29
page 1

HABILITATIONSSCHRIFT

Mathematical Modeling

and

Global Optimization

Hermann Schichl

November 2003

“habil”
2004/11/29
page 2

Contents

Draft of a Book, submitted to Cambridge University Press, assembled from material
specially written for this book and the following publications

1. Hermann Schichl. Global optimization in the COCONUT project. In Proceed-
ings of the Dagstuhl Seminar “Numerical Software with Result Verification”,
Springer Lecture Notes in Computer Science, page 9, 2003. to appear.

2. Hermann Schichl and Arnold Neumaier. Exclusion regions for systems of
equations. SIAM J. Numer. Anal., page 29, 2003. to appear.

3. Hermann Schichl. Models and the history of modeling. In J. Kallrath, editor,
Modeling Languages in Mathematical Optimization, chapter 2, pages 25–36.
Kluwer, Boston, 2003.

4. Hermann Schichl. Theoretical concepts and design of modeling languages.
In J. Kallrath, editor, Modeling Languages in Mathematical Optimization,
chapter 4, pages 45–62. Kluwer, Boston, 2003.

5. Stefan Dallwig, Arnold Neumaier, and Hermann Schichl. GLOPT - a program
for constrained global optimization. In I. Bomze et al., editor, Developments
in Global Optimization, pages 19–36. Kluwer, Dordrecht, 1997.

6. Christian Bliek and Hermann Schichl. Specification of modules interface,
internal representation, and modules api. Technical Report Deliverable D6,
COCONUT project, August 2002.

7. Hermann Schichl. An introduction to the Vienna Database Library. Technical
Report in “Upgraded State of the Art Techniques implemented as Modules”,
Deliverable D13, COCONUT project, July 2003.

8. Hermann Schichl. VGTL (Vienna Graph Template Library) version 1.0,
reference manual. Technical Report Appendix 1 to “Upgraded State of the Art
Techniques implemented as Modules”, Deliverable D13, COCONUT project,
July 2003. Version 1.1 (October 2003).

9. Hermann Schichl. The COCONUT API version 2.33, reference manual. Tech-
nical Report Appendix to “Specification of new and improved representa-
tions”, Deliverable D5 v2, COCONUT project, November 2003. Version 2.13
(July 2003).

10. Hermann Schichl. Changes and new features in API 2.x. Technical Report in
“Upgraded State of the Art Techniques implemented as Modules”, Deliverable
D13, COCONUT project, July 2003.

11. Hermann Schichl. Evaluators. Technical Report in “Upgraded State of
the Art Techniques implemented as Modules”, Deliverable D13, COCONUT
project, July 2003.

“habil”
2004/11/29
page 3

12. Hermann Schichl. Uwien basic splitter, bestpoint, checkbox, check infeasibil-
ity, check number, exclusion boxes using karush-john conditions, karush-john
conditions generator, linear relaxation generator using slopes, simple convex-
ity, template for description of modules, tu darmstadt module donlp2-intv
(with p. spellucci). Technical Report in “Upgraded State of the Art Tech-
niques implemented as Modules”, Deliverable D13, COCONUT project, July
2003.

13. Hermann Schichl. Management modules. Technical Report in “Set of Com-
bination Algorithms for State of the Art Modules”, Deliverable D14 of the
COCONUT project, COCONUT project, July 2003.

14. Hermann Schichl. Report modules. Technical Report in “Set of Combina-
tion Algorithms for State of the Art Modules”, Deliverable D14, COCONUT
project, July 2003.

15. Hermann Schichl and Oleg Shcherbina. External converters. Technical
Report in “Set of Combination Algorithms for State of the Art Modules”,
Deliverable D14, COCONUT project, July 2003.

16. Hermann Schichl et al. COCONUT environment 2.33 — open source solver
platform for global optimization. Available from World Wide Web: http:

//www.mat.univie.ac.at/coconut-environment. 11.4 MByte source code,
to be made officially available March 1st, 2004.

“habil”
2004/11/29
page 4

“habil”
2004/11/29
page i

Preface

Optimization addresses the problem of finding the best possible choices with respect
to a given target, not violating a number of restrictions.

In mathematical terms, optimization is the problem of minimizing (or maximizing)
a prescribed function, the objective function, while obeying a number of equality
and inequality constraints. Depending on the area of definition of these functions,
one can differentiate various classes of optimization problems, continuous problems,
discrete problems, and mixed-integer problems.

Since Danzig [40] 1947 invented the simplex algorithm, optimization problems
have been solved in many contexts. Till today, a great number of all optimization
problems used in industrial applications are linear.

Linear programming (solving linear problems) is special in many ways. One impor-
tant property is that there is only one notion of optimality. Every point which is
locally optimal (i.e. a point that satisfies all constraints and has the best objective
function value of all such points in a neighborhood) is automatically globally opti-
mal (i.e. has the absolutely best achievable objective within the given constraints).
For non-linear problems this is in general far from true. Not all relations encoun-
tered in real life are linear, however, and non-linear functions are needed for the
objective and/or the constraints to make the models fit reality better.

Solving nonlinear optimization problems traditionally means to search for a local
optimum. Many applications nowadays are driven by economical interest (e.g.,
traveling salesman problem, packing problems, or cutting stock problems), and for
earning money it usually is sufficient to gain an improvement of say 10% over the
solution currently used, or used by the competitors. Solving local optimization
problems can usually be done with moderate effort, even for industrial-size prob-
lems.

For a number of applications, however, knowing such a “good” feasible point is not
enough, and for some other problems just finding a feasible point (i.e. a point sat-
isfying all constraints) is exorbitantly difficult. There are problems in robotics (see
Lee et al. [134, 135] and Neumaier[166]), in chemical engineering (cf. Floudas
[53, 54], and Floudas et al. [56]), in protein folding (see Kostrowicki &
Scheraga [124] and Neumaier [162]), in safety verification and worst case analy-
sis, and in mathematics (e.g., Kepler’s conjecture, see Hales [72]), which can only
be solved by finding the global optimum of the problem.

i

“habil”
2004/11/29
page ii

ii Preface

Depending on the properties of the objective function and of the constraints, global
optimization can be a highly non-trivial problem, in general, it is NP-hard. There-
fore, for every generic algorithm there will, very likely, be problems for which finding
the solution needs effort exponential in the size of the problem. This is a conse-
quence of the famous P 6= NP conjecture, see Sipser [211] or Baker et al. [9]
for the definition of the conjecture, and Papadimitrou [177] and Pardalos &
Schnitger [179] for the connection to optimization.

During the last decade the interest in global optimization has been ever increasing,
partly because there are more and more applications, partly because the develop-
ment of algorithms has already moved the field to the point where many small but
already industrial-size applications can be solved reliably (see Shcherbina et al.
[207]).

For a large number of applications even finding feasible points is difficult; in partic-
ular local optimization programs fail. Sometimes evaluating constraints or the ob-
jective function is expensive. For these situations a number of heuristic algorithms
have been developed (see Jones et al. [105], Huyer & Neumaier [95, 96], and
for a comparison of different heuristic methods Janka [100]). They perform an
incomplete search guided by sophisticated concepts and usually end up at or near
very good local optima, often at the global one. However, they can never be certain
that they actually have found the global optimizer.

For safety applications, chemical phase and equilibrium problems, and mathematical
applications incomplete methods are not applicable, because there it is required to
find the global optimum with certainty. Performing a complete search, covering
the whole feasible set, needs an effort exponential in the problem dimension if
implemented naively. To overcome that difficulty, research groups have started to
attack the field from various directions.

The basic principle, the branch-and-bound method, is common to most of these
approaches. The search region is recursively split into smaller pieces. For each of
these pieces the algorithm tries to prove that it does not contain the global optimum
(bound step), if it succeeds, the piece is discarded, and if not the piece is broken
into even smaller pieces (branch step). Once all pieces have either been discarded
or have reached a very small size, the algorithm finishes.

The main difference in the approaches to global optimization taken by the different
research teams lies in the bounding step. Depending on their tradition they use
different methods for analyzing subproblems during the branch-and-bound scheme.

Methods based on Interval Analysis compute bounds on objective function and
constraints using interval arithmetic and mean value forms with interval derivatives
or slopes. Areas around local optima are handled by interval Newton methods like
the Krawczyk iteration.

If the objective function is constant (or equivalently missing), the global optimiza-
tion problem becomes a constraint satisfaction problem. For those problems a tradi-
tion exists, that comes from constraint logic programming. In the logic programming
languages Prolog V and ECLiPSe, discrete constraint satisfaction problems are for-
mulated. They are considered solved if one feasible point has been found. The
solution algorithms use special combinations of backtracking and constraint prop-

“habil”
2004/11/29
page iii

Preface iii

agation for tracking down the solution. Combining these techniques with intervals
leads to the generalized form of constraint propagation used for attacking contin-
uous constraint satisfaction problems. Every global optimization problem can be
reduced to a sequence of constraint satisfaction problems, so constraint propagation
is a relevant technique for solving those problems, too.

Very successful for solving global optimization problems are relaxation techniques.
In this approach the complicated nonlinear problems are replaced by linear or con-
vex relaxations, which can easily be solved by standard software. Since they are
relaxations, their solutions provide lower bounds on the possible values of the objec-
tive function for a given subproblem. If this lower bound is higher than the function
value of the best point found so far, the subproblem can be discarded.

There are even more ideas, like symbolic transformations, semidefinite relaxation,
methods from algebraic geometry like Groebner bases, which have been successfully
applied to solving global optimization problems.

In the past all the research teams have pursued their techniques with limited inter-
action, only. The most interesting fact about all those approaches is that they com-
plement each other. It is not like in local optimization, where the different classes
of algorithms compete. In global optimization, the various ideas can be combined,
and there are synergetic effects. E.g., the combination of constraint propagation,
interval analysis and linear underestimation produces considerably stronger linear
relaxations than any single method could achieve.

This book is intended as a short introduction to modeling and solving global op-
timization problems, keeping the integration of techniques from various fields in
mind. The main focus of the book will be on complete methods, which can be used
to yield guaranteed results. The techniques presented in this book require that ob-
jective function and constraints are given by mathematical formulas. There will be
no discussion on black-box optimization and surrogate modeling. To make the inte-
gration technically feasible, the book also contains an exposition of an open-source
solver platform for global optimization, which was developed during the COCONUT
project [36] funded by the European Community.

The book, and the software platform presented in here, can be seen as an effort to
provide the technological basis for the global optimization community to join their
forces, and hopefully, this will yield the development of global optimization solvers
which can solve bigger problems faster and more reliably.

The book is divided into two main parts: The first part concentrates on the theo-
retical background of the field. The second part presents the open solver platform
for global optimization problems, the COCONUT environment.

Readers of this book should have a basic knowledge in numerical analysis ([38, 164])
and optimization ([67, 174]). The contents are kept compact but they should be
self-contained. For further reading on global optimization I want to refer the reader
to the survey by Neumaier [168].

Whoever wants to solve an optimization problem for an application faces the prob-
lem of translating his application into mathematical form, such that the resulting

“habil”
2004/11/29
page iv

iv Preface

problem can be solved using a suitable algorithm. The application has to be mod-
eled mathematically. Chapter 1 starts with a short historic review of models and
modeling. After the introduction, mathematical modeling, the process of trans-
lating an application to a mathematical model is analyzed. The process is split
into six subtasks, which are strongly interconnected and have to be reconsidered
iteratively until a mathematical model is found, which describes the application
with suitable accuracy and can be solved by available algorithms. Having found
the mathematical model is not enough, however. The next task is the translation
of the model into the input structure of the solution algorithm. This is a tedious
task, and so there has been effort to provide computer support for the translation
step, as well. Mathematical modeling languages (for a full review see Kallrath
[108]) have been invented exactly for that purpose, and nowadays a huge amount
of real applications and test problems have been modeled in one of the most widely
used modeling languages, AMPL [57] or GAMS [29]. Section 1.2 contains a theoretical
introduction into the basic design features of algebraic modeling languages and a
small example of their use. Unfortunately, the interaction of modeling languages
with global optimization algorithms is not yet fully satisfactory. The most stringent
difficulties for the connection between most modeling languages and global solvers
are discussed in Section 1.3. The final section of the Chapter, Section 1.4, presents
mathematical models of four important classes of global optimization problems, for
which complete search is essential.

Chapter 2 starts with the theoretical background on nonlinear optimization, first
defining the local optimization problem, then reviewing the basic theorems. Every
solution of a global optimization problem, of course, has the property that it is
locally optimal, too. A local optimizer of an optimization problem is, of course, a
feasible point, i.e., a point satisfying all constraints, whose objective function value
is minimal in a neighborhood of the point within the feasible region, i.e., the set of all
feasible points. Computing local optima of an optimization problem is much easier
than finding the global ones. So, a first step for solving the global optimization
problem could be to compute local optima, with decreasing function values, until
there are no more local minima. Section 2.1 discusses the most important facts
from convex analysis, since for convex optimization problems, finding local and
global minima is equivalent. The notion of duality is also presented in that section.
Essential for the design of any local optimization algorithm are the theoretical
results on conditions for local optimality of points, both sufficient and necessary
ones. Those results are discussed in Section 2.2.

Chapter 3 is about the theory of global optimization. An important step in ev-
ery optimization problem is to establish the existence of a feasible point. This
can, e.g., be done by heuristic optimization. A review of the most important algo-
rithms in this field is presented in Section 3.2. Afterwards, the branch-and-bound
scheme is explained. The following sections of the chapter provide short introduc-
tions into the different methods for computing bounds and excluding subproblems.
Section 3.4 contains a short introduction to interval analysis, on automatic range
computation for functions and derivatives, and on the interval Newton method,
Krawczyk’s operator, and the Moore-Skelboe algorithm. A technique which origi-
nally stems from constraint logic programming is constraint propagation. This very
powerful approach and its generalization from the discrete to the continuous case
is discussed in Section 3.5. Linear relaxations are another efficient way of solving

“habil”
2004/11/29
page v

Preface v

global optimization problems by sequential linear programming. The foundations
for algorithms based on this technique are explained in Section 3.6. The next Sec-
tion 3.7 focuses on a very important and very successful class of global optimization
algorithms. These are based on convex underestimation and subsequent local opti-
mization. BARON, the currently strongest global optimization solver, is based mainly
on convexity techniques. Algorithms which approximate functions by piecewise lin-
ear functions, and solve mixed integer linear programs, those which are based on
reformulation, and those using algebraic geometry are not explained here. An ex-
celent summary of these methods can be found in the global optimization survey
by Neumaier [168].

Chapter 4 concludes the theoretical part by introducing some new techniques devel-
oped during the COCONUT project. In Section 4.1 a method for representing global
optimization problems by directed acyclic graphs (DAGs) is described. The repre-
sentation is flexible, and has the advantage that it is equally fit for function eval-
uation, automatic differentiation, and constraint propagation. Evaluation schemes
and constraint propagation are described in detail (Sections 4.1.3 and 4.1.4), and
it is shown that the combination of both yields improved estimates on the ranges
of functions and their derivatives (Section 4.1.5). A method for automatically com-
puting linear relaxations of the optimization problems is presented in Section 4.1.6.

The second part of the book consists of three chapters describing the open source
software platform for global optimization, the COCONUT environment.

Chapter 5 contains a detailed description of the environment, the basic C++ classes
of the API, and the open-source solver kernel. Sections 5.1 and 5.2 describe two fun-
damental libraries, the VGTL (Vienna Graph Template Library) an STL–like library
for storing and manipulating graphs, and the VDBL (Vienna DataBase Library),
an in-memory database system, whose tables can hold columns of arbitrary types.
Section 5.3 describes the main part of the application programmer’s interface, ex-
pressions, models, and the search graph. A special section (5.6) is devoted to the
description of the evaluators, which are especially important for the inference en-
gines, described in Chapter 6. The description of the management modules follows
in Section 5.8, these modules are used for manipulating the internal representation
of the optimization problems, the search database, and the search graph. Section 5.9
is devoted to the report modules, which produce all output of the algorithm, while
Section 5.7 describes the base class for the solver modules, which in detail are de-
scribed in the following chapter. The last section of the chapter is devoted to the
strategy engine, the central component of the environment, which has been devel-
oped by IRIN, University of Nantes. It directs the solution strategy, combining the
various inference engines (the solver modules) in a user programmable way.

Chapter 6 describes a simple strategy, jointly developed by the University of Vienna
and the EPFL Lausanne for solving a global optimization problem, together with
a description of the public domain inference engines (solver modules) and some
envelopes for commercial components, which are included in the environment.

• Basic Splitter: This module computes simple splits and tries to identify the
hardest variables.

• Box Covering Solver (BCS): BCS computes coverings of the feasible area for

“habil”
2004/11/29
page vi

vi Preface

low dimensional constraint satisfaction problems.

• Box Chooser: This graph analyzer selects the next box from the search graph.

• Linear Programming: Three different linear solvers have been wrapped as
inference engines, CPLEX, the high-end commercial linear solver by ILOG,
XPRESS-MP, another high-end commercial LP solver by Dash Optimization,
and the public domain LP solver LP solve.

• Constraint Propagation: Two different constraint propagation engines, HULL, a
hull consistency solver provided by IRIN, and C propagator, a priority driven
constraint propagator.

• Local Optimization: There are envelopes for three different local optimization
engines. donlp2 by P. Spellucci from TH Darmstadt is a fast SQP solver using
dense linear algebra, ipfilter by the University of Coimbra, a robust filter
code, and sSQP also by the University of Coimbra, an SQP algorithm based
on sparse linear algebra, which uses the sparse QP solver by P. Spellucci.

• Exclusion Boxes: This solver module computes exclusion boxes around local
solutions using linear information only.

• Karush-John condition generator: This module computes symbolic derivatives
on the expression DAG and generates the DAG for the Karush-John necessary
first order optimality conditions.

• Linear Relaxations: Using the methods discussed in Section 4.1.6 this infer-
ence engine computes a linear relaxation of the optimization problem.

• Convexity Detection: This solver module tries to identify convex and concave
functions and constraints in the DAG utilizing the methods of Maheshwari
et al. [139].

• STOP: A heuristic global optimization engine based on a mixture of constraint
propagation and multilevel coordinate search provided by IRIN.

The complete reference manuals for the COCONUT API and the basic libraries,
the VGTL and the VDBL, would go beyond the scope of this book and can be accessed
online at http://www.mat.univie.ac.at/coconut-environment. However, those
C++ definitions, which are directly referenced in Chapter 5, can be found in Ap-
pendix A.

I hope that this book and the solver platform will spark the interest of many research
groups working on global optimization to join forces, to contribute to this platform,
and to together advance the field of global optimization beyond the limits it is
confined in today.

This book would not have been possible without the help of many other people. I
want to thank the other COCONUT participants, especially Christian Bliek, Eric
Monfroy, Brice Pajot, Christophe Jermain, Viet Nguyen, and Xuan-Ha Vu, who
helped designing, developing and debugging the software, my colleagues working
during the project at the Institute of Mathematics of the University of Vienna,
Waltraud Huyer, Boglarka Toth, Oleg Shcherbina, Andrzej Pownuk, and Tamas
Vinko, for their help and their tireless testing, and above all I want to thank Arnold
Neumaier for his support, invaluable source of ideas, and his friendship. Last but
not least I thank my wife Waltraud and my children Arthur and Konstanze for
tolerating my lack of time and occasional bad mood during the preparation time of

“habil”
2004/11/29
page vii

Preface vii

this book.

Vienna, Austria
November 2003

Hermann Schichl

“habil”
2004/11/29
page viii

viii Preface

“habil”
2004/11/29
page ix

Contents

Preface i

I Theoretical background 1

1 Mathematical Modeling 3

1.1 Models . 3

1.1.1 History . 4

1.1.2 Mathematical Models 5

1.2 Mathematical Modeling Languages 11

1.2.1 Basic Features . 12

1.2.2 Algebraic Modeling Languages 13

1.3 Modeling Languages and Global Optimization 17

1.4 Applications . 18

1.4.1 Chemical Engineering 20

1.4.2 Protein Folding . 25

2 Local Optimization 29

2.1 Convex Analysis and Duality . 33

2.2 Optimality Conditions . 42

2.2.1 Unconstrained Problems 42

2.2.2 Duality . 48

2.2.3 The Karush-John conditions 49

ix

“habil”
2004/11/29
page x

x Contents

2.2.4 The refined Karush-John necessary first order opti-
mality conditions . 51

2.2.5 Second Order Optimality Conditions 57

3 Global Optimization and Constraint Satisfaction 59

3.1 Applications . 61

3.1.1 Computer-assisted Proofs 61

3.1.2 Worst Case Studies 64

3.2 Heuristic Approaches and other Incomplete Methods 65

3.3 Complete Methods — Branch and Bound 66

3.4 Interval Analysis . 66

3.4.1 Interval Arithmetic 68

3.4.2 Centered Forms and Slopes 70

3.4.3 Interval Newton Method 71

3.4.4 Second order slopes 72

3.4.5 Moore–Skelboe . 73

3.4.6 The Cluster Effect 73

3.4.7 Semilocal existence theorems for zeros of equations . 76

3.5 Constraint Propagation . 77

3.6 Linearization Techniques . 79

3.7 Convex Underestimation . 80

4 New Techniques 83

4.1 Directed Acyclic Graphs . 84

4.1.1 Directed acyclic graphs 84

4.1.2 Representing global optimization problems 86

4.1.3 Evaluation . 89

4.1.4 Constraint Propagation on DAGs 93

4.1.5 Combining CP and Evaluation 96

4.1.6 Slopes and linear enclosures 97

4.1.7 Implementation Issues 99

“habil”
2004/11/29
page xi

Contents xi

4.2 Exclusion Boxes . 101

4.2.1 Componentwise exclusion regions close to a zero . . 103

4.2.2 Uniqueness regions 106

4.2.3 Componentwise exclusion regions around arbitrary
points . 108

4.2.4 Examples . 110

II Open solver platform for global optimization 121

5 The COCONUT environment 123

5.1 Vienna Graph Template Library (VGTL) 126

5.1.1 Core components . 126

5.1.2 Walker . 127

5.1.3 Container . 128

5.1.4 Algorithms and Visitors 130

5.2 Vienna Database Library (VDBL) 133

5.2.1 Database . 134

5.2.2 Tables . 135

5.2.3 Columns . 137

5.2.4 Rows . 139

5.2.5 Views . 139

5.2.6 View Database . 142

5.2.7 Contexts . 143

5.3 The API . 143

5.3.1 Helper Classes . 143

5.3.2 Expressions . 146

5.3.3 Models . 154

5.3.4 Control Data . 159

5.4 Search Graph . 159

5.4.1 Search Nodes . 161

“habil”
2004/11/29
page xii

xii Contents

5.4.2 Annotations . 162

5.4.3 Work Nodes . 162

5.4.4 Search Graph . 164

5.5 Deltas . 165

5.5.1 Base Classes . 165

5.5.2 Infeasible Delta . 167

5.5.3 DAG Delta . 167

5.5.4 Bound Delta . 167

5.5.5 Semantics Delta . 167

5.5.6 Split Delta . 168

5.5.7 Annotation Delta 168

5.5.8 Table Delta . 168

5.5.9 Box Delta . 169

5.5.10 Point Delta . 169

5.6 Evaluators . 169

5.6.1 Base class . 170

5.6.2 Function Evaluation 171

5.6.3 Gradient Evaluation 172

5.6.4 Range Evaluation (Interval Evaluation) 173

5.6.5 Interval Derivative Evaluation 173

5.6.6 First order Slope Evaluation 174

5.6.7 Analytic-Differentiable Evaluation 175

5.6.8 Bounded Interval Evaluation 176

5.6.9 Complex Interval Evaluation 176

5.6.10 Infinity-Bound Evaluation 176

5.7 Inference Modules . 177

5.7.1 Base Classes . 178

5.7.2 Inference Engines 179

5.7.3 Graph Analyzers . 180

“habil”
2004/11/29
page xiii

Contents xiii

5.8 Management Modules . 181

5.8.1 Management Modules 181

5.8.2 Initializers . 182

5.9 Report Modules . 182

5.9.1 Base Class . 182

5.10 The strategy engine . 183

6 COCONUT modules 185

6.1 Inference Engines . 186

6.1.1 Basic splitter . 186

6.1.2 BCS . 187

6.1.3 Linear Programming — CPLEX 190

6.1.4 Local optimization — donlp2 intv 191

6.1.5 Exclusion boxes . 194

6.1.6 Karush-John condition generator 195

6.1.7 Linear relaxations 196

6.1.8 Convexity detection 197

6.1.9 STOP . 198

6.1.10 Urupa . 199

6.2 Graph Analyzers . 200

6.2.1 Box Chooser . 200

6.3 Management Modules . 201

6.3.1 Delta Management 201

6.3.2 Focus Management 202

6.3.3 Full Model Management 202

6.3.4 Solution Management 203

6.3.5 Split Management 203

6.4 Report Modules . 205

6.4.1 Range Report . 205

6.4.2 Table Report . 205

“habil”
2004/11/29
page xiv

xiv Contents

6.4.3 DAG Writer . 206

6.4.4 GAMS Report . 206

6.4.5 Control parameters 207

6.4.6 Solution Report . 207

6.4.7 DAG to C converter 207

6.4.8 DAG to Fortran 90 converter 209

6.4.9 DAG to GAMS converter 209

A The COCONUT environment, C++ code 211

A.1 Vienna Graph Template Library (VGTL) 212

A.1.1 Core components . 212

A.1.2 Walker . 212

A.1.3 Container . 213

A.1.4 Algorithms and Visitors 217

A.2 Vienna Database Library (VDBL) 217

A.2.1 Database . 217

A.2.2 Tables . 219

A.2.3 Columns . 222

A.2.4 Rows . 224

A.2.5 Views . 225

A.2.6 View Database . 229

A.2.7 Contexts . 230

A.3 The API . 230

A.3.1 Helper Classes . 230

A.3.2 Expressions . 237

A.3.3 Models . 242

A.3.4 Control Data . 246

A.4 Search Graph . 249

A.4.1 Search Nodes . 249

A.4.2 Annotations . 251

“habil”
2004/11/29
page xv

Contents xv

A.4.3 Work Nodes . 251

A.4.4 Search Graph . 252

A.4.5 Deltas . 253

A.4.6 Base Classes . 254

A.4.7 Infeasible Delta . 255

A.4.8 DAG Delta . 255

A.4.9 Bound Delta . 256

A.4.10 Semantics Delta . 256

A.4.11 Split Delta . 257

A.4.12 Annotation Delta 258

A.4.13 Table Delta . 258

A.4.14 Box Delta . 259

A.4.15 Point Delta . 259

A.5 Evaluators . 259

A.5.2 Function Evaluation 260

A.5.3 Gradient Evaluation 260

A.5.4 Range Evaluation (Interval Evaluation) 261

A.5.5 Interval Derivative Evaluation 262

A.5.6 First order Slope Evaluation 263

A.5.7 Analytic-Differentiable Evaluation 264

A.5.8 Bounded Interval Evaluation 264

A.5.9 Complex Interval Evaluation 265

A.5.10 Infinity-Bound Evaluation 265

A.6 Inference Engines . 266

A.6.1 Base Classes . 266

A.6.2 Inference Engines 271

A.6.3 Graph Analyzers . 271

A.7 Management Modules . 272

A.7.1 Management Modules 272

“habil”
2004/11/29
page xvi

xvi Contents

A.7.2 Initializers . 273

A.8 Report Modules . 274

A.9 The strategy engine . 274

Bibliography 275

“habil”
2004/11/29
page xvii

List of Figures

1.1 Modeling cycle . 6

1.2 Modeling Diagram . 7

1.3 The part of the model needed in the finished application 11

1.4 Detailed modeling cycle . 12

1.5 Stable and metastable state . 26

2.1 Two incompatible properties in Farkas’ lemma 39

2.2 Local minima on the border of C = [a, b] 45

3.1 Finite element representation of a wall 64

3.2 The Branch-and-Bound scheme . 67

3.3 Branch-and-Reduce scheme . 68

3.4 Linear Relaxation of a nonlinear equality constraint 80

4.1 DAG representation of problem 4.2 87

4.2 Directed Acyclic Graph representation of (4.4) 90

4.3 Function evaluation for (4.4) . 91

4.4 Interval evaluation for (4.4) . 92

4.5 Gradient evaluation for (4.4) . 93

4.6 Interval gradient evaluation for (4.4) 94

4.7 Slopes for elementary operations 94

4.8 Slope evaluation for (4.4) . 95

4.9 Constraint propagation for (4.4) 96

4.10 Interval gradient evaluation for (4.4) after constraint propagation . 97

xvii

“habil”
2004/11/29
page xviii

xviii List of Figures

4.11 Slope evaluation for (4.4) after constraint propagation 98

4.12 Maximal exclusion boxes around
(

1
2

)
and total excluded region for

Example 4.19 . 111

4.13 Two quadratic equations in two variables, Example 4.20. 112

4.14 xe and xi calculated for Example 4.20with 3 significant digits for
v = (1, 1) and v = (1, 7) at z = (0.99, 1.05) 114

4.15 x× for Example 4.20 and various choices of z and v = (1, 1). . . . 115

4.16 Two polynomial equations in two variables, Example 4.21. 116

4.17 Exclusion and inclusion boxes for Example 4.21 at z = (0.99, 1.01) 117

4.18 Exclusion boxes for all zeros of F in Example 4.21. 118

4.19 Exclusion boxes for Example 4.21 at z = (1.5,−1.5). 119

4.20 Exclusion boxes for Example 4.21 in various regions of R2 120

5.1 Basic Scheme of the Algorithm . 124

5.2 DAG representation of problem (5.1) 154

5.3 Hierarchy of model classes . 155

5.4 Search graph . 160

5.5 The Strategy Engine Component Framework 183

“habil”
2004/11/29
page xix

Notation

We will need some standard notation from set theory. Notably, the following sym-
bols for standard sets of numbers will be used.

∅ the empty set

N the set of all natural numbers: {0, 1, 2, . . . },
Z the set of all integer numbers: {. . . ,−2,−1, 0, 1, 2, . . . },
R the set of all real numbers (the real line),

R∗ the extended real line: R ∪ {−∞,∞},
C the set of all complex numbers,

the symbol ∈ shall describe the is-element relation x ∈ X, and in some cases we
will write X 3 x.

For two sets A ⊆ B shall denote that A is a subset of B, here A = B =⇒ A ⊆ B.
If we explicitely exclude the case A = B for the subset-relation the notation A (B
will be chosen.

For two sets A and B the set A∪B denotes the union, A∩B the intersection, A\B
the set difference, and A×B the cartesian product of A and B. For A×A we write
A2 and more generally define An := An−1 × A. Furthermore, for a finite set A we
denote by |A| the number of elements in A.

Vectors and Matrices

An element x ∈ Rn is called a real (column) vector of dimension n. We write

x =




x1

...

xn


 ,

xix

“habil”
2004/11/29
page xx

xx Notation

and call the xi the components of x. For vectors we will need the three norms

‖x‖1 :=

n∑

i=1

|xi|,

‖x‖2 :=

√√√√
n∑

i=1

|xi|2,

‖x‖∞ := max {xi | i = 1, . . . , n}.

The absolute value of a vector will be defined componentwise

|x| :=




|x1|
...

|xn|,




and the comparison operators ≤, <, >, and ≥ are likewise defined componentwise,
e.g.,

x ≤ y : ⇐⇒ xi ≤ yi for all i = 1, . . . , n.

For vectors of dimension two or more, this defines only a partial order. For a subset
I of {1, . . . , n} we write xI for the vector of dimension |I| whose components are
those components of x which have indices in I.

The standard operations + and − for vectors are defined componentwise, there is no
ordinary product of column vectors. However, we define x?y as the componentwise
product of x and y:

x ? y :=




x1y1

...

xnyn


 .

For two vectors x and y we set

sup(x, y) :=




max {x1, y1}
...

max {xn, yn}


 , and inf(x, y) :=




min {x1, y1}
...

min {xn, yn}


 .

For y ∈ R we set y+ := max {0, y} and y− := max {0,−y}, and for a vector x ∈ Rn
we define the vectors

x+ := sup(0, x), x− := sup(0,−x).

The set Rm×n is defined as the set of all real matrices with m rows and n columns

A =




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn.




“habil”
2004/11/29
page xxi

Notation xxi

For subsets I of {1, . . . ,m} and J of {1, . . . , n} the expression AI: (A:J) defines the
submatrix of A composed of the rows (columns) with indices in I (J), and AIJ is
the submatrix whose entries are restricted to those with row indices in I and column
indices in J . We identify the set Rm×1 with the column vectors Rm. For A ∈ Rm×n
the matrix AT ∈ Rn×m denotes the transposed matrix.

Like for vectors we define for matrices |A|, A ≤ B, inf(A,B), sup(A,B), and A?B.

The triangle inequality implies the following relations:

|x+ y| ≤ |x|+ |y|, |x ? y| = |x| ? |y|, inf(x, y) ≤ x, y,
sup(x, y) ≥ x, y, |A+B| ≤ |A|+ |B|, |A ? B| = |A| ? |B|,
inf(A,B) ≤ A,B, sup(A,B) ≥ A,B, |xT y| ≤ |x|T |y|,

|Ax| ≤ |A| |x|, |AB| ≤ |A| |B|, |xTAy| ≤ |x|T |A| |y|.

Intervals

The set x := [x, x] ⊆ R for x, x ∈ R∗ is the (closed) interval {x ∈ R | x ≤ x ≤ x}.
We denote the set of all real intervals by IR. Sometimes we will need intervals, for
which certain border points are not included. For x ∈ R we define (x, x] := {x ∈
R | x < x ≤ x} and analogously [x, x) and (x, x).

Now take vectors x, x ∈ Rn∗ . The box x is defined as x = [x, x] = {x ∈ Rn | x ≤ x ≤
x}. We have xi = [xi, xi] and x = x1 × · · · × xn. For the set of all n-dimensional
boxes we write IRn.

In the same way, we define A = [A,A] for matrices A,A ∈ Rm×n and IRm×n.

Basics in topology

For a norm ‖ ‖ on Rn, 0 < r ∈ R, and a vector x ∈ Rn we definine the open
(norm)ball with radius r and center x as

Dr(x) := {y ∈ Rn | ‖y − x‖ < r}.

For a subset X ⊆ Rn we fix the following terminology: An element x ∈ X is called
an interior point of X if for any norm ‖ ‖ on Rn there exists r > 0 with Dr(x) ⊆ X.
The point is called an exterior point of X if it is an interior point of the complement
Rn \X, and it is a border point otherwise.

The set X ⊆ Rn is open, if it contains only interior points, and it is closed, if its
complement is open. The interior int (X) of X is the set of all interior points of
X, the border ∂X of X is the set of all its border points. We define the closure
X := int (X) ∪ ∂X.

“habil”
2004/11/29
page xxii

xxii Notation

Functions

Let X ⊆ Rm and Y ⊆ Rn.

The set of all continuous functions f : X → Y will be denoted as C(X,Y) =
C0(X,Y).

We define set of all k-times continuously differentiable functions f : X → Y as
Ck(X,Y). A function f ∈ Ck(X,Y) will in short be called a Ck function.

Throughout this book the objective function of optimization problems usually will
be called f , and its gradient g = ∇f . The Hessian matrix of second derivatives will
be denoted G = ∇2f .

For a function F : Rn → Rm we define F (x)′ as the Jacobian of F at x.

“habil”
2004/11/29
page 1

Part I

Theoretical background

1

“habil”
2004/11/29
page 2

“habil”
2004/11/29
page 3

Chapter 1

Mathematical Modeling

1.1 Models

An important part of part of the mathematician’s work is translating phenomena
of the real world into his or her own language. This process is called modeling,
and a huge amount of literature for various levels of education is dedicated to
the discussion of this theme, e.g., Williams [227], Kallrath [107], Bossel [28],
Geoffrin [63], Bender [12], Giordano [68], or Meerschaert [147].

3

“habil”
2004/11/29
page 4

4 Chapter 1. Mathematical Modeling

1.1.1 History

The word “model” has its origin in the Latin word modellus, a diminutive form
of modulus, the word for measure or standard. The old Italian derivation modello
referred to the mould for producing things. In the sixteenth century the word was
assimilated in French (modèle), taking its meaning as a small representation of some
object, spreading into other languages like English and German.

The associated verb “modeling” describes a typical human way of coping with the
reality. Anthropologists think that the ability to build abstract models is the most
important feature which gave homo sapiens a competitive edge over less developed
human races like homo neandertalensis.

Although abstract representations of real-world objects have been in use since the
stone age, a fact backed up by cavemen paintings, the real breakthrough of modeling
came with the cultures of the Ancient Near East and with the Ancient Greek.

The development of philosophy in the Hellenic Age and its connection to mathemat-
ics lead to the deductive method, which gave rise to the first pieces of mathematical
theory. Starting at about 600 BC, geometry became a useful tool in analyzing
reality, and analyzing geometry itself sparked the development of mathematics in-
dependently of its application. Pythagoras of Samos is said to have been the first
pure mathematician, developing among other things the theory of numbers, and
most important initiating the use of proofs to gain new results from already known
theorems.

Important philosophers like Aristotle and Eudoxos followed, and the summit was
reached by Euclid of Alexandria at about 300 BC when he wrote The Elements,
a collection of books containing most of the mathematical knowledge available at
that time. The Elements held among other the first concise axiomatic description
of geometry and a treatise on number theory. Euclid’s books became the means of
teaching mathematics for hundreds of years, and around 250 BC Eratosthenes of
Cyrene, one of the first “applied mathematicians”, used this knowledge to calculate
the distances Earth-Sun and Earth-Moon and, best known, the circumference of
the Earth by a mathematical/geometric model.

A further important step in the development of modern models was taken by Dio-
phantus of Alexandria about 250 AD in his books Arithmetica, where he developed
the beginnings of algebra based on symbolism and the notion of a variable.

Building models for real-world problems, especially mathematical models, is so im-
portant for human development that similar methods were developed independently
in China, India, and Persia.

One of the most famous Arabian mathematicians is Abu Abd-Allah ibn Musa Al-
H
¯

wārizmı̄ (late 8th century). His name, still preserved in the modern word algo-
rithm, and his famous books de numero Indorum (about the Indian numbers — to-
day called Arabic numbers) and Al-kitab al-muh

¯
tas.ar fi h. isāb al-ǧabr wa’l-muqābala

(a concise book about the procedures of calculation by adding and balancing) con-
tain many mathematical models and problem solving algorithms (actually the two
were treated as the same) for real-life applications in the areas commerce, legacy,

“habil”
2004/11/29
page 5

1.1. Models 5

surveying, and irrigation. The term algebra, by the way, was taken from the title
of his second book.

In the Occident it took until the 11th century to continue the development of
mathematics and mathematical models, in the beginning especially for surveying,
architecture, and arts.

It is important to note that despite preceding work of Diophant and Al-H
¯

wārizmı̄
the systematic use of variables was really invented by Vietá (1540–1603), and it
took another 300 years, until Cantor and Russell, that the true role of variables in
the formulation of mathematical theory was fully understood.

Starting with Newton, Physics and the description of Nature’s principles became the
major driving force in modeling and the development of the mathematical theory.
Hand in hand with the discovery of new mathematical principles, the complexity of
the mathematical models increased.

Nowadays, lots of disciplines, not only from the hard sciences, use mathematical
models to analyze data. There are among many others important applications
in Anthropology, Archaeology, Arts, Economics, Finance, Linguistics, Medicine,
Political Sciences, and Psychology.

See, e.g., Gericke [64, in German] for a much broader and more detailed view of
the history of mathematics and mathematical modeling.

1.1.2 Mathematical Models

As a basic principle we may say:

A model is a simplified version of something that is real.

The traits of the model can vary according to its use. They can vary in their level of
formality, explicitness, richness in detail, and relevance. The characteristics depend
on the basic function of the model and the modeling goal .

In building models, everything starts with the real-world object we are considering.
In a model real-world objects are replaced by other, simpler objects, usually carrying
the same names. The knowledge we possess about the real-world is structured by
the model, and everything is reduced to those phenomena and aspects which are
considered important. Of course, a model can only describe a part of the real-world
phenomenon, and hence its usefulness is restricted to its scope of application.

Models can have many different functions, they can, e.g., be used to explain phe-
nomena, make predictions, or communicate knowledge. They give hints for the
solution of problems, provide a thorough understanding of the modeled objects,
and can be used as guides or even normative instances.

The models of interest for us are mathematical models. Here, the real world object
is represented by mathematical objects in a formalized mathematical language.

“habil”
2004/11/29
page 6

6 Chapter 1. Mathematical Modeling

The advantage of mathematical models is that they can be analyzed in a precise
way by means of mathematical theory and algorithms.

As mentioned in Section 1.1.1, mathematical models have been used long ago, and
many problems have been formulated in a mathematical way since a couple of
hundred of years. However, the enormous amount of computational work needed
for solving the models restricted their use to qualitative analysis and to very small
and simple instances.

The improvement in algorithms since the turn of the last century and the fast
development in computer technology since ENIAC was started in 1945 have made
it possible to use mathematical modeling for solving practical problems of significant
size, making it increasingly attractive for military and industry, and a special class
of problems, optimization problems, became very important.

The success in solving real world problems increased the demand for better and
more complex models, and the modeling process itself was investigated. There are
now several books on modeling, e.g., [228] and [107], and branches of mathematics
completely devoted to solving practical problems and developing theory and algo-
rithms for working on models, like operations research. See also [91] for a short
treatise of this theme.

Mathematical modeling is the art of finding a mathematical formulation, which is
on the one hand tractable by the theory and the algorithms available, and on the
other hand resembles the real-world object well enough to provide insight, answers
and advice for the application of interest.

As every textbook on modeling describes, the process of building a model from a
real-world problem is a tedious task. It often involves many iterations and interac-
tions. Traditionally, this process is described as a cycle like the one of Figure 1.1.

Figure 1.1. Modeling cycle

However, as was shown in Neumaier [167], the various stages of the modeling
cycle are much more interconnected, demanding even more interaction between
the subtasks. The author points out that the nodes of the diagram of Figure 1.2
represent information to be collected, sorted, evaluated, and organized.

The edges of the diagram represent the flow of relevant information between the
corresponding sources of information, a two-way interaction rather than a one-way
process like in the modeling cycle.

In analyzing the diagram lets start at the nodes.

“habil”
2004/11/29
page 7

1.1. Models 7

Numerical
Methods

Mathematical
Model

R T

S

M

P N

TheoryReport

Programs

Statement
Problem

Figure 1.2. Modeling Diagram

S. Problem Statement. Usually, the problem to be solved comes from the real
world. Often, a company will be interested in a specific application, perhaps a
design or an improvement in product quality or productivity. In order to end
up with a useful problem formulation, strong interaction with the end-user is
necessary. The first obstacle to overcome is the language differences between
the modeling mathematician and the user. The modeler has to acquire enough
knowledge about the field of the application to ensure that the chances for
misinterpretation and misconception are small.

If the communication problem is mastered, the modeler next faces the diffi-
culty that the problem specification he or she receives from the end-user is
ambiguous and most of the time misses important aspects. Academic training
and later experience leads to implicit knowledge. In expert discussions within
the field, this knowledge usually is not repeated since it is shared between all
participants. Therefore, the end-user normally does not mention those parts
of the problem formulation which are related to the implicit knowledge when
communicating with the modeler. So the problem formulation tends to re-
main incomplete, sometimes ambiguous. In many cases, the end-user himself
does not have a clear enough view (from the mathematical point of view) of
the problem to be modeled, making the modeling process even more tedious.

If the problem is put into a complete, formalized state, the next hurdle arises,
that the wishes the end-user has are usually not well compatible or even
contradictory. E.g., an oncologist designing a radiation plan for the radio
therapy of cancerous tumors wants to destroy all malignant cells without
destroying healthy tissue. However, if the tumor is at an unfavorable position,
this might not be possible. The end-user will then have to specify which wishes
are more important than others, and to what extent he or she is willing to set
aside some of them.

“habil”
2004/11/29
page 8

8 Chapter 1. Mathematical Modeling

M. Mathematical Model. The mathematical model is written in very clear, un-
ambiguous terms and formal language. To date a mathematical model consists
of concepts like

variables: These represent unknown or changing parts of the model, e.g.,
whether to take a decision or not (decision variable), how much of a
given product is being produced, the thickness of a beam in the design
of a ceiling, an unknown function in a partial differential equation, an
unknown operator in some equation in infinite dimensional spaces as they
are used in the formulation of quantum mechanics, etc.

relations: Different parts of the model are not independent of each other, but
connected by relations usually written down as equations or inequalities.
These pose restrictions on the variables and the data. E.g., the amount
of a product manufactured has influence on the number of trucks needed
to transport it, and the size of the trucks has an influence on the maximal
dimensions of individual pieces of the product. The speed of flow of a
fluid is connected with the pressure gradient, as is the form of the tube.

data: All numbers needed for specifying instances of the model. E.g., the
maximal forces on a building, the prices of the products, and the costs
of the resources, or the viscosity of a fluid.

In the formal description of a model we will also have to determine the mod-
eling goals, and the range of its application. Finally, we will have to specify
the minimal quality assignments needed for data and results for making most
use of the model.

T. Theory. In order to produce a useful model, the modeler has to become firm
in both the theoretical background in the subject of the application and, of
course, in the mathematical structures associated with it. Literature Search,
which has become much more efficient in the Internet era, is a very impor-
tant part of the modeling process, and end-user interaction should not be
neglected. However, it is essential that the modeler keeps its scientific inde-
pendence from the end-user. Otherwise, the danger is high that the model is
too strictly governed by the traditions of the field of application rather than
by a balance between them and the mathematical necessities and the most
recent mathematical developments.

Understanding the mathematical theory well is important for various reasons.
First, being able to prove qualitative statements about the model helps on the
one hand to choose the proper setting for numerical methods, and on the other
hand helps to assess quality and correctness of the computational results.

Second, essential for the applicability of a model in real-life situations is,
whether it can be used to solve problems of industry-relevant sizes. Whether
this is possible greatly depends on the solution time of the algorithm chosen.

Until the middle of the twentieth century most of the mathematical models
were used only to describe phenomena and to make qualitative statements
about the real world problems described. Since then the situation has changed
dramatically. The tremendous increase in computing power has shifted the
interest in mathematical models more and more from problem description
towards problem solving.

“habil”
2004/11/29
page 9

1.1. Models 9

This has an important consequence for mathematical modeling itself and for
the structure of the models: If the most important conclusions which can be
drawn from a model are qualitative statements, which are derived by analytic
means using a lot of mathematical theory, it is important to formulate the
model in a very concise way, especially tailored to the analytical methods
available.

Although modern algorithms are making more and more model classes solv-
able, it can still make a huge difference which model formulation from a set
of mathematically equivalent ones is taken, especially if solution time is con-
sidered. Choosing the “right” structure is a matter of experience and insight,
and it distinguishes good modelers from bad ones.

N. Numerical Methods. The more practical issues regarding model solving have
to be considered at this node of the diagram. If the model is of industry-
relevant size, methods have to be found which can compute the solutions
in a time interesting for the application. The maximum time available for
computing the solution will have an influence on the model complexity.

The urge for numerical solutions in the last decades, made it necessary to
change the model structure, to adapt it to the solution algorithms available.

The modeler faces many difficult decisions. The model structure will, e.g.,
be greatly influenced by the available software libraries, and the license costs.
For most mathematical problems free software from the Internet is available.
However, commercial products usually provide greater flexibility, stability,
performance, and support.

Special care has to be taken for data processing, especially in the situation of
Section 3.1.1, where algorithms are used as part of a mathematical proof. If
the problem size is huge, the available computer memory has to be taken into
account, etc. As we see, many constraints influence the modeler’s decisions.

P. Programs. Once numerical algorithms are available, they have to be imple-
mented on a computer for performing all calculations. The first step is to
design the program and its components properly. The user interfaces for data
input and for data visualization have to be developed, best together with the
end-user, and a test set for debugging has to be prepared.

If the algorithm is straightforward and the data handling is simple, a very
basic design using flow charts and a monolithic structure will be sufficient.
However, if the tasks increase in complexity a more professional approach
to algorithm design should be taken (see, e.g., Sommerville [215]). One
possibility would be the use of an UML (universal modeling language, not to be
confused with mathematical modeling languages as described in Section 1.2)
based CASE (computer aided software engineering) tool like Rational Rose

[184], Borland Together [26], Enterprise Architect [46], or AllFusion

Component Modeler [2]. A list of most available tools can be found in [132].
As a rule of thumb, it can be said that the time invested into a proper design
pays off twice during the implementation phase.

A very important part in the development of programs, which is often ne-
glected in mathematical software, is the documentation phase. The usability
and maintainability of a program rises with the quality of its documentation.
Also debugging and testing is simplified if proper documentation is written.

“habil”
2004/11/29
page 10

10 Chapter 1. Mathematical Modeling

The user interface has to be described in detail to enable the end-user to train
operators for the software even if the original designer is no longer available.

R. Report. A very important part of modeling is the proper design of reports gen-
erated from the model. Again, this is a task which needs strong interaction
with the end-user. In the translation step from problem statement to math-
ematical model the modeler has put lots of effort into replacing application
specific terms by mathematical objects. In order to make the model useful for
the end-user, the reverse translation has to be performed in report generation.

The most important feature of a report is that it provides the information
which the end-user needs for his application. The results computed from the
input data by the program often are presented using visualization techniques.
For the end-user the result reports often generate deeper insight into the ap-
plication, show limitations, or provide recommendations, either by themselves
or with the help of the modeler.

Another very important aspect is that the reported results can help to validate
the model. An end-user, using his experience, usually has a good feeling
what to expect from the model. If the results differ considerably, there is a
good chance that the model is lacking important constraints or still contains
modeling errors. In any case, a thorough analysis is needed.

Next we will focus on the diagram’s edges. The ten edges, which represent the
flow of information have to be considered repeatedly. Working on an edge usually
enriches both connected nodes simultaneously, requiring additional work there. The
state of the nodes changes in time, and so information traverses the whole diagram
spreading to all the nodes. During this process the problem frequently changes as
the model develops. The vague parts become clearer, the hidden knowledge unveils;
the initial ambiguities or conflicts soften — ideally they vanish completely, or if they
don’t a clear priority list becomes available, giving some relations and restrictions
precedence over other ones.

When the modeling process advances, the conditions at all nodes in the modeling
diagram ameliorate and stabilize. This reduces the tension and the flow of infor-
mation at all the diagram edges. If flow and tension on all edges have reached
insignificant levels, the modeling process can be considered complete. Latest at
this point, even the vaguest and most contradictory initial problem should have
turned into a reasonably well-defined statement; then the mathematical model in
the center is precisely defined, its scope of application is described, and its inherent
inaccuracies are determined. At the same time, the theoretical background will give
information on the qualitative behaviour of the model, and the numerical methods
for solving the problem will have been identified. A design of the algorithm to
be implemented will have been fixed, together with the system and the available
software libraries.

When the modeling process is finished and the end-user is satisfied with the re-
ports produced, the modeler can step back. For those, who just want to use the
algorithms, only the left part of the modeling diagram remains as in Figure 1.3.

As we have seen, several of the modeling steps require the help of the end user.
For complex models, it is widely accepted that computers are needed for solving

“habil”
2004/11/29
page 11

1.2. Mathematical Modeling Languages 11

R

S

P

Report

Programs

Statement
Problem

Theory
T

M
Mathematical

Model

N
Numerical
Methods

Figure 1.3. The part of the model needed in the finished application

the problem. For huge data sets or data which has to be retrieved from different
sources, computer support for collecting the data is accepted, as well.

1.2 Mathematical Modeling Languages

In this section we will shed light on the assistance computers can give for trans-
lating mathematical models from paper into the special input format the solution
algorithms require.

As stated before, there is an important consequence from computer-assisted model
solving. Somebody has to translate the model into a form accessible by the com-
puter.

Lets look again at the modeling diagram in Figure 1.2. In reality, the edges in the
diagram contain many steps which have not been explicitly described before. If we
consider the revised and more detailed model of the modeling process depicted in
Fig. 1.4, we observe that some of the additional steps in model building and solving
involve translations from one format to another: (translate model to solver input
format, translate data to solver input format, write status report). These tasks are
full of routine work and error prone. Furthermore, since during the reformulation
process sometimes the solution algorithm, and hence the program, is changed, these
“rewriting” steps have to be performed again and again.

A special case is the task to construct derived data. Many solvers require data
which is a priori not part of the model, but also not provided by the solver. E.g.,
gradients, sometimes Hessians, of all functions involved are needed for an efficient
local optimization algorithm (see Chapter 2). Computing these data usually is
neither boring nor straightforward but needs mathematical work.

“habil”
2004/11/29
page 12

12 Chapter 1. Mathematical Modeling

Numerical
Methods

Mathematical
Model

R T

S

M

P N

TheoryReport

Programs

Data

Collect &
Analyze

Translate Model
and Data to
Solver Input

Output

Write
Output

Interpret
Analyze,

Construct

Data
Derived

Problem
Statement

Figure 1.4. Detailed modeling cycle

In the early days of application solving all these translation steps were performed by
hand and programs were produced, which represented the mathematical model in an
algorithmic way. Data was stored in hand-written files. This was very inflexible and
error prone. Maintenance of the models was close to impossible, and the models were
neither very scalable nor re-usable in other applications. This made the modeling
process very expensive. In addition, a lot of expert knowledge in mathematics,
modeling, and software engineering was necessary for building applicable models.

Many of the important models for military applications and for the industry were
optimization problems, so methods were designed to reduce the modeling costs and
to reduce the error rate in the translation steps. This led to the development of
modeling languages and modeling systems. The next section will describe their
most important features.

1.2.1 Basic Features

The development of modeling languages started in the late 1970s when GAMS [29]
was designed, although there had been some precursors before.

Since that time it is known how all the error prone routine tasks in Fig. 1.4 can
be performed by the computer. The process of modeling has become much more
convenient, and the flexibility has increased a lot.

In a modeling language, the model can be written in a form which is close to
the mathematical notation, which is an important feature of an algebraic modeling
language (see Section 1.2.2).

The formulation of the model is independent of solver formats. Different solvers

“habil”
2004/11/29
page 13

1.2. Mathematical Modeling Languages 13

can be connected to the modeling language, and the translation of models and data
to the solver format is done automatically. So the routine translation steps are
done by the computer, and, after thorough testing of the interface, errors are very
unlikely.

In a modeling language, models and model data are kept separately. There is a
clear division between the model structure and the data. Therefore, many different
instances of the same model class with varying data can be solved. Many systems
provide an ODBC (open database connectivity) interface for automatic database
access and an interface to the most widely used spreadsheet systems. This relieves
the user from the laborious duty of searching for the relevant data every time the
model is used. A second advantage of this concept is that during the development
phase of the model, the approach can be tested on toy problems with small artificial
data sets, and later the model can be applied without change for industry-relevant
large scale instances with real data.

The computation of derived data can be automatized using automatic differentia-
tion. Most modeling systems nowadays can generate derived information (gradients,
sparse Hessians,. . .) from the model description without assistance of the user.

Today, there are several types of modeling systems in use. We will analyze the most
prominent type, the algebraic modeling languages, here. A thorough description of
the most important modeling languages available together with some historical and
theoretical background can be found in [108].

1.2.2 Algebraic Modeling Languages

The most important representatives of this biggest group of modeling languages are
GAMS [29], AMPL [58], Xpress-MP [7], LINGO [204], NOP [171], NOP-2 [203], Numerica [85],
and MINOPT [206].

In [93] and [92] Tony Hürlimann describes why algebraic modeling languages can
be viewed as a new paradigm of programming. Usually programming languages
are divided into three different classes: Imperative or procedural languages like
C, C++, Pascal, FORTRAN, and Java, Functional Languages like LISP, and Logic
Programming Languages like Prolog V and ECLiPSe.

All languages from these classes specify a problem in an algorithmic way. Like in
Babylonian mathematics, it is not specified what the problem is but rather how
to solve the problem. For this reason we can subsume these languages under the
general term algorithmic languages.

In contrast to that, modeling languages store the knowledge about a model, they
define the problem and usually do not specify how to solve it. They are declarative
languages, specifying only the properties of a problem: Starting with a state space
X (usually Rn × Zm), they specify a set of constraints by mathematical formulas
(usually equations, inequalities, and optimality requirements), which together define
a relation R : X → {true, false}. We say x ∈ X is admissible1, if R(x) = true,

1I have chosen the word admissible, since in optimization the word feasible is used to describe
all points which obey the equality- and inequality constraints but not necessarily the optimality

“habil”
2004/11/29
page 14

14 Chapter 1. Mathematical Modeling

and we define the mathematical model M := {x ∈ X | R(x)} for the problem we
are considering. This leads to a formulation which is very similar to the modern
mathematical approach. However, since no solution algorithm is specified, there is
a priori no reason why a problem defined in the declarative way should be solvable
at all, and there is definitely no reason why there should be an algorithm for finding
a solution.

Fortunately, however, there are large classes of problems (like linear programming)
for which algorithms to explicitly find the set M exist, and the number of solution
algorithms for various problem categories grows steadily.

If we direct our attention again to declarative languages, we can identify their three
most important aspects:

• Problems are represented in a declarative way.

• There is a clear separation between problem definition and the solution pro-
cess.

• There is a clear separation between the problem structure and its data.

Algebraic modeling languages are a special class of declarative languages, and most
of them are designed for specifying optimization problems. Usually they are capable
of describing problems of the form

min f(x)

s.t. F (x) = 0

G(x) ≤ 0

x ∈ x,

(1.1)

or something slightly more general, or constraint satisfaction problems, the special
cases with f ≡ 0. Here x denotes a sub-box of X = Rm × Zn.

The problem is flattened, i.e. all variables and constraints become essentially one-
dimensional, and the model is written in an index-based formulation, using algebraic
expressions in a way which is close to the mathematical (actually the TEX) notation.
Conceptually similar entities like variables, parameters, and constraints are grouped
in sets. The entities in the sets are later referenced by indices to the elements
of those sets. Groups of entities (variables, constraints) can then be compactly
represented and used in algebraic expressions.

In AMPL, for instance, the expression

∑

i∈S
x2
i

would be written as

sum { i in S } x[i]**2;

requirement.

‘‘habil’’

2004/11/29

page 15

1.2. Mathematical Modeling Languages 15

This leads to a problem formulation which is very close to a mathematical formula-
tion. Therefore, translation of mathematical models to declarations in a modeling
language usually involves syntactic issues only.

The algebraic modeling language is then responsible for creating a problem instance
that a solution algorithm can work on. This automatic translation step relieves
the user from translating the mathematical model into some queer internal solver
representation.

As a small example we consider the problem

min xTAx+ aTx

s.t. Bx ≤ b
‖x‖ ≤ c
x ∈ x,

(1.2)

with an N ×N -matrix A and an M ×N -matrix B.

Writing down all matrix products in index form we transform problem (1.2) into
the “flat” or “scalar” model

min

N∑

i=1

(N∑

j=1

Aijxj + ai

)
xi

s.t.

N∑

j=1

Bijxj ≤ bi for all i = 1, . . . ,M

√√√√
N∑

i=1

x2
i ≤ c

xj ∈ [xj , xj] for all j = 1, . . . , N.

(1.3)

This model can then easily be specified in AMPL:

PARAMETERS

param N>0 integer;

param M>0 integer;

param c;

param a {1..N};

param b {1..M};

param A {1..N,1..N};

param B {1..M,1..N};

param xl {1..N};

param xu {1..N};

VARIABLES

var x {1..N};

OBJECTIVE

minimize goal_function:

sum {i in 1..N} (sum {j in 1..N} A[i,j]*x[j] + a[i]) * x[i];

“habil”
2004/11/29
page 16

16 Chapter 1. Mathematical Modeling

CONSTRAINTS

subject to linear_constraints {j in 1..M}:

sum {i in 1..N} B[j,i]*x[i] <= b[j];

norm_constraint: sqrt(sum {j in 1..N} x[j]^2) <= c;

box_constraints {j in 1..N}: xl[j]<=x[j]<=xu[j];

################ DATA #####################

data sample.dat;

###

solve; display x;

In the AMPL description, we can easily identify the various parts of the flat model,
the declarations of parameters and variables. The actual model data is to be read
from the file sample.dat. The last line contains the only procedural statements:
solve which calls the solver, and display x which prints the solution.

We conclude with a short summary on the most important design features of alge-
braic modeling languages:

• Variables, constraints with arbitrary names,

• Sets, indices, algebraic expressions (possibly non-linear),

• Notation close to the mathematical formulation,

• Data independent problem structure,

• Models scalable (by a change of the parameters a switch can be made from
toy problems to real-life problems.

• Declarative statements, except for conditionals, loops, and very few procedural
statements,

• Flexibility in the types of models that can be specified,

• Convenient for the modeler (little overhead in model formulation. . .),

• Simple interface between modeling language and solver

• It must be easy to connect a solver to the modeling language and to
have easy access to the model, the data, and the derived information
like derivatives.

• Sending data back from the solver to the modeling language like progress
reports, solutions, or error messages should be straightforward.

• Simple and powerful data handling (ODBC, spreadsheet interfaces, data files,. . .),

• Automatic differentiation.

For a more thorough analysis see [59].

There are also completely different approaches to computer aided modeling, espe-
cially in areas where models are highly structured, or in constraint logic program-
ming, where the solution process cannot be easily separated from the model itself,
because generic solution algorithms would be inefficient.

“habil”
2004/11/29
page 17

1.3. Modeling Languages and Global Optimization 17

There is also nowadays a trend to Integrated Modeling Environments, where a more
graphical approach to model building is taken, relying almost completely on graph-
ical user interfaces (GUI), and a database representing the model. The model
building process is performed in a menu-driven way, and they contain strong visual-
ization tools, as well. AIMMS and OPL Studio by ILOG are typical representatives.

Recently, several languages try to bridge the gap between the algorithmic languages
used in constraint programming and the declarative languages mainly used in math-
ematical optimization. The Mosel [78] approach overall looks much like a program-
ming language, even the model declaration part has to be programmed, whereas the
language LPL [94] by Hürlimann provides a declarative part which looks similar
to mathematical notation, while the algorithmic part has the look and feel of an
imperative programming language.

1.3 Modeling Languages and Global Optimization

Modeling languages were first developed to support linear programming applica-
tions. As the computing power increased and the solution algorithms became more
effective, higher and higher dimensional nonlinear programs were made accessible.
The modeling systems had to keep up with the development, and ultimately this
was one reason for the emergence of algebraic modeling languages. The algorithms
available solved local optimization problems in an approximate way, so most of the
now available modeling systems provide very good connectivity for linear solvers
and local optimization algorithms.

There are, however, applications which cannot be solved by local approximation.
E.g., computer assisted proofs (see Section 3.1.1), certain chemical engineering prob-
lems (see Section 1.4.1), and protein folding (see Section 1.4.2). Most of these
problems are global optimization problems.

When solving such models harmful approximations must not be performed, roundoff
errors have to be avoided or controlled, and a lot of techniques have to be applied
which are not usually necessary for local optimization. The most important tool is
interval arithmetic (see Section 3.4) with directed rounding .

Compared to models with low requirements in rigor, for global optimization much
more care has to be taken in data handling. For computer-assisted proofs all data
items must be known exactly. Round-off in the translation of the input data from
modeling system to the solver can destroy important model properties. E.g. the
very simple system

0.4x+ 0.6y ≥ 1

x, y ∈ [0, 1]
(1.4)

has exactly one solution x = y = 1. The system becomes infeasible when rounded
to IEEE floating point representation.

For other problems the data might be uncertain, see Section 3.1.2. For example the
elasticity module for steel bars can vary by more than 15%. For solving problems
with uncertain data it is important that all parameters can be entered together with
their amount of uncertainty.

“habil”
2004/11/29
page 18

18 Chapter 1. Mathematical Modeling

Most modeling systems around have originally been developed for nonlinear local
optimization and linear programming. When trying to connect a solver for global
optimization problems to such a modeling language, the programmer usually runs
into one or all of the following problems.

The difficulties start with the fact that most modeling systems pass a presolved
problem, and all input data is rounded to floating point representation. Sometimes
it is not even possible to decide whether a datum the solver sees is integer or only
some real number very close to an integer. This involves round-off and a loss of
important knowledge and makes mathematical rigor impossible.

The second point is that the performance of global optimization algorithms usu-
ally depends on whether specific structural knowledge about the problem can be
exploited. Unfortunately, the problem which is passed from the modeling system
to the solver is “flat” and has lost most of its mathematical structure, except for
the sparsity pattern.

Automatic differentiation is not sufficient for constructing all derived information
needed for a global optimization algorithm. There is no inherent support for interval
analysis, and hence by the current generation of modeling systems essential data
such as implied bounds cannot be generated automatically (except in Numerica).

There is no support for matrix operations, so all matrix operations have to be
flattened, hence the structure is lost (consider, e.g., the constraint ATDAx = b). A
number matrix constraints cannot be used inside a model at all, like det(A) ≥ c, or
A is positive semidefinite, specifying these constraints is impossible in all modeling
languages I know of.

Finally, many global optimization problems can only be solved by using several
mathematically equivalent formulations of the same model at the same time. A
very nice example for that principle from an application in robotics can be found
in [136]. There is no modeling language which supports equivalent formulations.

Therefore, the global optimization community has developed its own input lan-
guages or modeling languages, like Numerica [85], NOP [171], or NOP-2 [203].

1.4 Applications

Many applications in optimization nowadays are driven by economical interest. It
is not a coincidence that another term for the objective function, especially in lin-
ear programming is cost function. In most of the economical applications, like in
logistics (the Traveling Salesman Problem) or cutting stock applications, it is nec-
essary to find a “good” solution, i.e., a feasible point with sufficiently low objective
function value. Usually, an improvement over the solution currently used in the
company by 10% is more than enough to satisfy the expectation of the company’s
CEO. Finding the globally best point usually is not required.

On the other hand, there are indeed applications, for which it is essential to find
the global minimum, and to prove its globality.

“habil”
2004/11/29
page 19

1.4. Applications 19

• There are certain non-linear optimization or feasibility problems, for which
finding a local optimum is sufficient. Due to the strong non-linearities in
problem formulation, sometimes local solvers have extreme difficulties in de-
tecting a feasible point. This can be because they are stuck in local minimizers
of the merit function, many times because the Lagrange multipliers are un-
bounded. In these cases, complete search can be used to stabilize the local
search by identifying good starting points. An example for such a hard feasi-
bility problem from a robotics application can, e.g., be found in Lee et al.
[134, 135].

• Many problems from mathematics are global optimization problems, e.g., the
maximum clique problem of finding the maximal number of mutually adjacent
vertices in a graph Γ is equivalent to an indefinite quadratic optimization
problem, which was proved by Motzkin & Strauss [153]. Here A is the
adjacency matrix of Γ, and e is the vector of ones.
Other problems from mathematics, like Kepler’s conjecture will be presented
in Section 3.1.1.

• The Human Genome Project [90] is trying to identify the approximately 30.000
genes in the human DNA. It has already sequenced the chemical base pairs
that make up human DNA. However, this information is not sufficient for
real applications like better pharmaceutical products and the like. Most of
the biological processes in the human body are caused or at least influenced
by proteins, strings of aminoacids. The 3D structure of those proteins is the
reason for their function, and their failure. The base pair information only
determines the sequence of aminoacids in a protein. Determining the 3D
structure from this sequence is a highly non-trivial task, involving a global
optimization problem, see Section 1.4.2.

• Predicting the fluid phase behaviour of most chemical separation processes
depends on the knowledge of the number of phases existing at the equilibrium
state, and the distribution of the chemical components in these phases has to
be known as well. The knowledge has to be very accurate, or a process sim-
ulator will not be able to capture the behaviour of a chemical plant properly.
The chemical phase and equilibrium problem is a global optimization prob-
lem, which must be solved by a complete method. Non-global local minima,
even good ones, usually lead to wrong solutions and bad predictions, see also
Section 1.4.1.

• Worst case studies are another field of application for global optimization. If
the structural integrity and stability of a bridge or building has to be ensured,
usually finite element models are used. In many applications the maximal
forces and stresses in the various structural parts are determined by local
optimization in combination with Monte-Carlo simulation. Balakrishnan
& Boyd [10] have shown that this might severely underestimate the true
maximal forces, posing the threat that structures might break for

In the following, some models will be presented as an example for the modeling
process, of course in polished form. Some more models for applications requiring
global optimization are presented in Section 3.1.

“habil”
2004/11/29
page 20

20 Chapter 1. Mathematical Modeling

1.4.1 Chemical Engineering

In chemical engineering various optimization applications exist. Many of them
require the solution of a global optimization problem. This is the reason, why
research groups in chemical engineering are among the most active and most suc-
cessful groups in the global optimization community. There are many published
global optimization problems from chemical engineering, see e.g. Floudas et al.
[56], Esposito & Floudas [47], Floudas [55].

S. Problem Statement

An important application in chemical engineering is the simulation of chemical pro-
cesses, one class of them are the separation processes, e.g., liquid chromatography,
capillary electrophoresis, and flow injection analysis. Separation techniques are in-
evitable for most real chemical analysis, because most samples are mixtures far too
complex to be analyzed by any direct method.

The behaviour of such a separation processes in the fluid phase depends on the
chemical equilibrium, the number of different phases existing at the equilibrium
state, and the distribution of the components of the mixture in these phases.

So, our task will be to predict the chemical equilibrium, the number of phases, and
the distribution of the components in the phases for a given mixture for a liquid
phase system.

T. Theory

The equilibrium problem has already drawn attention in the early days of optimiza-
tion. Dantzig et al. [42] have tried to attack the problem by linear programming
methods.

A survey through the literature will reveal a number of articles and books devoted
to the subject, e.g., Gibbs [65, 66], Smith & Missen [214], and Baker et al. [8].
From those we can see that today the problem is modeled via the Gibbs free energy
function. For defining that term, first we need to recall some thermodynamics.

There are four thermodynamic potentials, which are useful in the description of
chemical reactions and non-cyclic chemical processes, we will need two of them.
The internal energy U of a system is the energy associated with the random, disor-
dered motion of molecules. It must not be confused with the macroscopic ordered
energy related to moving objects, but it refers to the invisible microscopic energy
on the atomic and molecular scale, i.e., vibration of chemical bonds, fast move-
ment of molecules and their collision,. . . . If you consider the interaction with the
environment, for creating a system you have to invest the internal energy needed
plus the energy required for making room for it, pV is that contribution. We also
have to take into account the spontaneous energy transfer to the system from the
environment. This contribution is related to the absolute temperature T of the
environment and to the entropy S (a measure of the amount of energy which is

“habil”
2004/11/29
page 21

1.4. Applications 21

unavailable to do work); the term is TS. If we sum up all energy contributions, we
end up with the Gibbs free energy

G = U + pV − TS.

The Gibbs free energy describes the amount of work needed for creating the given
system in an environment of constant temperature T from a negligible initial vol-
ume.

At constant temperature and pressure the equilibrium condition for a chemical
process is that the Gibbs free energy attains its global minimum, subject to the
usual chemical constraints like elemental and molar balances.

We are interested in the phase and equilibrium problem for liquid phases. For mod-
eling those, we find (see [56, Section 6.2.2]) that the Gibbs free energy is expressed in
terms of the activity coefficient for liquid phases. The vapor phases can be assumed
ideal. Temperature T and pressure p are considered fixed.

M. Model

A proper model for this situation (from [56, Section 6.2.2]) can be written as follows:

Let C be set of components at fixed temperature and pressure, and let P be the
set of phases postulated at the equilibrium state. The components themselves are
composed of a set E of elements. Now write

• nc for the total number of moles of component c ∈ C, and write n for the
vector of nc,

• be for the number of elements e ∈ E in the mixture, write b for the vector
consisting of those numbers.

• Ace for the number of elements e ∈ E in component c ∈ C, and write A for
the matrix composed of those numbers,

• eP for the the vector of ones indexed by elements of P .

In addition we introduce variables

• Np
c for the unknown number of moles of component c ∈ C in phase p ∈ P ,

and N for the matrix composed of the N p
c .

Then the law of conservation of atoms states that the elemental balance equation
for reacting systems

ANeP = b (1.5)

holds, and the law of conservation of mass implies the molar balance equation for
non-reacting systems

NeP = n. (1.6)

Of course, we have N ≥ 0 component wise and

Np
c ≤ nc for all p ∈ P and c ∈ C; (1.7)

“habil”
2004/11/29
page 22

22 Chapter 1. Mathematical Modeling

this constraint is a consequence of N ≥ 0 and (1.6) in the case of a non-reacting
system.

The objective function of the optimization problem is the Gibbs free energy function

G = tr(Nµ), (1.8)

where µ is the matrix of chemical potentials µcp of component c in phase p, and tr
denotes the trace of a matrix. These µ can be modeled as follows, if the vapor phase
is assumed ideal and the liquid phases PL are described by an activity coefficient
equation:

µcp
RT

=





∆Gcp,f
RT + log

f̂cp
fcp,0

p ∈ P \ PL
∆Gcp,f
RT + log

f̂cp
fcp,0

+ log γcp p ∈ PL,
(1.9)

where R = 8.31451m2 kg/s2K mol is the gas constant, and T is the (constant)
system temperature. ∆Gcp,f denotes the Gibbs free energy for forming component c

in phase p. The f̂pc , f cp,0, and γcp depend on the components involved and the phases
present.

N. Numerical Analysis

There are texts suggesting solutions, e.g., Trangenstein [221], Jiang et al.
[103], McDonald & Floudas [144, 145], and McKinnon & Mongeau [146], and
they provide different approaches. We learn from them that incomplete methods
tend to fail because they become stuck in one of the numerous local minima. Hence,
we need a complete method (see Section 3.3).

Complete methods nowadays still have the disadvantage that the problem has to
be good structured in order to be solvable at all. If the mathematical structure is
bad, methods which process the whole search space need exponential effort in the
problem dimension.

P. Programs

There are a number of complete methods around. A very successful one is αBB
by Androulakis, Maranas & Floudas [3], which works very well for biconvex
problems2.

T. Theory

In Floudas et al. [56, Sections 6.3 and 6.4] we find that for two liquids, Renon
& Prausnitz [185] have derived NRTL equation for representing liquid-liquid im-
miscibility for multicomponent systems using binary parameters only, and that
McDonald & Floudas have managed to transform the equation into biconvex
form.

2A biconvex problem has the following property: The set of variables can be partitioned into
two subsets X and Y . If all variables in either of these sets is fixed, the problem is convex in the
other variables.

“habil”
2004/11/29
page 23

1.4. Applications 23

M. Model

The Gibbs free energy formulation for a liquid–liquid mixture in the biconvex for-
mulation of the NRTL equation can be found below.

min
N,Ψ

G =
∑

p∈P

∑

c∈C
Np
c

(
∆Gcp,f
RT

+ log
Np
c∑

c′∈C N
p
c′

)

+
∑

c∈C

∑

p∈PL
Np
c

(∑

c′∈C
Gcc′τcc′Ψp

c

)

where

Gcd = e−αcdτcd .

In addition to the standard constraints found above, we have the constraint due
to the variable substitution (additional variable Ψp

c), which is necessary for the
transformation to biconvex form:

Ψp
c

(∑

c′∈C
Gcc′Np

c′

)
−Np

c = 0, for all c ∈ C and p ∈ PL.

Here τcd and Gcd are non-symmetric binary interaction parameters. All other vari-
ables are like in the general model.

For a special case, the mixture of n-Butyl-Acetate and Water, the problem data is
(see [56, 6.3.2])

P = 1 bar

T = 298K

n = (0.5, 0.5)T

α =

(
0 0.391965

0.391965 0

)

τ =

(
0 3.00498

4.69071 0

)

∆Gcp,f = 0.

We need the molar balance constraint, since the mixture is non-reacting.

More data and special versions of the Gibbs free energy functions tailored for special
mixtures can be found in [56, 6.3, 6.4].

P. Program

McDonald & Floudas [145] have solved some problems in this formulation with
their GLOPEQ algorithm, especially the example in the previous section.

“habil”
2004/11/29
page 24

24 Chapter 1. Mathematical Modeling

R. Report

The global minimizer of our special example is

N =

(
0.4993 0.0007

0.3441 0.1559

)
,

the number of moles of Water and n-Butyl-Acetate in the two phases of the chemical
equilibrium state.

R. Report, S. Problem Statement

The Gibbs free energy function usually is highly non-convex, and for nonideal sys-
tems, the problem usually has multiple local (perhaps even global) solutions. Which
of them is the correct one?

In addition, we have assumed the number of phases in the mathematical model. This
assumption might be wrong. How do we check, whether the number of predicted
phases is correct?

T. Theory

We have to determine the stability of a computed solution in order to check, whether
it is the correct solution, and whether the number of phases has been predicted
correctly.

The tangent plane criterion can be used to decide which one of the solutions is
the true equilibrium solution. For a candidate point x the tangent plane distance
function is the difference between the Gibbs energy surface for a phase, which is yet
unaccounted for, and the tangent plane to the Gibbs energy surface at x. If this
function is non-negative over the whole composition space, x is the true equilibrium
solution.

M. Model

Let x be the vector built from the xc, the mole fractions of the components c ∈ C in
the new phase. Then conservation of atoms induces the elemental balance equation
for reacting systems

Ax = b, (1.10)

and conservation of mass implies the molar balance equation for non-reacting sys-
tems

‖x‖1 = 1, (1.11)

and 0 ≤ x ≤ 1 component wise. For a solution z of the Gibbs free energy problem,
the tangent function is given by

F = xT g(x, z), (1.12)

“habil”
2004/11/29
page 25

1.4. Applications 25

where
g(x, z)c = ∆Gfc + log x+ log γ̂c − µc(z). (1.13)

If the global minimum of this function with respect to the constraints above is
non-negative, the solution z is stable, otherwise it is unstable.

S. Problem Statement

In fact, the separation has to be considerable, and meta-stability is a problem, as
well. Therefore, we would like to require F (x) > 0. If we reverse the formulation,
we can ask, whether there is a point x which satisfies the conservation constraints
and F (x) ≤ 0. If such a point exists, the solution z of the Gibbs free energy problem
is unstable, and if it can be proved that no such point exists, z is stable.

N. Numerical Analysis

In this new formulation, the stability problem becomes a constraint satisfaction
problem, i.e. just constraints and no objective function, see Chapter 3.

P. Program

We might want to use a state-of-the-art constraint satisfaction solver or a global
optimization algorithm for solving the problem. In any case, it must be a complete
method. BARON, αBB, GLOPEQ [145] might be a choice.

1.4.2 Protein Folding

The following model is rather descriptive. This time I will give just a summary, not
the whole modeling process, since it is far too complex for a short section. For a
complete summary see, e.g., the survey by Neumaier [162].

Proteins are the building blocks of life as we know it. Proteins are the biological
machines within the human body, and within the bodies of all lifeforms on Earth.
There are billions of proteins around, performing all sorts of different functions.
They are building the skeletal structure of the cells, digest our food, they are re-
sponsible for our movement. The hormones are proteins, as are pheromones, and
many pharmaceutical products are proteins, as well.

Surprisingly, nature uses a sort of Lego r© bricks for producing that variety. All
proteins are constructed as a, probably long, string of amino acids, only 20 different
amino acids. The sequence of amino acids, the primary structure, can be determined
with comparably little effort. This structure is coded in the genetic information, in
the DNA, and the code is well-known. Three base-pairs determine one amino acid,
and via mRNA (messenger RNA) the information is carried into the ribosomes, the
protein factories inside cells, where the string of amino acids is formed with the
help of rRNA (ribosomal RNA) and tRNA (transfer RNA). So one could think that

“habil”
2004/11/29
page 26

26 Chapter 1. Mathematical Modeling

knowing the complete genetic information of a cell suffices to determine all proteins
and their biological function, hence to unveil the secrets of life itself.

However, before proteins can carry out their biological and biochemical function,
they undergo a dynamical process, they fold. Like with Lego r© bricks, the beautiful
structures are not created by mere successive arrangement. The three dimensional
structure is, what appeals to the eye. Proteins are one of nature’s masterpieces,
because they remarkably assemble themselves into a 3D structure, the tertiary struc-
ture. It is this structure, which causes the proteins to perform their function. The
process of protein folding, fundamental to all of biology, its dynamics and the final
results, still are unknown. There are many mathematical models (see, e.g., the
introductory paper by Richards [186] in Scientific American, and from a mathe-
matical point of view the aforementioned survey by Neumaier [162] and the article
by Kostrowicki & Scheraga [124]) around, but most of them are not completely
convincing, and the more convincing ones are extremely difficult to solve.

A protein can be unfolded and refolds itself properly (this was shown in the 1960s by
Christian Anfinsen, a work for which received the 1972 Nobel prize for chemistry).
Well, usually this works. Sometimes, proteins can change the folding, and sometimes
they return to the “wrong” shape. This is known since the stone age, since cooking
makes use of just that fact. When an egg is being boiled, the heat causes the protein
in the white to unfold and refold in a different structure, in which it is unable to
perform any meaningful biological function, well except for tasting well.

Determining the tertiary structure of a protein is essential in many ways.

metastable state

stable

x

V(x)

Figure 1.5. Stable and metastable state

• There are a number of well known diseases caused by misfolding of proteins,
e.g., Alzheimer’s disease, BSE (mad cow disease), Creutzfeld-Jakob disease
(CJD), Amyotrophic Lateral Sclerosis (ALS), and Parkinson’s disease. This
is probably related to the existence of metastable states, i.e., substantially
different configurations of an amino acid sequence having not very different
potential energy but are separated by high energy barriers (see Figure 1.5).

• Pharmaceutical products made from proteins could be made better fitting, if
their chemical structure would be predictable.

“habil”
2004/11/29
page 27

1.4. Applications 27

• Viruses and bacteria have structural hulls made from proteins. The immune
systems tries to identify typical structures of these surface proteins and coun-
teracts by manufacturing antibodies specifically targeting parts of these pro-
teins. Diseases difficult for the immune system (HIV, Herpes,. . .) and au-
toimmune diseases like MS (multiple sclerosis) have a strong connection to
proteins and their tertiary structure.

Because of its importance, many research teams worldwide work on a solution of the
protein folding problem: Given a sequence of amino acids, determine the tertiary
structure of the resulting protein.

Most mathematical models describe the potential energy of possible 3D structures
of a protein, depending either on the coordinates of all atoms, or of the Cα-atoms
(the base atoms of the amino acids) by a function, the potential energy function V .

Thermal movement causes the protein molecules to change shape, and hence change
their potential energy. This happens until the protein has reached an energy level
low enough that its structure remains sufficiently stable. This state has to be at
least a local minimum of the potential energy function. The biochemical processes
in nature heavily rely on the predictability and the stability of the 3D structure
of a protein. So, it is very likely that the proteins prevalent in biological tissue
have exceptional folding states. There are only few possibilities of being stable
despite the molecular movements cause by thermal influence. The protein structure
corresponds to the global optimum of the potential energy function, or at least it is
at a local optimum with very steep potential barriers separating it from the global
one. There are indeed some indications that the second case is indeed possible in
nature. E.g., insulin, the hormone responsible for managing the level of glucose
in the blood, is produced in a remarkable way. A string of amino acids is formed
which is considerably longer than the one needed for insulin, and after this longer
protein has folded, the ends of the strings are chopped off resulting in a properly
folded insulin molecule.

Mathematically, we are left with a global optimization problem

min V (x)

s.t. C(x) ∈ C

with objective function V , the potential energy function, and a set of configuration
constraints. These contain maximum bonding lengths between the atoms in the
structure, minimal atom distances, restrictions on the bonding angles (e.g. Ra-
machandran diagrams), surface terms, polarity restrictions, and the like.

The exact form of the optimization problem is still disputed and subject of ongoing

“habil”
2004/11/29
page 28

28 Chapter 1. Mathematical Modeling

research. A typical potential energy function is, e.g., the CHARMM potential

V (x) =
∑

bonds

cl(b− b0) (b a bond length)

+
∑

bond angles

ca(θ − θ0) (θ a bond angle)

+
∑

improper
torsion angle

ci(τ − τ0) (τ an improper torsion angle)

+
∑

dihedral angles

trig(ω) (ω a dihedral angle)

+
∑

charged pairs

QiQj
Drij

(rij is the Euclidean distance of the charged atoms)

+
∑

unbonded pairs

cwϕ

(
Ri +Rj
rij

)
(Ri atom radius, ϕ the

Lennard-Jones potential).

These optimization problems can be very high dimensional, for biologically rele-
vant proteins with the simplest models the number of variables can reach several
hundreds. Finding the global optimum is essential, and heuristic approaches have
been developed tailored just for this problem. However, the number of local minima
in the potential energy function can be high, and the probability that incomplete
methods get stuck in one of these local optima is considerable. Complete methods,
however, are not yet fit for problems of this size and complexity.

In addition, solving just the global optimization problem is not enough. Find-
ing almost global local optima is important, because they might help identifying
metastable states or biochemically relevant configurations, which are not global
minimizers of the potential energy function.

“habil”
2004/11/29
page 29

Chapter 2

Local Optimization

Optimization is, as mentioned before, the task of finding the best possible choices
with respect to a given target, not violating a number of restrictions. Historically,
optimization problems first came from physical models. Right after the invention
of differential calculus the first optimality criteria (vanishing of the gradient) were
found by Sir Isaac Newton [172, 173] and Gottfried Wilhelm Leibniz [137],
and already at the turn of the 18th to the 19th century Joseph Louis Lagrange
[130, 131] gave a criterion for optimality in the presence of equality constraints, the
famous Lagrange multiplier rule.

Before the 1940s, however, only few optimization applications had been solved,
because little theory on the numerical solution of optimization problems was avail-

29

“habil”
2004/11/29
page 30

30 Chapter 2. Local Optimization

able. The Newton method in more than one variable and the steepest descent
method were known, but it required legions of “computers” (most of them lowly-
paid women) to solve applications of reasonable size.

Things changed when in the 1940s two things happened which changed the field
completely. ENIAC, switched on in 1945, heralded the computer era, and Dantzig
[41] invented in 1947 the simplex algorithm. During the next decade computers
and algorithms improved so much that solving linear optimization problems (linear
programming problems) more and more became a routine task.

Non-linear problems in more than ten dimensions were out of reach, though. In
1959, Davidon [43] developed his variable metric method, which boosted the size
of locally solvable problems from ten to hundreds of variables.

Nowadays, solving local optimization problems in tens of thousands of variables
is possible, not only due to computers of much higher computing power but also
because of the vast progression made in mathematical theory and algorithm design.

Global optimization is still in its beginnings, although there are a number of solvers
around (e.g., BARON [193] or αBB [3]), which can routinely find the global optimum
for most problems up to ten variables, solve a lot of problems in up to 100 variables
and selected problems with more than 1000 variables.

To define the optimization problem in a mathematical way, let X = Rn × Zm, and
take a continuous function f : D ⊆ X → R and a set C ⊆ D. We consider the
minimization problem

min f(x)

s.t. x ∈ C. (2.1)

The function f is called the objective function, and the set C the feasible do-
main. The elements of C are called feasible points.

A local minimizer of (2.1) is a feasible point x̂ ∈ C such that for some neighbor-
hood U of x̂ in C we have

f(x) ≥ f(x̂) for all x ∈ U. (2.2)

If this inequality is valid for all x ∈ C, then x̂ is called a global minimizer.
The function value f(x̂) at a global (local) minimizer is called a global (local)
minimum.

If the first line of problem (2.1) reads instead

max f(x),

we are considering a maximization problem. Solving it is equivalent to finding
the solution to min−f(x). A global (local) minimizer of −f is called a global (lo-
cal) maximizer, and its function value a global (local) maximum. The term
global (local) optimizer shall henceforth refer to either minimizers or maximiz-
ers, and analogously for the terms global (local) optimum and optimization
problem. Sometimes we will say (global) extremum for (global) optimum.

Since minimization and maximization are the same up to a change of sign, we will
restrict all our considerations in the following to minimization problems.

“habil”
2004/11/29
page 31

31

Several types of optimization problems can be distinguished. If n = 0, i.e. X ⊆ Zm,
the problem is called a discrete optimization problem, and if m = 0, i.e. X ⊆
Rn, it is called a continuous optimization problem. If both m 6= 0 and n 6= 0,
we are considering a mixed integer optimization problem. Often, the term
program3 is used instead of optimization problem and programming is another
expression for solving an optimization problem.

In this book we will restrict ourselves to smooth continuous problems, so from now
on we take X = Rn.

The feasible set usually is defined by imposing constraints, restricting the domain
D of f . A constraint of the form

x ≤ u or x ≥ l

is called a bound constraint. More complicated constraints are

g(x) = a, h(x) ≤ b and k(x) ∈ [c, d]

equality and (twosided) inequality constraints, where g, h, and k are con-
tinuous functions. We can collect all constraint functions into a single vector
F : D′ ⊆ Rn → Rk. Furthermore, we can collect all right hand sides into a
vector of intervals, a box F ⊆ Rk, including infinitely wide intervals for constraints
which have only one bound. All bounds from the bound constraints are collected
in x ⊆ D ∩ D′, another box, again possibly unbounded. We end up with the
optimization problem

min f(x)

s.t. F (x) ∈ F
x ∈ x.

(O)

If there are no constraints, we call the problem unconstrained. If the function F
is absent, it is a bound constrained problem.

If F is linear, we have a linearly constrained problem, and if in addition f is
linear, we speak of a linear program. If f is quadratic, it is called a quadratic
program.

In all other cases the optimization problem is called nonlinear program or non-
linear optimization problem, although further fine grained distinctions exist.

If the objective function f is constant (equivalently altogether missing) the problem
is called a feasibility problem or constraint satisfaction problem.

A continuous optimization problem is called smooth, if f and F are continuously
differentiable, otherwise nonsmooth.

All optimization problems considered in this book will be smooth unless otherwise
explicitly stated.

Before we dive deeper into the mathematics of the subject, we note that there is
one immediate result.

3This term is a remnant of the times when optimization was primarily used in military logistics.
It means a schedule, a plan, or just a set of actions, and programming is the process of designing
such a program.

“habil”
2004/11/29
page 32

32 Chapter 2. Local Optimization

Theorem 2.1 (Existence of solutions).

(i) Let C be nonempty and compact. If f is continuous in C, the optimization
problem (2.1) has a global solution.

(ii) If there is a feasible point x0 ∈ C and the level set

C0 := {x ∈ C | f(x) ≤ f(x0)}

is compact, the optimization problem (2.1) has a global optimizer.

Proof.

(i) This holds, since continuous functions attain their minimum in every nonempty
compact set.

(ii) This is a consequence of (i), because the level set C0 is nonempty (x0 ∈ C0)
and compact.

The remainder of the chapter is with few exceptions devoted to local optimization
only, and the presentation benefitted a lot from the unpublished lecture notes of
Neumaier [163].

Being able to solve the optimization locally in an efficient way is a prerequisite for
any efficient global optimization algorithm. This has two reasons: The first one,
which is obvious, is that every global optimizer of problem (O) is a local optimizer.
The other one, which is less obvious, is that algorithms for global optimization tend
to be more efficient if they can derive additional redundant constraints which help
to reduce the search space by constraint propagation (see Section 3.5) or improve
relaxations (see Sections 3.6 and 3.7). A very powerful constraint in this respect is

f(x) ≤ f∗, (2.3)

where f∗ = f(x∗), and x∗ is the best known feasible point.

For many global optimization problems, especially those involving equality con-
straints, it is virtually impossible to find feasible points by trial and error, so stronger
methods are needed. Local optimization of a measure of infeasibility is very well
suited for solving that problem. However, one problem has to be addressed. As
we will see later, local optimization algorithms need a reasonable point to start
from. Finding a good starting point sometimes is a demanding challenge. Com-
plete search methods (see Section 3.3) and heuristic global optimization algorithms
(see Section 3.2), in return, can help there. Thus, local and global optimization
complement each other well. Nevertheless, local optimization is the easier task so
it will be the first subject we put our focus on.

Good introductions to local optimization can be found, e.g., in Fletcher [52],
Bazaraa et al. [11], and Nocedal & Wrigth [174].

“habil”
2004/11/29
page 33

2.1. Convex Analysis and Duality 33

2.1 Convex Analysis and Duality

Optimization is a mathematically rich field. Its results depend as much on analysis
as on geometric ideas. Especially powerful are the techniques of convex analysis,
whose foundations will be presented in this section. Readers who want to dive
deeper into the field, can start with the excellent reference by Rockafellar &
Wets [188] or its predecessor by Rockafellar [187]. Introductions which focus
on the connection between optimization and convexity are, e.g., Bazaraa et. al
[11], Hiriart-Urruty & Lemaréchal [86], Borwein & Lewis [27], or Stoer
& Witzgal [218].

We start by a short summary of the basic definitions.

Let x, y ∈ Rn be two points. The line segment connecting x and y is defined by

xy := {λy + (1− λ)x | λ ∈ [0, 1]}.
Given a finite number of points x0, . . . , xn, the expression

n∑

k=0

λjxk, with

n∑

k=0

λk = 1 and λk ≥ 0 for k = 0, . . . , n

is called a convex combination of the points xk.

A set C ⊆ Rn is convex if for all x, y ∈ C the line segment xy ⊆ C. The following
lemma is a direct consequence of the definition.

Lemma 2.2. If C1 and C2 are convex sets in Rn then C1 ∩ C2, λC, and C1 + C2

are convex, as well.

Let S ⊆ Rn be arbitrary. The convex hull ch(S) of S is the intersection of all
convex sets C ⊇ S. Another simple proof shows

Lemma 2.3. The convex hull ch(S) of S is the smallest convex set containing S,
and it can be explicitly described as the set of all convex combinations of points in
S.

If S ⊆ Rn is a finite set the convex hull ch(S) is called a polytope (for the begin-
nings in this field see Minkowski [148]). If the elements of S are affinely indepen-
dent, we call ch(S) is a simplex.

The following result is due to Carathéodory [30].

Theorem 2.4 (Carathéodory).
For an arbitrary subset S of Rzn every point in the convex hull ch(S) is a convex
combination of at most n+ 1 points of S.

Proof. Take x ∈ ch(S). We know from Lemma 2.3 that x can be expressed as
a convex combination of points in S. Let N be the minimal number of points

“habil”
2004/11/29
page 34

34 Chapter 2. Local Optimization

necessary. If N ≤ n, we are finished. So N > n, and let

x =

N∑

j=0

λjxj

be the linear combination with non-negative λj , and
∑N
j=0 λj = 1.

We define the set K := {xj − x0 | j = 1, . . . , N}. Since K ⊆ Rn the set is linearly
dependent, and so there are coefficients µj not all zero, so

N∑

j=1

µj(xj − x0) = 0, and w.l.o.g. µ1 > 0,

N∑

j=0

µjxj = 0, with µ0 = −
N∑

j=1

−µj .

This implies for all ν ∈ R that

x =

N∑

j=0

(λj − νµj)xj .

We set

ν := min

{
λj
µj

∣∣∣∣µj > 0, j = 0, . . . , N

}
,

and w.l.o.g. we have ν = λN
µN

> 0. Furthermore, for all j = 0, . . . , N − 1 we have

αj := λj − νµj ≥ 0. If µj ≤ 0, this is obvious, and if µj > 0 we have
λj
µj
≥ ν by

construction of ν. Since αN = 0, we have

x =
N−1∑

j=0

αjx,

and
N−1∑

j=0

αj =
N∑

j=0

λj − ν
N∑

j=0

µj = 1− ν(
N∑

j=1

µj + µ0) = 1− 0ν = 1.

So we have found a convex combination with fewer points, hence N was not minimal.

Let S be an arbitrary subset of Rn. We denote by S the topological closure of S
(for an introduction to topology see, e.g. Willard [226]).

Proposition 2.5. The closure C of any convex set C ⊆ Rn is convex.

Proof. This follows from the continuity of addition and multiplication with scalars
in Rn: λC + µC ⊆ λC + µC, and thus λC + µC ⊆ C if λC + µC ⊆ C. For λ ≥ 0
and µ ≥ 0 with λ+ µ = 1 this is exactly what is required.

“habil”
2004/11/29
page 35

2.1. Convex Analysis and Duality 35

For every non-empty set S we define the closed convex hull cch (S) := ch(S) of
S. It is the intersection of all closed convex sets containing S.

Corollary 2.6. If S ⊆ Rn is bounded then cch (S) is compact.

Proof. Take any norm ‖.‖ on Rn. Let x be any point in ch(S). From Theorem 2.4
we know that x =

∑n
j=0 λjxj , a convex combination. Since S is bounded, we know

‖xk‖ ≤ M for all xk, hence ‖x‖ ≤ ∑n
j=0 λj‖xj‖ ≤ M

∑n
j=0 λj = M . So ch(S) is

bounded, and since the closure of a bounded set is bounded, we know that cch (S)
is bounded. By the theorem of Bolzano and Weierstraß cch (S) is compact.

The following theorem, essentially due to Minkowski [149], shows that for a convex
closed set C and point x /∈ C we can find a separating hyperplane so that the
set is on one side and the point is on the other.

Theorem 2.7 (Separation Theorem).
For a nonempty closed and convex set C ∈ Rn and a point x /∈ C we can find a
point c ∈ C and a vector p ∈ Rn with

pTx < pT c ≤ pT z for all z ∈ C. (2.4)

Proof. We consider the optimization problem

min ‖z − x‖2
s.t. z ∈ C. (2.5)

By assumption, there exists a point y feasible for this problem. The level set
C0 = {z ∈ C | ‖z − x‖2 ≤ ‖y − z‖2} is compact, since it is an intersection of C
with a closed norm ball, hence closed and bounded. By Theorem 2.1 the problem
admits a solution c ∈ C. We have

p := c− z 6= 0, since z /∈ C.

For λ ∈ (0, 1) and z ∈ C we set zλ := c+ λ(z − c) ∈ C. By construction, we get

0 ≤ ‖zλ − x‖22 − ‖c− x‖22 = ‖p+ λ(z − c)‖22 − ‖p‖22
= 2λpT (z − c) + λ2‖z − c‖2.

Divide by 2λ and take λ→ 0. This implies pT (z − c) ≥ 0, and thus

pTx ≥ pT c = pTx+ pT p > pTx.

We say that for a convex set C a function f : C → R is convex in C if

f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x) for x, y ∈ C and λ ∈ [0, 1]. (2.6)

“habil”
2004/11/29
page 36

36 Chapter 2. Local Optimization

It is called strictly convex in C if (2.6) holds and equality implies x = y or
λ ∈ {0, 1}. We say that a function F : C → Rn is (strictly) convex, if all the
component functions Fk : C → R are (strictly) convex.

Lemma 2.8. Any (affine) linear function is convex but not strictly convex.

Proof. Trivial.

Lemma 2.9. A C1 function f on a convex set C is convex in C if and only if

f(z) ≥ f(x) +∇f(x)(z − x) (2.7)

for all z ∈ C. Furthermore, f is strictly convex if and only if, in addition, equality
in (2.7) holds only for z = x.

Proof. If f is convex and x, z ∈ C. Then the definition (2.6) implies for all λ ∈ (0, 1]

f(z)− f(x) ≥ f
(
x+ λ(z − x)

)

λ
.

Since f is differentiable, the result follows for λ→ 0. Now assume that f is strictly
convex and that equality holds in (2.7) for some x 6= z, i.e., ∇f(x)(z − x) =
f(z)− f(x). This together with the definition of strict convexity implies that

f((1−λ)x+λz) < (1−λ)f(x)+λf(x)+λ∇f(x)(z−x) = f(x)+λ∇f(x)(z−x) (2.8)

for 0 < λ < 1. Since f is convex and (1− λ)x+ λz ∈ C, we know

f((1− λ)x+ λz) ≥ (1− λ)f(x) + λ∇f(x)(z − x),

which contradicts (2.8). So equality in (2.7) holds only for z = x.

Now suppose that the inequality holds. For x, y ∈ C and λ ∈ [0, 1] set z :=
λy + (1− λ)x. We get

λf(y) + (1− λ)f(x) = λ
(
f(y)− f(z)

)
+ (1− λ)

(
f(x)− f(z)

)
+ f(z)

≥ λ∇f(z)(y − z) + (1− λ)∇f(z)(x− z) + f(z)

= ∇f(z)
(
λy + (1− λ)x− z

)
+ f(z) = f(z),

so f is convex. If the inequality is strict whenever y 6= x, this implies strict inequality
in the equation above, so f is strictly convex.

For C2 functions we get the following result:

Lemma 2.10. Let f be a C2 function on a convex set C. We have f is convex in
C if and only if ∇2f(z) is positive semidefinite for all z ∈ int (C).

“habil”
2004/11/29
page 37

2.1. Convex Analysis and Duality 37

If furthermore, ∇2f(z) is positive definite for all z ∈ C, then f is strictly convex.
The converse is not true, however (a counterexample is f(x) = x4).

Proof. Suppose f is convex. Now let h ∈ Rn be an arbitrary vector, and take
z ∈ int (C). Thus, there exists a λ > 0 with z + λh ∈ C. Since f is convex,
Lemma 2.9 implies

f(z + µh)− f(z)− µ∇f(z)h ≥ 0

for all 0 < µ < λ. Taylor’s theorem implies that

f(z + µh)− f(z)− µ∇f(z)h = 1
2µ

2hT∇2f(z)h+ µ2R2(z, µh)‖h‖2.

Thus,
1
2µ

2hT∇2f(z)h+ µ2R2(z, µh)‖h‖2 ≥ 0

for all 0 < µ < λ. Since R2(z, µh)→ 0 for µ→ 0, this implies

hT∇2f(z)h ≥ 0,

so the Hessian of f is positive semidefinite.

Assume, conversely, that the Hessian is positive semidefinite. By the Taylor theorem
and the integral remainder term we have

f(y) = f(z) +∇f(z)(y − z) + 1
2 (y − z)T∇2f

(
z + θ(y − z)

)
(y − z), 0 < θ < 1.

The last term on the right is nonnegative since the Hessian is positive semidefinite,
hence f is convex. If the Hessian is positive definite, the third term is positive, if
y 6= z, and thus f is strictly convex.

The following definition is due to Mangasarian [141, 142]. We will need the
property later in the statement of the generalized Karush-John conditions (see Sec-
tion 2.2.4).

Definition 2.11. Let f be a function defined on an open subset D ⊆ Rn. Let
S ⊆ D be any set. We say f is pseudoconvex at x ∈ S (with respect to S) if it is
differentiable at x and

z ∈ S, ∇f(x)(z − x) ≥ 0 =⇒ f(z) ≥ f(x). (2.9)

It is called pseudoconvex on S if it is pseudoconvex with respect to S at all x ∈ S.

Every convex function is pseudoconvex by Lemma 2.9.

The function f is called (strictly) concave if −f is (strictly) convex. It is called
pseudoconcave on a set S if −f is pseudoconvex on S. Note that any (affine)
linear function is convex and concave.

A function f : Rn → R is called unimodal in C if

f(z) < max
(
f(x), f(y)

)
for z ∈ xy, x, y ∈ C \ {z}. (2.10)

“habil”
2004/11/29
page 38

38 Chapter 2. Local Optimization

A strictly convex function is unimodal, as a direct consequence of the definitions.

An immediate connection between convex functions and convex sets is given by the
following result, which follows directly from the definitions.

Proposition 2.12. For every convex set C and every convex function f : C → R,
the set

S := {x ∈ C | f(x) ≤ 0}
is convex.

An important consequence of this result is the following corollary for linear inequal-
ities:

Proposition 2.13. For C ⊆ Rn convex, A ∈ Rm×n and b ∈ Rm the sets

C+ := {x ∈ C | Ax ≥ b}, C0 := {x ∈ C | Ax = b}, C− := {x ∈ C | Ax ≤ b}

are convex.

Now we have assembled enough material for proving the first results on optimization
problems:

Theorem 2.14 (Optimization on convex sets).
Consider the optimization problem

min f(x)

s.t. x ∈ C. (2.11)

with convex C.

(i) If f is convex in C then every local optimizer of (2.11) is a global optimizer,
and the set of all optimizers is convex.

(ii) If f is unimodal in C, then (2.11) has at most one solution.

Proof.

(i) Let x be a local solution of (2.11), and y ∈ C arbitrary. Since f is convex, we
have

f(y)− f(x) ≥ f(x+ h(y − x))− f(x))

h

for all 0 < h ≤ 1. Since x is a local optimizer, for h small enough f(x+ h(y−
x)) ≥ f(x), hence f(y)− f(x) ≥ 0, and x is a global optimum.

(ii) Suppose, we have a local solution x ∈ C. Take z ∈ C with z 6= x and
λ > 0 sufficiently small. Then f(x + λ(z − x)) ≥ f(x). By unimodality
f(x+ λ(z − x)) < max

(
f(x), f(z)

)
, and so f(z) > f(x), and z is not a global

solution.

“habil”
2004/11/29
page 39

2.1. Convex Analysis and Duality 39

One of the central lemmas in optimization theory is the lemma of Farkas [49].

Lemma 2.15 (Farkas).
Let A ∈ Rm × n, and g ∈ Rn. Then exactly one of the following conditions can be
satisfied:

(i) gT p < 0, Ap ≥ 0 for some p ∈ Rn,

(ii) g = AT q, q ≥ 0 for some q ∈ Rm.

Proof. If (i) and (ii) are both true, we have

gT p = (AT q)T p = qT (Ap) ≥ 0,

a contradiction.

If (ii) is false, we have g /∈ C := {AT q | q ≥ 0}. Since 0 ∈ C, we have C 6= ∅, and
the Separation Theorem 2.7 shows the existence of a vector p with

pT g < pTx for all x ∈ C.

Since x is an arbitrary vector of the form x = AT q with nonnegative q, we get for
all q ≥ 0

gT p < qTAp.

For q = 0 we have gT p < 0, and for q = ε−1ei and ε > 0 the inequality implies
(Ap)i > εgT p. For ε→ 0 we get the required (Ap)i ≥ 0. Thus (i) is possible.

Possible
Solutions
for p.

A

A

1

2

A

A

1

2
b

b

no overlap
of the regions

Figure 2.1. Two incompatible properties in Farkas’ lemma

Geometrically, see Figure 2.1, property (i) requires that p is a vector, which forms
acute angles (≤ π/2) with all rows of A but a strictly obtuse angle (> π/2) with the

“habil”
2004/11/29
page 40

40 Chapter 2. Local Optimization

vector g. On the other hand, property (ii) demands that g is a nonnegative linear
combination of the rows of A, i.e., is in the positive cone formed by them.

A useful generalization of the Lemma of Farkas is the Transposition Theorem.

Theorem 2.16 (Transposition Theorem).
Let B ∈ Rm×n be any matrix, and consider a partition (I, J,K) of the set {1, . . . ,m}.
Then exactly one of the following conditions hold:

(i) (Bv)I = 0, (Bv)J ≥ 0, (Bv)K > 0 for some v ∈ Rn,

(ii) BTw = 0, wJ∪K ≥ 0, wK 6= 0 for some w ∈ Rm.

Proof. The theorem follows directly by applying the Lemma of Farkas 2.15 to

g =

(
0

1

)
, A =




BI: 0

−BI: 0

BJ: 0

BK: e


 , e =




1
...

1


 , p =

(
v

−λ

)
, and q =




a

b

c

d


 .

Then gT p < 0 and Ap ≥ 0 hold if and only if

λ > 0, (Bv)I ≥ 0, −(Bv)I ≥ 0, (Bv)J ≥ 0, (Bv)K − λe ≥ 0,

which is clearly equivalent to (i).

Exactly if in the Lemma of Farkas (ii) holds, i.e. g = AT q, q ≥ 0, we have

0 = BTI:a−BTI:b+BTJ:c+BTK:d, 1 = eT d, a, b, c, d ≥ 0.

Setting wI := a− b, wJ := c, and wK := d, this is equivalent to (ii), since every w
with (ii) can be rescaled to satisfy eTwK = 1.

For the optimality conditions described in Section 2.2 we further need the notion of
complementarity. We call two vectors x, y ∈ Rn complementary, if one, hence
all, of the following equivalent conditions holds.

Lemma 2.17. For x, y ∈ Rn the following conditions are equivalent:

(i) inf(x, y) = 0,

(ii) x ≥ 0, y ≥ 0, x ? y = 0 (i.e., the componentwise product),

(iii) x ≥ 0, y ≥ 0, xT y = 0,

(iv) x = z+, y = z− for some z ∈ Rn.

Linear programming has several special properties. Some of them can be carried to
more general optimization problems. However, since linear functions are the only

“habil”
2004/11/29
page 41

2.1. Convex Analysis and Duality 41

ones, which are convex and concave at the same time, linear optimization problems
are very special. In the following, we collect a few results directly connected with
linearly constrained optimization problems.

A polyhedron P is an intersection of finitely many closed half spaces, i.e., sets of
the form

Hp,α = {x ∈ Rn | pTx ≥ α}
for p ∈ Rn and α ∈ R. If we collect all the finitely many (m) inequalities into one
matrix inequality, we can define P shorter by

P := {x ∈ Rn | Ax ≥ b}, for some A ∈ Rm×n and b ∈ Rm. (2.12)

A polyhedron is closed and convex (Proposition 2.13), a good treatise of polyhedra
is Schrijver [205].

A point z ∈ S is called an extreme point if

z ∈ xy for x, y ∈ S =⇒ z ∈ {x, y}.

An extreme point of a polyhedron is called a vertex.

An interesting connection between concave functions, convex sets, and extremal
points is provided by the following theorem

Theorem 2.18. Let C be a nonempty closed convex set. If f : C → R is concave,
then every extremal point of the set G of global minima of f on C is an extremal
point of C.

If f is strictly concave, then every local minimum of f on C is an extremal point
of C.

Proof. Take an extremal point x of G. If x is not extremal in C, we can find
y, z ∈ C with x ∈ yz and x /∈ {y, z}, so

x = λy + (1− λ)z for some λ ∈ (0, 1) (2.13)

f(x) ≥ λf(y) + (1− λ)f(x) (2.14)

≥ min(f(x), f(y)).

Since x is a global minimizer, f(x) = f(y) or f(x) = f(z), and since λ ∈ (0, 1) this
in turn implies f(x) = f(y) = f(z), so y, z ∈ G, a contradiction to the extremality
of x in S.

Not let f be strictly concave. Assume that x is a local optimum not extremal in C.
We can again find points y, z ∈ C both different from x satisfying (2.13). Since x
is a local minimum, there are λ and λ with λ < λ < λ and

x1 := λy + (1− λ)z, x2 := λy + (1− λ)z,

f(x1) ≥ f(x), f(x2) ≥ f(x).

Since f is strictly concave, this implies x = x1 or x = x2 (actually one only needs
unimodality of −f). Since λ ∈ (λ, λ) we have x = y = z, a contradiction.

“habil”
2004/11/29
page 42

42 Chapter 2. Local Optimization

For linear functions this has an important consequence

Corollary 2.19. Let C be a closed convex nonempty set, and f : C → R affine
linear. Then there exists a global minimizer of f , which is an extremal point of C.

The following important theorem on extremal points is due to Krein & Milman
[127].

Theorem 2.20 (Krein–Milman).

(i) If a nonempty closed convex set C ⊆ Rn is contained in any halfspace, then C
contains an extremal point.

(ii) Every compact and convex set C ⊆ Rn is the convex hull of its extremal points.

Proof.

See, e.g., [86]

Theorem 2.21.

(i) Let A ∈ Rm×n be a matrix, and b ∈ Rm a vector, and C := {x ∈ Rn‖Ax ≥ b}
a polyhedron. A point x ∈ C is extremal if and only if the matrix AJ: with
J = {j | (Ax)j = bj} has rank n.

(ii) A polyhedron has at most finitely many extremal points.

Proof. See, e.g., [86]

2.2 Optimality Conditions

In this section we will derive a number of theorems for identifying local (sometimes
global) extrema of optimization problems. First we will restrict ourselves to special
classes of problems, and afterwards we will generalize the results until we end up
with optimality conditions for general smooth nonlinear programming problems.

Since this section will need a lot of gradients and Hessians, we introduce abbrevia-
tions g(x)T = ∇f(x) and G(x) = ∇2f(x).

2.2.1 Unconstrained Problems

The simplest optimality conditions are known since Newton and Leibniz.

“habil”
2004/11/29
page 43

2.2. Optimality Conditions 43

Theorem 2.22 (Unconstrained optimality conditions).
Let f : Rn → R be a C1 function and x̂ ∈ Rn. If x̂ is a local optimizer g(x̂) = 0.

Now consider a C2 function f . If x̂ is a local minimum (maximum), G(x̂) is positive
(negative) semidefinite.

If g(x̂) = 0 and G(x̂) is positive (negative) definite, then x̂ is a local minimum
(maximum).

Proof. We consider the one-dimensional function

f(k)(y) := f(x̂1, . . . , x̂k−1, y, x̂k+1, . . . , x̂n).

Since x̂ is a local minimizer of f , we have that x̂k is a local minimizer of f(k). Hence,

∂f

∂xk
(x̂) = f ′(k)(xk) = 0.

This is valid for all k, so g(x̂) = 0.

By Taylor’s theorem we know that

f(x̂+ h)− f(x̂)

‖h‖2 = 1
2

(
h
‖h‖
)T
G(x̂)

(
h
‖h‖
)

+R(h) (2.15)

with limh→0R(h) = 0.

If G(x̂) is positive definite, and since f is C2 we can find ν > 0 with

(
h
‖h‖
)T
G(x̂)

(
h
‖h‖
)
≥ ν.

We choose ‖h‖ so small that ‖R(h)‖ < ν
2 , so by (2.15) f(x̂ + h) > f(x̂) and x̂ is a

local minimizer.

If G(x̂) is not positive semidefinite, there exists y with ‖y‖ = 1 and yTG(x̂)y < 0.
Since for all λ 6= 0

(
λy
‖λy‖

)T
G(x̂)

(
λy
‖λy‖

)
= yTG(x̂)y = α < 0,

we can choose λ so small that |R(λy)| < −α
2 . Thus, we see f(x̂ + λy) − f(x̂) < 0

and x̂ is not a local optimizer, contradiction.

Note that there is a gap, seemingly small, between the necessary condition for
minimality and the sufficient condition. However, this gap cannot not be closed
(see f(x) = x3), and we will meet it ever again during this section.

A solution of the equation g(x) = 0 is called a critical point or a stationary
point. Not all stationary points are optima.

There is a special class of functions, for which the stationary point property is a
sufficient optimality condition. A C1 function f is called uniformly convex in C
if there exists a positive constant α such that

f(y)− f(x)− g(x)T (y − x) ≥ α‖y − x‖22.

“habil”
2004/11/29
page 44

44 Chapter 2. Local Optimization

Proposition 2.23. Let U be an open set and f : U → R uniformly convex with
stationary point x̂ ∈ U .

(i) Then x̂ is the global minimum of f in U .

(ii) If f is a C2 function, x̂ is the only stationary point of f .

Proof.

(i) Since g(x̂) = 0 we have f(y)− f(x̂) ≥ α‖y − x̂‖ ≥ 0, for all y ∈ U , hence x̂ is
a global optimizer.

(ii) Proof from the literature.

Corollary 2.24 (Sufficient conditions for optimality).
If f is uniformly convex in a neighborhood U of the stationary point x̂, then x̂ is
a local minimizer. This local minimizer is a so called strong (nondegenerate)
minimizer, because for all x̂ 6= y ∈ U we have f(y) > f(x̂).

In particular, this result is true if f is C2 and has positive definite Hessian at x̂.

Proof. This is just a reformulation of Proposition 2.23.(i).

Since now, we have only been talking about local minimizers in open regions, i.e., in
the interior of the feasible region. If we consider as feasible area a bounded subset
of Rn the optimality conditions have to adapt to that situation. The reason is that
then local and global optimizers can also lie on the border of the feasible area, and
there the optimality conditions of Theorem 2.22 need not be valid anymore. See,
e.g., Figure 2.2 for a simple one-dimensional example.

We start analyzing the situation with an abstract optimality condition valid for
problems with a convex feasible region.

Theorem 2.25. Consider problem (2.1) with a convex set C and a C1 function f .
If x̂ ∈ C is a solution of (2.1), we have

g(x̂)T (z − x̂) ≥ 0 for all z ∈ C. (2.16)

If f is in addition convex in C, then x̂ is a solution of (2.1) iff (2.16) holds.

“habil”
2004/11/29
page 45

2.2. Optimality Conditions 45

u

local minima

l

Figure 2.2. Local minima on the border of C = [a, b]

Proof. For z ∈ C we have x̂z ∈ C, because C is convex. Since x̂ is a local minimum,
for h > 0 small enough we have

0 ≤ f
(
x̂+ h(z − x̂)

)
− f(x̂).

Division by h and taking the limit h→ 0 shows (2.16).

If f is convex and (2.16) is satisfied, we can use Lemma 2.9 and find for all z ∈ C

f(z)− f(x̂) ≥ g(x̂)T (z − x̂) ≥ 0.

Hence, x̂ is a global minimizer.

Now lets take a closer look at Figure 2.2. It provides a hint what a useful optimality
condition might be. If f : [l, u] ⊆ R → R has a local optimum at l, the gradient
f ′(l) ≥ 0, and at the other end u we have f ′(u) ≤ 0. This can be almost reversed.
If f ′(l) > 0 (< 0) then f has at l (u) a local minimum (maximum).

Theorem 2.26 (Optimality conditions for bound constrained problems).
Consider the bound constrained optimization problem

min f(x)

s.t. x ∈ x, (OB)

and take x̂ ∈ x.

(i) If x̂ is a local minimizer the first order optimality conditions are satisfied:

gi(x̂) ≥ 0 if xi = x̂i < xi,

gi(x̂) = 0 if xi < x̂i < xi,

gi(x̂) ≤ 0 if xi < x̂i = xi.

(2.17)

(ii) For a local minimizer x̂ and a C2 function f the matrix G(x̂)JiJi is positive
semidefinite, where

Ji := {j | xj ∈ intx}.

“habil”
2004/11/29
page 46

46 Chapter 2. Local Optimization

(iii) If f is C2 and the first order conditions (2.17) are satisfied, and if in addition
the matrix G(x̂)J0J0

with J0 = {k | gk(x̂) = 0} is positive definite, then x̂ is a
strict local minimizer of (OB).

Constraints with index j ∈ Ji are called inactive and if j /∈ Ji the corresponding
constraint is called active. Note in addition that (2.17) can be written shorter as
complementarity condition

inf(g(x), x− x) = inf(−g(x), x− x) = 0. (2.18)

Proof. We will prove a much more general result in Section 2.2.4, and since we do
not use the results of this theorem there, the details are left to the reader.

Now it is time to move on to more general problems. Lets first recall another famous
result of calculus, due to Lagrange [130, 131].

Theorem 2.27 (Lagrange multiplier rule).
Let U ⊆ Rn be open, and let the functions f : U → R and F : U → Rm be
continuously differentiable. Further, let x̂ be a local minimizer of the optimization
problem

min f(x)

s.t. F (x) = 0.
(OE)

If F ′(x̂) has rank m (which implies m ≤ n) then there is a vector ŷ ∈ Rm with

g(x̂) + F ′(x̂)T ŷ = 0. (2.19)

The numbers y are called the Lagrange multipliers corresponding to the opti-
mization problem (OE). The property that F ′(x̂) has rank m is a restriction on the
structure of the constraints, the simplest version of a constraint qualification.

Proof. The result is an immediate consequence of the inverse function theorem.
Since x̂ is a local solution of (OE), we have x̂ ∈ {x ∈ U | F (x) = 0}, and because
F is C1 and the rank of F ′(x̂) is maximal, we can partition the variables x in two
subsets x = (s, t) such that in a small neighborhood of x̂ we can express the s in
terms of the t by the implicit function theorem: s = h(t) and F (h(t), t) = 0.

Now we consider ϕ(t) := f(h(t), t) and differentiate

∇ϕ(t̂) =
∂f(x̂)

∂s
∇h(t̂) +

∂f(x̂)

∂t
= 0, (2.20)

where the last equation is true, since local optimality of x̂ for f with respect to
F (x) = 0 implies local optimality of t̂ for ϕ.

At the same time we have

∂F (x̂)

∂s
∇h(t̂) +

∂F (x̂)

∂t
= 0,

“habil”
2004/11/29
page 47

2.2. Optimality Conditions 47

since F (h(t), t) = 0 for all t. Since ∂F (x̂)
∂s is invertible by construction, we can

compute

∇h(t̂) = −
(
∂F (x̂)

∂s

)−1
∂F (x̂)

∂t
. (2.21)

If we insert equation (2.21) into (2.20) we get

−∂f(x̂)

∂s

(
∂F (x̂)

∂s

)−1
∂F (x̂)

∂t
+
∂f(x̂)

∂t
= 0. (2.22)

Since the product of the first two factors is a vector of dimension m, we can set

ŷT := −∂f(x̂)

∂s

(
∂F (x̂)

∂s

)−1

. (2.23)

That implies by (2.22) and a transformation of (2.23)

∂F (x̂)

∂s

T

ŷ +
∂f(x̂)

∂s
= 0

∂F (x̂)

∂t

T

ŷ +
∂f(x̂)

∂t
= 0,

which together yield equation (2.19).

Note that in case the constraint qualification is violated, there is a non-trivial linear
combination of the rows of F ′(x̂), which vanishes, i.e. there is y 6= 0 with F ′(x̂)T y =
0. We can then reformulate the multiplier rule as follows: There is a number κ ≥ 0
and a vector y ∈ Rm not both of them vanishing with

κg(x̂) + F ′(x̂)T y = 0. (2.24)

This general Lagrange multiplier rule is a typical result for an optimality condi-
tion without constraint qualification, and we will meet the structure again later in
Theorem 2.33.

If we take a closer look at equation (2.19), we can see that x̂ is a critical point of
the function L′

L′(x) = L(x, ŷ) = f(x) + ŷTF (x)

for the given multipliers ŷ. However, ∂L(x̂,y)
∂y = F (x̂) = 0 because of the constraints.

So (x̂, ŷ) is a critical point of the function

L(x, y) = f(x) + yTF (x), (2.25)

the Lagrange function (Lagrangian) for the optimization problem (OE). The

vector ∂L(x,y)
∂x = g(x) + F ′(x)T y is called a reduced gradient of f at x.

Now we have two results (Theorem 2.26 and Theorem 2.27), which ask for being
unified.

To gain more insight, we first have a look at the linearly constrained case.

Theorem 2.28 (First order optimality conditions for linear constraints).
If the function f is C1 on the polyhedron C := {x ∈ Rn | Ax ≥ b} with A ∈ Rm×n
and b ∈ Rm, we have

“habil”
2004/11/29
page 48

48 Chapter 2. Local Optimization

(i) If x̂ is a solution of the linearly constrained problem

min f(x)

s.t. Ax ≥ b, (OL)

we can find a vector y ∈ Rm with

g(x) = AT y (2.26)

inf(y,Ax− b) = 0. (2.27)

(ii) If f is convex in C then any x ∈ C for which a y exists with (2.26) and (2.27)
is a global minimizer of (OL).

Equation (2.27) is called the complementarity condition.

Proof. Follows from Theorem 2.25 and the Lemma of Farkas 2.15.

In principle, this theorem provides a method for solving the optimization problem
(OL): Find a solution to the system (2.26), (2.27), a so called complementarity
problem. These are n+m equations in n+m unknowns.

2.2.2 Duality

Now we will attack the optimization problem

min f(x)

s.t. F (x) ≤ 0

x ∈ C
(OI)

with f and F being C1 functions and C a convex set. If x̂ is a local minimizer
of (OI) with F (x̂) = 0 and x̂ ∈ int (C) the Lagrange multiplier criterion remains
true. This motivates to start our investigation of problem (OI) with the Lagrangian
L(x, y) = f(x) + yTF (x).

The easiest situation is when f and F are convex functions. In this situation, the
feasible set F = {x ∈ C | F (x) ≤ 0} is convex, and by Theorem 2.14 every local
optimizer of problem (OI) is a global one. Using the Lagrangian, we can usually
find a lower bound on the global minimum:

Proposition 2.29. If for problem (OI) with convex f and F , there is a x ∈ C and
a 0 ≤ y ∈ Rn with

g(x) + F ′(x)T y = 0 (2.28)

then

min{f(z) | x ∈ F} ≥ L(x, y). (2.29)

“habil”
2004/11/29
page 49

2.2. Optimality Conditions 49

Proof. We have for arbitrary z ∈ F

f(z)− f(x) ≥ g(x)T (z − x) = −yTF ′(x)(z − x) by convexity of f and (2.28)

≥ −
(
yTF (z)− yTF (x)

)
by convexity of F

= yTF (x)− yTF (z) ≥ yTF (x) because F (z) ≤ 0.

Thus, we find f(z) ≥ f(x) + yTF (x) = L(x, y).

This result can be viewed from a different angle. We can try to find the best lower
bound on the minimum of problem (OI) by solving

max L(x, y)

s.t. g(x) + F ′(x)T y = 0

x ∈ C, y ≥ 0.

(OD)

By Proposition 2.29 is the global maximum of (OD) always smaller or equal to the
global minimum of (OI).

The optimization problem (OD) is called the dual problem to (OI). The latter
one is denoted primal problem. The two optima do not need to agree. If this is
indeed not the case, the distance between global maximum of the dual and global
minimum of the primal problem is called the duality gap.

An ideal situation is when the optima of primal and dual program coincide, i.e., the
duality gap closes. Then, if the minimizer x of (OI) and the maximizer (x̂, ŷ) agree
in the sense that x̂ = x, we have f(x̂) = f(x̂) + ŷTF (x̂), thus ŷTF (x̂) = 0. Since
F (x̂) ≤ 0 and ŷ ≥ 0 we can write by Lemma 2.17

inf(ŷ,−F (x̂)) = 0. (2.30)

Conversely, if (2.30) holds, then maximum and minimum coincide and so the point
x̂ is the global minimizer of the primal problem. We summarize the result in the
following theorem.

Theorem 2.30 (Sufficient optimality conditions for convex problems).
Let C be a convex set, and let f : C → R and F : C → Rm be convex functions. If
there are x̂ ∈ C and ŷ ∈ Rm satisfying the first order sufficient optimality conditions

g(x̂) + F ′(x̂)T ŷ = 0 (2.31)

inf(y,−F (x)) = 0, (2.32)

then x̂ minimizes (OI) globally and (x̂, ŷ) maximizes (OD) globally, and the primal
minimum and the dual maximum coincide.

2.2.3 The Karush-John conditions

This section is devoted to general smooth nonlinear nonconvex optimization prob-
lems. We will derive generalizations of the first order optimality conditions proved

“habil”
2004/11/29
page 50

50 Chapter 2. Local Optimization

in Theorems 2.26, 2.27, and 2.28. Unfortunately, they will either be valid only un-
der a slight restriction of the admissible constraints, a constraint qualification,
or they will involve an additional parameter making the optimality conditions more
difficult to handle.

The situation is simplest when the constraints are concave, i.e., of the form F (x) ≥ 0
with convex F .

Theorem 2.31 (First order optimality conditions for concave constraints).

Let x̂ ∈ Rn be a solution of the nonlinear program

min f(x)

s.t. F (x) ≥ 0
(2.33)

where f : C0 → R and F : C0 → Rr are continuously differentiable functions defined
on their domain of definition.

If F is convex then there is a vector ẑ ∈ Rr such that

g(x̂) = F ′(x̂)T ẑ, (2.34)

inf(ẑ, F (x̂)) = 0. (2.35)

Proof. This directly follows from Theorem 2.33 proved in the next section.

This is the simplest situation involving nonlinear constraints, because due to the
concave structure of the feasible set descent can be achieved with linear paths,
whereas in general curved paths may be needed to get descent. The following result
is due to John [104] and already implicitly in Karush [111].

Theorem 2.32 (Karush-John first order optimality conditions).
Let x̂ ∈ Rn be a solution of the nonlinear program

min f(x)

s.t. F (x) = 0

x ∈ x,
(2.36)

where f : C0 → R and F : C0 → Rr are continuously differentiable functions defined
on their domain of definition, and x = [x, x] is a box.

There are a constant κ ≥ 0 and a vector ẑ ∈ Rr such that

ŷ := κg(x̂)− F ′(x̂)T ẑ (2.37)

satisfies the two-sided complementarity condition

ŷk ≥ 0 if x̂k = xk,

ŷk ≤ 0 if x̂k = xk,

ŷk = 0 otherwise,

(2.38)

“habil”
2004/11/29
page 51

2.2. Optimality Conditions 51

and either κ > 0, or κ = 0 and z 6= 0.

Proof. This is an immediate consequence of Theorem 2.33 proved in the next
section.

2.2.4 The refined Karush-John necessary first order optimality
conditions

We next prove a refined version of the Karush-John first order optimality conditions
which reduces the number of constraints, for which a constraint qualification is
needed. This version is a generalization both of the Karush-John conditions and of
the first order optimality conditions for concave constraints.

In many local and global optimization algorithms (e.g., [116] or [216]) the Karush-
John conditions play a central role for the solution process. However, the Karush-
John conditions in their most general form do pose problems, especially because of
the factor in front of the gradient term.

Therefore, most of the local solvers require a constraint qualification, like Mangasarian-
Fromowitz ([216]), to be able to reduce the Karush-John conditions to the more
convenient Kuhn-Tucker conditions [128].

Deterministic global optimization algorithms cannot take this course, and so they
have to use the Karush-John conditions in their general form. Unfortunately, the
additional constraints needed involve all multipliers and are very inconvenient for
the solution process.

There are several situations for which it is well known that no constraint qualifica-
tion is required (see Schrijver [205, p.220], for a history), like concave, hence also
for linear, problems (see Theorems 2.28 and 2.31).

In this section we derive optimality conditions for general smooth nonlinear pro-
gramming problems. The first-order conditions generalize those obtained in The-
orem 2.31 for concavely constrained problems, and the derived Kuhn-Tucker con-
ditions require constraint qualifications for fewer constraints, and the constraint
qualifications presented here are a little more general than those proved in Man-
gasarian [142]. The theorem itself is due to Neumaier & Schichl [170].

For general nonlinear constraints it is useful to introduce slack variables to transform
them to equality form. We are doing that for all non-pseudoconcave constraints only
and write the non-linear optimization problems in the form

min f(x)

s.t. C(x) ≥ 0

F (x) = 0.

(2.39)

The form (2.39) which separates the pseudoconcave (including the linear) and the
remaining nonlinear constraints is most useful to obtain the weakest possible con-
straint qualifications. However, in computer implementations, a transformation to
this form is not ideal, and the slack variables should not be explicitly introduced.

“habil”
2004/11/29
page 52

52 Chapter 2. Local Optimization

Theorem 2.33 (General first order optimality conditions).
Let x̂ ∈ Rn be a solution of the nonlinear program (2.39), where f : U → R,
C : U → Rm, and F : U → Rr are functions continuously differentiable on a
neighborhood U of x̂. In addition, C shall be pseudoconvex on U . Then there are
vectors ŷ ∈ Rm, ẑ ∈ Rr such that

κg(x̂) = C ′(x̂)T ŷ + F ′(x̂)T ẑ, (2.40)

inf(ŷ, C(x̂)) = 0, (2.41)

F (x̂) = 0, (2.42)

and
either κ = 1 or ẑ 6= 0, κ = 0. (2.43)

Proof. In the beginning we observe that x̂ is a feasible point for the optimization
problem

min f(x)

s.t. C ′(x̂)J:x ≥ C ′(x̂)J:x̂

F (x) = 0,

(2.44)

where J is the set of all components j, for which C(x̂)j = 0. For the indices k
corresponding to the inactive set J+, we choose yJ+

= 0 to satisfy condition (2.41).
Since C is pseudoconvex, we have C(x) ≥ C(x̂) + C ′(x̂)(x − x̂). Restricted to the
rows J we get C(x)J ≥ C ′(x̂)J:(x − x̂). This fact implies that problem (2.39) is
a relaxation of problem (2.44) on a neighborhood U of x̂. Note that since C is
continuous we know that C(x)j > 0 for k ∈ J+ in a neighborhood of x̂ for all
constraints with C(x̂)j > 0. Since x̂ is a local optimum of a relaxation of (2.44) by
assumption and a feasible point of (2.44), it is a local optimum of (2.44) as well.

Together with the choice yJ+
= 0 the Karush-John conditions of problem (2.44) are

again conditions (2.40)–(2.42). So we have successfully reduced the problem to the
case where C is linear.

To simplify the notation we drop the hats from x̂, etc., and set A := C ′(x)J: and
b := C ′(x)J:x.

Let x be a solution of (2.44). If rkF ′(x) < r then zTF ′(x) = 0 has a solution z 6= 0,
and we can solve (2.40)–(2.43) with y = 0, κ = 0. Hence we may assume that
rkF ′(x) = r.

This allows us to select a set R of r column indices such that F ′(x):R is nonsingular.

Let B be the (0, 1)-matrix such that Bs is the vector obtained from s ∈ Rn by
discarding the entries indexed by R. Then the function Φ : C → Rn defined by

Φ(z) :=

(
F (z)

Bz −Bx

)

has at z = x a nonsingular derivative

Φ′(x) =

(
F ′(x)

B

)
.

“habil”
2004/11/29
page 53

2.2. Optimality Conditions 53

Hence, by the inverse function theorem, Φ defines in a neighborhood of 0 = Φ(x)
a unique continuously differentiable inverse function Φ−1 with Φ−1(0) = x. Using
Φ we can define a curved search path with tangent vector p ∈ Rn tangent to the
nonlinear constraints satisfying F ′(x)p = 0. Indeed, the function defined by

s(α) := Φ−1

(
0

αBp

)
− x

for sufficiently small α ≥ 0, is continuously differentiable, with

s(0) = Φ−1(0)− x = 0,

(
F (x+ s(α))

Bs(α)

)
= Φ

(
Φ−1

(
0

αBp

))
=

(
0

αBp

)
,

hence
s(0) = 0, F (x+ s(α)) = 0, Bs(α) = αBp. (2.45)

Differentiation of (2.45) at α = 0 yields

(
F ′(x)

B

)
ṡ(0) =

(
F ′(x)ṡ(0)

Bṡ(0)

)
=

(
0

Bp

)
=

(
F ′(x)

B

)
p,

hence ṡ(0) = p, i.e. p is indeed a tangent vector to x+ s(α) at α = 0.

Now we consider a direction p ∈ Rn such that

gT p < 0, g = g(x), (2.46)

Ap > 0, (2.47)

F ′(x)p = 0. (2.48)

(In contrast to the purely concave case, we need the strict inequality in (2.47) to
take care of curvature terms.) Since Ax ≥ b and (2.47) imply A(x + s(α)) =
A(x + αṡ(0) + o(α)) = Ax + α(Ap + o(1)) ≥ b for sufficiently small α ≥ 0, (2.45)
implies feasibility of the points x+ s(α) for small α ≥ 0. Since

d

dα
f(x+ s(α))

∣∣∣∣
α=0

= gT ṡ(0) = gT p < 0,

f decreases strictly along x+ s(α), α small, contradicting the assumption that x is
a solution of (2.39). This contradiction shows that the condition (2.46)–(2.48) are
inconsistent. Thus, the transposition theorem applies with



−gT
A

F ′(x)


 ,




κ

yJ

z


 in place of B, q

and shows the solvability of

−gκ+AT yJ + F ′(x)T z = 0, κ ≥ 0, yJ ≥ 0,

(
κ

yJ

)
6= 0.

If we add zeros for the missing entries of y, and note that x is feasible, we find
(2.40)–(2.42).

“habil”
2004/11/29
page 54

54 Chapter 2. Local Optimization

Suppose first that κ = 0, z = 0, and therefore

AT y = 0, y 6= 0. (2.49)

In this case the complementarity condition (2.41) yields 0 = (Ax−b)T y = xTAT y−
bT y, hence bT y = 0. Therefore any point x̃ ∈ U satisfies (Ax̃ − b)T y = x̃TAT y −
bT y = 0, and since y ≥ 0, Ax̃− b ≥ 0, we see that the set

K := {i | (Ax̃)i = bi for all x̃ ∈ U}

contains all indices i with yi 6= 0 and hence is nonempty.

Since U is nonempty, the system AK:x = bK is consistent, and hence equivalent to
AL:x = bL, where L is a maximal subset of K such that the rows of A indexed by
L are linearly independent. If M denotes the set of indices complementary to K,
we can describe the feasible set equivalently by the constraints

AM :x ≥ bM ,
(
AL:x− bL
F (x)

)
= 0.

In this modified description the feasible set has no equality constraints implicit in
AM :x ≥ bM . For the equivalent optimization problem with these constraints, we
find as before vectors yM and

(
yL
z

)
such that

κg(x) = ATM :yM +

(
AL:

F ′(x)

)T(
yL
z

)
, (2.50)

inf(yM , AM :x− bM) = 0, (2.51)

F (x) = 0, AK:x− bK = 0, (2.52)
(
κ

yM

)
6= 0 (2.53)

But now we cannot have κ = 0 and
(
yL
z

)
= 0 since then, as above, ATM :yM = 0 and

for all i ∈ M either yi = 0 or (Ax)i = bi for all x ∈ U . Since K ∩M = ∅ the first
case is the only possible, hence κ 6= 0, which is a contradiction.

Thus, κ 6= 0 or
(
yL
z

)
6= 0. Setting yK\L = 0 we get vectors y, z satisfying (2.40) and

(2.41). However, is κ = 0 we now have z 6= 0. Otherwise, yL 6= 0, and all indices
i with yi 6= 0 lie in K. Therefore, yM = 0, and (2.50) gives ATL:yL = 0. Since,
by construction, the rows of AL: are linearly independent, this implies yL = 0,
contradicting (2.53).

Thus either κ 6= 0, and we can scale (κ, y, z) to force κ = 1, thus satisfying (2.43).
Or κ = 0, z 6= 0, and (2.43) also holds. This completes the proof.

The case κ = 0 in (2.43) is impossible if the constraint qualification

C ′(x̂)TJ:yJ + F ′(x̂)T z = 0 =⇒ z = 0 (2.54)

holds. This forces rkF ′(x̂) = r (to see this put y = 0), and writing the left hand side
of (2.54) as yTJ C

′(x̂)J: = −zTF ′(x̂), we see that (2.54) forbids precisely common

“habil”
2004/11/29
page 55

2.2. Optimality Conditions 55

nonzero vectors in the row spaces (spanned by the rows) of C ′(x̂)J: and F ′(x).
Thus we get the following important form of the optimality conditions:

Corollary 2.34. Under the assumption of Theorem 2.33, if rkF ′(x̂) = r and if the
row spaces of F ′(x̂) and C ′(x̂)J:, where J = {i | C(x̂)i = 0}, have trivial intersection
only, then there are vectors ŷ ∈ Rm, ẑ ∈ Rr such that

g(x̂) = C ′(x̂)T ŷ + F ′(x̂)T ẑ, (2.55)

inf(ŷ, C(x̂)) = 0, (2.56)

F (x̂) = 0. (2.57)

(2.55)–(2.57) are refined Kuhn-Tucker conditions for the nonlinear program
(2.39), cf. [128], and a point satisfying these conditions is called a Kuhn-Tucker
point.

Example. 2.35. Lets consider the nonlinear program

min x2
1

s.t. x2
1 + x2

2 − x2
3 = 0

x2 = 1

− x3 ≥ 0.

The point x∗ = (0, 1,−1) is the global minimizer for this problem.

The generalized Karush-John conditions from Theorem 2.31 read as follows, after
we split the linear equation into two inequalities x2 − 1 ≥ 0 and 1− x2 ≥ 0:

2κ



x1

0

0


 =




0 0 0

1 −1 0

0 0 −1






y1

y2

y3


+ 2z



x1

x2

−x3




inf(y1, x2 − 1) = 0

inf(y2, 1− x2) = 0

inf(y3,−x3) = 0

x2
1 + x2

2 − x2
3 = 0

κ = 1 or z 6= 0.

At the solution point the conditions become

y1 − y2 + 2z = 0 (2.58)

−y3 + 2z = 0 (2.59)

y3 = 0, (2.60)

and from (2.59) and (2.60) we get z = 0, which in turn implies κ = 1, so this
example fulfills the constraint qualifications of Corollary 2.34.

“habil”
2004/11/29
page 56

56 Chapter 2. Local Optimization

If we do not make any substitution of slack variables, what is useful for implemen-
tation, Theorem 2.33 becomes

Theorem 2.36 (General Karush-John conditions).
Let AB ∈ RmB×n, AE ∈ RmE×n, bL ∈ RmL , bU ∈ RmU , bE ∈ RmE , FL ∈ RkL ,
FU ∈ RkU , FE ∈ RkE , and bB = [bB , bB] and FB = [FB , FB], where bB , bB ∈ RmB
and FB , FB ∈ RkB . Consider the optimization problem

min f(x)

s.t. ABx ∈ bB, AEx = bE ,

CL(x) ≥ bL, CU (x) ≤ bU ,
FB(x) ∈ FB, FE(x) = FE ,

FL(x) ≥ FL, FU (x) ≤ FU ,

(OGF)

with C1 functions f : Rn → R, FB : Rn → RkB , FL : Rn → RkL , FU : Rn → RkU ,
FE : Rn → RkE , and CL : Rn → RmL pseudoconvex on the feasible set, CU : Rn →
RmU pseudoconcave on the feasible set.

Then there are η ∈ R and vectors yB ∈ RmB , yE ∈ RmE , yL ∈ RmL , yU ∈ RmU ,
zB ∈ RkB , zE ∈ RkE , zL ∈ RkL , and zU ∈ RkU , with

ηg(x)−ATByB +ATEyE − C ′L(x)T yL + C ′U (x)T yU

− F ′B(x)T zB − F ′L(x)T zL + F ′U (x)T zU + F ′E(x)zE = 0,

inf(zL, FL(x)− FL) = 0, zL ≥ 0,

inf(zU , FU (x)− FU) = 0, zU ≥ 0,

zB ? (FB(x)− FB) ∗ (FB(x)− FB) = 0,

zB ? (FB(x)− FB) ≤ 0, zB ? (FB(x)− FB) ≤ 0,

FE(x) = FE ,

inf(yL, CL(x)− bL) = 0, yL ≥ 0,

inf(yU , CU (x)− bU) = 0, yU ≥ 0,

yB ? (ABx− bB) ∗ (ABx− bB) = 0,

yB ? (ABx− bB) ≤ 0,

yB ? (ABx− bB) ≤ 0,

AEx = bE , η ≥ 0,

η + zTBzB + eT zL + eT zU + zTEzE = 1,

(2.61)

where e = (1, . . . , 1)T .

Proof. This follows directly from Theorem 2.33.

This form of the Karush-John conditions is used in the implementation of the
Karush-John condition generator (see Section 6.1.6) in the COCONUT environ-
ment.

“habil”
2004/11/29
page 57

2.2. Optimality Conditions 57

2.2.5 Second Order Optimality Conditions

Until now we have found generalizations of the first order Theorems 2.27 and 2.28.
We now extend Theorem 2.22 containing the statements about the Hessian to the
constrained case.

In the course of this section, we will transform the problem by introducing slack
variables and by bounding all variables, if necessary by huge artificial bounds, to
the form

min f(x)

s.t. F (x) = 0

x ∈ x.
(ON)

The following result is due to Neumaier [161]

Theorem 2.37. Let x̂ be a Kuhn-Tucker point of (ON). Let ŷ be the Lagrange
multiplier. Set

ẑ := g(x̂) + F ′(x̂)T ŷ, (2.62)

D = Diag



√

2|ẑ1|
u1 − l1

, . . . ,

√
2|ẑn|
un − ln


 . (2.63)

If for some continuously differentiable function ϕ : Rm → R with

ϕ(0) = 0, ϕ′(0) = ŷT , (2.64)

the general augmented Lagrangian

L̂(x) := f(x) + ϕ(F (x)) + 1
2‖D(x− x̂)‖22 (2.65)

is convex in [l, u], then x̂ is a global solution of (ON). If, moreover, L̂(x) is strictly
convex in [l, u] this solution is unique.

Proof. in Neumaier [163, 1.4.10]

Having this tool at hand, we derive the following generalization of the optimality
conditions in Theorem 2.22.

Theorem 2.38 (Second order necessary optimality conditions).
Consider the optimization problem (ON). Let f and F be C2 functions on the box
[l, u]. If x̂ is a local solution of (ON) we define the set of active indices as

Ja := {j | x̂j = lj or x̂j = uj}.

If in addition the constraint qualification (2.54) is satisfied, then the following equiv-
alent conditions are true:

“habil”
2004/11/29
page 58

58 Chapter 2. Local Optimization

(i) If F ′(x̂)s = 0 and sJa=0 then sT Ĝs ≥ 0.

(ii) For some matrix (and hence all matrices) Z0 whose columns form a basis of
the subspace defined by F ′(x̂)s = 0 and sJa = 0 the matrix ZT0 ĜZ0 is positive
semidefinite.

Here Ĝ is the Hessian of the Lagrangian.

Proof. in Neumaier [163, 1.4.11].

As in Theorem 2.22 there is a sufficient condition, as well.

Theorem 2.39 (Second order sufficient optimality conditions).
In the setting of Theorem 2.38 we define

J1 = {j | ŷj 6= 0}, J0 = {j | ŷj = 0}.

If the point x̂ satisfies any of the following, equivalent conditions, it is an isolated
local minimizer.

(i) If F ′(x̂)s = 0 and sJ1=0 then sT Ĝs > 0.

(ii) For some matrix (and hence all matrices) Z whose columns form a basis of
the subspace defined by F ′(x̂)s = 0 and sJ1

= 0 the matrix ZT ĜZ is positive
definite.

(iii) For some matrix (hence all matrices) A whose rows form a basis of the row
space of F ′(x̂):J0

, the matrix

ĜJ0J0
+ βATA

is positive definite for some β ≥ 0.

If (i)–(iii) hold, x̂ is called a strong local minimizer. The matrices ZT0 ĜZ0 and
ZT ĜZ are called reduced Hessians of the Lagrangian.

Proof. in Neumaier [163, 1.4.13]

Because of the first order optimality conditions, the sets Ja and J1 always fulfill
Ja ⊆ J1. Therefore, the conditions in Theorem 2.39 are much stronger than those
in Theorem 2.38, even more than the strictness of the inequality (or the positive
definiteness in contrast to positive semidefiniteness) would suggest. However, if we
have Ja = J1 the strict complementarity condition at least for some multi-
plier ŷ, the gap between necessary and sufficient conditions is as small as in the
unconstrained case (Theorem 2.22).

“habil”
2004/11/29
page 59

Chapter 3

Global Optimization and
Constraint Satisfaction

In this chapter we shall attack the global optimization problem. First we will review
a few more applications, where finding the global minimizer is essential. Then we will
consider various paths different research teams have taken to solve the optimization
problem.

For most of the chapter we will consider the problem

min f(x)

s.t. F (x) ∈ F
x ∈ x

(GO)

59

“habil”
2004/11/29
page 60

60 Chapter 3. Global Optimization and Constraint Satisfaction

with f : Rn → R and F : Rn → Rm continuously differentiable (sometimes twice),
and x ∈ IRn, F ∈ IRm hypercubes. For a definition of IR see Section 3.4 on
interval analysis. Now, in contrast to Chapter 2 now we are interested in the global
minimum and the global minimizer of (GO). Most algorithms presented in this
chapter require some structural information on f and F , as well as a possibility to
automatically compute bounds on the function value or other global information. In
order to do so, one usually needs to know explicit expressions defining the functions.
An optimization problem in which all functions can be expressed by a finite number
of arithmetical operations and elementary functions, is called factorable.

In 1975 Dixon & Szegö [45] edited the first book completely devoted to global
optimization, and they have provided the basis for that evergrowing field (in interest
and theory). Since then, various research groups have made huge progress, and
they have pushed the field to a point, where it starts to become interesting for
applications in engineering, industry, and theoretical sciences. In this chapter I
will discuss in an informal manner the various strands of development around.
Contents and presentation of this chapter were greatly influenced by the survey
work by Neumaier [168].

Global optimization programs need methods for automatically generating estimates
on the functions f and F in (GO). Very well suited for that task is interval analysis
(see Section 3.4). Some of the ideas used to solve discrete constraint satisfaction
problems, notably constraint propagation (see Section 3.5), carry over to continuous
CPs and to global optimization problems, too.

In Chapter 2 we developed theory about the optimizers of (GO) and similar prob-
lems, especially optimality conditions. Some of these results do not only provide
local but also global information. Theorem 2.14 states that for convex problems
local and global minimizers coincide, and that in combination with Theorem 2.1 for
unimodal functions (e.g. for strictly convex functions) exactly one global minimizer
exists. For nonconvex problems Theorem 2.37 provides a generalization of the re-
sult. However, this result is also connected to convexity, so it is not astonishing
that convexity plays an important role in many approaches to global optimization
(see Section 3.7).

We have also seen that linear programs are very special convex programs with nice
additional properties, e.g., Theorem 2.18. Since Dantzig’s simplex algorithm, linear
programming is the field which is most developed, so the use of linear programs
during the solution process is another promising tactic, see Section 3.6.

Methods which use piecewise linear approximation of functions and mixed integer
linear programming, those which use reformulation techniques, and the algorithms
based on algebraic geometry are not presented here. An excellent summary and an
extensive list of references can be found in the survey by Neumaier [168].

The chapter closes with a short review of the existing global optimization software
packages based on complete techniques.

Neumaier [168] suggests that global optimization algorithms can be classified into
four groups, according to the degree of mathematical rigor with which they try to
solve the solve problem (GO):

“habil”
2004/11/29
page 61

3.1. Applications 61

Incomplete: A method of this class is based on heuristics for searching. It has no
safeguards against getting stuck in a local minimum, and it usually does not
even have means to detect how close to the global minimum it has got. So
termination criteria have to be heuristic, too.

Asymptotically Complete: An algorithm belongs to this graph, if it can be
proved that it will eventually reach the global optimum (up to a given toler-
ance) at least with probability one, if the running time is not limited. However,
these methods do not have means to determine when they have reached the
global optimum, and so termination criteria are heuristic.

Complete: This group of methods certainly finds the global minimum, if exact
computations and infinite running time are assumed. If the goal is to find
an approximation to the global minimum within a specified tolerance, the
algorithm is guaranteed to end in finite time.

Rigorous: This subgroup of the complete methods finds the global minimum even
in the presence of rounding errors, except in degenerate or near-degenerate
cases.

In the literature, other terms are in regular use, as well. Incomplete methods
are often referred to as heuristic methods, though genetic algorithms, a special
class of incomplete methods, often get sorted into their own group. Another term
used for asymptotic methods is stochastic methods, and the last two groups are
often subsumed in the term deterministic methods. Especially the last name is
slightly confusing, because most heuristic and even some “stochastic” methods are
deterministic (i.e. do not depend on randomness), as well.

The main focus in this chapter will be on complete methods, aiming at full rigor.

3.1 Applications

In Section 1.4 we have seen that there is a number of applications requiring solution
algorithms, which perform a complete search and thereby proof global optimality
of the solution found.

In Sections 3.1.1 and 3.1.2 I will present two more important applications for global
optimization.

3.1.1 Computer-assisted Proofs

A computer-assisted proof is a piece of mathematics, which would not have been
possible without the help of one or a set of algorithms running on a computer. Till
today, computer-assisted proofs leave a certain amount of uneasiness in the minds
of the mathematicians, since checking them for errors is a highly non-trivial task.

Moreover, it has to be made sure that computational errors, like round-off errors
cannot have a negative influence on the result. This requires the use of interval
analysis (see Section 3.4).

“habil”
2004/11/29
page 62

62 Chapter 3. Global Optimization and Constraint Satisfaction

Nontheless, since the 1970 several famous mathematical conjectures have been
proved in a computer-assisted way.

The Four Color Theorem

Almost every atlas contains, so called political maps, maps where different coun-
tries, states, or districts are colored differently, so that we can easily identify the
boundaries in between.

In the year 1852 Francis Guthrie, while he tried to color the map of counties of
England, noticed that four colors sufficed. He asked Frederick, his brother, if any
map can be colored using four colors in such a way that regions sharing a common
boundary segment receive different colors. Frederick Guthrie then asked DeMorgan,
and the first printed reference is due to Cayley in 1878. Then proofs were given,
e.g., by Kempe 1879 and Tait 1880, which both turned out to contain faults.

After a result by Birkhoff, Franklin proved 1922 that the four color conjecture was
true for maps with at most 25 countries. Finally, Heesch discovered the two main
ingredients of the later proof — reducibility and discharging, and he conjectured
that a development of a method based on the two facts would ultimately solve the
Four Color Problem.

In the end, 1976 Appel & Haken [4, 5, 6] proved the conjecture. That proof,
based on Heesch’s ideas, is very long, very difficult to check, and it heavily relies on
computer power.

The idea of the proof is as follows. First, the map is replaced by a graph Γ = (V,E)
(for a short introduction to graph theory see, e.g., Wilson [229]). Every country
corresponds to a vertex of Γ, and two vertices are connected by an edge, iff the
corresponding contries have a common border. The resulting graph is a planar
graph. A graph is called n-colorable, if there is a map ϕ : V → {1, . . . , n} such
that the endpoints of every edge E of Γ have different ϕ-values. It is easy to
show that a planar graph is 6-colorable (a popular exercise in basic graph theory
courses), and the proof that every planar graph is 5-colorable is more elaborate but
still presentable in a graph theory course. Since it is obvious that there are planar
graphs, which are not 3-colorable, the remaining question was: “Is the minimal
number of colors 4 or 5?”

If not all planar graphs are 4-colorable, there must be a minimal counterexample. In
1913 Birkhoff [22] proved that every minimal counterexample to the Four Color
Theorem is an internally 6-connected triangulation.

The proof of Appel and Haken first shows that a minimal counterexample to the
Four Color Theorem contains at least one of a set of 1476 basic graphs. For those
it had to be decided whether they are reducible, a techical term implying that the
minimal counterexample cannot contain such a subgraph. This large number of
discrete constraint satisfaction problems was finally solved with the support of a
super computer.

The proof remained disputed for a long time, because it was very difficult to check,
not just the algorithmic part, but in the end it was accepted to be true.

“habil”
2004/11/29
page 63

3.1. Applications 63

In 1996 Robertson et al. gave a new proof, which is easier to check but still
needs the solution of 633 constraint satisfaction problems. It is based on the result
of Birkhoff, and proceeds by showing that at least one of the 633 configurations
appears in every internally 6-connected planar triangulation. This is called proving
unavoidability. The 633 discrete constraint satisfaction problems are proved by
computer support.

One offspring of the proof is the Seymour problem, formulated by Seymour and
contained in the MIPLIB [23] library of mixed integer linear problems. Its solutions
produce the smallest set of unavoidable configurations which have to be reduced for
proving the Four Color Theorem. This is a very hard discrete global optimization
problem which was solved 2001 by Ferris, Bataki & Schmieta [51] using massive
parallel computing within 37 days using the Condor [37] system.

Kepler’s conjecture

In 1611, Kepler proposed that cubic or hexagonal packing, both of which have
maximum densities of π

3
√

2
, are the densest possible sphere packings in R3, the

Kepler conjecture.

The first proof was claimed 1975 by Buckminster Fuller, but as pointed out by
Sloane 1998, it was flawed. Another wrong proof of the Kepler conjecture was put
forward by W.-Y. Hsiang 1992 and 1993, but was subsequently determined to be
incorrect. According to J.H. Conway, “nobody who has read Hsiang’s proof has any
doubts about its validity: it is nonsense”.

Hales devised in 1997 a detailed plan describing how the Kepler conjecture might
be proved using a different approach by making extensive use of computer calcu-
lations. Hales subsequently managed to complete a full proof, which appears in a
series of papers of more than 250 pages [72]. A broad outline of the proof in ele-
mentary can be found in [73]. The proof is based on ideas from global optimization,
linear programming, and interval arithmetic. The computer files containing all re-
sults, the computer code, and the data files for combinatorics, interval arithmetic,
and linear programs need more than 3 gigabytes (!) of storage space.

Hales’ proof has been so difficult to verify that after its submission to the Annals
of Mathematics it took a team of 12 reviewers more than four years to verify the
proof, and they are not more (but also not less) than 99% certain that it is correct.
Very likely, the proof will be published in 2004, and when it appears, it will carry
an unusual editorial note stating that parts of the paper have not been possible to
check.

In recent years, many more theorems have been proved in a computer assisted way.
For an overview on some results see Frommer [60].

The double bubble conjecture, i.e., the conjecture that the smallest surface enclos-
ing two given volumes of equal sizes is a double bubble, a fusion of two spheres
intersecting each other, was proved by Hass et al. [77] in 1995.

“habil”
2004/11/29
page 64

64 Chapter 3. Global Optimization and Constraint Satisfaction

Feffermann & Seco proved in the years 1994 and 1995 [50] the Dirac–Schwinger
conjecture about the asymptotic behaviour of the ground state energy E(N,Z) of
an atom with N electrons and kernel charge Z

lim
Z→∞

E(N,Z) = −c0Z7/3 + 1
8Z

2 − c1Z5/3 + o(Z5/3)

by hard analysis and computer-assistence using interval analytic methods for ordi-
nary differential equations.

The most recent result from 2002 by Tucker [222], who solved Smale’s 14th prob-
lem for the new century [213] of proving that the Lorenz-attractor is a strange
attractor, by theoretical work and computer support using interval methods for
ordinary differential equations.

3.1.2 Worst Case Studies

Whenever real world objects like buildings or brigdes are built, they are planned on a
computer, and their stability is verified using finite element methods. One possible
way of solving the stability problem is to approximate structures by systems of
simple elements, mostly by truss systems. The material parameters of the original
structure are translated to material parameters of the bars, and then the truss
structure is analyzed. A wall could, e.g., be modeled as in Figure 3.1.

Figure 3.1. Finite element representation of a wall

The material parameters are not known exactly for any real building. The elasticity
module of steel bars usually is only known up to an error of 15%, even the length
of bars is accurate only up to ca. 1%. The distribution of forces on the structure
is not constant, and even if the maximum load is known, the exact distribution of
loads cannot be predicted beforehand.

Still, it is important to know the maximum stresses and torsion forces, which are
possible in the structure. This maximal strain has to be within a certain limit,
otherwise the structure will be in danger of collapsing.

“habil”
2004/11/29
page 65

3.2. Heuristic Approaches and other Incomplete Methods 65

In engineering the problem of finding the maximum stress is approached by a com-
bination of Monte-Carlo simulation and local optimization. However, Balakrish-
nan & Boyd [10] have shown that this method may severly underestimate the true
global maximum, thereby grossly underestimating the true risk.

In mathematical terms, the problem is a global optimization problem. The linear
finite element equations become nonlinear if uncertainties are involved. In this case,
the transfer matrix K depends on the uncertainties, and the problem becomes

A(x)u = b,

where the u are the displacements, the b depend on the forces, and A(x) is the
transfer matrix depending on the uncertain material parameters x. The problem is
to compute the maximal displacement u, a non-linear global optimization problem.
Investigating a 20 × 20 wall like the 6 × 4 structure in Figure 3.1 is about the
smallest case already interesting for the industry. This problem has 1640 material
parameters, and 840 displacements. Solving this problem to global optimiality is
out of reach for current global optimization algorithms, although there have been
recent promising results by Muhanna & Mullen [154] on computing strong upper
bounds for such problems; Neumaier & Pownuk [169] and have successfully solved
similar problems.

Still, the solution of finite element worst case studies will remain a challenging
problem for years to come.

3.2 Heuristic Approaches and other Incomplete
Methods

For solving global optimization probles a big number of incomplete methods have
been invented. The easiest is multiple random start, which performs many local
optimizations from random starting points in the search space. The more prominent
techniques are simulated annealing (Ingber [98]), genetic algorithms (Holland
[87]), see Mongeau et al. [150], Janka [100] for comparisons.

There are some asympotically complete methods, which only use point evaluations,
which lie between heuristic approaches and complete methods, e.g., MCS by Huyer
& Neumaier [95] or DIRECT by Gablonsky & Kelley [61]. Anyway, they are
still incomplete and do not guarantee finding the global minimum in finite time.

Incomplete methods are not directly related to this work, and so we will not get
into detail. However, a fast incomplete method can serve the need of finding a good
feasible point, perhaps the global optimum at a very early stage in the solution
process of a complete method. This makes constraint propagation more efficient
and helps to reduce the search space. For a short summary of the various techniques
used in incomplete methods see Neumaier [168, 7.].

“habil”
2004/11/29
page 66

66 Chapter 3. Global Optimization and Constraint Satisfaction

3.3 Complete Methods — Branch and Bound

A complete method for solving problem (GO) is a method which in exact arithmetic
guarantees to find in finite time all solutions within a prespecified tolerance. In
order to realize that goal the methods have to analyze the whole feasible set. Since
finding the set of feasible points in general is at least as difficult as solving the
optimization problem, most complete methods search analyze a superset of the
feasible region. This superset is called the search space.

The simplest method for examining the search space is grid search, which puts a
hierarchy of finer and finer grids on the space, computes function values on the grid
points, and uses those points as starting points for local optimization algorithms.
Grid search is not very efficient in dimensions higher than two, since the number of
grid points grows exponentially with the dimension.

Therefore, the vast majority of complete algorithms take another approach. They
are variants of the branch-and-bound scheme (see Figure 3.2). If we denote the
search space by S, a set L of subsets of S is kept, initialized by L = {S}. Then the
branch-and-bound loop starts by choosing a set P from L. Afterwards, depending
on the algorithm, a number of mathematical methods is applied to check, whether
the set P contains solutions to problem (GO), the bound phase. If this is not the
case, P is removed from L and the branch-and-bound loop continues. If P cannot
be proved to be disjoint with the solution set Ss, it is split in a familiy of subsets
P1, . . . , Pk (most of the time k = 2, then the split is called bisection), the branch
phase. In L the problem P is replaced by all the Pi, and the branch-and-bound
loop continues. If the set P is smaller than the tolerances, it is stored in the set
of possible solutions Sp and removed from L, and again the loop continues. If
the set L is empty the algorithm stops. When the algorithm terminates, we have
Ss ⊆

⋃
U∈Sp U ⊆ S, and Sp is a covering of the solution set with small subsets of

the search space which are smaller than the tolerances.

More advanced algorithms (see Figure 3.3) enhance the scheme by using analyzation
methods, which prove statements of the form: If we only consider solutions in P ⊆ S,
then there exists a set P ′ (P with P ∩ Ss ⊆ P ′. In that case the problem P can
be replaced by P ′ in L. Such a step is called a reduction step. Discarding P is
equivalent to proving that it can be reduced to the empty set.

The various algorithms for global optimization differ mainly in the methods applied
for computing reductions and for proving infeasibility. All of these proofs depend
on the ability to prove global, or at least semilocal, results about function ranges,
or zeros, or the like. In the following sections we will review these methods. Most of
them either rely on interval analysis, an algorithmic way of proving globally valid
estimates, or on convexity.

3.4 Interval Analysis

A large class of complete global optimization algorithms uses in the course of the
algorithms interval arithmetic, an extension of the real (or complex) arithmetic to
intervals. The field was started by Moore [152, 151], see also Kahan [106]; a thor-

“habil”
2004/11/29
page 67

3.4. Interval Analysis 67

split P in
P1 and P2

in L replace
P by P1 and P2

remove P
from L

L empty?

in list L
insert problem

choose problem
P from L

analyze P

P
solved?

Y

N

solution
report

Y

N

P
small?

store P
in solution set

N
Y

Figure 3.2. The Branch-and-Bound scheme

ough review of the field is given in Neumaier [159]. Its strength for solving global
optimization problems was noticed soon, and Hansen [75, 76], and Kearfott
[114] have applied and implemented the methods.

Interval analysis is important for global optimization in many aspects. It provides
cheaply algorithmically computable globally valid bounds for all functions, for which
an explicit mathematical expression can be given. The bounds are very wide in
many cases, but by additional effort (splitting of the area into subparts) the bounds
can be tightened. Furthermore, interval analysis extends the classical analysis by
providing semilocal existence and uniqueness results. While real analysis usually
only proves the existence of a neighborhood U around a point x, in which x is the
only point having some important property, interval analysis provides to tools for
computing U explicitly.

“habil”
2004/11/29
page 68

68 Chapter 3. Global Optimization and Constraint Satisfaction

L empty?

in list L
insert problem

Y

solution
report

Y

N

P’ empty?

N

P from L
choose problem

reduce P to P’

remove P
from L

split P’ in
P1 and P2

insert P1, P2
into L

P
small?

Y
N

in solution set
store P’

Figure 3.3. Branch-and-Reduce scheme

3.4.1 Interval Arithmetic

The basics of interval analysis is an extension of real arithmetic to intervals. Let
S ⊆ R be any set, and define utS ∈ IR as

utS := [inf S, supS].

We identify a real number t ∈ R with the point interval [t, t], and so R ⊆ IR. In
the following we will write t for the point interval [t, t].

We will also need some additional notation. Let x ∈ IR be an interval. We will
denote the lower bound of x as x := inf x, the upper bound of x as x := supx, and
the midpoint of x as x̌ =| x := 1

2 (x+x) whenever both bounds are finite. We will
never need the midpoint in case of infinite bounds. The radius of the interval is

“habil”
2004/11/29
page 69

3.4. Interval Analysis 69

defined as

radx :=

{
1
2 (x− x) if x 6= x

0 if x = x,

the magnitude or absolute value of x is

|x| := max{|x|, |x|},

and the mignitude shall be

〈x〉 :=

{
min{|x, x} for 0 /∈ x,

0 otherwise.

Using that definition, we can extend the arithmetic operations and functions f :
R ⊇ Df → R to IR, see Walster et al. [34, 48]. For x,y ∈ IR define

x ◦ y := ut{x ◦ y | x ∈ x, y ∈ y},
f(x) := ut({f(x) | x ∈ x ∩Df} ∪ { lim

y→x
f(y) | y ∈ Df , x ∈ x}),

where ◦ is any of the arithmetic operators in {+,−, ∗, /, ∧}.

An easy argument implies for the arithmetic operators

x+ y = [x+ y, x+ y], x− y = [x− y, x− y], x ∗ y = ut{xy, xy, xy, xy},

and whenever any arithmetic operation would result in an undefined expression, the
interval result is [−∞,∞]. Integer division is a bit more complicated:

x y x/y

0 ∈ x 0 ∈ y [−∞,∞]

x < 0 y < y = 0 [x/y,∞]

x < 0 y < 0 < y [−∞,∞]

x < 0 0 = y < y [−∞, x/y]

x > 0 y < y = 0 [−∞, x/y]

x > 0 y < 0 < y [−∞,∞]

x > 0 0 = y < y [x/y,∞]

0 /∈ y ut{x/y, x/y, x/y, x/y}

These definitions extend to higher dimensions in a straightforward way. Note that
many algebraic properties of the real arithmetic operations do not carry over to
interval arithmetic. We have, e.g., that x−x 6= 0 but only x−x 3 0. Furthermore,
the subdistributivity law

(x+ y)z ⊆ xz + yz

holds instead of distributivity.

One strength of interval arithmetic is that computing globally valid bounds on non-
linear functions is straightforward. Take a function f : R→ R, and let f be a mathe-
matical expression for evaluating f containing arithmetic operators and elementary

“habil”
2004/11/29
page 70

70 Chapter 3. Global Optimization and Constraint Satisfaction

functions (ex, log,
√
, sin, cos, . . .) — note that this imposes strong restrictions on f .

We define f(x) as the interval, which results by replacing all real valued operations
in f by their interval equivalents. The properties of interval arithmetic imply

f(x) ⊇ f(x),

so any mathematical expression f for f can be used to enclose the range of the
function f . It is important to note that mathematically equivalent expressions do
not yield the same range estimate. We have, e.g., f(x) = x2 = (x−2)(x+2)+4 and
[−1, 1]2 = [0, 1] but ([−1, 1]− 2)([−1, 1] + 2) + 4 = [−5, 3]. In the second expression
the variable appears more than once, and so it suffers from inner dependency,
resulting in an overestimation of the range. In general, this effect cannot be
prevented but at least under very mild conditions (see Neumaier [159, 1.4]) the
overestimation satisfies the linear approximation property

f(x) ⊆ f(x) +O(radx).

3.4.2 Centered Forms and Slopes

For many applications the linear approximation property of interval arithmetic is
not good enough. However, for differentiable functions f we can obtain tighter
enclosures by using a centered form. The simplest centered, the mean value
form is based on the mean value theorem, which states

f(x) = f(z) + f ′(ξ)(x− z), with ξ ∈ [x, z].

Now let z ∈ x be fixed. In this case ξ ∈ x whenever x ∈ x, and so

f(x) ⊆ f(z) + f ′(x)(x− z).

The mean value form, as all other centered forms, has the quadratic approxima-
tion property

f(z) + f ′(x)(x− z) ⊆ f(x) +O
(
(radx)2

)
.

However, the mean value form, which uses the interval derivative f ′(x) is not the
most efficient centered form. A better one is based on slopes. A slope is a linear
approximation of the form

f(x) = f(z) + f [z, x](x− z), (3.1)

see [208, 122]. In one dimension the slope is unique, if it is continuous, and we have

f [z, x] =





f(x)− f(z)

x− z x 6= z

f ′(z) x = z.

In higher dimensions the slope is nonunique (see, e.g., Section 4.1.7), but it exists
always if f is locally Lipschitz.

“habil”
2004/11/29
page 71

3.4. Interval Analysis 71

Using (3.1) we find an enclosure of the range of f over the box x by

f(x) ∈ f(z) + f [z,x](x− z), for all x ∈ x.

This is a centered form and also has the quadratic approximation property. The
most general slope definition is the one with interval center

f(x) ⊆ f(z) + f [z,x](x− z),

and the special case x = z gives f [z, z] = f ′(z) the interval derivative and hence
the mean value form.

Slopes can be calculated automatically like derivatives, a chain rule holds:

(f ◦ g)[z,x] = f [g(z), g(x)] · g[z,x]. (3.2)

Thus, it is necessary to determine the slopes for the basic arithmetic operations. For
addition and subtraction this is straightforward, and for multiplication and division
we discuss the variants in Section 4.1.7. For elementary functions we can use the
result by Kolev [122] that for convex and concave functions the optimal slope is
given by

ϕ[z,x] = ut{ϕ[z, x], ϕ[z, x]},
and case distinctions. For the other functions, the case is more difficult, but we can
always use

ϕ[z,x] ⊆ ϕ′(x).

Centered forms based on higher order Taylor expansions are interesting, as well.
The second order slopes are discussed in Section 3.4.4, and for even higher order
methods see, e.g. Makino & Berz [140], Carrizosa et al. [31], and the survey
by Neumaier [165]. Higher order expansions in principle lead to higher order
approximation properties. However, there are no known methods which do not
need computational effort exponential in the dimension to achieve that, at least
in certain cases. Despite of that, higher order expansions might still be useful, if
interval evaluation suffers from very strong inner dependency.

3.4.3 Interval Newton Method

For verifying (approximate) solutions of nonlinear systems of equations we will need
another important tool, the interval Newton methods. Krawczyk [125] invented
the following principle for verifying solutions of a system of equations F (x) = 0
with x ∈ x. Given any regular preconditioning matrix C we define the Krawczyk
operator K(x, z) (see Krawczyk [125], Kahan [106])

K(x, z) := z − CF (z) + (I − CF ′(x))(x− z).

Because of the mean value theorem, we have x ∈ K(x, z) if x, z ∈ x, and the
following central result holds:

Theorem 3.1 (Krawczyk operator).

“habil”
2004/11/29
page 72

72 Chapter 3. Global Optimization and Constraint Satisfaction

(i) Every zero x ∈ x of F lies in x ∩K(x, z).

(ii) If x ∩K(x, z) = ∅ then x contains no zero of F ,

(iii) If K(x, z) ⊆
∫
x then x contains a unique zero of F .

Shen & Neumaier [208] have shown that for a variant of the Krawzcyk operator
K ′(x, z) := z − CF (z) + (I − CF [z,x])(x − z) with slopes all but the uniqueness
result is true, as well. Since slopes usually are tighter than interval derivatives, K ′

has better contraction properties than K.

The results of Theorem 3.1 are important, because due to Theorem 2.33 the operator
can be applied to the Karush-John first order optimality conditions. The uniqueness
result allows the elimination of large regions around local optima (get rid of the
cluster effect, see Section 3.4.6), and it is useful for reducing boxes in a branch-
and-reduce scheme. This method is implemented in GlobSol [116] and Numerica

[85]. The theorem is also the basis for the exclusion box results by Schichl &
Neumaier [200] presented in Section 4.2.

3.4.4 Second order slopes

Since F is twice continuously differentiable, we can always (e.g., using the mean
value theorem) write

F (x)− F (z) = F [z, x](x− z) (3.3)

for any two points x and z with a suitable matrix F [z, x] ∈ Rn×n, continuously
differentable in x and z; any such F [z, x] is called a slope matrix for F . While (in
dimension n > 1), F [z, x] is not uniquely determined, we always have (by continuity)

F [z, z] = F ′(z). (3.4)

Thus F [z, x] is a slope version of the Jacobian. There are recursive procedures to
calculate a slope F [z, x] given x and z, see Krawczyk & Neumaier [126], Rump
[189] and Kolev [122]; a Matlab implementation is in Intlab [190].

Since the slope matrix F [z, x] is continuously differentiable, we can write similarly

F [z, x] = F [z, z′] +
∑

(xk − z′k)Fk[z, z′, x] (3.5)

with second order slope matrices Fk[z, z′, x], continuous in z, z′, x. Here, as
throughout this paper, the summation extends over k = 1, . . . , n. Second order
slope matrices can also be computed recursively; see Kolev [122]. Moreover, if
F is quadratic, the slope is linear in x and z, and the coefficients of x determine
constant second order slope matrices without any work.

If z = z′ the formula above simplifies somewhat, because of (3.4), to

F [z, x] = F ′(z) +
∑

(xk − zk)Fk[z, z, x]. (3.6)

“habil”
2004/11/29
page 73

3.4. Interval Analysis 73

3.4.5 Moore–Skelboe

The first algorithm for solving global optimization problems was designed by Moore
[152, 151] and later improved by Skelboe [212]. The Moore-Skelboe algorithm
was designed for solving global bound constrained optimization problems, i.e., for
finding the exact range (up to tolerances) of a multivariate function f : Rn → R
within an initial box xinit. It is a branch-and-bound method, which essentially
follows the algorithm depicted in Figure 3.2.

For every box x in the list L of problems, an enclosure of the range of f is computed
by interval arithmetic using a mathematical expression f. Initialize U to the upper
bounds of f(xinit).

From L always that x is selected, for which the lower bound ` of f(x) is minimal.
The problem is considered solved, if ` is bigger than U . If the upper bound u of f(x)
is smaller than U , we set U := u. If the width of the function range f(x) is smaller
than a prespecified tolerance ε (or the radius of the box is smaller than another
given tolerance δ), the box x is put into the list of possible solutions. If neither is
true, the box is split in two along the biggest edge at the middle point of the range.

The Moore-Skelboe algorithm as described above is not very efficient, and numerous
enhancments exist, which will not be described here. However, it can be observed
that close to the global minimum the number of boxes in the list grows exponentially
with the dimension. This effect will be more closely investigated in the next section
in the context of nonlinear equation solving.

3.4.6 The Cluster Effect

As explained by Kearfott & Du [117], many branch and bound methods used for
global optimization suffer from the so called cluster effect. As is apparent from
the discussion below, this effect is also present for branch and bound methods using
constraint propagation methods to find and verify all solutions of nonlinear systems
of equations. (See, e.g., van Hentenryck et al. [85] for constraint propagation
methods.) Because of Theorem 2.33 finding local optima and solving nonlinear
equations are strongly related. Hence, everything that applies to equation solving
is true for optimization. For analyzing the cluster effects for optimization and pure
constraint satisfaction, we will closely follow the presentations in Neumaier [168,
Section 15] and Schichl & Neumaier [200].

The cluster effect is the excessive splitting of boxes close to a solution and failure to
remove many boxes not containing the solution. As a consequence, these methods
slow down considerably once they reach regions close to the solutions. The mathe-
matical reason for the cluster effect and how to avoid it will be investigated in this
section.

Let us first consider the unconstrained optimization problem

min f(x),

let x̂ be a global solution, and G be the Hessian of f at x̂. In a neighborhood around
the global minimizer, Taylor’s theorem tells us, if the function is smooth enough,

“habil”
2004/11/29
page 74

74 Chapter 3. Global Optimization and Constraint Satisfaction

that

f(x) = f(x̂) + 1
2 (x− x̂)TG(x− x̂) +O(‖x− x̂‖3),

because of the first order optimality conditions (Theorem 2.22). Suppose that we
can compute bounds f on f(x) for a box x which satisfy

radf − rad f(x) ≤ ∆ = Kεs+1,

where s ≤ 2 if the radius of the box x is ε. In that case we can eliminate all boxes
of diameter ε with the exception of those, which contain a point x with

1
2 (x− x̂)G(x− x̂) +O(‖x− x̂‖3) ≤ ∆.

If the accuracy ∆ is small enough the region C of those points is approximatively
ellipsoidal, and its volume is

vol(C) ≈ K
√

(2∆)n/detG.

Covering C with boxes of radius ε will, therefore needs const
√

(2∆)n/(εn detG) of
them, at least. If we insert the estimate on the accuracy ∆ depending on the order
s we find that the number of not eliminated boxes will be

Mε−n/2 if s = 0,

M if s = 1,

Mεn/2 if s = 2,

where M = const /
√

detG. We observe that the number of boxes will grow expo-
nentially with falling ε for approximation order s = 0, it is in principle independent
of ε for s = 1, but it still grows exponentially and may especially be very high for
ill-conditioned problems. For s = 2, on the other hand, the number of boxes is
small for small ε. So in order to avoid the cluster effect, second-order information
is essential.

For pure constraint satisfaction problems a similar effect is present, if the solution
set is discrete. We consider the nonlinear equation

F (x) = 0

with F : Rn → Rn. Let us assume that for arbitrary boxes x of maximal width ε
the computed expression F (x) overestimates the range of F over x by O(εk)

F (x) ∈ (1 +Cεk)ut{F (x) | x ∈ x} (3.7)

for k ≤ 2 and ε sufficiently small. The exponent k depends on the method used for
the computation of F (x).

Let x̂ be a regular solution of (4.5) (so that F ′(x̂) is nonsingular), and assume (3.7).
Then any box of diameter ε that contains a point x with

‖F ′(x̂)(x− x̂)‖∞ ≤ ∆ = Cεk (3.8)

“habil”
2004/11/29
page 75

3.4. Interval Analysis 75

might contain a solution. Therefore, independent of the pruning scheme used in a
branch and bound method, no box of diameter ε can be eliminated. The inequality
(3.8) describes a parallelepiped of volume

V =
∆n

detF ′(x̂)
.

Thus, any covering of this region by boxes of diameter ε contains at least V/εn

boxes.

The number of boxes of diameter ε which cannot be eliminated is therefore propor-
tional to at least

Cn

detF ′(x̂)
if k = 1,

(Cε)n

detF ′(x̂)
if k = 2.

For k = 1 this number grows exponentially with the dimension, with a growth rate
determined by the relative overestimation C and a proportionality factor related to
the condition of the Jacobian.

In contrast, for k = 2 the number is guaranteed to be small for sufficiently small ε.
The size of ε, the diameter of the boxes most efficient for covering the solution, is
essentially determined by the nth root of the determinant, which, for a well-scaled
problem, reflects the condition of the zero. However, for ill-conditioned zeros (with
a tiny determinant in naturally scaled coordinates), one already needs quite narrow
boxes before the cluster effect subsides.

So to avoid the cluster effect, we need at least the quadratic approximation property
k = 2. Hence, Jacobian information is essential, as well as techniques to discover
the shape of the uncertainty region.

A comparison of the typical techniques used for box elimination shows that con-
straint propagation techniques lead to overestimation of order k = 1, hence they
suffer from the cluster effect. Centered forms using first order information (Jaco-
bians) as in Krawczyk’s method provide estimates with k = 2 and are therefore
sufficient to avoid the cluster effect, except near ill-conditioned or singular zeros.
Second order information as used, e.g., in the theorem of Kantorovich still provides
only k = 2 in estimate (3.8); the cluster effect is avoided under the same conditions.

For singular (and hence for sufficiently ill-conditioned) zeros, the argument does
not apply, and no technique is known to remove the cluster effect in this case.
A heuristic that limits the work in this case by retaining a single but larger box
around an ill-conditioned approximate zero is described in Algorithm 7 (Step 4(c))
of Kearfott [112].

For the general global constrained optimization problem (GO), a mixture of these
cases is apparent. In view of the second order optimality conditions, information
on the reduced Hessian of the Lagrangian function and the Jacobian information of
the constraints are needed to eliminate the cluster effect.

“habil”
2004/11/29
page 76

76 Chapter 3. Global Optimization and Constraint Satisfaction

3.4.7 Semilocal existence theorems for zeros of equations

The oldest semilocal existence theorem for zeros of systems of equations is due to
Kantorovich [110], who obtained as a byproduct of a convergence guarantee for
Newton’s method (which is not of interest in our context) the following result:

Theorem 3.2 (Kantorovich). Let z be a vector such that F ′(z) is invertible, and
let α and β be constants with

‖F ′(z)−1‖∞ ≤ α, ‖F ′(z)−1F (z)‖∞ ≤ β. (3.9)

Suppose further that z ∈ x and that there exists a constant γ > 0 such that for all
x ∈ x

max
i

∑

j,k

∣∣∣∣
∂2Fi(x)

∂xj∂xk

∣∣∣∣ ≤ γ. (3.10)

If 2αβγ < 1 then ∆ :=
√

1− 2αβγ is real and

(i) There is no zero x ∈ x with

r < ‖x− z‖∞ < r,

where

r =
2β

1 + ∆
, r =

1 + ∆

αγ
.

(ii) At most one zero x is contained in x with

‖x− z‖∞ <
2

αγ
.

(iii) If
max
x∈x
‖x− z‖∞ < r

then there is a unique zero x ∈ x, and this zero satisfies

‖x− z‖∞ ≤ r.

The affine invariant version of the Kantorovich theorem given in Deuflhard &
Heindl [44] essentially amounts to applying the theorem to F ′(z)−1F (x) in place of
F (x). In practice, rounding errors in computing F ′(z)−1 are made, which requires
the use of a preconditioning matrix C ≈ F ′(z)−1 and CF (x) in place of F (x) to get
the benefits of affine invariance in floating point computations.

Kahan [106] used the Krawczyk operator, which only needs first order slopes (see
Section 3.4.2), to make existence statements. Together with later improvements
using slopes, his result is contained in the following statement:

Theorem 3.3 (Kahan). Let z ∈ z ⊆ x. If there is a matrix C ∈ Rn×n such that
the Krawczyk operator

K(z,x) := z − CF (z)− (CF [z,x]− I)(x− z) (3.11)

“habil”
2004/11/29
page 77

3.5. Constraint Propagation 77

satisfies K(z,x) ⊆ x, then x contains a zero of (4.5). Moreover, if K(x,x) ⊆
int (x), then x contains a unique zero of (4.5).

Shen & Neumaier [208] proved that the Krawczyk operator with slopes always
provides existence regions which are at least as large as those computed by Kan-
torovich’s theorem, and since the Krawczyk operator is affine invariant, this also
covers the affine invariant Kantorovich theorem.

Recent work by Hansen [76] shows that there is scope for improvement in Krawczyk’s
method by better preconditioning; but he gives only heuristic recipes for how to pro-
ceed. For quadratic problems, where the slope is linear in x, his recipe suggests to
evaluate CF [z, x] term by term before substituting intervals. Indeed, by subdis-
tributivity, we always have

CA0 +
∑

CAk(xk − zk) ⊆ C
(
A0 +

∑
Ak(xk − zk)

)
,

so that for quadratic functions, Hansen’s recipe is never worse than the traditional
recipe. We will adapt it in Section 4.2 to general functions, using second order
slopes, as explained below; in the general case, the preconditioned slope takes the
form

CF [z, x] = CF [z, z′] +
∑

(xk − z′k)CFk[z, z′, x], (3.12)

or with z = z′, as we use it most of the time,

CF [z, x] = CF ′(z) +
∑

(xk − zk)CFk[z, z, x]. (3.13)

In Section 4.2, the consequences of this formulation, combined with ideas from Shen
& Neumaier [208], are investigated in detail.

Recent work on Taylor models by Berz & Hoefkens [19] (see also Neumaier
[165]) uses expansions to even higher than second order, although at a significantly
higher cost. This may be of interest for systems suffering a lot from cancellation,
where using low order methods may incur much overestimation, leading to tiny
inclusion regions.

Combining interval evaluation of functions and their gradient, as well as using the
first order optimality conditions, backboxing (i.e., exclusion boxes), and interval
Newton techniques in a branch-and-bound scheme are the basis for most interval
based complete global optimization algorithms like GlobSol [116].

3.5 Constraint Propagation

Purely interval based global optimization algorithms suffer from the problem that
the work invested into analyzing a subproblem P from the list L is either fully
successful (i.e. P is discarded) or completely in vain (if P has to be split). Most
purely interval analytic methods do not provide the possibility for reducing P as
needed in the branch-and-reduce algorithm (Figure 3.3). The only exception is the
interval Newton method, which usually works only near a local minimizer.

“habil”
2004/11/29
page 78

78 Chapter 3. Global Optimization and Constraint Satisfaction

In constraint logic programming Cleary [35] and Older & Vellino invented
a method, which used the constraints for reducing the domain of all variables by
removing values, which lead to contradictions. This method became the base of
the advanced search algorithms in the logic programming languages Prolog V and
ECLiPSe.

It was realized that the methods from the discrete constraint satisfaction case can
be carried over to continuous constraint programming and global optimization by
using interval analysis, see, e.g., Benhamou et al. [14, 16], Chen & vanEmden
[33], van Hentenryck [83, 84, 85], or Dallwig et al. [39].

The basic principle is that a constraint of the form

f(x, y) ∈ f

poses a restriction on the possible values the variables x and y can take. Consider,
e.g., the simple constraint

x+ y ∈ [−1, 1],

where x ∈ [0, 4], and y ∈ [−1, 3]. Certain combinations of values for x and y from
their specific domains do not satisfy the constraint, and more than that. Setting
x = 4 there is no possible y such that x + y ∈ [−1, 1]. Hence the value 4 can be
removed from the domain of x. More general, the constraint x+ y ∈ [−1, 1] implies
that x ∈ [−1, 1] − [−1, 3] = [−4, 2], and hence the range for x can be reduced to
[0, 4] ∩ [−4, 2] = [0, 2]. In the next step we analyze the constraint again and find
that y ∈ [−1, 1] − [0, 2] = [−3, 1]. Thus, we can also reduce the domain of y to
[−1, 3]∩ [−3, 1] = [−1, 1]. Now we have reached a state where for every value in the
domain of either variable there exists a value in the domain of the other variable
such that their sum is in [−1, 1]. At this point the constraint propagation would
have to switch to the next constraint.

The constraint propagation scheme can be generalized to constraints involving el-
ementary functions, and even to general directed acyclic computational graphs, as
presented later in Section 4.1.4.

Combining constraint propagation with branch-and-bound is efficient, since split-
ting the domain of one variable further reduces the domains of other variables.

In the example above, we can split y into [0, 1] and [−1, 0]. Constraint propagation
on the first interval does not change anything, but with the second interval the
domain of x further reduces to [0, 1].

However, since constraint propagation also is a zero-order technique just using in-
terval evaluation, the constraint propagation algorithms also suffer from the cluster
effect.

“habil”
2004/11/29
page 79

3.6. Linearization Techniques 79

3.6 Linearization Techniques

Another idea for attacking global optimization problems is by solving a sequence of
easier problems. We say that an optimization problem

min q(x)

s.t. R(x) ∈ R
x ∈ x

(RP)

is a relaxation of the optimization problem (GO), if the feasible set of (RP) contains
the feasible set of (GO) and the objective function q satisfies

q(x) ≤ f(x), for all x ∈ F ,

where F is the feasible set of (GO). The following important properties of relax-
ations can then be used:

1. The global minimum q∗ of problem (RP) is a lower bound for the global
minimum of (GO).

2. If x∗ is the global minimizer of problem (RP), F (x∗) ∈ F , and q(x∗) = f(x∗)
then x∗ is the global minimum of problem (GO).

Usually, the relaxed problem has a much simpler structure than the original one
and can be solved with comparably small effort by standard algorithms to global
optimality. If relaxations are used in a branch-and-bound scheme, property 1. can
be used to discard the subproblem, if the value q∗ is higher than the objective
function value fbest of the best feasible point found so far. Property 2. is a method
for proving global optimality of a feasible point.

Because linear programming is the most developed field of optimization, linear
relaxations are a good choice, and they have been considered since McCormick
[143].

After he had given the linear bounds on the constraint z = xy, see below, the so-
called reformulation linearizations were invented by a number of researchers.
For a factorable global optimization problem one introduces intermediate variables
until all constraints are of one of the following types

z = ϕ(x) unary

z = x ◦ y binary

z ∈ z bound,

and the objective function is linear. The next step is to replace all constraints by
linear constraints enlarging the feasible set. For unary functions this can be done
by constructing analytically like in Figure 3.4. Constraints involving powers can be
rewritten in the form

z = xy ⇐⇒
z = exp z1

z1 = yz2

z2 = log x.

“habil”
2004/11/29
page 80

80 Chapter 3. Global Optimization and Constraint Satisfaction

Figure 3.4. Linear Relaxation of a nonlinear equality constraint

Therefore, the only operations to be analyzed are products and quotients. For
products McCormick provided the linear relaxations

yx+ xy − xy ≤z ≤ yx+ xy − xy
yx+ xy − xy ≤z ≤ yx+ xy − xy,

if bounds x ∈ x and y ∈ y are known for the variables. The inequalities are a
consequence of positivity relations like (x−x)(y− y) ≥ 0, and they are the convex
and concave envelope of the product constraint, as was shown by Al-Khayyal
& Falk [1]. For quotients a similar relaxation is valid, which is not the convex and
concave envelope. This was computed by Tawarmalani & Sahinidis [220], but
the formulas are rather complicated.

The disadvantage of the reformulation method is that for complex expressions the
number of intermediate variables is high, and so the dimension of the linear program-
ming problem is far higher than that of the original problem, requiring significant
effort for solving it. Since the resulting linear programs are very sparse, a good
LP solver is required. Nevertheless, if this prerequisite is met, the reformulation
linearization is a very effective method, and BARON [220] and LINGO [62] mainly rely
on that principle.

A different approach, which does not increase the problem size is taken in Sec-
tion 4.1.6. There, using slopes and constraint propagation, for every nonlinear
constraint a pair of linear inequalities is constructed.

3.7 Convex Underestimation

Linear proramming is comparably easy and fast. However, linear relaxations are
somewhat stiff, since they cannot grasp the curvature of the functions involved
(enclosing a circle properly by linear inequalities needs a large number of linear
inequalities depending on the required accuracy).

As we have seen in Theorem 2.14 for convex objective functions on convex feasible
sets all local minima are already global, so local optimization of convex relaxations
can be used for obtaining valid bounds.

“habil”
2004/11/29
page 81

3.7. Convex Underestimation 81

This fact can be exploited by constructing a nonlinear convex relaxation of a prob-
lem instead of a linear relaxation. In order to do that, several approaches are
possible. The problem can be rewritten in sparse form (as above) and convex and
concave envelopes can be constructed for the operations. This can improve the
enclosures, e.g. in the case of a circle.

However, a different approach was taken by Adjiman, Floudas, et al. in αBB.
Every inequality constraint Fi(x) ≤ 0 is separated into linear, convex, concave
parts and a general nonlinear remainder term. Linear and convex parts are kept,
the concave part is overestimated by a secant hyperplane, and the general nonlinear
remainder is convexified by adding a nonpositive separable quadratic function: If
Fi is a C2 function on a finite box x we have

q(x) := Fi(x) + 1
2 (x− x)TD(x− x)

for a nonnegative diagonal matrix D. This q underestimates Fi, and the amount of
underestimation satisfies

|q(x)− Fi(x)| ≤ 1
8 radxTDradx.

If for the interval Hessian G(x) ⊆ G for all x ∈ x and all symmetric matrices in
G+D are positive definite (this is especially true, if all G ∈ G+D are regular and
Ǧ+D the midpoint matrix of G+D is positive definite), the function q is convex.
The sum of linear and convex parts, secant hyperplane, and q is then guaranteed to
be convex, as well. Applying that procedure to all constraints results in a convex
relaxation which can be solved by local optimization.

More general techniques involving differences of convex functions (DC techniques)
are treated in Horst & Tuy [89] and an overview is given in Tuy [223].

For more information on convexity and convexity detection see Neumaier [168].

“habil”
2004/11/29
page 82

82 Chapter 3. Global Optimization and Constraint Satisfaction

“habil”
2004/11/29
page 83

Chapter 4

New Techniques

In this chapter I want to present a few techniques which are uncommon for global
optimization algorithms or altogether new. The chapter is essentially split in two
parts. Section 4.1 describes a new representation for factorable global optimization
problems, which provides high flexibility and improved slopes and interval deriva-
tives by automatic differentiation methods. In Section 4.2 we construct exclusion
boxes around approximate solutions of systems of equations containing no other
solution of the equation. This results also provides exclusion boxes around ap-
proximate Karush–John points of a global optimization problem, if applied to the
Karush–John first order optimality conditions (see Section 2.2.4).

83

“habil”
2004/11/29
page 84

84 Chapter 4. New Techniques

4.1 Directed Acyclic Graphs

This section, taken in part from Schichl & Neumaier [201], discusses a new
representation technique for global optimization problems using directed acyclic
graphs (DAGs). Traditionally, DAGs have been used in automatic differentiation
(see Griewank [24, 71]) and in the theory of parallel computing (see Chekuri [32]).
We will show that the DAG representation of a global optimization problem serves
many purposes. In some global optimization algorithms (see Kearfott [112])
and constraint propagation engines (e.g., ILOG solver), the computational trees
provided by the parsers of high-level programming language compilers (FORTRAN
90, C++) are used, in others the parsers of modeling languages like AMPL [58] or
GAMS [29] provide the graph representation of the mathematical problem.

One of the strengths of the DAG concept is that it is suitable both for efficient
evaluation and for performing constraint propagation (CP). The basics of constraint
propagation on DAGs are outlined in Section 4.1.4.

The results of constraint propagation, especially the ranges of the inner nodes,
can be used to improve the ranges of the standard evaluation methods for interval
derivatives, and slopes. The principles are outlined in Section 4.1.5. For global
optimization algorithms not only range estimates are relevant but also relaxations
by models which are easier to solve. Section 4.1.6 describes methods for generating
linear relaxations using the DAG representation.

4.1.1 Directed acyclic graphs

This section is devoted to the definition of the graphs used to represent the global
optimization problems. Although we will use the term directed acyclic graph (DAG)
throughout this book to reference the graph structure of the problem representation,
the mathematical structure used is actually a bit more specialized. Here we will
describe the basic properties of the graphs.

Definition 4.1. A directed multigraph Γ = (V,E, f) consists of a finite set of
vertices (nodes) V , a finite set of edges E, and a mapping f : E → V × V . For
every edge e ∈ E we define the source of e as s(e) := Pr1 ◦ f(e) and the target of
e as t(e) := Pr2 ◦ f(e). An edge e with s(e) = t(e) is called a loop. Edges e, e′ ∈ E
are called multiple, if f(e) = f(e′).

For every vertex v ∈ V we define the set of in-edges

Ei(v) := {e ∈ E | t(e) = v}

as the set of all edges, which have v as their target, and the set of out-edges
analogously as the set

Eo(v) := {e ∈ E | s(e) = v}
of all edges with source v. The indegree of a vertex v ∈ V is defined as the number
of in-edges indeg(v) = |Ei(v)|, and the the outdegree of v as the number of out-
edges outdeg(v) = |Eo(v)|.

“habil”
2004/11/29
page 85

4.1. Directed Acyclic Graphs 85

A vertex v ∈ V with indeg(v) = 0 is called a (local) source of the graph, and a
vertex v ∈ V with outdeg(v) = 0 is called a (local) sink of the graph.

Remark. 4.2. A directed tree is a special case of a directed multigraph. In a
computational tree context, the local sources are usually called leafs, and the local
sinks are denoted roots.

Definition 4.3. Let Γ = (V,E, f) be a directed multigraph. A directed path
from v ∈ V to v′ ∈ V is a sequence {e1, . . . , en} of edges with t(ei) = s(ei+1) for
i = 1, . . . , n − 1, v = s(e1), and v′ = t(en). A directed path is called closed or a
cycle, if v = v′. The multigraph Γ is called acyclic if it does not contain a cycle.

Proposition 4.4. A non-empty acyclic graph contains at least one source and at
least one sink.

Proof. Assume that the acyclic graph Γ contains no sink. Then every vertex has
at least one out-edge. The graph is non-empty, so it contains a vertex v0. The
set Eo(v0) is non-empty, let e0 ∈ Eo(v0), and set v1 = t(e0). Since Γ is acyclic,
e1 6= e0. By induction, we construct a infinite sequence of distinct vertices of Γ,
a contradiction to the finiteness of V . Hence, the graph contains a sink, and by
symmetry also a source.

Definition 4.5. A directed multigraph with ordered edges (DMGoe) Γ =
(V,E, f,≤) is a quadruple such that (V,E, f) is a directed multigraph and (E,≤) is
a linearly ordered set. As subsets of E, the in-edges Ei(v) and out-edges Eo(v) for
every vertex become linearly ordered as well.

We will represent the global optimization problems as directed acyclic computa-
tional multigraphs with ordered edges (in short DAG), where every vertex corre-
sponds to an elementary operation and every edge represents the computational
flow. For later use, we define the relationship between different vertices.

The reasons that we need multigraphs is the fact that expressions (e.g. xx) can
take the same input more than once. The ordering of the edges is primarily needed
for non-commutative operators like division and power. However, we will see in
Section 4.1.7 that this also has a consequence for certain commutative operations.

Definition 4.6. Consider the directed acyclic multigraph Γ = (V,E, f). For two
vertices v, v′ ∈ V we say that v is a parent of v′ if there exists an edge e ∈ E with
s(e) = v′ and t(e) = v, and then we call v′ a child of v. Furthermore, v will be
named an ancestor of v′ if there is a directed path from v′ to v, and v′ is then a
descendant of v.

Now we have all the notions at hand that we will use to represent the optimization

“habil”
2004/11/29
page 86

86 Chapter 4. New Techniques

problems.

Proposition 4.7. For every directed acyclic multigraph Γ = (V,E, f) there is a
linear order ¹ on V such that for every vertex v and every ancestor v′ of v we have
v ¹ v′.

Proof. The proof of this theorem is constructive. It proceeds by constructing a
bijection ϕ : V → [0, |V |] ⊆ N.

k = 0

func rec_walk(vertex v)
foreach e ∈ Eo(v) do

rec_walk(t(e))
end

if(ϕ(v) is undefined)

ϕ(v) := k

k = k + 1

end

end

foreach source v do

rec_walk(v)
end

Now we define v ¹ v′ :⇐⇒ ϕ(v) ≤ ϕ(v′).

4.1.2 Representing global optimization problems

In this section we will see how we represent a global optimization problem as a
DAG. In Section 4.1.2 we will talk about simplifying the representation without
changing the mathematical model. Later, in Section 4.1.2 we will show that DAGs
can be used to transfer the mathematical problem to various different structures
which are needed by specialized optimization and constraint satisfaction algorithms
like ternary structure, semi-separable form, and the like. Also sparsity-issues can
be tackled by the reinterpretation method described there.

Consider the factorable optimization problem

min f(x)

s.t. F (x) ∈ F . (4.1)

Since it is factorable, the functions f and F can be expressed by sequences of
arithmetic expressions and elementary functions. For every arithmetic operation ◦
or elementary function involved we introduce a vertex in the graph. Every constant
and variable becomes a local source. If f ◦ g is part of one function, we introduce

“habil”
2004/11/29
page 87

4.1. Directed Acyclic Graphs 87

an edge from g to f . The results of f and F become local sinks nodes, of which
the result of f is distinguished as the result of the objective function. So with
every vertex we associate an arithmetic operation {+, ∗, /,̂ } or elementary function
{1/, exp, log, sin, cos, . . . }. For every edge e ∈ E we call the vertex t(e) the result
node and the vertex s(e) the argument node.

x1 x2 x3

∗ ∗

+ +

∗

4

−1

ut2 ut2
√

+

exp

+

+

min [−1, 1][0, 0]

[0,∞) [0,∞) [−1, 8]

Figure 4.1. DAG representation of problem 4.2

When we draw DAG pictures, we write the operation in the interior of the circle
representing the node, and mathematically we introduce a map op : V → O to
the set O of elementary operations. We also introduce a mapping rg : V → IR,
the range map, which defines the feasible range of every vertex. In the pictures
representing the graphs in this paper, we will write the result of the range map next
to every vertex (and leave it out if r(v) = (−∞,∞)).

Consider for example the optimization problem

min (4x1 − x2x3)(x1x2 + x3)

s.t. x2
1 + x2

2 + x1x2 + x2x3 + x2 = 0

exp(x1x2 + x2x3 + x2 +
√
x3) ∈ [−1, 1].

(4.2)

This defines the DAG depicted in Figure 4.1. Here, we have introduced further
notation, the coefficient map cf : E → R. It multiplies the value of the source of
e with cf(e) before feeding it to the operation (or elementary function) t(e). If the
coefficient cf(e) is different from 1, we write it over the edge in the picture. In
some sense, the DAG in Figure 4.1 is optimally small, because it contains every
subexpression of the functions f and F only once.

“habil”
2004/11/29
page 88

88 Chapter 4. New Techniques

DAG Transformations - Simplification

If we start translating a function to a DAG, we introduce for every variable, every
constant, and every operation involved a vertex and connect them by the necessary
edges. The resulting DAG, however, usually is too big. Every subexpression of
f which appears more than once will be represented by more than one node (e.g.
v1 and v2). So, the subexpression will be recomputed too often in the evaluation
routines, and during constraint propagation (see Section 4.1.4) the algorithms will
not make use of the implicit equation v1 = v2.

Of course, variables usually appear more than once, and many algorithms for con-
straint propagation [97, 15, 195] use the principle that the variable nodes of identi-
cal variables can be identified, hereby reducing the size of the graph. However, this
principle can be generalized.

Definition 4.8. Two vertices v1 and v2 of the DAG Γ = (V,E, f,≤) are called
simply equivalent if they represent the same operation or elementary function (i.e.
op(v1) = op(v2)), and there is a monotone increasing bijective map g : Ei(v1) →
Ei(v2) with the property s(e) = s(g(e)) for all e ∈ Ei(v1). If there are no distinct
simply equivalent vertices in the DAG Γ, we call Γ a reduced DAG.

The existence of the map g means nothing else than the fact that v1 and v2 represent
the same expression. They are the same operation taking the same arguments in
the same order. Therefore, any two simply equivalent vertices can be identified
without changing the functions represented by Γ.

In particular, every DAG Γ can be transformed to an equivalent reduced DAG.
We can start by identifying the equivalent leafs and continue to identify distinct
simply equivalent nodes of Γ until all nodes are pairwise simply inequivalent. The
resulting DAG Γ′ is reduced. Note that this does not mean that the graph does
not contain any mathematically equivalent subexpressions. This only implies that
no computationally equivalent subexpressions exist.

These simple graph theoretic transformations can be complemented by additional
mathematical transformations. These come in three categories:

Constant Evaluation/Propagation: If all children v1, . . . , vk of a vertex v are
leafs representing constants, it can be replaced by a leaf representing the
constant which is the result of evaluating the operation op(v) on the children:
v′ := const(op(v)(v1, . . . , vk)). In a validated computation context, however,
it has to made sure that no roundoff errors are introduced in this step.

Mathematical Equivalences: Typically, properties of elementary functions are
used to change the DAG layout. E.g., the rule

log(v1 . . . vk) = log(v1) + · · ·+ log(vk)

replaces one log–node and one ∗–node by a +–node and a number of log–nodes
(or vice versa).

“habil”
2004/11/29
page 89

4.1. Directed Acyclic Graphs 89

Substitution: Equations of the form

−v0 + v1 + · · ·+ vk = 0

can be used to replace the node v0 by v1 + · · ·+ vk.

DAG Interpretation

One strength of the DAG representation is that the mathematical formulation of a
problem can be transformed to an equivalent mathematical description which serves
the specific needs of some optimization algorithms without having to change the
DAG itself; just its interpretation is changed.

Consider again problem (4.2). The following problem is an equivalent formulation

min x10

s.t. x2
1 + x2

2 + x7 = 0

exp(x7 +
√
x3) ∈ [−1, 1]

x2x3 − x4 = 0

x6 + x3 − x5 = 0

x1x2 − x6 = 0

x8 + x2 − x7 = 0

x4 + x6 − x8 = 0

4x1 − x4 − x9 = 0

x9x5 − x10 = 0

(4.3)

of much higher dimension but with the property that the objective function is linear
and that all constraints are ternary, i.e., involve at most three variables. This is
the required problem formulation for a variety of CP algorithms.

Without changing the DAG we can get this representation just by changing the
interpretation of the nodes. All intermediate nodes with more than one child and
the objective function node are just regarded as variables, and an equation is added
which connects the value of the variable with the value of the node as it is computed
from its children. No change of the data structure is necessary.

Adding equations and changing the interpretation of intermediate nodes to vari-
able nodes increases the dimension of the problem but also increases the sparsity.
By carefully balancing the number of variables this method can be used, e.g., to
optimize the sparsity structure of the Hessian of the Lagrangian.

4.1.3 Evaluation

There are several pieces of information which have to be computed for the functions
involved in the definition of an optimization problem:

• function values at points,

“habil”
2004/11/29
page 90

90 Chapter 4. New Techniques

• function ranges over boxes,

• gradients at points,

• interval gradients over boxes,

• slopes over boxes with fixed center,

• linear enclosures.

To illustrate the techniques, we will use throughout this and the following sections
the simple example

min f(x1, x2, x3) = (4x1 − x2x3)(x1x2 + x3)

s.t. x1 ∈ [1, 2], x2 ∈ [3, 4], x3 ∈ [3, 4],
(4.4)

whose DAG representation can be found in Figure 4.2.

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4][1, 2] [3, 4] [3, 4]

Figure 4.2. Directed Acyclic Graph representation of (4.4)

Forward Evaluation Scheme

The standard method of evaluating expressions works by feeding values to the local
sources and propagating these values through the DAG in direction of the edges.
This is the reason why this evaluation method is called forward mode.

Computing the function value f(2, 4, 4) proceeds as depicted in Figure 4.3. Here,
we have written the results for all nodes to the right of the circle representing them.

“habil”
2004/11/29
page 91

4.1. Directed Acyclic Graphs 91

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

2 4 4

16

−8 12

−96

8

Figure 4.3. Function evaluation for (4.4)

In a completely analogous way we can compute a range estimate of f on the initial
box [1, 2] × [3, 4] × [3, 4]. Instead of using real numbers we plug intervals into the
sources and use interval arithmetic instead of real arithmetic and interval extensions
of elementary functions instead of their real versions. Again, we show the process
in Figure 4.4 by placing the ranges computed for the nodes next to them

Backward Evaluation Scheme

Calculating derivatives or slopes could be done by the forward mode as well but
then we would need to propagate vectors through the graph, and at every node we
would have to perform at least one full vector addition, so the effort to calculate
a gradient would be proportional to the number of variables times the effort of
calculating a function value.

However, it is well known from automatic differentiation that the number of opera-
tions can be reduced to be of the order of one function evaluation by reversing the
direction of evaluation.

First, we recall the chain rule

∂

∂xi
(f ◦ g)(x) =

∑

k

∂

∂xk
f(g(x)) · ∂

∂xi
g(x).

So in a first step, during the computation of the function value, we construct a map
dm : E → R which associates with every edge the value of the partial derivative
of the result node with respect to the corresponding argument node. Then we

“habil”
2004/11/29
page 92

92 Chapter 4. New Techniques

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[3, 8] [9, 16]

[−12,−1] [6, 12]

[−144,−6]

Figure 4.4. Interval evaluation for (4.4)

start at the local sinks and walk towards the sources in the opposite direction of
the graph edges, multiplying by dm(e) as we traverse e. When we reach the leaf
representing variable xi, we add the resulting product to the ith component of the
gradient vector. The gradient at (2, 4, 4) is calculated as in Figure 4.5. Here the
values of dm are written next to the edges, and the results are next to the nodes.
The components of the gradient can be found next to the sources of the graph. We
have ∇f(2, 4, 4) = (16,−64,−56).

There is hardly any difference in computing the interval gradient of f over a given
box x. Since the chain rule looks exactly the same as for real gradients, the evalua-
tion scheme is the same, as well. We only have to replace real arithmetic by interval
arithmetic, and the map idm : E → IR becomes interval valued. In Figure 4.6 we
compute ∇f(x) for x = [1, 2]× [3, 4]× [3, 4].

Calculating slopes (see Section 3.4.2) works the same way, as was noticed by Bliek
[24] for computational trees. Like there, we can use the backward mode to compute
the slopes on the DAG. The arithmetic operations and the elementary functions
look like depicted in Figure 4.7. There zf denotes the center of f , and sf the slope
of f .

We see from the pictures that for the elementary functions, the slopes ϕ[z,x] have
to be computed. We know from Section 3.4.2 that for convex and concave functions
the optimal slope can be easily computed, and for the other functions, the case is

“habil”
2004/11/29
page 93

4.1. Directed Acyclic Graphs 93

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

12 −8

4 1

4 2 4 4

−1
1

4 · 12− 4 · 8 = 16 −16− 48 −48− 8

−8 −12

12 −8

1

Figure 4.5. Gradient evaluation for (4.4)

more difficult, but we always have

ϕ[z,x] ⊆ ϕ′(x).

To compute general slopes, we first compute the values of the centers in forward
mode, which is an ordinary (interval) function evaluation. Then we change the
map dm to slm : E → IR storing the slope of the result node with respect to the
argument node during the forward pass, and then we use interval arithmetic to
compute the slope in backward mode. This can be seen in Figure 4.8, where we
keep at each node the centers and the slopes separated by a comma.

The result f [z,x] = ([−8, 24], [−64,−34], [−56,−32]) is clearly slimmer than the
interval derivative f ′(x) = ([−24, 45], [−72,−19], [−60,−19]) as it was expected,
since slopes provide better enclosures than interval derivatives.

4.1.4 Constraint Propagation on DAGs

As already mentioned, one strength of the DAG concept for global optimization is
that knowledge of feasible points and the constraints can be used to narrow the
possible ranges of the variables, cf. [15, 85, 195].

If we have a feasible point xbest with function value fbest we can introduce the
new constraint f(x) ≤ fbest without changing the solution of the optimization
problem (4.1). Then the ranges of the nodes can be propagated through the DAG,
refining the range map rg : V → IR in every step of the constraint propagation (i.e.

“habil”
2004/11/29
page 94

94 Chapter 4. New Techniques

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[6,12] [−12,−1]

4 1

[3,4]

[1,2] [3,4] [3,4]

−1
1

=[−24,45]

[3,4][−12,−1]

4[6,12]+

[−72,−19] [−60,−19]

[−12,−1] [−12,−6]

[6,12] [−12,−1]

[1,1]

Figure 4.6. Interval gradient evaluation for (4.4)

f g f g f g

∗+ / ϕ

f

λ µ
λ µ

zf ,sf zg,sg

λzf+µzg,λsf+µsg

zf ,sf ,f zg,sg

zg f

zfzg,zgsf+fsg

zf ,sf ,f zg,sg,g

1
zg

1
zg

f
g

zf ,sf ,f

ϕ[zf , f]

zf
zg
,
sf
zg

+
sg
zg

f
g

ϕ(zf),ϕ[zf ,f]sf

Figure 4.7. Slopes for elementary operations

rg(n+1)(v) ⊆ rg(n)(v) for all v, if rg(n) denotes the range map at step n). We stop
when the reductions become too small.

Constraint propagation has two directions, forward and backward. For the elemen-
tary functions the propagation steps are as follows.

h = λf + µg:
forward propagation

h(n+1) := (λf (n+1) + µg(n+1)) ∩ h(n),

backward propagation

f (n+1) := 1
λ (h(n+1) − µg(n)) ∩ f (n),

g(n+1) := 1
µ (h(n+1) − λf (n)) ∩ g(n).

“habil”
2004/11/29
page 95

4.1. Directed Acyclic Graphs 95

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[6,12] −8

4 1

[3,4]

2 [3,4] 4

−1
1

=2,[−8,24]

[3,4](−8)

4[6,12]+

4,[−64,−34] 4,[−56,−32]

8,−8 16,[−12,−6]

−8,[6,12] 12,−8

−96,[1,1]

Figure 4.8. Slope evaluation for (4.4)

h = fg:
forward propagation

h(n+1) := (f (n+1)g(n+1)) ∩ h(n),

backward propagation

f (n+1) := (h(n+1)/g(n)) ∩ f (n),

g(n+1) := (h(n+1)/f (n)) ∩ g(n).

h = f/g:
forward propagation

h(n+1) := (f (n+1)/g(n+1)) ∩ h(n),

backward propagation

f (n+1) := (h(n+1)g(n)) ∩ f (n),

g(n+1) := (f (n)/h(n+1)) ∩ g(n).

h = ϕ(f):
forward propagation

h(n+1) := ϕ(f (n+1)) ∩ h(n),

backward propagation

f (n+1) := ϕ−1(h(n+1)) ∩ f (n).

“habil”
2004/11/29
page 96

96 Chapter 4. New Techniques

Note that for the DAG representation we refine the range map for all nodes not
only for the leaf nodes. This is an important step because that will help us in
Section 4.1.5 to improve the ranges of interval derivatives, slopes, interval Hessians,
and second order slopes.

In Figure 4.9 we show the result of constraint propagation to our example, if we
use the function value −96 of the feasible point (2, 4, 4) to introduce the constraint
f(x) ≤ −96. Note that the ranges of the variable nodes do not change, so the
traditional method of calculating interval related results is not improved. The new
ranges are printed in the picture in bold face.

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[4,8] [12,16]

[−12,−8] [8,12]

[−144,−96]

[3,8] [9,16]

[−12,−1] [6,12]

[−144,−6]

Figure 4.9. Constraint propagation for (4.4)

4.1.5 Combining CP and Evaluation

In this section we will use the range map rg : V → IR improved by constraint prop-
agation to recompute the interval derivative, the slope, and the interval Hessians.
This improves the ranges, in some examples tested the improvement was several
orders of magnitude.

Figure 4.10 contains the result of the interval gradient after constraint propagation,
and in Figure 4.11 we recompute the slope.

“habil”
2004/11/29
page 97

4.1. Directed Acyclic Graphs 97

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[4,8] [12,16]

[−12,−8] [8,12]

[−144,−96]

[8,12] [−12,−8]

4 1

[3,4]

[1,2] [3,4] [3,4]

−1
1

=[−16,24]

[3,4][−12,−8]

4[8,12]+

[−72,−32] [−60,−32]

[−12,−8] [−12,−8]

[8,12] [−12,−8]

[1,1]

Figure 4.10. Interval gradient evaluation for (4.4) after constraint propagation

Both results are clearly an improvement over what we had before:

f ′(x) ⊆




[−16, 24]

[−72,−32]

[−60,−32]


 (




[−24, 45]

[−72,−19]

[−60,−19]


 , f [z,x] ⊆




[0, 24]

[−64,−48]

[−56,−32]


 (




[−8, 24]

[−64,−34]

[−56,−32]


 .

4.1.6 Slopes and linear enclosures

The linear approximation (3.3) of a function f provided by slopes can be used to
construct an enclosure of f by linear functions. This in turn can be used to construct
a linear relaxation of the original problem.

Proposition 4.9. Let s := f [z,x] be a slope of the function f : Rn → R. If z ∈ x
then the function

f(x) = f +
∑

si(xi − zi) +
si(xi − zi)− si(xi − zi)

xi − xi
(xi − xi)

is a linear function which underestimates f on x, i.e.,

f(x) ≤ f(x) for all x ∈ x,

and the function

f(x) = f +
∑

si(xi − zi) +
si(xi − zi)− si(xi − zi)

xi − xi
(xi − xi)

“habil”
2004/11/29
page 98

98 Chapter 4. New Techniques

x1 x2 x3

∗ ∗

+ +

∗

4

−1

min

[1, 2] [3, 4] [3, 4]

[4,8]
[12,16]

[−12,−8] [8,12]

[−144,−96]

[8,12] −8

4

1

[3,4]

2 [3,4] 4

−1
1

=2,[0,24]

[3,4](−8)

4[8,12]+

4,[−64,−40] 4,[−56,−40]

8,−8
16,[−12,−8]

−8,[8,12] 12,−8

−96,1

Figure 4.11. Slope evaluation for (4.4) after constraint propagation

is a linear overestimating function for f over x.

Proof. A linear function is separable, so the over- and underestimation can be
performed componentwise. So, the estimates can be reduced to a series of one
dimensional problems, and for those the proof is easy.

For problem (4.1) we have to consider the constraints componentwise. For every
component Fj(x) ∈ F j the constraints F j(x) ≤ F j and F j(x) ≥ F j are valid linear
constraints. They can be added as redundant constraints to the problem without
affecting the solution.

Alternatively, one could also compute the underestimating function l for the objec-
tive function f . Then the linear program

min f(x)

s.t. F (x) ≤ F
f(x) ≥ F
x ∈ x,

where F (x) denotes the vector of all underestimating functions F j for all compo-
nents Fj , is a linear relaxation of (4.1).

For the example given by (4.2), we already computed the slope for center (2, 4, 4)
in Section 4.1.5. Calculating a linear underestimating function for the objective, as
above, leads to the constraint

−24(x1 − 2)− 48(x2 − 4)− 32(x3 − 4) ≤ 0.

“habil”
2004/11/29
page 99

4.1. Directed Acyclic Graphs 99

Performing constraint propagation again on the problem with this additional re-
dundant constraint leads to the domain reduction x2,3 ∈ [3.4, 4]. With previously
known techniques but without (expensive) higher order consistency, such a reduc-
tion would have required a split of the box.

Alternatively, it is possible to construct linear enclosures of the form

f(x) ∈ f + s(x− z), for x ∈ x,

with thin slope s ∈ Rn and thick constant term. This approach corresponds to
first order Taylor arithmetic as, e.g., presented in [20, 21, 165]. Since linear Taylor
expression also obey a chain rule similar to slopes, these enclosures can be computed
by backward evaluation with little effort quite similar to “thick” slopes. Kolev [123]
showed that propagating them in forward mode leads to better enclosures; however,
the effort for computing in forward mode is n times higher.

4.1.7 Implementation Issues

Multiplication and Division

As has been mentioned in Section 3.4.2, slopes in dimensions greater than one
are usually not unique. Two elementary operations, multiplication and division,
therefore provide us with a choice for implementation.

All possible slopes for multiplication are

x1x2 ∈ z1z2 +

(
λx2 + (1− λ)z2

λz1 + (1− λ)x1

)
·
(
x1 − z1

x2 − z2

)

for some λ ∈ R (possibly dependent on the arguments), and for division they are

x1

x2
∈ z1

z2
+




λ

z2
+

1− λ
x2

− λ
z2

x1

x2
− 1− λ

x2

z1

z2


 ·

(
x1 − z1

x2 − z2

)
.

The best choice for division is λ = 1, because we can use the term x1

x2
after constraint

propagation, which is the range enclosure of the result node, for which the slope is
being computed, and in addition there is no subdistributivity problem during slope
backward evaluation. So the proper choice for division is

s/ =
1

z2

(
1

−x1

x2

)
.

For multiplication we can choose λ such that it minimizes the width of the resulting
range. A short computation shows that the minimal width is produced for

λ =

{
0 if rad (x1)|z2| ≤ rad (x2)|z1|,
1 otherwise.

“habil”
2004/11/29
page 100

100 Chapter 4. New Techniques

To avoid a case distinction in computing products, it is advisable to find a good
heuristics. Considering the Horner scheme for polynomial evaluation gives the fol-
lowing hint: Sort the product by ascending complexity of the factors (i.e., roughly,
by increasing overestimation). Then set λ = 0, hence choose the slope

s∗ =

(
z2

x1

)
.

Rounding errors

Since enclosures of the form

f(x) ∈ f(z) + f [z,x](x− z),

are computed numerically, the direct evaluation of the thin term f(z) generally
does not produce guaranteed enclosures. Hence, it is important to take care for the
rounding errors, in order to avoid the occasional loss of solutions in a branch and
bound scheme. There are two possible approaches.

The first possibility is to change all calculations involving the center into interval
operations, providing a linear interval enclosure

f(x) ∈ f(z) + f [z,x](x− z)

with generally thick center z. This needs slopes of the form f [z,x] with z ⊆ x for
all elementary operations.

The second possibility is to allow approximate point evaluations at the centers and
elementary slopes with point centers f [z,x], but to take care of the rounding errors
in computing f(z) during propagation, by adapting the chain rule appropriately. If

f(x) ∈ f + f [zf ,x](x− zf), f(zf) ∈ f , x ∈ x
g(y) ∈ g + g[zg,y](y − zg), g(zg) ∈ g, y ∈ y,

then, for arbitrary zg ≈ f(zf),

g(f(x)) ∈ g + g[zg, f(x)](f + f [zf ,x](x− zf)− zg)
⊆ g + g[zg, f(x)](f − zg) + g[zg, f(x)]f [zf ,x](x− zf).

The remaining decision is what to compute in forward, and what in backward mode.
Taking a third component provides the important hint:

h(t) ∈ h+ h[zh, t](t− zh),

and we find

h(g(f(x))) ∈ h+ h[zh, g(f(x))](g − zh + g[zg, f(x)](f − zg))
+ h[zh, g(f(x))]g[zg, f(x)]f [zf ,x](x− zf)

if the center term is computed in forward mode. If it is computed backward, the
term is

h[zh, g(f(x))](g(f(x))− zh) + h[zh, g(f(x))]g[zg, f(x)](f − zg).
Because of subdistributivity, this is a worse (or identical) enclosure of the center.
Therefore, computing the center in forward mode gives generally tighter results.

“habil”
2004/11/29
page 101

4.2. Exclusion Boxes 101

4.2 Exclusion Boxes

Branch and bound methods for finding all zeros of a nonlinear system of equations
in a box (see Kearfott [112] or vanHentenryck et al. [85]) frequently have
the difficulty that subboxes containing no solution cannot be easily eliminated if
there is a nearby zero outside the box. This has the effect that near each zero, many
small boxes are created by repeated splitting, whose processing may dominate the
total work spent on the global search. This section primarily contains material from
Schichl & Neumaier [200].

The cluster effect, see Section 3.4.6 in the reasons for the occurrence of this so-
called cluster effect, and how to reduce the cluster effect by defining exclusion
regions around each zero found, that are guaranteed to contain no other zero and
hence can safely be discarded. Such exclusion boxes (possibly first used by Jansson
[101]) are the basis for the backboxing strategy by van Iwaarden [99] (see also
Kearfott [113, 115]) that eliminates the cluster effect near well-conditioned zeros.

Exclusion regions are traditionally constructed using uniqueness tests based on the
Krawczyk operator (see, e.g., Neumaier [160, Chapter 5]) or the Kantorovich the-
orem (see, e.g., Ortega & Rheinboldt [176, Theorem 12.6.1]); both provide
existence and uniqueness regions for zeros of systems of equations. Shen & Neu-
maier [208] proved that the Krawczyk operator with slopes always provides an ex-
istence region which is at least as large as that computed by Kantorovich’s theorem.
Deuflhard & Heindl [44] proved an affine invariant version of the Kantorovich
theorem.

In Section 3.4.7, these results are reviewed, together with recent work on improved
preconditioning by Hansen [74] and on Taylor models by Berz & Hoefkens [19]
that is related to our present work. In Sections 4.2.1–4.2.3, we discuss componen-
twise and affine invariant existence, uniqueness, and non-existence regions given
a zero or any other point of the search region. They arise from a more detailed
analysis of the properties of the Krawczyk operator with slopes used in Shen &
Neumaier [208].

Numerical examples given in Section 4.2.4 show that the refinements introduced in
this paper significantly enlarge the sizes of the exclusion regions.

We consider the nonlinear system of equations

F (x) = 0, (4.5)

where F : D ⊆ Rn → Rn is twice continuously differentiable in a convex domain
D. (For some results, weaker conditions suffice; it will be clear from the arguments
used that continuity and the existence of the quantities in the hypothesis of the
theorems are sufficient.)

As in Section 3.4.4, we construct the second order slope matrices Fk[z, z′, x] for F

F (x) = F (z) + F [z, z′](x− z) +
∑

(xk − z′k)Fk[z, z′, x](x− z). (4.6)

and for z = z′

F (x) = F (z) + F ′(z)(x− z) +
∑

(xk − zk)Fk[z, z, x](x− z). (4.7)

“habil”
2004/11/29
page 102

102 Chapter 4. New Techniques

Throughout this Section we shall make the following assumption, without mention-
ing it explicitly.

Assumption A. The point z and the convex subsetX lie in the domain of definition
of F . The center z ∈ X, and the second order slope (4.7) are fixed. Moreover, for
a fixed preconditioning matrix C ∈ Rm×n, the componentwise bounds

b ≥ |CF (z)| ≥ b,
B0 ≥ |CF ′(z)− I|,
B′0 ≥ |CF ′(z)|,

Bk(x) ≥ |CFk[z, z, x]| (k = 1, . . . , n)

(4.8)

are valid for all x ∈ X.

Example. 4.10. We consider the system of equations

x2
1 + x2

2 = 25,

x1x2 = 12.
(4.9)

The system has the form (4.5) with

F (x) =

(
x2

1 + x2
2 − 25

x1x2 − 12

)
. (4.10)

With respect to the center z =
(

3
4

)
, we have

F (x)−F (z) =

(
x2

1 − 32 + x2
2 − 42

x1x2 − 3 · 4

)
=

(
(x1 + 3)(x1 − 3) + (x2 + 4)(x2 − 4)

x2(x1 − 3) + 3(x2 − 4)

)
,

so that we can take

F [z, x] =

(
x1 + 3 x2 + 4

x2 3

)

as a slope. (Note that other choices would be possible.) The interval slope F [z,x]
in the box x = [2, 4]× [3, 5] is then

F [z, x] =

(
[5, 7] [7, 9]

[3, 5] 3

)
.

The slope can be put in form (4.7) with

F ′(z) =

(
6 8

4 3

)
, F1 =

(
1 0

0 0

)
, F2 =

(
0 1

1 0

)
,

and we obtain

B1 =
1

14

(
3 0

4 0

)
, B2 =

1

14

(
8 3

6 4

)
.

Since we calculated without rounding errors and z happens to be a zero of F , both
B0 and b vanish.

“habil”
2004/11/29
page 103

4.2. Exclusion Boxes 103

4.2.1 Componentwise exclusion regions close to a zero

Suppose that x∗ is a solution of the nonlinear system of equations (4.5). We want
to find an exclusion region around x∗ with the property that in the interior of
this region x∗ is the only solution of (4.5). Such an exclusion region need not be
further explored in a branch and bound method for finding all solutions of (4.5);
hence the name.

In this section we take an approximate zero z of F , and we choose C to be an
approximation of F ′(z)−1. Suitable candidates for z can easily be found within a
branch and bound algorithm by trying Newton steps from the midpoint of each
box, iterating while x` remains in a somewhat enlarged box and either ‖x`+1 − x`‖
or ‖F (x`)‖ decreases by a factor of say 1.5 below the best previous value in the
iteration. This works locally well even at nearly singular zeros and gives a convenient
stop in case no nearby solution exists.

Proposition 4.11. For every solution x ∈ X of (4.5), the deviation

s := |x− z|

satisfies

0 ≤ s ≤
(
B0 +

∑
skBk(x)

)
s+ b. (4.11)

Proof. By (3.3) we have F [z, x](x − z) = F (x) − F (z) = −F (z), because x is a
zero. Hence, using (4.7), we compute

−(x− z) = −(x− z) + C(F [z, x](x− z) + F (z) + F ′(z)(x− z)− F ′(z)(x− z))

= C(F [z, x]− F ′(z))(x− z) + (CF ′(z)− I)(x− z) + CF (z)

=
(
CF ′(z)− I +

∑
(xk − zk)CFk[z, z, x]

)
(x− z) + CF (z).

Now we take absolute values, use (4.8), and get

s = |x− z| ≤
(
|CF ′(z)− I|+

∑
|xk − zk| |CFk[z, z, x]|

)
|x− z|+ |CF (z)|

≤
(
B0 +

∑
skBk(x)

)
s+ b.

Using this result we can give a first criterion for existence regions.

Theorem 4.12. Let 0 < u ∈ Rn be such that
(
B0 +

∑
ukBk

)
u+ b ≤ u (4.12)

with Bk(x) ≤ Bk for all x ∈Mu, where

Mu := {x | |x− z| ≤ u} ⊆ X. (4.13)

“habil”
2004/11/29
page 104

104 Chapter 4. New Techniques

Then (4.5) has a solution x ∈Mu.

Proof. For arbitrary x in the domain of definition of F we define

K(x) := x− CF (x).

Now take any x ∈Mu. We get

K(x) = x− CF (x) = z − CF (z)− (CF [z, x]− I)(x− z) =

= z − CF (z)−
(
C
(
F ′(z) +

∑
Fk[z, z, x](xk − zk)

)
− I
)

(x− z),

hence

K(x) = z − CF (z)−
(
CF ′(z)− I +

∑
CFk[z, z, x](xk − zk)

)
(x− z). (4.14)

Taking absolute values we find

|K(x)− z| =
∣∣∣−CF (z)−

(
CF ′(z)− I +

∑
CFk[z, z, x](xk − zk)

)
(x− z)

∣∣∣ ≤

≤ |CF (z)|+
(
|CF ′(z)− I|+

∑
|CFk[z, z, x]| |xk − zk|

)
|x− z| ≤

≤ b+
(
B0 +

∑
ukBk

)
u.

(4.15)
Now assume (4.12). Then (4.15) gives

|K(x)− z| ≤ u,

which implies by Theorem 3.3 that there exists a solution of (4.5) which lies in Mu.

Note that (4.12) implies B0u ≤ u, thus that the spectral radius ρ(B0) ≤ 1. In the
applications, we can make both B0 and b very small by choosing z as an approximate
zero, and C as an approximate inverse of F ′(z).

Now the only thing that remains is the construction of a suitable vector u for
Theorem 4.12.

Theorem 4.13. Let S ⊆ X be any set containing z, and take

Bk ≥ Bk(x) for all x ∈ S. (4.16)

For 0 < v ∈ Rn, set

w := (I −B0)v, a :=
∑

vkBkv. (4.17)

We suppose that
Dj = w2

j − 4ajbj > 0 (4.18)

for all j = 1, . . . , n, and define

λej :=
wj +

√
Dj

2aj
, λij :=

bj
ajλej

, (4.19)

“habil”
2004/11/29
page 105

4.2. Exclusion Boxes 105

λe := min
j=1,...,n

λej , λi := max
j=1,...,n

λij . (4.20)

If λe > λi then there is at least one zero x∗ of (4.5) in the (inclusion) region

Ri := [z − λiv, z + λiv] ∩ S. (4.21)

The zeros in this region are the only zeros of F in the interior of the (exclusion)
region

Re := [z − λev, z + λev] ∩ S. (4.22)

Proof. Let 0 < v ∈ Rn be arbitrary, and set u = λv. We check for which λ the
vector u satisfies property (4.12) of Theorem 4.12. The requirement

λv ≥
(
B0 +

∑
ukBk

)
u+ b =

(
B0 +

∑
λvkBk

)
λv + b

= b+ λB0v + λ2
∑

vkBkv = b+ λ(v − w) + λ2a

leads to the sufficient condition λ2a − λw + b ≤ 0. The jth component of this
inequality requires that λ lies between the solutions of the quadratic equation λ2aj−
λwj + bj = 0, which are λij and λej . Hence, for every λ ∈ [λi, λe] (this interval is
nonempty by assumption), the vector u satisfies (4.12).

Now assume that x is a solution of (4.5) in int (Re) \ Ri. Let λ be minimal with
|x − z| ≤ λv. By construction, λi < λ < λe. By the properties of the Krawczyk
operator, we know that x = K(z, x), hence

|x− z| ≤ |CF (z)|+
(
|CF ′(z)− I|+

∑
|CFk[z, z, x]| |xk − zk|

)
|x− z|

≤ b+ λB0v + λ2
∑

vkBkv < λv,
(4.23)

since λ > λi. But this contradicts the minimality of λ. So there are indeed no
solutions of (4.5) in int (Re) \Ri.

This is a componentwise analogue of the Kantorovich theorem. We show in Exam-
ple 4.19 that it is best possible in some cases.

We observe that the inclusion region from Theorem 4.13 can usually be further
improved by noting that x∗ = K(z, x∗) and (4.14) imply

x∗ ∈ K(z,xi) = z−CF (z)−
(
CF ′(z)−I+

∑
CFk[z, z,xi](xik−zk)

)
(xi−z) ⊂ int (xi).

An important special case is when F (x) is quadratic in x. For such a function F [z, x]
is linear in x, and therefore all Fk[z, z, x] are constant in x. This, in turn, means
that Bk(x) = Bk is constant as well. So we can set Bk = Bk, and the estimate
(4.16) becomes valid everywhere.

Corollary 4.14. Let F be a quadratic function. For arbitrary 0 < v ∈ Rn define

w := (I −B0)v, a :=
∑

vkBkv. (4.24)

“habil”
2004/11/29
page 106

106 Chapter 4. New Techniques

We suppose that
Dj = w2

j − 4ajbj > 0 (4.25)

for all j = 1, . . . , n, and set

λej :=
wj +

√
Dj

2aj
, λij :=

bj
ajλej

, (4.26)

λe := min
j=1,...,n

λej , λi := max
j=1,...,n

λij . (4.27)

If λe > λi then there is at least one zero x∗ of (4.5) in the (inclusion) box

xi := [z − λiv, z + λiv]. (4.28)

The zeros in this region are the only zeros of F in the interior of the (exclusion)
box

xe := [z − λev, z + λev]. (4.29)

The examples later will show that the choice of v greatly influences the quality
of the inclusion and exclusion regions. The main difficulty for choosing v is the
positivity requirement for every Dj . In principle, a vector v could be found by local
optimization, if it exists. A method worth trying could be to choose v as a local
optimizer of the problem

max n log λe +
n∑

j=1

log vj

s.t. Dj ≥ η (j = 1, . . . , n)

where η is the smallest positive machine number. This maximizes locally the volume
of the excluded box. However, since λe is non-smooth, solving this needs a non-
smooth optimizer (such as SolvOpt [129]).

The Bk can be constructed using interval arithmetic, for a given reference box x
around z. Alternatively, they could be calculated once in a bigger reference box xref

and later reused on all subboxes of xref. Saving the Bk (which needs the storage of
n3 numbers per zero) provides a simple exclusion test for other boxes. This takes
O(n3) operations, while recomputing the Bk costs O(n4) operations.

It is possible to generalize the exclusion boxes to polytopes, as shown in Shen &
Neumaier [200].

4.2.2 Uniqueness regions

Regions in which there is a unique zero can be found most efficiently as follows.
First one verifies as in the previous sections an exclusion box xe which contains
no zero except in a much smaller inclusion box xi. The inclusion box can be
usually refined further by some iterations with Krawczyk’s method, which generally
converges quickly if the initial inclusion box is already verified. Thus we may assume
that xi is really tiny, with width determined by rounding errors only.

“habil”
2004/11/29
page 107

4.2. Exclusion Boxes 107

Clearly, int (xe) contains a unique zero iff xi contains at most one zero. Thus it
suffices to have a condition under which a tiny box contains at most one zero. This
can be done even in fairly ill-conditioned cases by the following test.

Theorem 4.15. Take an approximate solution z ∈ X of (4.5), and let B be a
matrix such that

|CF [z,x]− I|+
∑
|xk − zk| |CFk[x, z,x]| ≤ B. (4.30)

If ‖B‖ < 1 for some monotone norm then x contains at most one solution x of
(4.5).

Proof. Assume that x and x′ are two solutions. Then we have

0 = F (x′)− F (x) = F [x, x′](x′ − x) =
(
F [x, z] +

∑
(x′k − zk)Fk[x, z, x′]

)
(x′ − x).

(4.31)
Using an approximate inverse C of F ′(z) we further get

x− x′ =
(

(CF [z, x]− I) +
∑

(x′k − zk)CFk[x, z, x′]
)

(x′ − x). (4.32)

Applying absolute values, and using (4.30), we find

|x′− x| ≤
(
|CF [z, x]− I|+

∑
|CFk[x, z, x′]| |x′k − zk|

)
|x′− x| ≤ B|x′− x|. (4.33)

This, in turn, implies ‖x′−x‖ ≤ ‖B‖ ‖x′−x‖. If ‖B‖ < 1 we immediately conclude
‖x′ − x‖ ≤ 0, hence x = x′.

Since B is nonnegative, ‖B‖ < 1 holds for some norm iff the spectral radius of B
is less than one (see, e.g., Neumaier [160, Corollary 3.2.3]); a necessary condition
for this is that maxBkk < 1, and a sufficient condition is that |B|u < u for some
vector u > 0.

So one first checks whether maxBkk < 1. If this holds, one checks whether ‖B‖∞ <
1; if this fails, one computes an approximate solution u of (I −B)u = e, where e is
the all-one vector, and checks whether u > 0 and |B|u < u. If this fails, the spectral
radius of B is very close to 1 or larger. (Essentially, this amounts to testing I −B
for being an H-matrix; cf. Neumaier [160, Proposition 3.2.3].)

We can find a matrix B satisfying (4.30) by computing B̂k ≥ |CFk[x, z,x]|, for
example by interval evaluation, using (4.7), and observing

|CF [z,x]− I| ≤ |CF ′(z)− I|+
∑
|xk − zk| |CFk[z, z,x]|

≤ |CF ′(z)− I|+
∑
|xk − zk| |CFk[x, z,x]|.

Then, using (4.8), we get

|CF [z,x]− I|+
∑
|xk − zk| |CFk[x, z,x]| ≤ B0 + 2

∑
|xk − zk| B̂k =: B, (4.34)

“habil”
2004/11/29
page 108

108 Chapter 4. New Techniques

where B can be computed using rounding towards +∞.

If F is quadratic, the results simplify again. In this case all Fk[x′, z, x] =: Fk are
constant, and we can replace B̂k by Bk := |CFk|. Hence (4.34) becomes

B = B0 + 2
∑
|xk − zk|Bk.

4.2.3 Componentwise exclusion regions around arbitrary points

In a branch-and-bound based method for finding all solutions to (4.5), we not only
need to exclude regions close to zeros but also boxes far away from all solutions. This
is usually done by interval analysis on the range of F , by constraint propagation
methods (see, e.g., van Hentenryck et al. [85]), or by Krawczyk’s method
or preconditioned Gauss-Seidel iteration (see, e.g., Neumaier [160]). An affine
invariant, component-wise version of the latter is presented in this section.

Let z be an arbitrary point in the region of definition of F . Throughout this section,
C ∈ Rm×n denotes an arbitrary rectangular matrix. Mu is as in (4.13).

Theorem 4.16. Let 0 < u ∈ Rn, and take Bk ≥ Bk(x) for all x ∈Mu. If there is
an index i ∈ {1, . . . , n} such that the inequality

bi − (B′0u)i −
∑

uk(Bku)i > 0 (4.35)

is valid, then (4.5) has no solution x ∈Mu.

Proof. We set x = [z − u, z + u]. For a zero x ∈Mu of F ,we calculate using (4.7),
similar to the proof of Theorem 4.12,

0 = |K(x)− x| =
∣∣∣− CF (z)−

(
CF ′(z)−

∑
CFk[z, z, x](xk − zk)

)
(x− z)

∣∣∣

≥ |CF (z)| −
∣∣∣(CF ′(z)− I)(x− z) +

∑
(xk − zk)CFk[z, z, x](x− z)

∣∣∣.
(4.36)

Now we use (4.8) and (4.35) to compute

|CF (z)|i ≥ bi > (B′0u)i +
∑

(ukBku)i

≥
(
|CF ′(z)|u

)
i

+
∑(

uk|CFk[z, z, x] |u
)
i

≥
∣∣∣CF ′(z)(x− z)

∣∣∣
i

+
∑∣∣∣(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i

≥
∣∣∣(CF ′(z)− I)(x− z) +

∑
(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i
.

This calculation and (4.35) imply

|CF (z)|i −
∣∣∣CF ′(z)(x− z) +

∑
(xk − zk)CFk[z, z, x](x− z)

∣∣∣
i

≥ bi − (B′0u)i −
∑

(ukBku)i > 0,

“habil”
2004/11/29
page 109

4.2. Exclusion Boxes 109

contradicting (4.36).

Again, we need a method to find good vectors u satisfying (4.35). The following
theorem provides that.

Theorem 4.17. Let S ⊆ X be a set containing z, and take Bk ≥ Bk(x) for all
x ∈ S. If for any 0 < v ∈ Rn we define

w× := B′0v

a× :=
∑

vkBkv

D×i := w×i
2

+ 4bia
×
i

λ×i :=
bi

w×i +
√
D×i

λ× := max
i=1,...,n

λ×i

(4.37)

then F has no zero in the interior of the exclusion region

R× := [z − λ×v, z + λ×v] ∩ S. (4.38)

Proof. We set u = λv and check the result (4.35) of Theorem 4.16:

0 < bi − (B′0u)i −
∑

(ukBku)i = bi − λ(B′0v)i − λ2
∑

(vkBkv)i.

This quadratic inequality has to be satisfied for some i ∈ {1, . . . , n}. The ith
inequality is true for all λ ∈ [0, λ×i [, so we can take the maximum of all these
numbers and still have the inequality satisfied for at least one i. Bearing in mind
that the estimates are only true in the set S, the result follows from Theorem 4.16.

As in the last section, a vector v could be calculated by local optimization, e.g., as
a local optimizer of the problem

max n log λ× +

n∑

j=1

log vj

This maximizes locally the volume of the excluded box. Solving this also needs
a non-smooth optimizer since λ× is non-smooth like λe. However, in contrast to
the v needed in Theorem 4.13, there is no positivity requirement which has to be
satisfied. In principle, every choice of v leads to some exclusion region.

Finding a good choice for C is a subtle problem and could be attacked by methods
similar to Kearfott, Hu, & Novoa [118]. Example 4.21 below shows that a
pseudo inverse of F ′(z) usually yields reasonable results. However, improving the
choice of C sometimes widens the exclusion box by a considerable amount.

“habil”
2004/11/29
page 110

110 Chapter 4. New Techniques

Again, for quadratic F the result can be made global, due to the fact that the
Fk[z, z, x] are independent of x.

Corollary 4.18. Let F be quadratic and 0 < v ∈ Rn. Choose Bk ≥
∣∣∣CFk

∣∣∣, w×i ,

a×i , D×i , λ×i , and λ× as in Theorem 4.17. Then F has no zero in the interior of
the exclusion box

x× := [z − λ×v, z + λ×]. (4.39)

Proof. This is a direct consequence of Theorem 4.17 and the fact that all Fk[z, z, x]
are constant in x.

Results analogous to Theorems 4.13, 4.15, and 4.17 can be obtained for exclusion
regions in global optimization problems by applying the above techniques to the
first order optimality conditions. Nothing new happens mathematically, so giving
details seems not necessary.

4.2.4 Examples

We illustrate the theory with a some low-dimensional examples, but note that the
improvements over traditional results are usually even more pronounced in a branch
and bound context for higher dimensional problems; cf. Schichl & Neumaier [200,
Example 4].

Example. 4.19. We continue Example 4.10, doing all calculations symbolically,
hence free of rounding errors, assuming a known zero. (This idealizes the practically
relevant case where a good approximation of a zero is available from a standard zero-
finder.)

We consider the system of equations (4.9), which has the four solutions ±
(

3
4

)
and

±
(

4
3

)
; cf. Figure 4.12. The system has the form (4.5) with F given by (4.10). If we

take the solution x∗ =
(

3
4

)
as center z, we can use the slope calculations from the

introduction. From (4.24) we get

wj = vj , Dj = v2
j (j = 1, 2),

a1 = 1
14 (3v2

1 + 8v1v2 + 3v2
2), a2 = 1

14 (4v2
1 + 6v1v2 + 4v2

2),

and for the particular choice v =
(

1
1

)
, we get from (4.26)

λi = 0, λe = 1. (4.40)

Thus, Corollary 4.14 implies that the interior of the box

[x∗ − v, x∗ + v] =

(
[2, 4]

[3, 5]

)

“habil”
2004/11/29
page 111

4.2. Exclusion Boxes 111

-4 -2 2 4 6

-5

5

10

z

-4 -2 2 4 6

-5

5

10

z

Figure 4.12. Maximal exclusion boxes around
(

1
2

)
and total excluded region

for Example 4.19

contains no solution apart form
(

3
4

)
. This is best possible, since there is another

solution
(

4
3

)
at a vertex of this box. The choice v =

(
1
2

)
, ω(v) = 8

7 gives another
exclusion box, neither contained in nor containing the other box.

If we consider the point z =
(

1
2

)
, we find

F (z) =

(
−20

−10

)
, F ′(z) =

(
2 4

2 1

)
, C =

1

6

(
−1 4

2 −2

)
,

b =
10

3

(
1

1

)
, B0 = 0, B1 =

1

6

(
1 0

2 0

)
, B2 =

1

6

(
4 1

2 2

)
,

w× = v, a× =
1

6

(
v2

1 + 4v1v2 + v2
2

2v2
1 + 2v1v2 + 2v2

2

)
,

D×1 =
1

9
(29v2

1 + 80v1v2 + 20v2
2), D×2 =

1

9
(40v2

1 + 40v1v2 + 49v2
2).

“habil”
2004/11/29
page 112

112 Chapter 4. New Techniques

Since everything is affine invariant and v > 0, we can set v = (1, v2), and we
compute

λ× =





20

3v2+
√

40+40v2+49v2
2

if v2 ≤ 1,

30

3+
√

29+80v2+20v2
2

if v2 > 1.

Depending on the choice of v2, the volume of the exclusion box varies. There are
three locally best choices v2 ≈ 1.97228, v2 ≈ 0.661045, and v2 = 1, the first providing
the globally maximal exclusion box.

For any two different choices of v2 the resulting boxes are never contained in one
another. Selected maximal boxes are depicted in Figure 4.12 (left) in solid lines; the
total region which can be excluded by Corollary 4.18 is shown in solid lines in the
right part of the figure.

The optimal preconditioner for exclusion boxes, however, does not need to be an
approximate inverse to F ′(z). In this case, it turns out that C = (0 1) is optimal
for every choice of v. Two clearly optimal boxes and the total excluded region for
every possible choice of v with C = (0 1) can be found in Figure 4.12 in dashed
lines.

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

Figure 4.13. Two quadratic equations in two variables, Example 4.20.

Example. 4.20. The system of equations (4.5) with

F (x) =

(
x2

1 + x1x2 + 2x2
2 − x1 − x2 − 2

2x2
1 + x1x2 + 3x2

2 − x1 − x2 − 4

)
(4.41)

has the solutions
(

1
1

)
,
(

1
−1

)
,
(−1

1

)
, cf. Figure 4.13. It is easily checked that

F [z, x] =

(
x1 + x2 + z1 − 1 2x2 + z1 + 2z2 − 1

2x1 + x2 + 2z1 − 1 3x2 + z1 + 3z2 − 1

)

“habil”
2004/11/29
page 113

4.2. Exclusion Boxes 113

satisfies (3.3). Thus (4.7) holds with

F ′(z) =

(
2z1 + z2 − 1 z1 + 4z2 − 1

4z1 + z2 − 1 z1 + 6z2 − 1

)
, F1 =

(
1 0

2 0

)
, F2 =

(
1 2

1 3

)
.

We consider boxes centered at the solution z = x∗ =
(

1
1

)
. For

x = [x∗ − εu, x∗ + εu] =

(
[1− ε, 1 + ε]

[1− ε, 1 + ε]

)
,

we find

F ′[x∗,x] =

(
[2− 2ε, 2 + 2ε] [4− 2ε, 4 + 2ε]

[4− 3ε, 4 + 3ε] [6− 3ε, 6 + 3ε]

)
,

F ′(x) =

(
[2− 3ε, 2 + 3ε] [4− 5ε, 4 + 5ε]

[4− 5ε, 4 + 5ε] [6− 7ε, 6 + 7ε]

)
.

The midpoint of F ′(x) is here F ′(z), and the optimal preconditioner is

C := F ′(x∗)−1 =

(
−1.5 1

1 −0.5

)
;

from this, we obtain

B1 =

(
0.5 0

0 0

)
, B2 =

(
0.5 0

0.5 0.5

)
.

The standard uniqueness test checks for a given box x whether the matrix F ′(x)
is strongly regular (Neumaier [160]). But given the zero x∗ (or in finite precision
calculations, a tiny enclosure for it), it suffices to show strong regularity of F [x∗,x].
We find

|I − CF ′(x)| = ε

2

(
19 29

11 17

)
,

with spectral radius ε(9 + 4
√

5) ≈ 17.944ε. Thus F ′(x) is strongly regular for ε <
1/17.944 = 0.0557. The exclusion box constructed from slopes is better, since

|I − CF [x∗,x]| = ε

(
6 6

3.5 3.5

)
,

has spectral radius 9.5ε. Thus F [x∗,x] is strongly regular for ε < 1/9.5, and we get
an exclusion box of radius 1/9.5.

The Kantorovich Theorem 3.2 yields the following results:

F ′′ =

((
2 1

4 1

) (
4 1

1 6

))
,

α = 2.5, β = 0, γ = 12, ∆ = 1,

r = 0, r =
2

2.5 · 12
=

1

15
,

“habil”
2004/11/29
page 114

114 Chapter 4. New Techniques

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

2

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

1.5

2

2.5

Figure 4.14. xe and xi calculated for Example 4.20with 3 significant digits
for v = (1, 1) and v = (1, 7) at z = (0.99, 1.05)

hence it provides an even smaller (i.e., inferior) exclusion box of radius 1
15 .

If we apply Kahan’s Theorem 3.3 with F ′(x), we have to check that K(x,x) ⊆
int (x). Now

K(x,x) =

(
1

1

)
− ε

2

(
19 29

11 17

)(
[−ε, ε]
[−ε, ε]

)

is in int (x) if (
[1− 24ε2, 1 + 24ε2]

[1− 14ε2, 1 + 14ε2]

)
⊆
(

[1− ε, 1 + ε]

[1− ε, 1 + ε]

)
,

which holds for ε < 1/24. This result can be improved if we use slopes instead of
interval derivatives. Indeed,

K(z,x) =

(
1

1

)
− ε

(
6 6

3.5 3.5

)(
[−ε, ε]
[−ε, ε]

)

is in int (x) if (
[1− 12ε2, 1 + 12ε2]

[1− 7ε2, 1 + 7ε2]

)
⊆
(

[1− ε, 1 + ε]

[1− ε, 1 + ε]

)
,

i.e., for ε < 1/12.

Now we consider the new results. From (4.26) we get

λe =
2

v1 + v2
(4.42)

In exact arithmetic, we find λe = 1, so that Corollary 4.14 implies that the interior

“habil”
2004/11/29
page 115

4.2. Exclusion Boxes 115

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

-0.975-0.95-0.925-0.9-0.875-0.85

0.85

0.875

0.9

0.925

0.95

0.975

Figure 4.15. x× for Example 4.20 and various choices of z and v = (1, 1).

of the box

[x∗ − v, x∗ + v] =

(
[0, 2]

[0, 2]

)
(4.43)

contains no solution apart from z. In this example, the box is not as large as
desirable, since in fact the larger box

[x∗ − 2v, x∗ + 2v] =

(
[−1, 3]

[−1, 3]

)

contains no other solution. However, the box (4.43) is still one order of magnitude
larger than that obtained from the standard uniqueness tests or the Kantorovich
theorem.

arithmetic (we used Mathematica with three significant digits, using this artificially
low precision to make the inclusion regions visible in the pictures) and only approx-
imative zeros, the results do not change too much, which can be seen in the pictures
of Figure 4.14.

Corollary 4.18 also gives very promising results. The size of the exclusion boxes
again depends on the center z and the vector v. The results for various choices can
be found in Figure 4.15.

“habil”
2004/11/29
page 116

116 Chapter 4. New Techniques

For a nonquadratic polynomial function, all calculations become more complex, and
the exclusion sets found are usually far from optimal, though still much better than
those from the traditional methods. The Fk[z, z, x] are no longer independent of x,
so Theorems 4.13 and 4.17 have to be applied. This involves the computation of a
suitable upper bound Bk of Fk[z, z, x] by interval arithmetic.

-4 -2 2 4 6

-4

-2

2

4

Figure 4.16. Two polynomial equations in two variables, Example 4.21.

Example. 4.21. Figure 4.16 displays the following system of equations F (x) = 0
in two variables, with two polynomial equations of degree 2 and 8:

F1(x) = x2
1 + 2x1x2 − 2x2

2 − 2x1 − 2x2 + 3,

F2(x) = x4
1x

4
2 + x3

1x
4
2 + x4

1x
3
2 + 15x2

1x
4
2 − 8x3

1x
3
2 + 10x4

1x
2
2 + 3x1x

4
2 + 5x2

1x
3
2

+ 7x3
1x

2
2 + x4

1x2 − 39x4
2 + 32x1x

3
2 − 57x2

1x
2
2 + 21x3

1x2 − 17x4
1 − 27x3

2 − 17x1x
2
2

− 8x2
1x2 − 18x3

1 − 478x2
2 + 149x1x2 − 320x2

1 − 158x2 − 158x1 + 1062.
(4.44)

The system (4.44) has 8 solutions, at approximately

(
1.0023149901708083

1.0011595047756938

)
,

(
0.4378266929701329

−1.3933047617799774

)
,

(
0.9772028387127761

−1.0115934531170049

)
,

(
−0.9818234823156266

0.9954714636375825

)
,

(
−3.7502535429488344

1.8585101451403585

)
,

(
2.4390986061035260

2.3174396617957018

)
,

(
5.3305903297000243

−1.7161362016394848

)
,

(
−2.0307311621763933

−4.3241016906293375

)
.

We consider the approximate solution z =
(

0.99
1.01

)
. For the set S we choose the box

“habil”
2004/11/29
page 117

4.2. Exclusion Boxes 117

[z − u, z + u] with u =
(

1
1

)
. In this case we have

F (z) ≈
(
−0.0603

−1.170

)
, F ′(z) ≈

(
2 −4.06

−717.55 −1147.7

)
,

F1[z, z, x] =

(
1 0

f1 0

)
, F2[z, z, x] =

(
2 −2

f2 f3

)
,

where

f1 ≈− 405.63− 51.66x1 − 17x2
1 + 36.52x2 + 23x1x2 + x2

1x2 −
− 13.737x2

2 + 26.8x1x
2
2 + 10x2

1x
2
2 − 7.9x3

2 − 6.02x1x
3
2 + x2

1x
3
2 +

+ 19.92x4
2 + 2.98x1x

4
2 + x2

1x
4
2,

f2 ≈ 191.04− 7.6687x2 + 62.176x2
2 + 39.521x3

2,

f3 ≈− 588.05− 36.404x2 − 19.398x2
2.

We further compute

-4 -2 2 4 6

-4

-2

2

4

0.975 0.98 0.985 0.99 0.995

0.995

1.005

1.01

1.015

1.02

1.025

z

x*

Figure 4.17. Exclusion and inclusion boxes for Example 4.21 at z = (0.99, 1.01)

C =

(
0.22035 −0.00077947

−0.13776 −0.00038397

)
, B0 = 10−5

(
0 1

1 1

)
,

B1 =

(
1.0636 0

0.5027 0

)
, B2 =

(
0.3038 0.1358

0.5686 0.5596

)
, b =

(
0.0124

0.0088

)
.

If we use Theorem 4.13 for v =
(

1
1

)
, we get

w =

(
0.99999

0.99998

)
, a =

(
1.5032

1.6309

)
, D =

(
0.925421

0.942575

)
,

λi = 0.0126403, λe = 0.604222,

“habil”
2004/11/29
page 118

118 Chapter 4. New Techniques

so we may conclude that there is exactly one zero in the box

xi =

(
[0.97736, 1.00264]

[0.99736, 1.02264]

)
,

and this zero is the only zero in the interior of the exclusion box

xe =

(
[0.385778, 1.59422]

[0.405778, 1.61422]

)
.

In Figure 4.17 the two boxes are displayed. In Figure 4.18 exclusion boxes and some
inclusion boxes for all of the zeros of F are provided.

-4 -2 2 4 6

-4

-2

2

4

-4 -2 2 4 6

-4

-2

2

4

-4 -2 2 4 6

-4

-2

2

4

-3.9 -3.8 -3.7 -3.6 -3.5 -3.4

1.6

1.7

1.8

1.9

2.1

Figure 4.18. Exclusion boxes for all zeros of F in Example 4.21.

Next we consider the point z =
(

1.5
−1.5

)
to test Theorem 4.17. We compute

F (z) ≈
(
−3.75

−1477.23

)
, F1[z, z, x] ≈

(
1 0

g1 0

)
,

F ′(z) ≈
(

−2 7

−1578.73 1761.77

)
, F2[z, z, x] =

(
2 −2

g2 g3

)
,

“habil”
2004/11/29
page 119

4.2. Exclusion Boxes 119

-4 -2 2 4 6

-4

-2

2

4

1.2 1.4 1.6 1.8 2

-1.8

-1.6

-1.4

-1.2

-1

z

x*

Figure 4.19. Exclusion boxes for Example 4.21 at z = (1.5,−1.5).

with
g1 ≈− 488.75− 69x1 − 17x2

1 + 61.75x2 + 24x1x2 + x2
1x2 +

+ 31.5x2
2 + 37x1x

2
2 + 10x2

1x
2
2 − 12.25x3

2 − 5x1x
3
2 + x2

1x
3
2 +

+ 24.75x4
2 + 4x1x

4
2 + x2

1x
4
2,

g2 ≈ 73.1563 + 138.063x2 − 95.875x2
2 + 68.25x3

2,

g3 ≈− 536.547− 12.75x2 + 7.6875x2
2.

Performing the necessary computations, we find for x = [z−u, z+u] with u = 1
2

(
1
1

)
.

F ′(z)−1 ≈
(

0.234 −0.00093

0.21 −0.000266

)
, b =

(
0.496

0.3939

)
,

B1 =

(
1.2895 0

0.5113 0

)
, B′0 =

(
1 10−5

10−5 1.00001

)
, B2 =

(
1.5212 0.0215

0.7204 0.2919

)
.

Now we use Theorem 4.17 for v =
(

1
1

)
and C = F ′(z)−1 and get

w× =

(
1.00001

1.00002

)
, a× =

(
2.8322

1.5236

)
, D× =

(
6.6191

3.4006

)
, λ× = 0.277656;

so we conclude that there are no zeros of F in the interior of the exclusion box

x× =

(
[1.22234, 1.77766]

[−1.77766,−1.22234]

)
.

However, the choice C = F ′(z)−1 is not best possible in this situation. If we take

C =
(

1 0.002937
)
,

we compute λ× = 0.367223 and find the considerably larger exclusion box

x× =

(
[1.13278, 1.86722]

[−1.86722,−1.13278]

)
.

“habil”
2004/11/29
page 120

120 Chapter 4. New Techniques

-4 -2 2 4 6

-4

-2

2

4

-4 -2 2 4 6

-4

-2

2

4

-1 -0.5 0.5 1

-1

-0.5

0.5

1

z

-4 -2 2 4 6

-4

-2

2

4

-4 -2 2 4 6

-4

-2

2

4

-1 -0.8 -0.6 -0.4 -0.2

0.2

0.4

0.6

0.8

1

z

x*

-4 -2 2 4 6

-4

-2

2

4

-4 -2 2 4 6

-4

-2

2

4

1.2 1.4 1.6 1.8 2

-1.8

-1.6

-1.4

-1.2

-1

z

x*

-4 -2 2 4 6

-4

-2

2

4

-150 -100 -50 50 100 150

-150

-100

-50

50

100

150

1.6 1.8 2.2 2.4

1.6

1.8

2.2

2.4

z

x*

Figure 4.20. Exclusion boxes for Example 4.21 in various regions of R2

Figure 4.19 shows both boxes, the bigger one in dashed lines, and Figure 4.20 con-
tains various exclusion boxes for nonzeros.

“habil”
2004/11/29
page 121

Part II

Open solver platform for global
optimization

121

“habil”
2004/11/29
page 122

“habil”
2004/11/29
page 123

Chapter 5

The COCONUT
environment

At the turn of the millennium six European academic institutions

• EPFL Lausanne, Switzerland,

• IRIN Nantes, France,

• Technische Hochschule Darmstadt, Germany,

• University of Coimbra, Portugal,

• University of Louvain-la-Neuve, Belgium,

• University of Vienna, Austria,

123

“habil”
2004/11/29
page 124

124 Chapter 5. The COCONUT environment

Strategy Engine

Inference Engines Report Modules
Management

Modules

Figure 5.1. Basic Scheme of the Algorithm

joined forces with

• ILOG, France, the biggest company selling optimization software,

and applied for a joint project to bring together expertise from the different fields for
boosting the development of the area. The COCONUT (Continuous Constraints
Updating the Technology [36] [36]) project was funded by the Future and Emerging
Technologies (FET) arm of the IST programme FET-Open scheme of the European
Community (IST-2000-26063) and started in November 2000. At the beginning
it was planned to “integrate the currently available techniques from mathematical
programming, constraint programming, and interval analysis into a single discipline,
to get algorithms for global optimization and continuous constraint satisfaction
problems that outperform the current generation of algorithms based on using only
techniques from one or two of the traditions.” First, a common theoretical basis was
created, leading to the state of the art report [25], the to that date most thorough
analysis of the field. Unfortunately, soon it became clear that the technological
platform to fulfill that intention was missing. This required a restructuring of the
project, shifting it from a theoretical cooperation towards software development.
The effort led to the design and implementation of the COCONUT Environment ,
a modular solver environment for nonlinear global optimization problems with an
open-source kernel, which can be expanded by commercial and open-source solver
components, bridging the gap between academic demands and commercial interest.

The API (application programmer’s interface) is designed to make the development
of the various module types independent of each other and independent of the
internal model representation. It is a collection of open-source C++ [219] classes
protected by the LGPL [69] license model, so it could be used as part of commercial
software. Support for dynamic linking relieves the user from recompilation when
modules are added or removed and makes it possible for software vendors to provide
precompiled libraries. In addition, it is designed for distributed computing, and
will probably support parallel computing, as well, in the years after the end of the
COCONUT project.

The API kernel implementation consists of more than 50.000 lines of C++ code and
a few perl scripts, organized into about 150 files, occupying 1.5 MB of disk space.

“habil”
2004/11/29
page 125

125

The algorithmic design follows the scheme depicted in Figure 5.1; its various parts
are described in more detail in the following sections.

This chapter is a description of the internal structure of the API and of the internal
structure of API and the basic libraries VGTL and VDBL. A C++ reference of
the most important classes and methods can be found in the technical reports
[197, 199, 198].

The sections in this chapter are devoted to the description of the basic building
blocks of the open solver platform.

In Sections 5.1 and 5.2 the basic libraries on which the system is built, the VGTL
and the VDBL are reviewed. In the following sections the environment itself is
described.

The C++ classes of the API encapsulate the internal data structure of the environ-
ment in such a way that all modular solver components can be written (almost)
without knowledge about the internal structuring of the data.

The API consists of two main parts. The first part is responsible for building the
internal representation of the optimization problem, the search graph, the search
database, all which is needed for the solution process. The structure starts with
its small parts, the expression nodes. These are the basic operators admissible for
constructing the mathematical expressions in an optimization problem. A directed
acyclic graph (see Section 4.1) of expression nodes with additional information on
objective function and constraints is called a model. It represents one global opti-
mization problem, be it the original one or a problem which was derived during the
solution process. Since the basic algorithm is a branch-and-bound scheme, various
subproblems are created during the solution process. These are organized into a di-
rected acyclic graph of models, the search graph. Because storing complete models
in the search graph would be very memory consuming, the search graph only stores
changes to previous models, i.e., if a model is split in two smaller ones, only the
variable bounds which have changed are kept in the search graph. Such a change
is called a delta, and for every type of change a special class of deltas is available.
The classes and methods for these structures is described in Section 5.3.

The second part of the API was designed to make evaluation of expressions, as used
by the solver modules, independent of the internal expression DAG structure. For
this purpose a number of evaluators were designed, see Section 5.6. This should
make it possible to later change the internal representation of the DAG without
having to change most of the solver components.

Section 5.8 describes the management modules, modules for initializing and manip-
ulating the search graph and the models.

The report modules, small parts used for producing output, human or machine
readable, are explained in Section 5.9.

Most important for the solution process are the solver components, here called
inference engines and graph analyzers, depending on whether they analyze a model
or the search graph. The base class for those modules is described in Section 5.7.

“habil”
2004/11/29
page 126

126 Chapter 5. The COCONUT environment

The inference engines, which are available in the COCONUT environment, are
described in Chapter 6.

The last section of this chapter is devoted to a short description of the strategy
engine, the central part of the algorithm. It can be programmed using a strategy
language based on Python [183]. This component, developed at IRIN, University
of Nantes, will be briefly explained in Section 5.10.

5.1 Vienna Graph Template Library (VGTL)

All graphs used in the COCONUT API are based on this standalone library.

The Vienna Graph Template Library (VGTL) is a generic graph library with generic
programming [155] structure. Its design is similar to the standard template library
STL [217], and it uses STL containers like map, list, and vector to organize the
internal structure of the graphs.

A collection of walking algorithms for analyzing and working with the graphs are
implemented as generic algorithms. Similar to STL iterators, which are used to
handle data in containers independently of the container implementation, for graphs
the walker concept (see Section 5.1.2) is introduced.

5.1.1 Core components

This section describes the few extensions to the STL needed for using the VGTL.

C array to vector adaptor

The library contains an adaptor, which allows ordinary arrays to be accessed like
STL vectors, as long as no insert and erase methods and their relatives are
performed.

template <class _T>

class array_vector : public std::vector<_T>

{

public:

array_vector();

// constructor building an array_vector from pointer __a with size n

array_vector(_T* __a, int n);

~array_vector();

// assign an array __a of length n to this array_vector.

void assignvector(_T* __a, int n);

};

‘‘habil’’

2004/11/29

page 127

5.1. Vienna Graph Template Library (VGTL) 127

Reverse search

New search routines rfind, and rfind if have been defined, which work like the
STL algorithms find and find if, respectively, except that they work for bidirec-
tional iterators and search from the back.

find (find if) returns the last iterator i in the range [first,last) for which the
following corresponding conditions hold: *i == value, pred(*i) == true. If no
such iterator is found, last is returned.

template <class BidirectionalIterator, class T>

BidirectionalIterator rfind(BidirectionalIterator first,

BidirectionalIterator last,

const T& val);

template <class BidirectionalIterator, class Predicate>

BidirectionalIterator rfind_if(BidirectionalIterator first,

BidirectionalIterator last,

Predicate pred);

5.1.2 Walker

A walker is, like an STL iterator, a generalization of a pointer. It dereferences to
the data a graph node stores.

There are two different kinds of walkers: recursive walker and iterative walker.

Recursive Walker

A recursive walker is a pointer to graph nodes, which can be moved around on
the graph by changing the node it points to. Walkers can move along the edges of
the graph to new nodes. The operators reserved for that are << for moving along
in-edges and >> for moving along out-edges. A recursive walker does not have an
internal status, so the walking has to be done recursively. The following methods
and operators are defined for walkers:

unsigned int n_children() const;

unsigned int n_parents() const;

bool is_root() const;

bool is_leaf() const;

bool is_ground() const;

bool is_sky() const;

children_iterator child_begin();

children_iterator child_end();

parents_iterator parent_begin();

“habil”
2004/11/29
page 128

128 Chapter 5. The COCONUT environment

parents_iterator parent_end();

bool operator==(const walker&) const;

bool operator!=(const walker&) const;

walker operator<<(parents_iterator);

walker operator>>(children_iterator);

walker& operator<<=(parents_iterator);

walker& operator>>=(parents_iterator);

walker& operator=(const walker&);

The methods n children and n parents return the number of in-edges and out-
edges, respectively, of the node the walker points to. For checking whether a walker
points to a local sink or a local source, the methods is root and is leaf are
provided. The implementation of the VGTL directed graph types uses virtual leafs
for accessing the local sources and local sinks of the graph. We add one node
(the ground node), which is the parent of all local sinks, and one node (the sky
node), which is child of all local sources, to the graph. After this augmentation,
the graph contains exactly one source and one sink. The methods for checking,
whether a walker points to one of the two virtual nodes are is ground and is sky,
respectively.

For iterating through all in-edges, the children iterators are used. The first child
of the node, the walker points to, can be accessed by child begin. This returns
a children iterator, which can be used like an STL iterator. child end points past
the end of the last child. Moving the walker to a new node along an in-edge works
by using the operator >>. If c is a children iterator pointing to a valid in-edge
of the node pointed at by walker w, the expression w >> c returns a walker to the
child reachable via the edge c.

The methods parent begin and parent end and the operator << work the same
way for out-edges.

Iterative Walker

An iterative walker (automatic walker) can walk through a graph without guidance.
Simply using the operators ++ and --, the walker itself searches for the next node
in the walk. Iterative walkers are not defined for directed acyclic graphs, so I will
not describe them here in detail.

5.1.3 Container

Several types of graph containers are implemented in the VGTL. I will not describe
all of them in detail, since they are not important for the COCONUT environment.

“habil”
2004/11/29
page 129

5.1. Vienna Graph Template Library (VGTL) 129

Trees and Forests

The first few of the collection of graph containers are the n-ary trees and forests.
These trees come in various flavors: standard trees, labeled trees, with and without
data hooks. Trees provide iterative walkers and recursive walkers.

Generic Graphs

Generic graphs don’t have directed edges. They are the most general class of graphs,
and special walking algorithms are provided for them. Generic graphs only have
recursive walkers.

Directed Graphs and DAGs

The most important graphs for the COCONUT environment are directed graphs.
There are two classes implemented. Standard directed graphs and directed acyclic
graphs (DAGs). Directed graphs provide recursive walkers only.

The definition of the original VGTL class is quite complicated, since apart from the
type every node contains, the allocator class and the sequence container, which is
used for managing in- and out-edges can be chosen. In this section, I will explain
how the class looks like, if the standard allocators and the default container vector
are chosen. For using directed graphs the header file dag.h has to be included. The
class dag is a template depending on the content type of the node, i.e., dag<int>
would define a dag of integer nodes.

There are two methods working on the whole graph. empty returns true if the
graph is empty, and clear removes all nodes but the virtual ones from the graph.

There are two different ways of inserting nodes into a directed graph. The between

methods insert a new node N between one parent (or some parents) and one child
(or some children), such that N ’s parent is the given parent (are the given parents)
and N ’s child is the specified child (are the specified children). The return value is
always a walker pointing to the newly inserted node. The various between methods
differ in where the edges to the new node are inserted in the parent and the child
nodes, respectively.

The split methods also insert a new node N between one parent (some parents)
and one child (some children), such that N ’s parent is the given parent (are the
given parents) and N ’s child is the specified child (are the specified children). The
return value is always a walker pointing to the newly inserted node. In contrast
to the between methods, the split methods remove existing edges between the
parent and the child nodes, effectively disconnecting them before inserting the new
node. The various split methods differ in where the edges to the new node are
inserted in the parent and the child nodes, respectively.

The insert subgraph method works like between, but instead of adding just one
node, a whole directed graph is inserted between the parents and the children.

“habil”
2004/11/29
page 130

130 Chapter 5. The COCONUT environment

There are a bunch of methods for handling single edges. The add edge methods in-
sert edges between given nodes parent and child, making parent a new parent of
child. The various add edge methods differ in at what position the edge is added
in parents and children. Removal of edges can be done by calling remove edge.
This method deletes one edge from the given child to the specified parent. If
there are more edges between the nodes, only the first one is removed. Another
remove method is remove edge and deattach. It works like remove edge except
that it does not make sure that the resulting graph is well formed. Whenever a
node becomes a local source or local sink it is not connected to the corresponding
virtual node. Sometimes, edges have to be moved from one child (parent) to an-
other. While this can be done by removing edges and later adding them, there are
faster methods performing the move in a single step, replace edge to parent and
replace edge to child.

Removing a node from the graph is performed by the erase method. Special, faster
methods erase child and erase parent for removing local sources and local sinks,
respectively, are available, too.

The merge method merges two nodes first and second in the graph. The node
second is removed and all its parents and children are connected to the node
first. If the predicate merge child edges is set to true, edges in both nodes
coming from the same child are identified rather than duplicated, and analogous for
merge parent edges. This method assumes that there is a merge method for the
node data, as well, and it is called during the merge process, as a method for the
data of node first, passing the data of node second.

Given one or a number of nodes Ni, the method erase minimal subgraph removes
all those nodes N of the graph, which

• are descendants of any Ni,

• and for which there is no path from N to the ground not, which does not pass
through any of the Ni.

In contrast to that, erase maximal subgraph removes all nodes, which are de-
scendants of any Ni. The erase ... pregraph methods work the same way for
ancestors. All methods return the removed subgraph as a whole, and by assign-
ing the erased part object to an empty dag (or dgraph) it can be recovered as a
directed graph.

The walkers pointing to the virtual nodes can be retrieved by the methods ground
and sky.

5.1.4 Algorithms and Visitors

There is a set of generic algorithms for working with graphs and the data stored in
them. They perform graph walks, visiting the vertices in a well-defined sequence.
Every algorithm takes as argument a walker pointing to the starting vertex of the
graph walk, a visitor responsible for performing operations on the node data during
the graph walk, and sometimes additional predicates for directing the walk.

“habil”
2004/11/29
page 131

5.1. Vienna Graph Template Library (VGTL) 131

Various methods of the visitor a called during the graph walk, depending on the
type of the walk. For each of the standard walks there is a base class for the
corresponding visitors, making it visitor programming more comfortable.

All visitor base classes are templates depending on three template parameter. The
first corresponds to the type of the node data, the second to the return value Ret

of the value and vvalue methods visitor, and the third one is optional defining the
type of the second input parameter of the collect method. By default, this is a
constant reference to Ret. However, it can be changed to any type which can be
constructed implicitly from a single Ret. In particular, it can be changed to Ret,
or a to a (non-constant) reference to Ret.

For all visitor base classes the methods vvalue and value have to be defined, they
are pure virtual in the base class. Both produce the return value of the visitor, where
vvalue is called at virtual graph nodes and value at normal vertices. However, for
a useful visitor, other methods should be defined, as well. The methods collect

and vcollect are called for every finished child. The first parameter contains the
current vertex data, and through the second parameter the return value for the
finished child is passed. Again, vcollect is called for virtual nodes, while collect

is used at ordinary graph vertices.

A preorder visitor is a template especially designed for preorder graph walks, i.e.,
a walk in a directed graph, for which every vertex is visited before its descendants
(or ancestors for upward walks) are visited. In addition to the standard methods
this visitor also defines preorder, which is called before the graph walk proceeds
towards the children.

The second visitor base class is the postorder visitor. It is tailored for postorder
graph walks, where each vertex is visited after all its descendants have been been
visited. Additional methods defined for this visitor type are init, which can be
used to initialize the internal data structure of the visitor, and postorder, which
is called after all children have been processed.

The final visitor class is the prepost visitor for the most complicated graph walks,
where a node is visited before all its descendants are processed and again after the
walk has visited all children. In addition to the methods defined for all visitors, the
class definition contains preorder, which is called in the preorder visit of the node
and postorder, which is called after the children have finished.

In the following, I will give a short list of those algorithms, which are typically used
with walks on DAGs, as used in the COCONUT environment.

recursive preorder walk: It takes two arguments, a walker w and a visitor f

and performs a recursive preorder walk starting at w, i.e., the walk visits all
descendants of the node pointed to by w. At every node first the node is
visited, and then the walk is continued recursively for all children of the node
in succession. The methods of the visitor f are called as follows:

• vinit is called before walking for every virtual node,

• vcollect is called after a child of a virtual node has finished,

• vvalue is called to compute the return value of a virtual node,

“habil”
2004/11/29
page 132

132 Chapter 5. The COCONUT environment

• preorder is called before the children are visited,

• collect is called every time a child has finished,

• value is called to compute the return value for this node.

recursive postorder walk: This function takes two arguments, a walker w and a
visitor f. It performs a recursive postorder walk starting at w, i.e., the walk
visits all descendants of the node pointed to by w. At every node first the walk
is continued towards all children recursively in the ordering of the out-edges.
After the walks of all children have finished, the node is visited. The methods
of the visitor f are called as follows:

• vinit is called before walking for every virtual node,

• vcollect is called after a child of a virtual node has finished,

• vvalue is called to compute the return value of a virtual node,

• init is called before the children are visited to initialize the visitors
internal data (Note: This method does not have access to the vertex
data),

• collect is called every time a child has finished,

• postorder is called after all children have finished,

• value is called to compute the return value for this vertex.

recursive walk: This generic algorithm takes two arguments, a walker w and a
visitor f and performs a recursive preorder and postorder walk starting at w,
i.e., the walk visits all descendants of the node pointed to by w. At every node
first the vertex is visited. Then the walk is continued towards all children
recursively in the ordering of the out-edges. After the walks of all children
have finished, the node is visited again. The methods of the visitor f are
called as follows:

• vinit is called before walking for every virtual node,

• vcollect is called after a child of a virtual node has finished,

• vvalue is called to compute the return value of a virtual node,

• preorder is called before the children are visited,

• collect is called every time a child has finished,

• postorder is called after all children have been visited,

• value is called to compute the return value for this node.

All other algorithms are variants or mixtures of the walks described above.

recursive preorder walk if: This works like recursive preorder walk, but it
can be decided, whether the walk towards the children of a vertex is performed.
There are two variants of this algorithm. The first one depends on the return
value of the preorder method of the visitor. If it returns true the walk is
continued. The second version depends on a predicate p, which decides by
returning true or false when passed the vertex data, whether the walk is
continued.

recursive postorder walk if: This generic algorithm is a variant of recursive postorder walk.
With the help of an additional predicate p the algorithm decides, whether the

“habil”
2004/11/29
page 133

5.2. Vienna Database Library (VDBL) 133

children of the current vertex should be visited or not. The predicate’s input
parameter is the vertex data of the current node.

recursive walk if: This variant of recursive walk can be guided in two ways.
First, the boolean return value of preorder decides, whether the children of
this nodes are visited or ignored. Second, the return value of the postorder

method decides, whether the current node should be visited again by immedi-
ately switching back to preorder mode. If postorder returns true, the walk
is restarted, and if it returns false, the walk for this vertex is finished.

A second variant of this algorithm uses two predicates p1 and p2 instead of
preorder and postorder to make the decision about continuing the graph
walk.

recursive cached walk: This is still another variant of recursive walk, which
works like recursive walk if, except that the return value of postorder is
always taken as false.

Another form of this walk uses a predicate p instead of preorder to decide,
whether the children are visited or ignored.

recursive multi walk: This generic algorithm works like recursive walk if, ex-
cept that the return value of preorder is taken to be true at every vertex.

Also this generic algorithm can be called with a predicate to replace the
postorder method when making the decision about restarting the walk at
the current node.

recursive ... walk up: These generic algorithms works exactly like the corre-
sponding recursive ... walk functions, except that they walk the graph
along the in-edges of the vertices towards the predecessors.

The other generic walking algorithms for directed and general graphs can be found
in the VGTL reference manual [199, 6.4].

5.2 Vienna Database Library (VDBL)

The Vienna Database Library (VDBL) is an in memory database developed with
generic programming in mind. It uses STL containers like map and vector to
organize its internal structure.

Databases in the VDBL consist of tables, which are constructed from columns and
rows like ordinary relational databases.

Columns can take arbitrary types, and their values need not be constant. Using
function objects, called methods, the column values can change according to an
evaluation context.

It is possible to construct views onto the tables of a database.

“habil”
2004/11/29
page 134

134 Chapter 5. The COCONUT environment

5.2.1 Database

A VDBL database consists of a number of tables which can be dynamically con-
structed, changed and destroyed. Every table (see Section 5.2.2) has a unique name
(a std::string) and a unique table id, which is used for organizing the internal
structure.

There is a general table interface defined in class table, which defines the minimal
functionality needed for implementing a VDBL table. The structure is defined in
such a way that SQL interfaces could be written, as well as tables which keep all
their data in memory.

In addition to tables, the database knows of users. There are access control lists (at
the moment not fully implemented) for restricting the access of users to the tables
on a global and a column-wise base. The users are defined in the class user.

Users can construct views onto tables (see Section 5.2.5). These views can restrict
a table to a subset of columns and/or rows. Also, additional rows can be defined
for a view, and it is even possible to join various tables into one view. All views
onto tables are constructed within a prespecified context (see Section 5.2.7). Using
this mechanism, columns can change their value automatically according to the
evaluation context. This is, e.g., useful in the COCONUT project for organizing
points, where some of the properties change from work node to work node, like
whether the point is feasible or not.

The most important methods of the database are described below. Note that all of
them take the userid of the database user performing the operation as its second
argument. For the COCONUT environment this userid is constant, and can be
retrieved from the work node class (see Section 5.4.3) or alternatively from the
search graph (see Section 5.4.4) class.

create table: This method creates a new table. It takes two arguments and an
optional third. The first argument is the name of the table (either a C or a
C++ string). The third argument are the tableflags, which are not used in
the COCONUT environment, and so this optional parameter can be kept at
its default.

get table id: This returns the tableid of the given table. The first parameter is
the table name.

drop table: For removing a table call this method. The first parameter for this
method is either the name of the table or its id.

has table: This method returns true, if the table with the specified tableid or
name exists.

get table: This accessor for a specific table returns a pointer to it, provided either
the name or the tableid is passed. It returns NULL if the table does not exist.

create view: This method creates a new standard view. Apart from the standard
second argument, it has to be provided with a name for the view, the name
or id of a table, for which this view should be created, an evaluation context
for column retrieval, and the type of the view (see Section 5.2.5).

“habil”
2004/11/29
page 135

5.2. Vienna Database Library (VDBL) 135

get view id: This returns the viewid of the given view, where the first parameter
is the view’s name.

drop table: Views are removed by a call to this method. Its first parameter is
either the name of the view or its viewid.

has view: This method returns true, if the view with the specified viewid or name
exists.

get table: This is the accessor for views. It returns a pointer to the specified,
either by name or by viewid, view. The return value is NULL if the view does
not exist.

5.2.2 Tables

A VDBL table consists of a number of columns and rows. The definition of a table is
always done by specifying its columns (see Section 5.2.3). The type of the columns
value, which can be any C++ type, is fixed upon creating the column. This can
be done dynamically, like modifying and removing. Optionally, for each column a
default value can be given (this default value may also change w.r.t. the evaluation
context). All columns within a table have a name (a std::string) and a column
id, which is used for organizing the column structure of the table internally. A
column of a table can be accessed by specifying its name or, equivalently, its column
id.

In addition to the column structure, which determines the outline of the table, the
table’s data is organized in rows (see Section 5.2.4). Every row has a row id,
which is used for internal organization. Rows themselves consist of columns. When
creating a new row, strict type checking is done between the row’s column entries
and the column type stored in the table. Column entries of a row can be left out,
if a default value for the column is specified in the table definition.

It is possible to implement differently organized tables, as long as they are subclasses
of the class table.

Relevant for the COCONUT environment is the standard table as described be-
low.

Standard Table

The standard table of the VDBL is a standard structure freshly created from
columns and rows. After the table is created, either in a database or as a stan-
dalone table, columns (see also Section 5.2.3) have to be defined, such that in later
stages rows (see Section 5.2.4) can be added. Columns can be added in later stages,
as well, but they need to have a default value. Otherwise, updating the existing
rows will fail, as will the addition of the new column.

The most important method of the standardtable class are:

“habil”
2004/11/29
page 136

136 Chapter 5. The COCONUT environment

add col: The first parameter of this method contains the name of the new column,
the second the value. This value is mandatory, whether the column has a
default or not. This value is used to determine the column’s value type.
All rows, which are added later, have to conform to exactly that type in
that column. If the column is defined to have a default value, the second
parameter not only determines the type but also the default value. The third
parameter contains the column flags, described below. The method returns
true if adding the column was successful.

There are two templatized add col methods in addition, which do not require
a prebuilt col object containing the column’s value. These construct the
col object themselves calling the copy constructor of the value type for the
parameter passed.

modify col: There are three methods for modifying a column. All take the col-
umn’s name as first parameter. Depending on what to change, the other
parameters are a col parameter for changing the value, and a colflags pa-
rameter for altering the column flags, or both if appropriate. The method
returns true, if the modification was successful.

drop col: This method removes a column from the table. It also deletes all entries
of this column in all stored rows. The return value is true, if erasing was
successful.

rename col: By use of this method, a column’s name can be changed. The first
parameter is the old name, the second is the new name.

insert: This method inserts a new row into the table. A row is described as a
vector of column values, each a pair of pointers to a name (string) and a
column value of type col. One variant returns in the last reference parameter
the rowid of the newly created row. The method returns true, if inserting
the row was successful.

insert row: The second class of insertion methods are templated. They can use
any sequential STL container for storing the column name–column value pairs.
The biggest insertion variant is able to add a sequence of rows at the same
method call. Again, an arbitrary STL sequence container may hold the list of
row specifications. These methods return true if insertion was successful.

remove: This method deletes a row from the table. The only parameter is the rowid
of the row. The method returns true if the row was successfully removed.

has col: A call to the first variant of this method returns true if the table contains
a column of the specified name.

The second variant checks, whether the row with specified rowid contains a
column with given colid.

get row: This method returns a (constant) reference to the row with the given
rowid. If the row does not exist, the second parameter error is set to true

and an empty row is returned.

has def: The has def method checks, whether the column with the given colid

has a default value.

“habil”
2004/11/29
page 137

5.2. Vienna Database Library (VDBL) 137

get def: This method returns a (constant) reference to the default column entry
for the specified colid. If no default value exists, it returns an empty col

and sets the error parameter to true.

get colid: Finding the colid for a given column name is the task of this method.

retrieve: This method retrieves the value of a column in a specific row. The
first parameter is the rowid, the second the colid. The third parameter
specifies the evaluation context for column evaluation. The value is returned,
encapsulated into an alltype object. If there is no value defined for the given
row, the default value of the column is retrieved. The method returns true,
if retrieving the column was successful.

In addition to the methods described above, the class provides two iterators, a
col const iterator for iterating through all columns, and a row const iterator

for iteration over the rows. The column iterator dereferences to a name–column
id pair, and the row iterator to the row id. The methods row begin, row end,
col begin, and col end return iterators for the begin and beyond the end of the
respective lists.

Column Flags

The colflags class contains two boolean entries, master index specifies, whether
all column entries have to be different. The has default entry determines, if the
column has a default value. The standard constructor sets both flags to false. For
setting the has default entry to true, use colflags(true).

5.2.3 Columns

VDBL columns are built in a very complicated way using three classes on top of
each other, making it possible that arbitrary C++ types can be stored in a column.

There are two main column classes implemented:

typed col: This column holds constant values of arbitrary types. Their values are
independent of the evaluation context (class vdbl::typed col< T>).

method col: A column of this type holds data, whose value is computed whenever it
is retrieved and may depend on the evaluation context (vdbl::method col< T>).
Instead of holding data, it contains a function object (method), which is a sub-
class of class vdbl::method< T>. This function object is used to calculate
the column value.

Within a table different column types can be mixed within different rows and the
default value, as long as their content types (strict run-time type checking) coincide.
It is, e.g., possible to use a method col as default value and override the default
with typed col entries in some rows.

“habil”
2004/11/29
page 138

138 Chapter 5. The COCONUT environment

Column base class

The following methods are defined for all column classes.

setcontext: This method sets the evaluation context for all value retrieval meth-
ods. The first parameter is of class context, the real evaluation context. The
second parameter is a const pointer to the row, in case the column’s value
depends on other columns, as well.

get: This method retrieves a copy of the value. This value is stored into the only
parameter.

def: The def method works almost like the get method. It is called whenever
this column is retrieved in the context of the default value. For typed col

columns this does not make a difference. However, for method col columns
it might be useful to distinguish the two retrieval modes.

def copy, get copy: Those two methods work similar to def and get, except that
they allocate new copies of the value to be returned and pass the pointer back.
It is important that the user later deletes the value to prevent the occurrence
of a memory leak.

get ptr: This method returns a constant pointer to the true value of the column,
or NULL if the column does not have a true value (e.g., for a method col). No
copying is done, so this method is fast.

For columns an output operator << is defined, which depends on an output operator
for the column’s value type. This is sometimes source of an undefined operator error.

Typed column

In addition to the methods described above, the typed col class defines additional
methods useful for this class holding constant column values.

set, set default: These methods explicitly set the contents of the column to the
value passed.

get val: If a constant reference to the column value is sufficient, this method is
very useful, since it does not perform any implicit copy operations.

explicit constructor: There is an explicit constructor for setting the value of the
column during construction.

Method column

For the method column there is only the explicit constructor, which builds the
column class from a column evaluation method.

“habil”
2004/11/29
page 139

5.2. Vienna Database Library (VDBL) 139

Column Evaluation Methods

A column evaluation method, which can be stored inside a method col, must be
a function object and subclass of method. One operator and two methods have to
be provided for the class. The def method returns the value when evaluated in a
default value context, and the evaluation operator operator() returns the value
when evaluated in a row context. Finally, the set context method is used to store
the evaluation context and the evaluation row.

5.2.4 Rows

The VDBL rows (class vdbl::row) are internally defined as STL maps of columns,
organized with column id keys and column entries.

In principle, different types of rows could be defined, but at the moment only
standard rows are implemented.

Every row contains a number of columns, whose values can be retrieved within an
evaluation context (see Section 5.2.7). A column can contain an arbitrary type
encapsulated in a col class, see Section 5.2.3. If you want to make sure, that type
checking is used, you have to change the rows through the table methods.

The following methods are available in the row class.

get col: These method return a (constant) reference to the column with the given
colid. If the column does not exist, an empty column is returned, and the
error parameter is set to true.

has col: The check, whether the row contains a column for the provided column
id, is performed by calling this method.

insert: This method inserts a new column with given id and value into this row.
It returns true if the column was successfully inserted.

drop: Deleting a column from a row is done by a call to this method. The column’s
id is provided as the only argument. The return value is true, if erasing was
successful.

update: This method replaces the value of the column, whose id is passed as first
parameter, with a copy of the second parameter. If the column is not yet
defined, update works like insert. If updating was successful, the method
returns true.

5.2.5 Views

A view (class vdbl::view base) onto a table is table-like construct built from
table structures. They may be restricted to a subset of the rows and/or columns of
the table.

“habil”
2004/11/29
page 140

140 Chapter 5. The COCONUT environment

The most important properties of a view is that it is always created within a given
context (see Section 5.2.7). The contents of the view can vary depending on this
context. Two different views to the same table can at the same time show different
data in the same column of the same row.

Two different classes of views have been implemented:

Standard View: This view (of class vdbl::view) is constructed over one table,
and it can only be restricted to subsets of rows and columns of this table.

Hierarchical View: An hierarchical view (in class vdbl::hierarchical view)
looks onto a stack of tables, the top ones “overlaying” the lower ones. This
makes it possible to have, e.g., a globally valid table on bottom and a stack
of locally valid tables on top of them.

Some views can hold an internal cache of table entries, which are used for fast
access, reducing the number of calls to function objects within columns.

The method description is split into three parts. The first part explains those
defined for all view types, and the other parts describe the special methods of the
view class and of the hierarchical view class, respectively.

Every view has associated one of the following view properties.

V window: This view looks onto a table. It is possible to change the table contents
through the view.

V transparent: This view does not change the underlying table. It can be ex-
panded, but changes are not committed to the table.

V frozen: This view is a constant view to a table. It does not change and cannot
be changed.

V materialized: The view is the result of a select, and there is not an underlying
table.

V independent: The view is just a temporary collection of rows and columns with-
out a table.

General Views

All views are subclasses of the base class viewbase. This class already defines a
series of methods which I will describe below.

insert: This method inserts a new row into the view. Rows are built like for tables
(see Section 5.2.2). The return value is true, if inserting was successful.

remove: The only parameter of remove specifies the row to be deleted. This pa-
rameter is a pair. The first component defines the table id from which the
row has to be removed. The second component specifies the row. If the row
was successfully erased, the return value is true.

“habil”
2004/11/29
page 141

5.2. Vienna Database Library (VDBL) 141

has col: This method returns whether the view contains a column of the name
given.

get col id: The table id of the defining table of this column and the column id are
returned by this method. The only input parameter is the name of the column.
If the column does not exist, the pair std::make pair(tableid(),colid())

is returned, which is impossible for a real column.

get row: This method returns a constant reference to the row specified by the input
parameter, which is like in remove. If the row does not exist, an empty row
is returned, and the error parameter is set to true.

get raw col: The first parameter of this method defines the row like in remove,
and the second one the id of a column. The method returns a reference to the
column defined by these coordinates, and in addition it returns a pointer to
the row containing the column through the third parameter. In this method,
the evaluation context for which the view was created is not passed to the
column, so the column’s raw data is returned. If the row does not exist, the
error parameter is set to true, and the return value is a reference to an empty
column.

print col: This method prints a column. Its first parameter is the output stream,
and the second and third parameters define a column like in get raw col.
The last parameter is set to true, if something was printed.

get def: This one returns the default value of a column. If successful, error is set
to false, otherwise it is set to true.

view type: A call to this method returns the view’s type.

In addition to the methods described above, the class provides three iterators, a
col const iterator for iterating through all columns, and a row const iterator

for iteration over the rows, and a default const iterator, which in sequence visits
all default values.

The default and column iterators dereference to a constant col reference for the
default or column they are pointing at. The row iterator dereferences to a constant
row reference.

All iterators have an id method returning the colid or rowid of their position, and
the default iterator in addition has a tid method which returns the tableid.

The methods row begin, row end, col begin, col end, default begin, and default end

return iterators for the begin and beyond the end of the respective lists.

Standard View

There are two constructors for the view class, the standard view of the VDBL. The
first one takes the table id and a pointer to the table, onto which it looks. An
evaluation context and the view type complete the input parameters. The second
constructor in addition takes a list of rowids which should be visible in the view.
In that case, all rows not given in the list remain hidden.

“habil”
2004/11/29
page 142

142 Chapter 5. The COCONUT environment

There are two new methods, which come in a number of similar variants. The first
one get retrieves the data of a column within the evaluation context. The tableid

and rowid have to be specified and in addition either the name or the colid of the
column. The methods return true, if the get was successful.

By get raw ptr a constant pointer to the data of a column is returned. This is
only useful for columns with constant value. Since no copy constructor is called,
the method is fast.

Hierarchical View

For a hierarchical view the same methods as for a standard view are defined. The
constructor also looks the same, however its semantics is a bit different. It defines
the master table of the view, which determines column name–column id mappings
and always defines the bottom of the view. The master table cannot be changed,
and it cannot be removed.

In addition two push table methods are defined, which add a new table on top of
the hierarchical stack. The first version takes a tableid and a pointer to the table,
adding all rows, while the second one takes a third parameter, a list of rowid which
should be visible in this table, all other rows of the table are hidden.

The last method pop table removes the topmost table from the hierarchical stack
and it returns its tableid.

5.2.6 View Database

A view database is a view onto a complete database, automatically constructing
views (standard or hierarchical) for every table defined in the database. These views
can be accessed under the same names as the defining tables, having a subset of
their columns (also with identical names). The defining class is vdbl::viewdbase.

There are two non-standard constructors for a viewdbase. The first variant defines
a view database from a database (see Section 5.2.1) and an evaluation context (see
Section 5.2.7), which will be valid for all constructed views. In addition, the userid
of the user constructing the view database has to be passed. The second variant
of the constructor has a fourth parameter, an arbitrary STL sequence container of
tableid–rowid pairs, which should be visible in the view database. All rows from
all tables, which are not contained in the list remain hidden from view.

The get table id method returns the tableid associated to a given table name.
If no such table exists, tableid() is returned, which is an invalid table id.

All variants of the has view method check whether a view to a given tableid or
name exists.

Finally, the get view methods return a pointer to the view of the given id or name.
If no view of that name or id exists, NULL is returned.

“habil”
2004/11/29
page 143

5.3. The API 143

5.2.7 Contexts

Evaluation contexts are subclasses of the vdbl::context class. They may hold
arbitrary data and are keeping a const vdbl::table * to their associated table.

This context is passed to every function object along with the row the column
belongs to for constructing the columns value. The contexts have no influence on
typed col columns, whose values don’t change within different contexts.

The only methods for this class are both called table. Without arguments it returns
the constant pointer to the associated table, and if such a pointer is passed to the
table method, the associated table is changed to the new one.

5.3 The API

This first part of the API is responsible for the structural framework of the pro-
gram, for the data encapsulation, and for the communication between the different
modules.

After reviewing the basic classes needed throughout most of the environment (Sec-
tion 5.3.1), we start with the description of the expression class and the basic
operator types, which are used for representing the functions of the optimization
problems (Section 5.3.2).

5.3.1 Helper Classes

Three helper classes form the backbone of the communication. The basic data types
which can be transferred between the various models of the environment are kept
in a single union basic alltype, a kind of “all-type”.

The base class for all data transfer (datamap) is in principle a map of string to
basic alltype. Subclasses of this type are used for communication between the
strategy engine and all the modules.

Database rows are kept in the class dbt row, which is primarily used by the deltas
(see Section 5.5) for changing the model annotations (see Section 5.4.2).

Basic Types

The class basic alltype is a union of six scalar types, five vector types, and three
matrix types. For compatibility reasons a second typename additional info u can
be used for the basic alltype. However, the use of the older typename is deprecated,
and support for it may be removed in a future version.

The following types can be stored. They are listed together with their retrieval
operation and their type identifier.

“habil”
2004/11/29
page 144

144 Chapter 5. The COCONUT environment

/* empty */ /* none */ ALLTYPE EMPTY

bool nb() ALLTYPE BOOL

int nn() ALLTYPE INT

unsigned int nu() ALLTYPE UINT

double nd() ALLTYPE DOUBLE

interval ni() ALLTYPE INTERVAL

string s() ALLTYPE ALLOCED S

vector<bool> b() ALLTYPE ALLOCED B

vector<int> n() ALLTYPE ALLOCED N

vector<unsigned int> u() ALLTYPE ALLOCED U

vector<double> d() ALLTYPE ALLOCED D

vector<interval> i() ALLTYPE ALLOCED I

matrix<int> nm() ALLTYPE ALLOCED NM

matrix<double> m() ALLTYPE ALLOCED M

matrix<interval> im() ALLTYPE ALLOCED IM

Every type, which can be stored in a basic alltype, can be assigned to it, and a
basic alltype object can be (automatically) constructed from every storable type.
The corresponding assignment operators and constructors are defined. However, for
the assignment operators the vector and matrix types are passed as pointers to avoid
unnecessary calls to the copy constructor of (probably big) complex types. Strings
can be passed as string objects or as pointers to C strings (const char *).

Additional important methods are clear, which deletes the contents of a basic alltype

and leaves it empty, and the empty method can be used for testing, whether the
basic alltype is empty. With contents type the type of the stored data can be
retrieved.

Finally, there are four methods for boolean queries about the stored data. is allocated()

returns true if the alltype contains any data, for which memory allocation is neces-
sary, i.e. the vectors, matrices, and strings. The is vector, is matrix, is scalar

return, whether the data is a vector, a matrix, or a scalar, respectively.

Datamap

The basic structure of the classes for data communication between modules is the
datamap class. It is based on a map from C++ strings to the basic alltype class.
It is enhanced by a variety of methods making the data handling more convenient
for the model developer.

The data map contains two different classes of entries. The simple entry consists
of a key given by a string and its data entry, and the parametrized entry has in
addition to the key string an integer subkey and a data entry for every defined

“habil”
2004/11/29
page 145

5.3. The API 145

key–subkey pair. Strings can be entered in all methods either as C++ strings or as
C strings.

The sinsert methods add a new data entry into the datamap. If the replace

variable is set to true, new entries for the same key (key–subkey pair) replace older
ones. If the variable is set to false, inserting a value for an already defined key
(key–subkey pair) fails. The methods return true if they have successfully inserted
the new values into the data map.

With sfind the value in the data map to a given key (key–subkey pair) can be
retrieved. If the entry is undefined, an empty basic alltype is returned.

The remove methods delete the entry for a given key (key–subkey pair) from the
data map, and the defd methods check, whether the data map contains an entry
for the key (key–subkey pair) passed.

For a key with integer subkeys the which methods can be used to retrieve the
subkeys, for which an entry is defined. After the call the vector idx contains the
defined subkeys, and the function returns true if the key passed is indeed defined
as a key with subkeys.

In addition to the methods described above there is a huge number of retrieve

(retrieve i) methods. They come in two flavors, with or without default entry.
The first (first two) argument(s) of the methods specify the key (key–subkey pair) for
which the value should be retrieved. The next argument is a reference to a variable
of one of the basic scalar types and a reference to a pointer to one of the complex
basic types. This variable is set by the method to the data entry corresponding
to the key (key–subkey pair). If no entry exists for the the key (key–subkey pair)
presented, the method without default returns false, and the method with default
sets the variable to the value of the last method argument.

Database Tools

The type dbt row is used by all modules which need to generate new database
entries. First an object of that class is generated, and then the database row is
constructed column by column with calls to add to dbt row, which takes a dbt row

as its first argument, a column name as its second, and the column value as its third
argument. Column names can be given as C++- or as C strings.

Global Pointers

In order to prepare the API for distributed computing, in certain positions the local
pointers have to be abstracted. This is done by the global pointer class gptr. It is
a templated class defining an abstraction of a pointer to a prespecified type. The
abstraction is performed in such a way that a const gptr correctly abstracts a
const pointer. In addition to the operators * and ->, which work like for ordinary
pointers, there is one additional method get local copy, which returns an ordinary
pointer to a local copy of the object referenced by the global pointer.

“habil”
2004/11/29
page 146

146 Chapter 5. The COCONUT environment

At the moment there is only one subclass of gptr defined, the global abstraction of
local pointers. The ptr class emulates a global pointer by a local pointer, and using
it poses no significant performance penalty compared to a normal pointer. For the
ptr class there is no difference between the operator * and the get local copy

method.

5.3.2 Expressions

As we have seen, every model in the search graph is of the form

min f(x)

s.t. F (x) ∈ F
x ∈ x.

When represented in the environment the functions f : Rn → R and F : Rn → Rm
have to follow the following requirements:

1. The function F is a vector of functions Fi : Rn → R.

2. All functions f and Fi are compositions of a finite number of elementary
expressions.

The expressions representing the functions are built using a directed acyclic graph
(DAG) where every node represents an operation and the result of an expression at
the same time. The operator types admissible are listed below. Every child of an
expression is multiplied by its corresponding entry in the coeffs vector before it
is used in the expression. So the value xi used in the expression definitions below
already contains the factor from the coeffs array. If the value yi is used in the
description, you can safely assume that the coeffs-entry is 1.

The methods and public variables of the expression node class are

node num: The node number of this expression node. This number is unique through-
out a DAG and all DAG deltas, so it can be used for node referencing.

operator type: This entry describes the operator represented by this node. The
different possibilities for operators are described below.

coeffs: The coefficients array contains the multipliers for the children in the same
sequence as they ares sorted as children.

params: This entry contains additional parameter information for the node. From
a single integer to a matrix of intervals everything is possible. The parameters
for the various operator types are describen below.

f bounds: If this node belongs to a constraint, this entry holds the bounds. In this
version of the API, the bounds are represented by an interval.

sem: This entry describes additional semantics information for a node. This infor-
mation is described below in more detail.

“habil”
2004/11/29
page 147

5.3. The API 147

n parents, n children: Those two members contain the number of parents and
children, respectively, that this node has.

v i: The variable indicator v i describes in form of a bitmap the variables, this
node depends on. Since the variable indicators are mostly used in an evaluator
context, a more detailed description of this class is contained in Section 5.6.

In addition to the public class members above, there are a number of public methods
for manipulating objects of the expression node class.

var indicator: This is the const accessor for the v i entry, the variable indicator.

set bounds: This method can be used for changing the bounds on the expression
node. It is important to note that this does not implicitely make an expression
node to a constraint (see the description of the model class in Section 5.3.3
for further information on that).

add is var: For reinterpreting nodes as variables in a DAG, the variable number
has to be set with this method.

rm is var: This method removes a variable number from the expression node. If
all the variable numbers are removed, the node is not regarded as a variable
any longer.

is: This method tests the semantics of an expression node. The following enum
entries can be used for testing. If more than one property should be tested in
one call, the corresponding entries have to be combined with the | operator.
If alternatives are to be tested, two calls to is have to be made, whose results
are combined with ||. The enum entries and their meaning are described in
the list below.

ex bound: the node is a simple bound constraint, i.e., a single variable,

ex linear: it is linear but not a simple bound constraint,

ex quadratic: the expression is nonlinear quadratic,

ex polynomial: it is polynomial of higher than second degree,

ex other: it is non-polynomial,

ex atmlin: the node is at most linear,

ex atmquad: it is at most quadratic, i.e., quadratic or linear,

ex atmpoly: the expression is any polynomial,

ex nonlin: it is nonlinear,

ex nonbnd: the node represents an expression which is not a simple bound,

ex any: this matches any expression,

ex kj: the node was added because it is part of the Karush-John first order
optimality conditions (see Section 2.2.3),

ex org: the node is not only due to the Karush-John conditions,

ex redundant: the constraint represented by this node is redundant (e.g., a
cut or a relaxation),

“habil”
2004/11/29
page 148

148 Chapter 5. The COCONUT environment

ex notredundant: the constraint is not redundant,

ex active lo, ex active hi: the constraint has possibly active lower (up-
per) bound,

ex inactive lo, ex inactive hi: it has inactive lower (upper) bound,

ex active, ex inactive: the constraint is possibly active (definitely inac-
tive) at any bound,

ex integer: this node is integer valued — if this is set for a variable, the
variable is an integer variable,

ex convex: the function represented by this expression is convex and non-
linear with respect to the variables (this does not mean that a con-
straint represented by this node is convex, this depends in addition on
the bounds of the constraint),

ex concave: the function represented by this expression is concave and non-
linear with respect to the variables,

ex inequality: this constraint is an inequality constraint,

ex equality: the constraint is an equality constraint,

ex leftbound: this constraint has only a lower bound,

ex rightbound: it has only an upper bound,

ex bothbound: both sides are bounded.

Semantics

An important part of every expression node is the semantics information, which
can in part be questioned by the is method of the expression node class. There are
three classes of flags and additional entries.

property flags: The list of property flags describes information which typically
changes during the algorithm, since it is in part dependent on the domain of
the node’s variables.

c info: the convexity information of the node,

act: the activity information for the bounds of the node,

separable: whether the node is separable,

is at either bound: is the value of this node either at is upper or at its lower
bound but not in between.

annotation flags: Annotation flags are set during the construction of the node.
They specify properties, which are fixed by the structure of the expression.

kj: The node was added during the generation of the Karush-John first order
optimality conditions.

integer: The node is integer valued.

type: This expression node belongs to one of the following four types, which
will be used in the future algorithmic setup of the code: v exists,
v forall, v free, and v stochastic. At the moment, only the v exists

specifier is used.

“habil”
2004/11/29
page 149

5.3. The API 149

hard: The constraint represented by this node is a hard constraint and not a
soft constraint.

info flags: These flags describe algorithmic properties of the nodes. At the mo-
ment there is only one flag defined, has 0chnbase denotes whether the ex-
pression represented by this node is a one dimenensional function of one node,
the 0-chain base.

0chnbase: This is the node number of the 0-chain base, if it exists, and of the
node’s node number, otherwise.

addinfo: For Karush-John variables, i.e., Lagrange multipliers, this entry is the
corresponding constraint number. If it is the multiplier of the objective func-
tion, the value of this member is −1.

degree: This is the polynomial degree of the expression with respect to the vari-
ables, or −1 if it is non-polynomial.

dim: The dimension of the expression, i.e, the number of variables it depends on is
contained in this entry.

stage: This member denotes for multistage problems the stage to which this ex-
pression belongs.

There are numerous methods for retrieving and setting the various entries of the
semantics entries. They can be found in Appendix A.3.2.

Expression Nodes

There is a number of expressions with real result:

EXPRINFO GHOST: This is a virtual expression needed for dag deltas. Ghost nodes
are exceptions to the rule that node numbers have to be unique throughout
all models in a model group. The node number of a ghost node is the same
as the node number of the node, of which it is a ghost.

EXPRINFO CONSTANT: The value of the constant is contained in params.nd().

EXPRINFO VARIABLE: The variable number is contained in params.nn().

EXPRINFO SUM: This is a general linear combination of the form

n∑

i=1

xi + c

where c is stored in params.nd().

EXPRINFO MEAN: This is a sum node where it is guaranteed that all coefficients are
positive, and their sum is 1. So this is a convex linear combination without
constant term:

n∑

i=0

xi.

“habil”
2004/11/29
page 150

150 Chapter 5. The COCONUT environment

EXPRINFO PROD: The product node has the form

c
n∏

i=0

yi

where c is in params.nd().

EXPRINFO MAX: The maximum node is defined as

max(c, xi i = 0, . . . , n)

with c in params.nd().

EXPRINFO MIN: The minimum node is defined as

min(c, xi i = 0, . . . , n)

with c in params.nd().

EXPRINFO MONOME: The general monomial node is defined as

n−1∏

i=0

xnii

where the ni are contained in the vector params.n().

EXPRINFO SCPROD: The scalar product is defined as

k−1∑

i=0

x2ix2i+1

without parameters.

EXPRINFO NORM: The norm node has the form

‖x‖k
where k is stored in params.nd(), and x is the vector built from the values
of all children.

EXPRINFO INVERT: Inversion is defined as

a/y0

with a in params.nd().

EXPRINFO SQUARE: The square node is

(x0 + q)2

where q is stored in params.nd().

EXPRINFO SQROOT: The square node is

√
x0 + q

where q is stored in params.nd().

“habil”
2004/11/29
page 151

5.3. The API 151

EXPRINFO ABS: The absolute value node is

|x0 + q|

where q is stored in params.nd().

EXPRINFO INTPOWER: The integer power node is

xn0

where the integer n is in params.nn().

EXPRINFO EXP: The exponential node is

ex0+q

where q is stored in params.nd().

EXPRINFO LOG: The logarithm node is

log(x0 + q)

where q is stored in params.nd().

EXPRINFO SIN: The sine node is
sin(x0 + q)

where q is stored in params.nd().

EXPRINFO COS: The cosine node is

cos(x0 + q)

where q is stored in params.nd().

EXPRINFO GAUSS: The gaussian function node is

e−(x0−q0)2/q2
1

where the two dimensional vector q is stored in params.d().

EXPRINFO POLY: The polynomial node is

n∑

i=0

αix
i
0

where the coefficients αi are stored in params.d().

EXPRINFO POW: The general power node is

(x0 + p)x1

with p in params.nd().

EXPRINFO DIV: The general division node is

a ∗ y0/y1

and a is stored in params.nd().

“habil”
2004/11/29
page 152

152 Chapter 5. The COCONUT environment

EXPRINFO ATAN2: The atan2 node has no parameters, and its definition is

atan2(x0, x1) = atan(x0/x1).

EXPRINFO LIN: This node is a linear combination of all variables. In params.nn()

the row number in the matrix of linear constraints is stored.

EXPRINFO QUAD: This node is a quadratic form in all variables. The params.m()

stores the enhanced matrix (A|b) for the function

xTAx+ bTx

A is assumed symmetric and sparse.

EXPRINFO IF: We get the interval x from params.ni() and define

n =

{
x1 if x0 ∈ x
x2 otherwise.

The next operators have discrete results:

EXPRINFO IN: The point defined by x = (xi) all children is tested against the box
x stored in params.i(). If x ∈ int (x) the value is 1, if x ∈ ∂x, the return
value is 0, and if x /∈ x the node’s value is −1.

EXPRINFO AND: The value is 1 if all xi ∈ xi where the xi are stored in params.i(),
and 0 otherwise.

EXPRINFO OR: The value is 0 if all xi /∈ xi where the xi are stored in params.i(),
and 1 otherwise.

EXPRINFO NOT: The value is 0 if x0 ∈ x and 1 otherwise. Here x is in params.ni().

EXPRINFO IMPLIES: The value is 1 if the following is true:

x0 ∈ x0 =⇒ x1 ∈ x1

where the xi are stored in params.i(). Otherwise, the value is 0.

EXPRINFO COUNT: The count node returns for how many i we have xi ∈ xi, where
the intervals xi are stored in params.i().

EXPRINFO ALLDIFF: This node returns 1 if all children are pairwise different. Here
different means

|xi − xj | > δ

with δ in params.nd().

EXPRINFO HISTOGRAM: The histogram node counts how many children xi are in
which interval x2k. The numbers nk are collected, and if for all k the value
nk ∈ x2k+1, the result is 1. Otherwise, it is 0.

EXPRINFO LEVEL: The matrix A in params.mi() contains a set of boxes Ai: con-
tained within another. The result is the smallest row index j such that the
vector x = (xi) is contained in Aj:.

“habil”
2004/11/29
page 153

5.3. The API 153

EXPRINFO NEIGHBOR: This returns 1 if x0 and x1 are neighbors, i.e., if (x0, x1) is
in the list of allowed value pairs (v2k, v2k+1) where the vector v is stored in
params.n(). The xi and vi are integers.

EXPRINFO NOGOOD: This returns 1 if x = v with v in params.n(). Both x = (xi)
and v are integer vectors.

There are two integration nodes:

EXPRINFO EXPECTATION: integrates over all variables in the subgraph over all R.

EXPRINFO INTEGRAL: integrates over all variables in the subgraph, for which the
integration area defined in params.i() is a non-empty interval. Variables
with empty interval are considered free.

The following highly complex operations implicitly build matrices, and all use
params.nm() to hold the parameters. Special is params.nm[0], because it con-
tains the noted info. If the matrix is sparse, the remaining rows contain column
index information.

EXPRINFO DET: The determinant of the matrix formed by the child nodes. params.nm()(0,0)
specifies whether the matrix is dense (1) or sparse (0), params.nm()(0,1)

specifies the dimension of the matrix.

EXPRINFO COND: The condition number of a matrix formed by the child nodes.
params.nm()(0,0) specifies whether the matrix is dense (1) or sparse (0),
params.nm()(0,1) and params.nm()(0,2) specify the dimension of the ma-
trix, and params.nm()(0,3) deterimines which condition number is calcu-
lated. Here 0 is for ∞.

EXPRINFO PSD: This is 1 if the matrix is positive semidefinite and 0 otherwise. The
params are as in EXPRINFO DET.

EXPRINFO MPROD: The value of this node is

‖Ax− b‖22,
where the nodes define sequentially A, b, x, and the params define the matrix
dimensions as in EXPRINFO COND.

EXPRINFO FEM: The value of this node is

‖ATDAx− b‖22,
where the nodes sequentially define A,D, b, x, and the params define the ma-
trix dimensions as in EXPRINFO COND.

Finally, there are two nodes containing constant matrices:

EXPRINFO CMPROD: The node returns the value

‖Ax− b‖22,
where the matrix (A|b) is stored in params.m().

“habil”
2004/11/29
page 154

154 Chapter 5. The COCONUT environment

x1 x2 x3

∗ ∗

+ +

∗

4

−1

ut2 ut2
√

+

exp

+

+

min [−1, 1][0, 0]

[0,∞) [0,∞) [0, 1]

Figure 5.2. DAG representation of problem (5.1)

EXPRINFO CGFEM: The node returns the value

‖ATDAx− b‖22,

where the matrix (A|b) is stored in params.m(), and the nodes sequentially
define D,x.

5.3.3 Models

The model class stores one optimization problem, which is passed to the various in-
ference engines. The class is a subclass of dag<expression_node>, so the optimiza-
tion problem is stored in form of a DAG. This representation has big advantages,
see Section 4.1 for a detailed description.

A complete optimization problem is always represented by a single DAG of expres-
sion nodes, as explained in Section 5.3.2. Consider for example the optimization
problem

min (4x1 − x2x3)(x1x2 + x3)

s.t. x2
1 + x2

2 + x1x2 + x2x3 + x2 = 0

ex1x2+x2x3+x2+
√
x3 ∈ [−1, 1]

x1 ≥ 0, x2 ≥ 0, x3 ∈ [0, 1].

(5.1)

This defines the DAG depicted in Figure 5.2.

This DAG is optimally small in the sense that it contains every subexpression of
objective function and constraints only once.

This section is grouped into three parts, each describing an important part of the
model structure. Models are internally represented by a hierarchy of classes as in
Figure 5.3. The topmost class model iddata holds all data which has to be unique

“habil”
2004/11/29
page 155

5.3. The API 155

model model model model model model model model

model_gid model_gid model_gid

model_iddata

Figure 5.3. Hierarchy of model classes

througout all models, like the node numbers, variable numbers, and the like. For
every set of models, which represent the same mathematical problem there is one
model gid structure. All models within one model group can be directly combined
with each other. There is a common global node, variable, and constraint reference,
and the like. Within every model group there are the individual models, each
defined by one object of the model class.

Id Data

The model iddata class is the topmost in a hierarchy of model classes. It represents
the important global information, manages the free and used numbers for nodes,
variables, and constraints. There is usually no need to directly access members or
methods of this class. The class is managed automatically by the various methods
of the model gid and model classes.

Model Group Data

Models are grouped into sets, which can be directly combined with each other,
like models and model deltas. In this class global references to nodes, variables,
constants, and back references from constraint numbers to constraints are managed.
Furthermore, the reference model, the main model to which all the deltas belong,
is stored.

The most important methods in this class are

remove ... ref: These methods (insert node, var, or const) remove the global
references to the corresponding objects.

mk globref, mk gvarref, mk gconstref: Global references to nodes, variables, or
constants are constructed by these methods. The mk gconstref method in
addition adds the constraint back reference entry for the new constraint.

“habil”
2004/11/29
page 156

156 Chapter 5. The COCONUT environment

empty: This method returns true if the walker is the ground node of the reference
model, which is used to represent empty entries in the various reference arrays.

its me: With this method, a model can check, whether it is the reference model or
not.

empty reference: This method returns the ground node of the reference model,
used as empty entry in the reference arrays.

have ... ref: For glob, gvar, and gconst these methods check whether there is
an object in this model group corresponding to this number.

Models

A model is a directed acyclic graph of expression nodes (see Section 5.3.2) plus
additional management information.

The class has a few very important public members:

ocoeff: This is the sign of the objective function. If ocoeff is 1, the problem is a
minimization problem, if it is −1, the optimization problem is a maximization
problem, and if it is 0, it is a constraint satisfaction problem. For evaluation
purposes, the objective function has to be multiplied with this constant.

objective: This walker points to the final node of the expression representing the
objective function. An evaluator (see Section 5.6) has to use this walker as
the starting point for evaluating the objective function.

constraints: This vector of walkers contains the pointers to the expressions rep-
resenting all constraints, which are valid in this model.

There is a huge number of public methods defined for the model class. The con-
structors need some attention, as well.

• The constructor model(model_gid* id = NULL, bool clone=false) con-
structs a new model. If a model gid object is passed, the new model receives
that model gid if clone is true and a copy of the model gid if clone is
false.

• The model(model_gid* id, const erased_part& ep, bool clone=false)

constructor works like the one above, except that it does not construct an
empty model but a model preinitialized with a DAG, which was previously
erased from a bigger DAG.

• An empty model prepared for a prespecified number of variables is built by
the constructor model(int num_of_vars).

• In addition to the simple copy constructor there is an enhanced copy con-
structor model(model_gid* id, const model& m); which generates a copy
of the model m within the model group id.

“habil”
2004/11/29
page 157

5.3. The API 157

• The constructors model(const char* name, bool do_simplify = true)

and model(istream\& name, bool do_simplify = true) read a DAG de-
scription, either from file name or from input stream inp. The do simplify

parameter specifies, whether the simplifier should be called for the model after
reading it.

The simplifier can be applied to any model by calling the basic simplify method.
If a model is freshly constructed and the simplifier is not called, at least the
set counters method must be applied, and arrange constraints, which sorts
the constraints by complexity is useful, too, especially if there is need to iterate
over subsets of constraints.

If by insertion and deletion the constraint numbers, variable numbers, or node num-
bers have become fragmented, they can be rearranged and compressed by calling the
compress numbers method. This must be done in a situation where no work node

exists, since simultaneously all models in all model groups are updated but the
caches of the work nodes are not invalidated.

A model can be detached from a model group and put as reference model into a
newly created model group by calling the detach gid method.

The write method produces a serialization of the model on a specified ostream or
to cout if no stream is provided.

Some methods are used for retrieving information on the model.

number of ..., number of managed ...: These methods return the number of
nodes, variables, and constraints which are defined globally across all
models and locally in this model, respectively.

var: This returns a walker pointing to the node for the variable of the specified
number.

node: With this method a walker pointing to the node with the specified node
number can be retrieved.

constraint: This method returns a walker pointing to the constraint with the
specified number.

get const num: The number of a constraint can be retrieved by this method if
the node number of the constraints expression node is known. The method
returns the constraint number via reference in the second parameter. The
return value is false if no constraint exists for the specified node number.

gid data: With this method the model group data structure for this model can be
accessed.

is empty: This method returns true if the model does not contain a single node.

The methods store node, store variable, store constraint, and store ghost

create local and model group global references of the respective kind for the expres-
sion nodes referenced to by the provided walkers.

“habil”
2004/11/29
page 158

158 Chapter 5. The COCONUT environment

Nodes can be removed from all references, the ghost, variable, and constraints local
and global reference arrays, by calling the three variants of the remove node method.

A number of methods directly access the model gid and model iddata objects to
retrieve additional information:

var name: returns the name of the variable referred to by the supplied number,

const name: provides the name of the constraint for the specified number,

obj name: retrieves the name of the objective function,

obj adj, obj mult: the additive and multiplicative constants for the objective func-
tion (The real value of the objective function is

freal(x) = c (mf(x) + a)

where c = ocoeff, m = obj mult, and a = obj adj.),

n fixed vars, fixed var: the number of fixed variables and their value,

n unused vars, unused var: the number of unused variables, which are specified
but not connected to the model,

n unused constrs, unused constr: the number of unused constraints.

Finally, there are numerous methods for constructing new expressions within a
model:

constant: This method constructs a node for the specified constant and stores it
in the model.

variable: If the variable for the specified number exists already, a walker to its
node is returned. Otherwise, a new variable is created, stored, and a reference
is returned.

ghost: A new ghost is created for this node number if no such ghost exists. Then
the method returns a walker pointing to the ghost for the provided node
number.

unary: This method constructs a unary expression, whose child is the first argu-
ment. The second argument is the operator type. The optional third argument
specifies the additional parameters needed for describing the expression, and
the last argument, which is also optional, specifies the multiplier for the child,
which is stored in the coeffs array (see Section 5.3.2). The return value is a
walker pointing to the newly constructed expression.

binary: For constructing a binary operator this method can be used. Its first
two parameters are the two children, and the third parameter is the operator
type. The optional fourth parameter describes the additional parameters for
the expression. The multiplicative coefficients for the children are passed via
the optional parameters five and six. The method returns a walker pointing
to the newly constructed expression.

“habil”
2004/11/29
page 159

5.4. Search Graph 159

nary: This method constructs a general n-ary expression. The first parameter is
a vector of operands, the second one specifies the operator type. Additional
parameters for the expression can optionally be passed through the third
parameter, and the last parameter is the coeffs array of the new expression.
A walker pointing to the new expression is returned.

vnary: For simple expressions without additional parameters and where alle coef-
ficients of the children are 1, this variable number of arguments method can
be used. After the operator type a list of pointers to expression node walkers
have to be passed. The list must end with a NULL pointer. The return value
is a walker pointing to the new expression.

5.3.4 Control Data

When data has to be passed to modules, regardless whether they are inference mod-
ules, management modules or report modules, it has to be passed via a control data

object. This class is a subclass of the datamap class described in Section 5.3.1.

The methods set correspond to the datamap methods sinsert, and it does not
replace already existing entries.

The methods get, is set, unset, and which set correspond to the datamap meth-
ods sfind, defd, remove, and which methods, respectively.

The assign and assign i methods work almost like retrieve and retrieve i.
However, the variants without default value raise an exception if the value to be
retrieved is undefined instead of just returning false.

There are two additional methods defined for the control data class. The service
method takes a string parameter and sets the entry, which defines the service that
should be provided by the module called. Inside the module the check service

method can be used to determine, whether the service has been set to the specified
string.

5.4 Search Graph

The solution algorithm is an advanced branch-and-bound scheme which proceeds
by working on the search graph, a directed acyclic graph (DAG) of search nodes
(see Figure 5.4 and Section 5.4.1), each representing an optimization problem, a
model. The search nodes come in two flavors: full nodes which record the
complete description of a model, and delta nodes which only contain the difference
between the model represented by the node and its (then only) parent. All search
nodes “know” in addition their relation to their ancestors. They can be splits,
reductions, relaxations, or gluings. The latter turn the graph into a DAG instead of
a tree, as usual in branch-and-bound algorithms. The search graph is implemented
using the Vienna Graph Template Library (VGTL), a library following the generic
programming spirit of the C++ STL (Standard Template Library).

“habil”
2004/11/29
page 160

160 Chapter 5. The COCONUT environment

Figure 5.4. Search graph

A reduction is a problem, with additional or stronger constraints (cuts or tighten-
ings), whose solution set can be shown to be equal to the solution set of its parent.
A relaxation is a problem with fewer or weakened constraints, or a “weaker” ob-
jective function, whose solution set contains the solution set of its parent. Usually,
relaxed problems have a simpler structure than their original. Typically linear or
convex relaxations are used.

A problem is a split of its parent if it is one of at least two descendants and the
union of the solution sets of all splits equals the solution set of their parent. Finally,
a model is a gluing of several problems, if its solution set contains the solution sets
of all the glued problems.

During the solution process some, and hopefully most, of the generated nodes will
be solved, and hence become terminal nodes. These can be removed from the
graph after their consequences (e.g., optimal solutions, . . .) have been stored in the
search database. This has the consequence that the ancestor relation of a node can
change in the course of the algorithm. If, e.g., all the splits but one have become
terminal nodes, this split turns into a reduction. If all children of a node become
terminal, the node itself becomes terminal, and so on.

The search graph has a focus pointing to the model which is worked upon. This
model is copied into an enhanced structure - the work node (see Section 5.4.3).

“habil”
2004/11/29
page 161

5.4. Search Graph 161

A reference to this work node is passed to each inference engine activated by the
strategy engine. The graph itself can be analyzed by the strategy engine using
so-called search inspectors.

5.4.1 Search Nodes

The search graph is a directed acyclic graph of search node pointers. The search node

class itself is not used in the graph, only its two subclasses full node and delta node.

The class search node has a few protected members, which are essential for the
work node class described below.

global model: This member holds a global pointer reference (see Section 5.3.1)
to the global (the original) model in the search graph.

dbase: The search database can be referenced via this global pointer.

dbuser: This member stores database userid used for all database accesses.

snr: The relation between this search node and its parent is kept in this member.
It can take the following values:

snr root: the root node of the search graph, i.e., the original problem,

snr reduction: a reduction of the parent, i.e., a problem which has the same
solution set as its parent but a reduced search space,

snr relaxation: a relaxation of the parent, i.e., a problem whose solution
set contains the solution set of the parent problem,

snr split: a split of the parent, i.e., one of two or more problems, all of
which are also splits, such that the union of the solution sets of all split-
problems is the solution set of the parent.

snr glue: a gluing of many parents, i.e., a problem which contains the union
of the solution sets of all parents,

snr worknode: a work node, i.e., an enhanced node which is passed to the
inference engines and not stored in the search graph,

snr virtual: a virtual node of the search graph, i.e., its ground or sky.

id: This member stores the unique node id of the search node.

keep: Since deltas and annotations for search nodes are stored in the search
database, there has to be a method for removing these database entries when
they are no longer needed. The keep member defines which annotations are
removed, when this search node is destroyed.

Most of the methods in the search node class are accessors: get dbuser for dbuser,
global model for global model, database for dbase, and get id for id.

The is delta method is overloaded by the subclasses, and it is true for the
delta node and false for the full node subclass.

“habil”
2004/11/29
page 162

162 Chapter 5. The COCONUT environment

For managing the annotations which are kept by the search graph there are methods
keep and unkeep, which add and remove entries from the kept container.

The search node class has two subclasses: full node which defines a node con-
taining a complete model description, and delta node a search node that stores
only the difference to the parent node.

delta node: The simpler search node is the delta node. It contains a list of delta
references. The delta information is stored in the search database. Three
methods exist in addition to the ones inherited from the search node class.
n deltas returns the number of stored deltas. The method get delta id is
used for retrieving the delta id of the ith delta, and get delta returns the
ith delta.

full node: A full node contains a complete problem description, consisting of an
expression DAG stored in the protected member m, which is a global pointer
to a model, and an array of annotations (see Section 5.4.2) kept in the public
member ann.

The methods get annotation and get annotations give access to one or all
annotations stored in the full node.

There are two different accessors for the model contained in the full node:
get model returns a const pointer to the model, whereas get model ptr pro-
vides a pointer through which the model’s contents can be changed.

In addition, there are accessors get database and get database ptr, which
give access to the inherited protected member dbase of the base class.

5.4.2 Annotations

All models get additional annotations containing important information like local
optima, exclusion boxes, and Lagrange multipliers. Those items are stored in the
search database. The entries are determined by a database table and a row in that
table. For both the ids are stored in a pair. The tableid of an annotation can be
retrieved by the get table method, and the rowid is returned by get entry.

The vector of annotations, which are valid for a work node (see Section 5.4.3),
determines its database view. Only the valid annotations are visible, all others
hidden.

5.4.3 Work Nodes

Whenever the search focus is set on a search node of the search graph, the node
is extracted into an object of the class work node. This class is a subclass of
full node, further enhanced with information and caches. The work node structure
is highly important, because all inference engines analyze work nodes.

The public members of the work node class are:

“habil”
2004/11/29
page 163

5.4. Search Graph 163

deltas: This array contains all ids of those deltas which have been applied in the
sequence of their application.

undeltas: The undo information for all applied deltas is kept in this container.

dtable: This member points to the table of deltas in the search database.

dtable id: This is the tableid of the delta table in the search database.

node ranges: While one work node is analyzed this vector contains the currently
best known range on each node in the expression DAG.

infeasible: If this entry is set to true, it has been proved that the solution set of
this work node is empty.

log vol: This is the logarithm of the volume of the search box in this node.

gain factor: Whenever the bounds of a node are changed, this member is updated,
roughly specifying the reduction in volume since the last reset.

proposed splits: Every entry in this list represents one possibility of splitting the
work node into smaller areas for the branching step of the branch-and-bound
scheme. Every proposed split gets an associated transaction number for
referencing and undoing split deltas (see Section 5.5.6).

The public methods for the work node class are described in the following list:

init cnumbers: This method initializes the internal caches of the work node.

reset node ranges: The ranges cache is a vector for fast access but the node num-
bers might not be continuous. Therefore, there might be some ranges entries,
which have no meaning. To reset them to the default [−∞,∞] range, this
node must be used.

make node ranges: This method initializes the node ranges cache.

compute log volume: An approximation of the logarithm of the box volume is com-
puted with this method. It makes sure that this number is finite, even for
boxes with thin or infinite components.

get model: This method returns a pointer to the model of the problem represented
in this work node.

get delta: These methods return a delta by retrieving it from the search database.
When an unsigned integer i is passed the ith delta is returned, and if a
delta id is provided, the delta corresponding to that id is returned. The
method raises an exception if the delta does not exist in the database.

log volume: This is the accessor for the log vol member.

gain: The member gain factor can be accessed through this method.

reset gain: A call to reset gain resets the gain factor to 1.

“habil”
2004/11/29
page 164

164 Chapter 5. The COCONUT environment

n: This method is used for counting constraints of specific types. The same type
flags can be passed as for the is method of the expression node class (see
Section 5.3.2). The return value is the number of constraints, which are of the
corresponding type. The most important values (number of linear, number of
quadratic,. . .) are internally cached, so access is fast for those. For unusual
combinations the time needed for this method is linear in the number of
constraints.

The work node class provides special iterators, constraint const iterator and
constraint iterator, for iterating over the constraints or a subset of them. The
argument to the methods get begin and get end is a type specifier like for n and
the expression node method is (see Section 5.3.2). The method get begin then
returns a constraint iterator pointing to the expression node of the first constraint
with the required property. Incrementing the iterator jumps to the next constraint
with the property, and so forth. The get end method returns an iterator pointing
past the last constraint with the required property.

Finally, deltas can be applied to work nodes by “adding” their id with the operator
+. They can be unapplied by “subtracting” their delta id with the operator -.
These operators work on single deltas as well as on sequences of deltas, as long as
they are stored in any STL sequence container.

5.4.4 Search Graph

The class search graph manages the DAG structure of the graph, the search foci,
and the search inspectors. The publicly accessible data members are

root: This member is a pointer to the search node of the root of the search graph,
the original problem.

inspector for root: The search inspector pointing to the root of the search graph
is stored here.

dbase: This is a global pointer reference to the search database.

dbuser: This member stores the database userid used for all accesses to the
database.

The handling of the search foci is performed by the three methods new focus

which creates a new focus pointing to the position of the provided search inspector,
destroy focus which removes the specified focus, and set focus which changes
the given focus to a new position.

Similarly, there are three methods for managing search inspectors (read only point-
ers to the search graph), namely new inspector which creates an empty one or
duplicates an existing inspector, and destroy inspector which removes the in-
spector given from the graph.

For handling search nodes the following methods are provided:

“habil”
2004/11/29
page 165

5.5. Deltas 165

insert: This method adds a new method to the search graph, as child of the node
to which the search focus points. It returns a search inspector to the newly
created node.

extract: The search node pointed at by the search focus is copied into a work node

structure.

replace: This method replaces the search node in the focus by the new search node
provided. The return value is a search inspector to the new node.

promote: If a node is the only child of its parent, it can be promoted in the graph
to replace its parent. This method removes the parent, replaces it with the
child and resets the search focus to the former child. This new search focus
is returned.

remove: This method removes the node in the search focus. The focus is invalidated
by this operation.

child, parent: These two methods return a search inspector to the ith child (par-
ent) of the provided node.

The types search focus and search inspector are defined as walkers and const
walkers, respectively, of the search graph.

5.5 Deltas

As explained in Section 5.4 most of the nodes in the search graph only store differ-
ences to the parent node. These differences are stored in deltas. Every delta has
a unique id once it is committed to the search database. These ids are kept in the
delta nodes and in the work nodes. On demand the deltas are retrieved from the
database to be analyzed or applied.

When a delta is applied to a work node, an undelta object is created for that
delta. This object is used for the unapply operation. Applying and unapplying can
be used to move from one position in the graph to another without the need to
reconstruct the node by walking the full search graph.

In the next sections we will take a look at the base classes for the delta system and
at those deltas which are currently implemented in the COCONUT environment.

5.5.1 Base Classes

The delta class is the main class of the (“positive”) delta system. It is a wrapper
class specifically designed for emulating a virtual copy constructor, which is not
allowed directly in C++. Internally, the class holds a pointer to a delta base object.
It provides two accessors, get action for the action specifier, a member of the
delta base class which describes what the delta actually does, and get base which
directly returns the delta base pointer.

“habil”
2004/11/29
page 166

166 Chapter 5. The COCONUT environment

The methods apply and apply3 apply the delta to the work node, and apply

directly changes the node, while apply3 constructs a new work node in the first
parameter, which is a copy of the second parameter, on which the delta is applied.
These methods directly use the apply and apply3 methods of the delta base class.
Both methods return true, if applying the delta was successful.

The convert method is just a wrapper of the convert method for the delta base

class, which is called during the store operation. This converts a delta to the form
in which it is saved in the database (see, e.g., Section 5.5.8), stores it in the database
and generates a new delta id for it. This delta id is returned.

The delta base class is the base class for all the different delta types, which are
described in Sections 5.5.2–5.5.10. The constructor of the class takes a string ar-
gument (either C++ or C format), which is used as the action specifier describing,
what the delta does.

The apply, apply3 take as second argument a pointer to an object of class undelta base.
This object must contain the unapply information for the delta just applied. This
undelta base object is wrapped into a undelta object and stored in the work node.

The convert and get action methods have the same semantics as for the delta

class. The make delta method wraps the delta base object into a delta object,
and the new copy method is the overloadable replacement of the copy constructor.
It should create a new delta base object (by using new), which is a copy of the
object for which the method is called.

The undelta class is the main class of the (“negative”) delta system. It is like
delta a wrapper class specifically designed for emulating a virtual copy constructor.
Internally, the class holds a pointer to an undelta base object. It provides one
accessor, get base which directly returns the undelta base pointer.

The methods unapply and unapply3 unapply the delta from the work node, and,
again, unapply directly changes the node, while unapply3 constructs a new work
node in the first parameter, which is a copy of the second parameter, from which
the delta is unapplied. These methods also use the unapply and unapply3 methods
of the undelta base class directly. Both methods return true, if unapplying the
delta was successful.

The undelta base class is the base class for all the different undelta types, which
belong to the deltas described in Sections 5.5.2–5.5.10.

The apply, apply3 take as second argument a pointer to an object of class undelta base.
This object must contain the unapply information for the delta just applied. This
undelta base object is wrapped into a undelta object and stored in the work node.

The unapply and unapply3 methods have the same semantics as for the undelta

class. The make undelta method wraps the undelta base object into an undelta

object, and the new copy method is again the overloadable replacement of the copy
constructor. It should create a new undelta base object (by using new), which is
a copy of the object for which the method is called.

“habil”
2004/11/29
page 167

5.5. Deltas 167

5.5.2 Infeasible Delta

The infeasible delta is used, if by some method the infeasibility of the model in the
current worknode is proved. It sets the infeasible member in the work node class
to true.

5.5.3 DAG Delta

The dag delta is the most complicated delta contained in the COCONUT API. It
is responsible for changing the model inside the work node, especially the expression
DAG, adding and removing constraints, changing the objective function, and the
like.

A DAG delta contains three public members: new constraints is a counted pointer,
an intelligent pointer which deletes its contents after all references to them are
removed. This relieves the system of copying large modules over and over again.
The variable rm nodes lists all nodes of the DAG which are to be removed. Actually
this will remove the minimal subgraph defined by these nodes (see Section 5.1.3).
The boolean variable is full delta determines whether all the model should be
replaced by this delta, or whether the delta is an addition containing ghost nodes.

There are two add new methods. The first takes a model reference, copies it into a
new object and stores that in the counted pointer. The second one takes a pointer.
This pointer’s contents must be allocated with new and must not be deleted
afterwards, since the pointer is copied into the counted pointer.

There is one constructor which takes as second argument a model pointer. This
pointer’s contents have to be allocated with new, as well.

The remove methods add new nodes to the rm nodes array.

5.5.4 Bound Delta

A bound delta changes one or more bounds on expression nodes in the DAG.
There are two public members. The indices vector contains the node numbers
of the nodes whose bounds are changed. If the vector is empty, the bounds on
all nodes are changed. The vector new f bounds contains the bounds. The bound
new f bounds[i] applies to the node indices[i].

There are two constructors. Either both vectors are set explicitly or a bound delta
for a single node is constructed.

5.5.5 Semantics Delta

This delta changes the semantics information on nodes in the DAG. It has no public
variable members. There are just public methods. All of these methods take a vec-
tor of indices (node numbers of the nodes to be changed) — if this vector is empty,

“habil”
2004/11/29
page 168

168 Chapter 5. The COCONUT environment

all nodes are changed — and a vector of specifiers. E.g. set convex takes a list of
indices and a list of convex e convexity specifiers. If the method is called, the se-
mantics information of all nodes, whose number is contained in the vector of indices,
will be changed to the new convexity status provided in the vector of convexity spec-
ifiers. The convexity information of all other nodes remains unchanged. The other
methods set activity, set separable, set is at either bound, set integer,
set hard, and set type work the same way. The method set changes the whole
semantics information of the listed nodes in one step.

5.5.6 Split Delta

The split delta is used to add new proposed splits to a work node. Note, that this
delta does not actually split the work node. Splitting of work nodes is done by
management modules.

There is one public member, splits, which is a list of a vector of deltas. Every list
member defines one subproblem, and the vector describes the deltas which must be
applied to generate the subproblem. In many cases the inner vector will be just one
element; however the BCS inference engine creates bound and semantics updates
at the same time.

The method add delta inserts a new single delta (as a vector of one) or a vector of
deltas into the splits list.

The add split method adds a simple split, or a vector of those to the splits list
by automatically creating the relevant bound deltas (see Section 5.5.4).

5.5.7 Annotation Delta

The annotation delta is used for adding annotations (see Section 5.4.2) to work
nodes or for removing them. Annotations are strongly related to rows of database
tables, so annotation deltas usually are not created by inference engines, unless
they explicitly insert rows into certain database tables. Usually, an annotation
table is automatically generated by converting (see Section 5.5.1) table deltas
(see Section 5.5.8).

The table deltas create the database entries and afterwards convert themselves to
the annotation delta which contains the tableid–rowid pairs needed for accessing
the newly created entries.

5.5.8 Table Delta

The table delta class is the base class for a number of deltas, which deal with ta-
bles. When applied to a work node the table delta performs all required database up-
dates and converts itself to an annotation delta which inserts the newly created
table rows into the ann member of the work node (inherited from the full node

class).

“habil”
2004/11/29
page 169

5.6. Evaluators 169

There is one virtual function which needs to be written for all subclasses; create table

is called whenever an entry for a not yet existing table has to be made. Inside that
function it is required from the subclass that it sets up the database table properly
for all tables it uses. The table name is passed as third parameter, and through the
second parameter a pointer to the newly created is returned. The function returns
false, if creating the new table has failed.

The methods add can be used to add new table–row pairs, and the rm methods add
new annotation entries to the work node, which should be prepared for removal.

5.5.9 Box Delta

The boxes delta is a special class of table delta, which adds a new entry into the
box table. The possible row names and their types are

Name Type Description

x vector<interval> the box

exclusion box bool whether the box is an exclusion box

contains optimum bool whether the box surely contains the solution

eval region bool whether all points in the box can be evaluated

5.5.10 Point Delta

The point delta is a special class of table delta, which adds a new entry into the
point table. The possible row names and their types are

Name Type Description

x vector<double> the point

f double the point’s objective function value

L mult vector<double> the constraint multipliers

kappa double the objective multiplier

class unsigned int the point class of the point

best bool this is the best known point

feasible bool this point is feasible

optimal bool this point is a local optimum

global bool this point is valid for the original problem

relaxation bool the entries are valid for a relaxation only

5.6 Evaluators

For expression graphs (DAG or tree), special forward and backward evaluators
are provided. Currently implemented are real function values, function ranges,
gradients (real, interval), and slopes.

“habil”
2004/11/29
page 170

170 Chapter 5. The COCONUT environment

In the near future evaluators for Hessians (real, interval) and second order slopes
(see, e.g., [200]) will be provided, as well.

Evaluators are small modules in the API which can be used by inference engines,
and which provide information about certain aspects of the model DAG or parts of
the model DAG.

The evaluators were designed as intermediate layer between the inference engines
and the internal representation of optimization problems. Their outside structure
is more or less independent of DAGs, so if the internal representation would change
in the future, inference engines using evaluators should not need lots of updates.

All evaluators are constructed from a very small number of base classes. They can
make use of the variable indicator, a bitmap recording which variables every
node depends on. This variable indicator has methods reserve for preparing the
indicator for the specified number of variables, set and unset for setting and un-
setting single entries or ranges of entries, and clear for resetting the whole variable
indicator. The method test can be used to determine, whether a single variable is
set, and match returns true, if two variable indicators have an empty intersection
of variables which are set.

For a full class description of all described classes see the reference manual of the
COCONUT API Version 2 [197].

5.6.1 Base class

There are four different base classes for evaluator programming, depending on the
type of evaluation:

• forward evaluation,

• backward evaluation,

• forward evaluation with caching,

• backward evaluation with caching.

For an evaluator, a number of methods have to be provided:

initialize: This method is called for every node before children are visited. For
forward evaluation the method should return an int. If the return value is
negative, the short cut to method will be called for performing a short-cut.
If the return value is i > 0, then skip i − 1 children in the evaluation. If the
return value is zero, then do not walk to the children.

calculate: For forward evaluation this method is called after all children have
been visited, for backward evaluation it is called right before the first child
is visited. For backward evaluation a return value of type int is expected,
which follows the same rule as the return value of initialize for forward
evaluators.

“habil”
2004/11/29
page 171

5.6. Evaluators 171

calculate value: This method is called before the evaluator is destroyed. It
should return the evaluator’s return value.

cleanup: This method is called just before calculate value, and it should be used
to get rid of allocated data,. . .

update: The update method is called every time after a child has finished. The
second argument is the return value of the child. The method should return
int. This number is the number of children which should be skipped during
evaluation. If the return value is negative, no more children are visited.

short cut to: This method is only called, if initialize (for forward) or calculate
(for backward) return a negative number. It should return a walker pointing
to the point the short-cut leads to. The graph walk is continued there.

is cached: This method should return a bool specifying whether the result of this
node is already in the cache.

retrieve from cache: If is cached returns true, this method is called. It should
retrieve from the cache the result and store it somewhere such that calculate value

can produce a proper return value.

All evaluators are used in the same way. First they are constructed using all the
relevant data. Then the evaluate function is called. This function takes two
arguments. The first is the evaluator, the second argument is a walker of the model
DAG pointing to the node (e.g., objective, constraint) which should be evaluated.
The evaluate function returns the return value the evaluator provides for the start
node.

Examples for the proper use of all evaluators defined here can be found in the
subsections with corresponding titles and numbers in Section A.5.

5.6.2 Function Evaluation

This is the simplest evaluator. It provides a real function evaluation. The construc-
tor has the form

func_eval(const std::vector<double>& x, const variable_indicator& v,

const model& m, std::vector<double>* c);

Here x defines the point on which the function is evaluated. v is a variable indicator,
where all variables are set, if they have been changed since the last evaluation. The
parameter m contains a reference to the actual model, and c is the cache. If NULL

is passed as the cache’s pointer, the evaluator works without caching.

“habil”
2004/11/29
page 172

172 Chapter 5. The COCONUT environment

5.6.3 Gradient Evaluation

Gradient evaluation consists of three evaluators: prep d eval, func d eval, and
der eval.

The evaluator utilizes the backward mode of automatic differentiation. For this the
partial derivatives of every node with respect to its children have to be computed.
This is done in forward mode during a function evaluation.

The prep d eval evaluator is used to set up the data structure for automatic dif-
ferentiation. It has to be called before func d eval is called. Its constructor is

prep_d_eval(std::vector<std::vector<double> >& d,

unsigned int num_of_nodes);

where d is a reference to the automatic differentiation data structure.

After prep d eval has set up the data structure, func d eval is used to calculate
a function value, like with func eval with the difference that all partial derivatives
in the tree are kept within the already set up data structure. The constructor of
func d eval is:

func_d_eval(const std::vector<double>& x, const variable_indicator& v,

const model& m, std::vector<std::vector<double> >& d,

std::vector<double>* c);

where x, v, m, and c have the same semantics as in func eval (see Section 5.6.2).
The parameter d is a reference to the automatic differentiation data structure.

After the function evaluation the third evaluator der eval is called, which computes
the gradient. The constructor is

der_eval(std::vector<std::vector<double> >& der_data,

variable_indicator& v, const model& m,

std::vector<std::vector<double > >* d,

std::vector<double>& grad);

Here der data is a reference to the derivative structure filled by func d eval before.
There is no internal status or storage in der eval, and all information is passed via
der data. The parameters v and m are as before, and d is the cache for derivative
evaluation. Finally, the parameter grad is a reference to a vector. The gradient
evaluated is added to the vector stored in grad. So, it has to be initialized to 0,
if just the gradient shall be computed. For, e.g., computing the gradient of some
Lagrange function, a multiple α of the gradient of this function can be added to
grad, if before evaluate is called, the set mult method is used to preset α in the
der eval object.

“habil”
2004/11/29
page 173

5.6. Evaluators 173

5.6.4 Range Evaluation (Interval Evaluation)

This is the simplest interval evaluator. It provides a function range enclosure using
interval arithmetic. The constructor has the form

interval_eval(const std::vector<interval>& x, const variable_indicator& v,

const model& m, std::vector<interval>* c, bool do_i = true);

Here x defines the box over which the function range is enclosed. v is a variable
indicator, where all variables are set, if they have been changed since the last
evaluation. The parameter m contains a reference to the actual model, and c is the
cache.

If do i is true (the default), then forward propagated values are intersected with
original node bounds. If it is set to false, simple forward interval propagation is
used.

5.6.5 Interval Derivative Evaluation

This evaluator set provides range enclosures for gradients. It consists of three eval-
uators, like gradient evaluation (see Section 5.6.3): prep id eval, func id eval,
and ider eval.

The evaluator utilizes the backward mode of automatic differentiation. For this the
enclosures for all partial derivatives of every node with respect to its children have
to be computed. This is done in forward mode while a function range enclosure is
computed. The special results on improved ranges due to exploiting the results of
constraint propagation from Section 4.1.3 based on the results in [201] have been
implemented.

The prep id eval evaluator is used to set up the data structure for automatic
differentiation. It has to be called before func id eval is called. Its constructor is

prep_id_eval(std::vector<std::vector<interval> >& d,

unsigned int num_of_nodes);

where d is a reference to the automatic differentiation data structure.

After prep id eval has set up the data structure, func id eval is used to calculate
a function range enclosure, like with interval eval with the difference that ranges
of partial derivatives in the tree are kept within the already set up data structure.
The constructor of func id eval is:

func_id_eval(const std::vector<interval>& x,

const std::vector<interval> rg,

const variable_indicator& v, const model& m,

std::vector<std::vector<interval> >& d,

std::vector<interval>* c)

‘‘habil’’

2004/11/29

page 174

174 Chapter 5. The COCONUT environment

where x, v, m, and c have the same semantics as in interval eval (see Sec-
tion 5.6.4). The parameter d is a reference to the automatic differentiation data
structure. The rg vector contains the best known range of all nodes in the DAG
(even of the intermediate ones).

After the range evaluation the third evaluator ider eval is called, which computes
the gradient. The constructor is

ider_eval(std::vector<interval> x,

std::vector<std::vector<interval> >& ider_data,

variable_indicator& v, const model& m,

std::vector<std::vector<interval> >* d,

std::vector<interval>& grad)

Here ider data is a reference to the derivative structure filled by func id eval

before. There is no internal status or storage in ider eval, and all information is
passed via ider data. The parameters v and m are as before, and d is the cache
for derivative evaluation. Finally, the parameter grad is a reference to a vector,
to which the interval gradient is added. The vector has to be initialized to 0, if
the interval gradient of this function is to be computed. The first parameter x is
a reference to the box over which the gradient should be enclosed. The set mult

method can be used to preset a scalar (an interval in this case) as for the der eval

class (see Section 5.6.3).

5.6.6 First order Slope Evaluation

This evaluator set provides first order slopes for functions. It consists of three eval-
uators, like gradient evaluation (see Section 5.6.3) does: prep islp eval, func islp eval,
and islp eval.

The evaluator utilizes the backward mode of automatic differentiation. For this the
partial slopes of every node with respect to its children have to be computed. This
is done in forward mode during a function evaluation on the center of the slope.
The special results on improved ranges due to exploiting the results of constraint
propagation from Section 4.1.3 based on the results in [201] have been implemented.

The prep islp eval evaluator is used to set up the data structure for automatic
differentiation. It has to be called before func islp eval is called. Its constructor
is

prep_id_eval(std::vector<std::vector<interval> >& d,

unsigned int _num_of_nodes);

where d is a reference to the automatic differentiation data structure.

After prep islp eval has set up the data structure, func islp eval is used to
calculate a function range enclosure, like with interval eval with the difference
that partial slopes in the tree are kept within the already set up data structure.
The constructor of func islp eval is:

“habil”
2004/11/29
page 175

5.6. Evaluators 175

func_islp_eval(const std::vector<double>& z,

const std::vector<interval> rg,

const variable_indicator& v, const model& m,

std::vector<std::vector<interval> >& d,

std::vector<double>& f);

where z is the center of the slope, and v, and m have the same semantics as in
interval eval (see Section 5.6.4). The parameter d is a reference to the automatic
differentiation data structure. The rg vector contains the best known range of all
nodes in the DAG (even the intermediate ones). The parameter f is used to store
center information. The evaluator returns a value of type func islp return type

consisting of an approximate function evaluation at the center z, a function range
enclosure over the point interval z = [z, z], and a function range enclosure over the
box, over which the slopes are to be calculated.

After the function evaluation at the center the third evaluator islp eval is called,
which computes the slope. The constructor is

islp_eval(std::vector<std::vector<interval> >& islp_data,

variable_indicator& v, const model& m,

std::vector<std::vector<interval> >* d,

std::vector<interval>& islp);

Here islp data is a reference to the derivative structure filled by func id eval

before. There is no internal status or storage in islp eval, and all information is
passed via islp data. The parameters v and m are as before, and d is the cache
for slope evaluation. Finally, the parameter islp is a reference to a vector, to which
the computed slope is added, again a multiple α ∈ IR can be added, if the set mult

method is used on the evaluator prior to the call to evaluate. For computing the
raw slope, the vector islp has to be initialized to 0.

A number of evaluators for one-dimensional functions are defined, as well. They
have been written by Knut Petras from the Technische Universität Braunschweig.

5.6.7 Analytic-Differentiable Evaluation

This evaluator produces in one sweep

• an interval for range evaluation

• an interval for derivative evaluation

• a complex (rectangular) interval symmetric with respect to the real axis (con-
sisting of an interval representing the real part and a double representing the
maximal distance from the real axis).

The constructor has the form

“habil”
2004/11/29
page 176

176 Chapter 5. The COCONUT environment

analyticd_eval(const std::vector<analyticd>& __x, const variable_indicator& __v,

const model& __m, std::vector<analyticd>* __c) : _Base()

Here x defines the box over which the evaluation is done, and v is a variable
indicator, where all variables are set, if they have been changed since the last
evaluation. The parameter m contains a reference to the actual model, and c is
the cache.

This evaluator is not yet implemented for many operators, but the most important
ones are covered.

5.6.8 Bounded Interval Evaluation

This is an interval evaluator for bounded evaluation. It provides a function range
enclosure using interval arithmetic avoiding infinities. The constructor has the form

b_interval_eval(const std::vector<b_interval>& x,

const variable_indicator& v,

const model& m, std::vector<b_interval>* c);

Here x defines the box over which the function range is enclosed. v is a variable
indicator, where all variables are set, if they have been changed since the last
evaluation. The parameter m contains a reference to the actual model, and c is the
cache.

5.6.9 Complex Interval Evaluation

This evaluator provides enclosures of the function in complex (rectangular) intervals
symmetric with respect to the real axis. The constructor has the form

c_interval_eval(const std::vector<c_interval>& x,

const variable_indicator& v,

const model& m, std::vector<c_interval>* c);

Here x defines the box over which the function range is enclosed. v is a variable
indicator, where all variables are set, if they have been changed since the last
evaluation. The parameter m contains a reference to the actual model, and c is the
cache.

5.6.10 Infinity-Bound Evaluation

This is an evaluator doing asymptotic arithmetic. It provides a function enclosure
at ±∞. The constructor has the form

“habil”
2004/11/29
page 177

5.7. Inference Modules 177

infbound_eval(const std::vector<infbound>& x, const variable_indicator& v,

const model& m, std::vector<infbound>* c);

Here x defines the asymptotic region over which the function is enclosed. v is a
variable indicator, where all variables are set, if they have been changed since the
last evaluation. The parameter m contains a reference to the actual model, and c is
the cache.

5.7 Inference Modules

For the solution strategy, the most important class of modules are the inference
modules. They provide the computational base for the algorithm, namely methods
for problem structure analysis, local optimization, constraint propagation, interval
analysis, linear relaxation, convex optimization, bisection, analysis of the search
graph,. . . .

The inference modules are grouped in two classes, the inference engines, which act
on problems stored in a work node, and the graph analyzers, that are responsible
for analyzing the search graph.

Corresponding to every type of problem change, a class of inference engines is de-
signed: model analysis (e.g. find convex part), model reduction (e.g. pruning,
fathoming), model relaxation (e.g. linear relaxation), model splitting (e.g.
bisection), model gluing (e.g. undo excessive splitting), computing of local
information (e.g. probing, local optimization).

Inference engines calculate changes to a model that do not change the solution set.
But they never change the model; the decision to apply the changes if they are
considered useful is left to the strategy engine. Therefore, the result of an inference
engine is a list of changes to the model together with a weight (the higher the
weight the more important the change). Whether an advertised change is actually
performed is decided by the strategy engine, and the actual change is executed
by an appropriate management module. The inference engines are implemented
as subclass of a single C++ base class. In addition, there is a fixed documentation
structure defined.

Several state of the art techniques are already provided:

• DONLP2-INTV, a general purpose nonlinear local optimizer for continuous
variables [216],

• STOP, a heuristic starting point generator,

• Karush-John-Condition generator using symbolic differentiation,

• Point Verifier for verifying solution points,

• Exclusion Box generator, calculating an exclusion region around local optima
[202],

• Interval constraint propagation [17, 13] in two variants,

• Linear Relaxation,

“habil”
2004/11/29
page 178

178 Chapter 5. The COCONUT environment

• Linear Programming: a CPLEX wrapper for the state of the art commercial
linear programming solver by ILOG, an XPRESS-MP wrapper for the state of
the art commercial LP solver by Dash Optimization, and an LPsolve wrapper
for the public domain linear solver.

• Basic Splitter,

• BCS, a box covering solver [196, 209],

• Convexity detection, for simple convexity analysis,

• Valid lower bounds for convex problems.

All graph analyzers are subclasses of another C++ base class, and the documentation
structure is the same as for inference engines. The only graph analyzer implemented
so far is the box chooser.

5.7.1 Base Classes

The base classes for the inference modules mainly are concerned with data transfer
from the module. The data transfer to the module is realized by means of the
control data class.

Termination Reason

The first basic class is used to encapsulate the reason of termination of an inference
engine. The class holds a termination code, an int, and a termination message (a
C++ string).

By definition, a termination code ≥ 0 states success (errorfree behaviour) of the
engine. If the code is negative, a severe error has occurred. The message should
always be useful output understandable by humans.

There are two important methods: get code returns the termination code, and
get message the termination message.

Information Contents

The info contents class is used for returning complex data from inference modules
to other modules and the strategy engine. The info contents class is a subclass
of the datamap class (see Section 5.3.1) and uses the same methods.

Inference Engine Return Type

The return type of all inference modules, and of some management modules is the
ie return type class. Objects of this class contain the deltas and corresponding
weights, which are created by the inference modules, the info contents part, and
the termination reason inside a termreason object.

There is a large number of methods defined for the ie return type class.

“habil”
2004/11/29
page 179

5.7. Inference Modules 179

set termination reason: This method sets the termination reason structure in
the return type according to the parameter passed.

term reason: This accessor returns the termination reason of the alorithm.

set information, set information i: These two methods set parameters in the
info contents part of the ie return type object.

information: Retrieving one item from the info contents structure is done by
this method. The name of the entry is provided.

has information: This method checks, whether a certain information piece is set
in the information structure.

unset information: A call to this method removes the specified entry from the
info contents.

information indices set: This method is the same as which for the info contents

part of the return type.

retrieve from info, retrieve from info i: In analogy to the retrieve and retrieve i

operations in the info contents class, these methods retrieve specific entries
from the information part, and assign that information to variables.

n deltas: This method returns the number of delta–weight pairs stored in the
return type.

get: The get method takes one work node and a double threshold value. It takes
all deltas from the return type, whose weight is bigger than the threshold,
those deltas are converted and stored in the database. The list of delta ids
is returned. This list can then be “added” to the work node.

The operator + adds a new weight–delta pair to the return type object.

Inference Engine Statistics

The statistic info class is the base class of the statistics classes in the various
inference modules. There is one required public members which has to be set by
methods of the subclasses: effectiveness which should give a hint on how suc-
cessful the inference engine was. The other member, number of infers, is updated
automatically.

5.7.2 Inference Engines

The first base class is inference engine, whose subclasses are those inference mod-
ules, which analyze work nodes. All inference engines have the same constructor,
taking only a constant global pointer reference to a work node. The base class has
a second parameter in the constructor, a name in C++ string form.

The standard methods are

“habil”
2004/11/29
page 180

180 Chapter 5. The COCONUT environment

update engine: This method is called with a new work node reference, whenever
the inference engine has to be prepared for analyzing a new work node. It
returns true if updating was successful and false, otherwise.

last call stat: The statistics of the last infer call of this engine is returned by
this method.

cumulative stat: This method returns the cumulative statistics for all infer calls.

infer: The most important method performs the actual computations. Its be-
haviour is influenced by its only parameter, the control data structure. The
return value is an ie return type containing deltas, info contents, and
the termreason.

Some protected members can be used in subclasses:

name: the name of the engine,

wnode: the global pointer reference to the work node,

wnc: the work node context for evaluating database queries,

vdb: a view onto the search database in the evaluation context,

old deltas, new deltas: For updating the engine, these deltas contain the dif-
ference between the previous and the new work nodes. Here, old deltas

have to be unapplied and new deltas have to be applied for changing the
previous work node into the new one.

5.7.3 Graph Analyzers

A graph analyzer performs computations on the search graph. Their base class
is graph analyzer. It is very similar to the inference engine class. The main
difference lies in the fact that two parameters are passed: the constant global pointer
reference to the search graph, and optionally a constant pointer to the search focus.
For the base class the module name is the final parameter.

The update engine methods work like for the inference engine class, and the
most important method, analyze performs the computation. It is driven by a
control data parameter, and it returns an ie return type object.

The following protected members can be used in subclasses:

name: the name of the engine,

sgraph: the global pointer reference to the search graph,

sgc: the search graph context for evaluating database queries,

vdb: a view onto the search database in the evaluation context,

sfoc: the current search focus. This can be NULL if no search focus exists.

“habil”
2004/11/29
page 181

5.8. Management Modules 181

5.8 Management Modules

Management modules are the interface between the strategy engine and the
internal representation of data and modules, taking care of the management of
models, resources, initialization, the search graph, the search database,

They are provided to make it possible to change the implementation of the search
graph and the internal representation of problems without having to change all of
the modules. Management modules just perform some of the changes which have
been advertised by inference engines; they never calculate anything.

There are two different classes of managment modules, the “standard” management
modules, and the initializers, which are used for initializing and destroying models,
search databases, and search graphs.

5.8.1 Management Modules

The management module class is the base class of all modules which perform man-
agement tasks other than creating or destroying the search graph, search database,
or the global model.

There is a number of protected members, which can be used in the subclasses:

name: the name of the module,

wnode: the current work node,

sfocus: the current search focus,

sinsp: a search inspector,

dbase: the search database,

sgraph: the search graph.

The constructors of the management modules initialize all of them, and there is a
requirement that every subclass provides at least those constructor which contains
parameters for every one of these members. The base class furthermore contains
a lot of constructors whose parameter list is restricted. The writers of subclasses
are encouraged to define constructors with a minimal number of parameters for the
usage within hard coded strategies.

The most important member function of a management module is manage, which
has a control data structure as its only parameter and returns an int. A return
value of zero means success, a positive value is still OK but identifies some minor
issue. A negative return value is only provided if a fatal error occurs.

“habil”
2004/11/29
page 182

182 Chapter 5. The COCONUT environment

5.8.2 Initializers

For very special management tasks which construct or destroy the main components
search graph, global model, and search database a special base class is defined. The
initializer class has similar protected members

name: the name of the module,

wnode: the current work node,

sfocus: the current search focus,

dbase: the search database,

sgraph: the search graph.

with the distinction that all these parameters (except name) are double pointers to
global references, and so they can be allocated or destroyed by the module.

The standard method is initialize, which takes a control data and returns an
ie return type. This is mainly important for verbose error reporting.

5.9 Report Modules

The final class of modules, called report modules, produce output. Human or
machine readable progress indicators, solution reports, the interface to modeling
languages [109] (currently only AMPL [58] is supported), and the biggest part of
the checkpointing is realized via report modules. All parameter passed to report
modules are const references, so report modules can never change anything.

5.9.1 Base Class

The base class of all report modules is report module.

There is a number of protected class members which can be used in subclasses:

name: the name of the engine,

wnode: the global pointer reference to the work node

sgroot: the global pointer reference to the root of the search graph,

dbase: the search database

wnc: the work node context for evaluating database queries,

vdb: a view onto the search database in the evaluation context,

ier: an ie return type.

“habil”
2004/11/29
page 183

5.10. The strategy engine 183

Figure 5.5. The Strategy Engine Component Framework

Some of these pointers may be NULL because they are irrelevant for the services
provided by the report module. Like for management modules and initializers there
are many constructors. There is a requirement that every report module at least
admits the biggest constructor. However, writers of report modules are encouraged
to define constructors with a minimal number of parameters.

5.10 The strategy engine

The strategy engine is the main part of the algorithm. It makes decisions, directs
the search, and invokes the various modules. It was written by Brice Pajot and Eric
Monfroy from IRIN, Univ. of Nantes.

The strategy engine consists of the logic core (“search”) which is essentially the
main solution loop, special decision makers (very specialized inference engines,
see Section 5.7) for determining the next action at every point in the algorithm. It
calls the management modules, the report modules, and the inference modules in a
sequence defined by programmable search strategies.

The engine can be programmed using a simple strategy language, an interpreted
language based on Python. Since it is interpreted, (semi-)interactive and automatic
solution processes are possible, and even debugging and single-stepping of strategies
is supported. The language is object oriented, garbage collecting, and provides
dynamically typed objects. These features make the system easily extendable.

Furthermore, the strategy engine manages the search graph via the search graph
manager, and the search database via the database manager.

The strategy engine uses a component framework (see Figure 5.5) to communicate
with the inference engines. This makes it possible to launch inference engines dy-
namically (on need, also remote) to avoid memory overload. Since the strategy
engine is itself a component, even multilevel strategies are possible.

“habil”
2004/11/29
page 184

184 Chapter 5. The COCONUT environment

“habil”
2004/11/29
page 185

Chapter 6

COCONUT modules

This chapter is devoted to the description of the modules, which are available for
the environment. All of the modules follow the standard format and belong to one
of the five module classes described in Chapter 5. In the environment all of the
modules come together with a simple C++ wrapper function, which makes it easy to
use the module in a hardcoded strategy.

185

“habil”
2004/11/29
page 186

186 Chapter 6. COCONUT modules

6.1 Inference Engines

The most important modules are the inference engines. In this section, the inference
engines which are implemented will be described in a very short form.

6.1.1 Basic splitter

Basic Splitter is a splitter module which computes useful splitting coordinates
and splitting points for the model contained in the work node.

Service split

Basic Splitter computes a series of splits, each consisting of a split coordinate
and one or more split points in this coordinate.

If there are Lagrange multipliers available, the slope s of the Lagrangian in the
original variables x is computed using these multipliers. Then the variable with

highest wid (si)ŵid (xi) is chosen as splitting coordinate. If there are no multipliers,
the widest coordinate is chosen.

If there are exclusion boxes available, ŵid (xi) is computed as wid (xi) − wid (bi)
where b is the exclusion box.

If the exclusion box is comparatively big (its volume is bigger than excl ratio

times the volume of the variable box), then the box is trisected along bi and bi.
Otherwise the box is bisected along one of these coordinates, depending on when
the resulting boxes are more similar in size.

If there is no exclusion box, the box is bisected in the middle (geometric mean) or
at 0, if bi contains 0. If bi is unbounded, then the splitting coordinate is either
chosen using an evaluation region (trisect at the bound of this evaluation region)
or at the signed square of the finite bound.

The code returns with a number split deltas each representing a possible and
useful split.

There is no useful statistical information collected, the efficiency is always 1.

Control parameters:

excl ratio: This parameter is of type double and specifies the ratio of exclusion
box size vs. box size at which the exclusion box coordinates are used for
trisection instead of bisection. The default is 1.

number of splits: With this parameter of type int the number of alternative
splits is specified. The default is 1.

“habil”
2004/11/29
page 187

6.1. Inference Engines 187

split multipliers: This parameter of type bool determines whether variables
corresponding to Lagrange multipliers of the original problem should be con-
sidered for splitting as well. The default is false.

multiplier: Using this vector<double> the user can specify an estimate for the
Lagrange multipliers. These are then use as weights for the constraints. De-
fault: no multiplier.

There is no termination reason except ’SUCCESS’ (0), ’no valid split coordinate’

(-2), and ’NO MODEL DEFINED’ (-1).

Service hard variables

Basic Splitter uses the split finding algorithms to determine the variables which
are most likely to be split, and therefore can be considered hard.

The code returns a list of variables in the information entry with index hard

variables as a vector<unsigned int>.

There is no useful statistical information collected, the efficiency is always 1.

Control parameters:

excl ratio: This parameter is of type double and specifies the ratio of exclusion
box size vs. box size at which the exclusion box coordinates are used for
trisection instead of bisection. The default is 1.

number of splits: With this parameter of type int the number of alternative
splits is specified. The default is 1.

multiplier: Using this vector<double> the user can specify an estimate for the
Lagrange multipliers. These are then use as weights for the constraints. De-
fault: no multiplier.

There is no termination reason except ’SUCCESS’ (0), ’no valid split coordinate’

(-2), and ’NO MODEL DEFINED’ (-1). No useful statistical information is collected.

6.1.2 BCS

The BCS engine was written by a group of people at EPFL Lausanne. This section
is built from material from their documentation.

BcsEngine is a

Splitter for Optimization

Solver for Constraint Satisfaction

“habil”
2004/11/29
page 188

188 Chapter 6. COCONUT modules

This is an inference engine which provides a split delta for branching in searches.
Each split delta is a list of deltas. working as branches in searches. Each such
a delta is currently a combination of changes in bounds of variables and changes
in the activity status of constraints. BCS Inference Engine provides four classes of
algorithms:

1. DMBC [210, 224]: dichotomous maintaining bound-consistency.

2. DMBC+ [224, 225]: dichotomous maintaining bound-consistency enhanced by
checking if a box is feasible (for all constraints).

3. UCA6 [210, 224]: combination of dichotomous splitting and box splitting, im-
mediate propagation.

4. UCA6-Plus [224, 225]: does the things similar to UCA6, but enhanced by a
precision-controlled combination of boxes. It’s more suitable than UCA6 to
work as a technique for solving subproblems of high-dimensional problems.

Dependencies: This module requires C++ ILOG Solver Libary for gcc 3.0.x on
Linux or IRIN jail and the IRIN solver platform.

Service solve

Control Parameters:

1. Name: Algorithm

Type: int

Description: 0==UCA6-Plus, 1==UCA6, 2==DMBC+, 3==DMBC

Default value: 0

2. Name: IsRelativePrecision

Type: bool

Description: whether or not BcsParameters:: Epsilon is a relative pre-
cision?

Default value: true

3. Name: Epsilon

Type: double

Description: a predefined precision

dependency: BcsParameters:: IsRelativePrecision

Default value: 0.01 (i.e., 1 percent)

4. Name: DefaultPrecision

Type: double

Description: a predefined (absolute) precision used for operations not
associated with a specific precision

“habil”
2004/11/29
page 189

6.1. Inference Engines 189

Default value: 0.1

5. Name: FeasibilityPrecision

Type: double

Description: a predefined (absolute) precision used for feasibility checker

Default value: 0.1

6. Name: FeasibilityChkLevel

Type: int

Description: the level of feasibility checking for ε-bounded boxes:
= 0: do nothing w/ them, just simply consider them as undiscernible
boxes
= 1: only check to see if ε-bounded boxes are infeasible?
= 2: only check to see if ε-bounded box are feasible?
= 3: do both checks: infeasible and feasible?

Default value: 3 (recommended: 0 or 1)

7. Name: FragmentationRatio

Type: double

Description: The ratio of distance between the ends of two intervals and
the longest interval can be considered as too near.

Default value: 0.25

8. Name: SearchMode

Type: int

Description: 0==breadth search, 1==depth search

Default value: 1

9. Name: SplitMode

Type: int

Description:
= 0: combination of CBS and DS Slitting,
= 1: DS Splitting only (can be called DMBC++)

Default value: 0

10. Name: NumOfCBC

Type: int

Description:
= −1: compute Complementary-Box for all active constraints
>= 0: maximum number of Complementary-Box of active constraints to
be computed

Default value: −1

“habil”
2004/11/29
page 190

190 Chapter 6. COCONUT modules

Termination Reason:

Integer: 0 (success)

String:

– ”in DAG to BCS Expression::postorder(...): do not know how to
handle constant vectors”;

– ”in DAG to BCS Expression::postorder(...): do not know how to
handle EXPRINFO LIN”;

– ”in DAG to BCS Expression::postorder(...): do not know how to
handle EXPRINFO QUAD”;

– ”in DAG to BCS Expression::postorder(...): DAG node of unexpected
type”;

– ”in DAG to BCS Expression::postorder(...): do not know how to
handle functions defined by the user”;

– ”in DAG to BCS Expression::postorder(...): do not know how to
handle EXPRINFO GHOST”.

6.1.3 Linear Programming — CPLEX

The cplex module is an LP solver, a general purpose linear optimizer for continuous
variables. It is intended for the minimization of a linear real function f subject to
linear inequality and equality constraints . Such problems can be stated in the
following form:

min cTx

s.t. Ax ∈ b
x ∈ x.

Here A is a matrix of dimension m×n.

This module requires ILOG CPLEX and a license for that program.

Service solve

The code calls CPLEX to solve the LP and returns a minimizer, the multipliers
from the multiplier rule, and the corresponding function value, or it states that the
problem is infeasible. It also collects some statistical information.

Given a work node the code evaluates the model DAG and extracts the required
information from this. cplex assumes that the objective function is linear and
extracts the linear constraints from the model DAG. This is individual information
about the coefficients of the linear constraints and the bounds on the variables and
the constraints.

The code returns a minimizer, the multipliers from the multiplier rule and the
corresponding function value. It also collects some statistical information. This
is specified by an object of the class point delta or infeasible delta from the
COCONUT API

“habil”
2004/11/29
page 191

6.1. Inference Engines 191

Control Parameters:

Name: lp algorithm

Type: string

Description: the LP algorithm to use; the options are “primal”, “dual”,
“barrier”, “automatic”, “safe dual”

Default value: “safe dual”

Reason for termination:

Integer: 0 (success) or the negative of the ILOG CPLEX status (see the ILOG
CPLEX Reference Manual)

String:

– “SUCCESS” in the case of success

Description: For the explanation of the status values, see the ILOG CPLEX
Reference Manual.

It collects the it cnt, the number of iterations, for statistical analysis.

6.1.4 Local optimization — donlp2 intv

Part of the information in this section is due to P. Spellucci [216]. donlp2 intv is
a general purpose nonlinear optimizer for continuous variables. It is intended for the
minimization of an (in general nonlinear) differentiable real function f subject to
(in general nonlinear) inequality and equality constraints. Specifically, the problem
is regarded in the following form:

f(x∗) = min{f(x) :x ∈ S}
S = {x ∈ Rn :xu ≤ x ≤ xo ,

bu ≤ Ax ≤ bo ,
cu ≤ c(x) ≤ co} .

min f(x)

s.t. Ax ∈ b
c(x) ∈ c
x ∈ x,

where x ∈ IRn. Here A is a matrix of dimension nlin×n and c is a vector-valued
function of dimension nonlin. Since there is no internal preprocessor, in case that
an interval is thin, an explicit equality constraint is used internally. Under weak as-
sumptions on the problem one can show that the solver determines a point satisfying
the first order optimality conditions from arbitrary initial guesses.

“habil”
2004/11/29
page 192

192 Chapter 6. COCONUT modules

Since the algorithm makes no use of sparse matrix techniques, its proper use will
be limited to small and medium sized problems with dimensions up to 500 (for the
number of unknowns) say. The number of inequality constraints however may be
much larger. (e.g. the code did solve the ecker-kupferschmid-marin ”robot-design”
examples in sijsc 15, 1994, with n=51 unknowns and 3618 inequalities successfully
within 400-900 sec’s depending on the variation of the problem on a hp9000/735
workstation). Due to a fully dynamic memory management, there are no hardcoded
limits. The minimum memory requirement for a problem with 10 variables and 10
constraints, using 40 steps at most is about 0.2 MB and for a problem with 100
variables and 1500 constraints about 60MB.

Service solve

donlp2 computes a local solution to a nonlinear programming problem satisfying
the first order necessary optimality conditions.

Given a work node the code evaluates the model DAG and extracts the necessary
information from this. This is individual information about the coefficients of the
linear constraints, the bounds on the variables and the constraints and the values
of the objective function and the nonlinear constraints as well as their gradients.

The model is required to represent a differentiable function.

The code returns with an approximate local minimizer, the multipliers from the
multiplier rule and the corresponding function values. It also collects some statisti-
cal information and gives an indicator of the problems sensitivity.

Control parameters: For detailed explanation, see the user guide of donlp2. Only
parameters without default must be set by the user.

Purpose Name Type Default

Bound for constraint violation during run tau0 double 1.0

Bound for considering an inequality as active del0 double 1.0

Tolerated infeasibility in solution delmin double 1.e-6

Tolerated error in multiplier rule epsx double 1.e-5

Cold start indicator cold bool true

Tolerated number of small inefficient steps nreset int n

Here eps stands for the precision of the computers floating point arithmetic.

There is an termination indicator (int) and a corresponding text. For the explana-
tion of these indicators, see the user guide.

1. ’CONSTRAINT EVALUATION RETURNS ERROR WITH CURRENT POINT’ (-9)

“habil”
2004/11/29
page 193

6.1. Inference Engines 193

2. ’OBJECTIVE EVALUATION RETURNS ERROR WITH CURRENT POINT’ (-8)

3. ’QPSOLVER: EXTENDED QP-PROBLEM SEEMINGLY INFEASIBLE ’ (-7)

4. ’QPSOLVER: NO DESCENT FOR INFEAS FROM QP FOR TAU=TAU MAX’ (-6)

5. ’QPSOLVER: ON EXIT CORRECTION SMALL, INFEASIBLE POINT’ (-5)

6. ’STEPSIZESELECTION: COMPUTED D FROM QP NOT A DIR. OF DESCENT’ (-4)

7. ’MORE THAN MAXIT ITERATION STEPS’ (-3)

8. ’STEPSIZESELECTION: NO ACCEPTABLE STEPSIZE IN [SIGSM,SIGLA]’ (-2)

9. ’SMALL CORRECTION FROM QP, INFEASIBLE POINT’ (-1)

10. ’KT-CONDITIONS SATISFIED, NO FURTHER CORRECTION COMPUTED’ (=0)

11. ’COMPUTED CORRECTION SMALL, REGULAR CASE ’ (1)

12. ’STEPSIZESELECTION: X ALMOST FEASIBLE, DIR. DERIV. VERY SMALL’ (2)

13. ’KT-CONDITIONS (RELAXED) SATISFIED, SINGULAR POINT’ (3)

14. ’VERY SLOW PRIMAL PROGRESS, SINGULAR OR ILLCONDITONED PROBLEM’ (-
16)

15. ’MORE THAN NRESET SMALL CORRECTIONS IN X ’ (-15)

16. ’CORRECTION FROM QP VERY SMALL, ALMOST FEASIBLE, SINGULAR ’ (-14)

17. ’NUMSM SMALL DIFFERENCES IN PENALTY FUNCTION,TERMINATE’ (-13)

The code collects some information which allows, considered relative to the dimen-
sion n of the problem a assessment of the problems difficulty. This is:

1. num of iter : number of steps total .

2. num of f : number of objective function evaluations .

“habil”
2004/11/29
page 194

194 Chapter 6. COCONUT modules

3. num of gradf: number of objective gradient evaluations.

4. num of con : number of nonlinear constraint evaluations.

5. num of gradcon: number of nonlinear constraints gradients evaluations.

6. num of restarts: number of restarts for the quasi Newton Hessian update.

7. num of full upd: number of quasi Newton updates without modification.

8. num of upd : number of all quasi Newton updates.

9. num of full sqp : number of steps with problem regularization through addi-
tion of slacks.

6.1.5 Exclusion boxes

Exclusion box KJISLP is an annotation generator which generates exclusion re-
gions.

Service generate

Exclusion box KJISLP computes two boxes Bi and Bx which have the following
property: Bi contains at least one (or exactly one) Karush-John point for the
presented model, Bi ⊂ Bx, and Bx\Bi does not contain a Karush-John point.

Given an approximate Karush-John point z we iteratively produce boxes Br cen-
tered at z with radius r. In these boxes we compute the interval slope F [z,Br]
for all equality constraints, an approximate midpoint inverse C(r), and the matrix
H(r) = F [z,Br]C(r). Then we find a zero r̃ for f(r) = ‖H(r) − I‖ − 1 using a
secant method, and set Bx = Br̃.

Bi for uniqueness is computed by using the same test with the interval derivative
F ′[x] inside 1

2Br and applying the Krawczyk operator iteratively.

Any work node containing the Karush-John conditions and an (approximate) Karush-
John point can be processed.

The code returns an exclusion box delta containingBx and a uniqueness area delta

containing Bi.

The statistics information collected is the quotient of the radii of Bx and Br and of
the radii of x (the original box) and of Br.

Control parameters: There are two boolean control parameter:

exclusion only: Only construct an exclusion box Bx. Default: false

with uniqueness: Construct Bi using interval derivatives such that uniqueness of
the Karush-John point is guaranteed. Default: true

“habil”
2004/11/29
page 195

6.1. Inference Engines 195

In addition we have the control parameter center of type vector<double> which
specifies the center at which the slopes are being computed. The default value for
this parameter is the safeguarded midpoint of the enclosures of all the variables.

Termination reason:

’SUCCESS’ (0)

’NO MODEL DEFINED’ (-1).

Statistical information collected: The ratios of the radii rad (Bx)/rad (Bi), and
of the radii rad (x)/rad (Bx).

6.1.6 Karush-John condition generator

KJ generator is a constraint generator which generates the Karush–John condi-
tions for the model contained in the work node.

Service generate

KJ generator computes a directed acyclic graph representing all operations and
constraints needed to code the Karush–John conditions.

Consider the optimization problem

min f(x)

s.t. ABx ∈ bB, ALx ≥ bL, AUx ≤ bU , AEx = bE ,

FB(x) ∈ FB, FL(x) ≥ FL, FU (x) ≤ FU , FE(x) = FE

(6.1)

If this problem is represented in the work node passed, the KJ generator produces
the corresponding Karuhsh–John conditions. In the generated DAG, for every new
variable (Lagrange multiplier) and every new node the ex kj flag is set.

The KJ conditions are generated by adding the following constraints to the existing

“habil”
2004/11/29
page 196

196 Chapter 6. COCONUT modules

DAG.

ηg(x)−ATByB −ATLyL +ATUyU +ATEyE − F ′B(x)T zB

−F ′L(x)T zL + F ′U (x)T zU + F ′E(x)zE = 0

zL ∗ (FL(x)− FL) = 0, zL ≥ 0,

zU ∗ (FU (x)− FU) = 0, zU ≥ 0,

zB ∗ (FB(x)− FB) ∗ (FB(x)− FB) = 0,

zB ∗ (FB(x)− FB) ≤ 0, zB ∗ (FB(x)− FB) ≤ 0,

yL ∗ (ALx− bL) = 0, yL ≥ 0, yU ∗ (AUx− bU) = 0, yU ≥ 0,

yB ∗ (ABx− bB) ∗ (ABx− bB) = 0,

yB ∗ (ABx− bB) ≤ 0,

yB ∗ (ABx− bB) ≤ 0

η + zTBzB + ‖zL‖1 + ‖zU‖1 + zTEzE = 1, η ≥ 0

(6.2)

where ∗ denotes componentwise multiplication of two vectors.

The code returns with a dag delta containing all additional variables (the multi-
pliers), operations and constraints needed to represent the Kuhn-Tucker conditions.

For every node of the generated DAG the semantics information kj is set to true.

There is no useful statistical information collected, the efficiency is always 1.

There are no control parameters.

There is no termination reason except ’SUCCESS’ (0), and ’NO MODEL DEFINED’

(-1).

6.1.7 Linear relaxations

Linear Relaxation SLP is a constraint generator which generates a linear relax-
ation of the original problem using interval slopes.

Service generate

Linear Relaxation SLP computes a directed acyclic graph representing a linear
relaxation of the model represented by the work node passed.

For every constraint f(x) ∈ b we compute an interval slope enclosure of the form

f(x) ∈ f +
∑

si(xi − zi).

Then we compute a linear underestimator by

l(x) = f +
∑

si(xi − zi) +
si(xi − zi)− si(xi − zi)

xi − xi
(xi − xi).

Analogously, we compute a linear overestimator l(x).

“habil”
2004/11/29
page 197

6.1. Inference Engines 197

Then we add the two new constraints

l(x) ≥ b
l(x) ≤ b.

All constraints which would involve infinities are left out.

The code returns with a dag delta containing all constraints needed to represent
the linear relaxation. Either this delta replaces all original constraints or the delta
adds the constraints to the original problem. This is decided by setting the control
parameter full delta.

If full delta is true the output model is linear.

For every node of the generated DAG the semantics information redundant is set
to true if full delta is false.

There is no useful statistical information collected, the efficiency is always 1.

Control parameters: There are two boolean control parameters:

with kj: If this is false use only the original problem to generate a relaxation.
If this parameter is set to true, also the Karush-John conditions are used to
construct the relaxation. Default: true

full delta: This decides whether the dag delta adds constraints to the original
problem (false) or if the generated constraints replace the original constraints
in the model (true). Default: false

In addition we have the control parameter center of type vector<double> which
specifies the center at which the slopes are being computed. The default value for
this parameter is the safeguarded midpoint of the enclosures of all the variables.

There is no termination reason except ’SUCCESS’ (0), and ’NO MODEL DEFINED’

(-1).

No useful statistical information is collected.

6.1.8 Convexity detection

Simple Convexity is an annotation generator which performs a simple convexity
test to all constraints and the objective function.

Service convexity test

Simple Convexity tries to determine the convexity information for all nodes of the
DAG. It uses a simple propagation algorithm to determine concavity and convexity
of expressions.

“habil”
2004/11/29
page 198

198 Chapter 6. COCONUT modules

The code returns with a semantics delta changing the convexity information of
all nodes and setting the convexity algorithm type to 1.

There is no useful statistical information collected, the efficiency is always 1.

There are no control parameters, and no termination reason except ’SUCCESS’ (0),
and ’NO MODEL DEFINED’ (-1).

6.1.9 STOP

This module was written by E. Petrov in IRIN, University of Nantes. The informa-
tion in this section is taken from his documentation.

stop inf eng is a solver which implements the STOP algorithm for bound-constraint
minimization with a penalty function approach to constrained minimization. The
module depends on

1. JAIL library from IRIN

2. IRIN platform for interval constraints

Service infer The module takes the control data specifying the value f ∗ to reach
and searches for a point either improving v or exceeding it by some fraction of |f ∗|
returns the point delta specifying the best point and the best function value found
the deltas generated by successive calls to infer specify a decreasing sequence of
function values.

An object of the class point delta from the COCONUT API is generated which
specifies a point feasible wrt. the bound constraints from the current work node

Control Parameters:

1. Name: f best

Type: double

Description: the value f∗ of the objective to reach

Default value: −∞

2. Name: f to improve

Type: double

Description: the known upper bound on the global minimum of the
objective

Default value: ∞

“habil”
2004/11/29
page 199

6.1. Inference Engines 199

Termination reason:

Integer: 0 (success)

String:

– ”” (the empty string)

– ”in DAG to platform Expression::postorder(...): do not know how
to handle constant vectors”;

– ”in DAG to platform Expression::postorder(...): do not know how
to handle EXPRINFO LIN”;

– ”in DAG to platform Expression::postorder(...): do not know how
to handle EXPRINFO QUAD”;

– ”in DAG to platform Expression::postorder(...): DAG node of un-
expected type”;

– ”in DAG to platform Expression::postorder(...): do not know how
to handle functions defined by the user”;

– ”in DAG to platform Expression::postorder(...): do not know how
to handle EXPRINFO GHOST”.

Description: always successful; the string is the history of the messages from
the services called previously; adds a message to the history, if the value
supplied throu parameter f best has not been reached

6.1.10 Urupa

This module was provided by Christian Keil from the institute Computer Science
III of the Technical University of Hamburg-Harburg. The description of this module
is taken from his documentation.

Urupa is an underestimator for the objective function of a convex minimization
problem. It computes a verified bound for the objective function of a convex opti-
mization problem. It is the implementation of an algorithm developed by C. Jansson
[102]. To do this an approximate optimal vertex and its lagrangian parameters are
needed as input. No assumptions are made about the quality of these parameters,
although the quality of the bound increases with the quality of the approximations.
In the case of moderate finite simple bounds the bound is computed just by post
processing using simple interval operations. Otherwise the solution of a pertubated
linear approximation of the convex problem is used. This may result in a small
number iterations (in many cases only between one and three).

At this time all the simple bounds must be finite.

Service bound

Urupa computes the bound using the supplied approximate solution and its lagrange
parameters. Any convex optimization problem can be passed to the module. The
bound for the objective function is returned as bound in the information entry.

“habil”
2004/11/29
page 200

200 Chapter 6. COCONUT modules

Control parameters:

solution: The approximate solution to use for computing the bound.

lagrange: The langrange parameters of the approximate optimal solution.

Both parameters are mandatory.

Termination reason:

’SUCCESS’ (0): The bound was successfully computed.

’optimization problem not convex’ (-1): The current optimization problem
is not convex.

No statistical information is collected at this time. This might be changed in the
future to return

|f∗app − f∗|
|f∗app|

as the effectiveness with f∗app denoting the objective value of the approximate opti-
mum and f∗ denoting the computed bound.

6.2 Graph Analyzers

At the moment there is only one graph analyzer module available.

6.2.1 Box Chooser

Box Chooser is a module which chooses a new work node from the search graph.

Service choose

Box Chooser chooses one of the leafs of the search graph as new work node and
returns its search node id through the node id parameter in the information

structure.

Control parameters

method: This parameter is of type int specifies the method used to determine the
next box.

0. Choose the box randomly.

1. Choose the box with lowest entry in some table.

“habil”
2004/11/29
page 201

6.3. Management Modules 201

2. Choose the box with highest entry in some table.

table: The name of the table to search in.

col: The name of the column, in which the minimum/maximum should be found.

6.3 Management Modules

This section is devoted to the management modules available in the COCONUT
environment.

6.3.1 Delta Management

Delta Management is a module which performs various management tasks for the
deltas in a work node

Service compress

Delta Management collects all deltas of a work node of a specific type and com-
presses them into one delta performing the same change. Until now this is only
implemented for the bound delta type.

The return value is always 0.

Control parameters:

type: This parameter is of type string and specifies the class of deltas on which
the change is performed.

max gainfactor: With this parameter of type double for compression of bound deltas
(type is bounds) the maximum allowed gainfactor for changes in a single vari-
able are specified. I.e., setting max gainfactor to 0.5 would ignore all changes
in single components which do not at least halve the width of the node range.
The default is 1..

Service undo

Delta Management unapplies all deltas of a work node of a specific type. The return
value is always 0.

Control parameters:

type: This parameter is of type string and specifies the class of deltas on which
the change is performed.

“habil”
2004/11/29
page 202

202 Chapter 6. COCONUT modules

Service undo last

Delta Management unapplies the last n deltas of a work node of a specific type.
The return value is always 0.

Control parameters:

type: This parameter is of type string and specifies the class of deltas on which
the change is performed.

n: With this parameter of type unsigned int the number of deltas to be unapplied
is specified. The default is 1..

6.3.2 Focus Management

Focus Management is a module which manipulates the focus of the search graph.

Service focus

Focus Management initializes a new focus. The return value is 0 if there is a node
to which the focus can be initialized and 1 otherwise.

Service kill focus

Focus Management removes the node the focus is pointing to from the search graph
and destroys the focus. The return value is 0.

Service promote focus

Focus Management promotes the node the focus is pointing to to its parent node
and moves the focus accordingly. The return value is 0 if promoting was successful
and 1 otherwise (i.e., if the parent has more than one child).

Service destroy focus

Focus Management removes the focus. The return value is 0.

6.3.3 Full Model Management

Full Model Management is a module which updates the model in the work node
absolutely. This means that all changes and deltas performed in the work node are
written into the model specification, hereby generating a work node which can be
stored as full node into the search graph.

“habil”
2004/11/29
page 203

6.3. Management Modules 203

Service model update

Full Model Management writes all DAG updates, semantics changes, and the bound
changes into the model DAG and stores all annotation deltas in the search database.
The return value is always 0.

6.3.4 Solution Management

Solution Management is a module which manages the solution table in the search
database.

Service add

Solution Management stores the box represented by the work node in the solution
table of the search database. The return value is 0.

Service add/remove

Solution Management stores the box represented by the work node in the solution
table of the search database and removes the node from the search graph. The return
value is 0 if the node was removed and if it was not the last child of its parent. The
return value is 1 if the removed node was the last child of its parent.

Service purge

Solution Management removes all boxes from the solution table, whose lower
bound of the objective function is bigger than a given threshold. The return value
is 0.

Control parameters:

threshold: This parameter is of type double specifies the threshold.

6.3.5 Split Management

Split Management is a module which performs splits on the work node and stores
the generated nodes in the search graph. It is possible to update the work node
and the focus in such a way that one of the splits is chosen as new work node.

“habil”
2004/11/29
page 204

204 Chapter 6. COCONUT modules

Service split

Split Management performs one of the proposed splits to the work node and stores
all generated nodes in the search graph.

One of the splits can be kept to update the work node and reset the focus to the
updated work node. The function returns 0 if a split was performed and −1 if no
suitable split could be found.

Control parameters:

transaction: This parameter is of type unsigned int and specifies the entry num-
ber in the proposed splits map of the work node for the split to be chosen.

max splits: With this parameter of type int the maximum number of allowed
splits is specified. The default is INT MAX.

min splits: With this parameter of type int the minimum number of allowed
splits is specified. The default is 1.

min gain: This parameter of type double specifies the minimum gain in box size
in every produced box. The default is 1.

keep: Using this bool the user can specify whether one of the splits ought to be
kept as new work node. Default: false.

keep type: This int codes which algorithm is used to determine which node to
keep if keep is true:

SPLIT MGMT KEEP BIGGEST (0): The node with biggest log vol is kept. If
many boxes have the same volume, keep the first.

SPLIT MGMT KEEP FIRST (1): The first node is kept.

SPLIT MGMT KEEP BIGGEST RANDOM (2): The node with biggest log vol is kept.
If many boxes have the same volume, keep any, randomly selected.

SPLIT MGMT KEEP RANDOM (3): Keep any box, randomly selected.

SPLIT MGMT KEEP PROM CENTER (4): Evaluated a weighted sum of objective
function value and constraints. Take the box with lowest value at the
center.

SPLIT MGMT KEEP PROM LMPOINT (4): Evaluated a weighted sum of objective
function value and constraints. Take the box with lowest value at the
most promising point in the box, which is computed by using a linear
model.

SPLIT MGMT KEEP SPEC (6): The n–th generated node is kept, where n is de-
termined by the parameter keep idx.

keep idx: This unsigned int specifies which node should be kept if keep type is
SPLIT MGMT KEEP SPEC.

“habil”
2004/11/29
page 205

6.4. Report Modules 205

Service clear splits

Split Management clears the list of proposed splits in the work node. The function
returns 0.

6.4 Report Modules

This section gives a description of the report modules, which are available.

6.4.1 Range Report

Ranges Write is a report module which prints the ranges of all variable nodes or
of all nodes of the work node.

Service print

Ranges Write prints the ranges of all variable nodes or of all nodes either in compact
format as an array or in large format containing node numbers or variable names.

Control parameters:

preamble: This parameter is of type string specifies what is printed before the
ranges. The default is "ranges:¨.

postamble: Also of type string, this parameter is used to define what is printed
after the ranges. The default is "\n\n".

compact: With this parameter of type bool it is decided whether the ranges are
print as a comma separated list of intervals, or whether it is printed with
additional information like node numbers or variable names. The default is
true.

variables: Using this bool the user can specify whether all node ranges are printed
or only the ranges of the variable nodes. Default: false.

entries per line: This integer specifies how many entries are printed per line of
output. Default: 4.

6.4.2 Table Report

Table Report is a report module which prints the entries of a specified table from
the search database.

“habil”
2004/11/29
page 206

206 Chapter 6. COCONUT modules

Service print

Table Report prints specified rows from one table of the search database. The user
can decide whether all table entries should be printed or whether only entries from
the work node view should be reported.

Control parameters:

table: This parameter is of type string specifies entries of which table are printed.

col: This int-indexed parameter of type string specifies the column name of the
ith output.

enable: This int-indexed parameter of type bool specifies whether ith output
should be printed. The default is true.

prefix: This int-indexed parameter of type bool specifies what is printed before
the value of the ith output row.

In addition there are a number of string parameters influencing the format of the
output.

header: This string is printed before row entries are printed. Default: ""

footer: This is printed after all rows. Default: "\n"

separator: This string is printed between two rows. Default: "\n\n"

interdisp: This is the separator of two columns of the same row. Default: "\n"

6.4.3 DAG Writer

DAG Write is a module which outputs the DAG of the work node in sequentialized
format suitable for reading.

Service print

DAG Write produces an ASCII serialized representation of the model DAG in the
work node.

6.4.4 GAMS Report

GAMS Write is a report module which produces a GAMS model corresponding to the
model stored in the work node.

“habil”
2004/11/29
page 207

6.4. Report Modules 207

Service print

GAMS Write produces the GAMS model.

6.4.5 Control parameters

file name: This string parameter sets the filename, from which the model was
generated for including it into the comments. The default is the empty string.

print default bounds: This parameter is of type bool and specifies whether de-
fault bounds for all variables should be added, even if the variables are un-
bounded in the internal representation. The default is false.

default bounds: With this parameter of type double the user sets the absolute
value of the default bounds. The default is 1000.

In addition there is a number of string parameters which can be used to change
function and variable names and insert additional code into between the generated
C expressions.

objective constraint: The name of the equation for the objective function.

constraint: The name of the constraints

optimization direction: This must be min or max.

solver name: The name of the solver to be called from GAMS.

model name: The name of the GAMS model.

x: The name of the variables array.

obj: The name of the objective function.

6.4.6 Solution Report

Solution Report is a report module which prints the solution information.

Service print

Solution Report prints the best points from the point table and the entries of
the solution table.

6.4.7 DAG to C converter

C Write is a report module which produces C code for evaluating all constraints
and the objective function of the model stored in the work node.

“habil”
2004/11/29
page 208

208 Chapter 6. COCONUT modules

Service print

C Write produces two C functions, one for evaluating the objective and one for
evaluating the constraints.

Control parameters:

print multipliers: This parameter of type bool specifies whether the variables
associated with the Karush-John conditions (i.e. the multipliers) are printed
as y and the multiplier of the gradient of the objective as k. If the value is
false all variables are printed alike. The default is true.

with comments: With this parameter of type bool the user decides whether addi-
tional comments like bounds and node numbers are printed within the gener-
ated C code. The default is true.

In addition there is a number of string parameters which can be used to change
function and variable names and insert additional code into between the generated
C expressions.

header: The header part of the C file.

objective preamble: The part before the objective function.

objective postamble: The part between function definition and the generated
expression.

constraints preamble: The part before the constraints function.

constraints postamble: The part between function definition and the generated
expression.

switch preamble: The part before the switch which distinguishes between the
different constraints.

switch postamble: The function part after the switch.

constraints function end: The remaining part of the constratints function.

footer: The end of the C file.

x: The name of the variables array.

y: The name of the multipliers array.

kappa: The name of the multiplier of the gradient of the objective function.

type: The type of the variables and multipliers.

kappatype: The type of the multiplier of the gradient of the objective function.

“habil”
2004/11/29
page 209

6.4. Report Modules 209

6.4.8 DAG to Fortran 90 converter

GLOBSOL Write is a report module which produces a GLOBSOL model corresponding
to the model stored in the work node. A GLOBSOL model consists of two files, a
FORTRAN 90 representation of the constraints and the objective function and an
additional control file.

Service F90 file

GLOBSOL Write produces the FORTRAN 90 file for the model.

Control parameters:

file name: This string parameter sets the filename, from which the model was
generated for including it into the comments. The default is the empty string.

In addition there is a number of string parameters which can be used to change
function and variable names and insert additional code into between the generated
C expressions.

equality constraints: The name of the array for the equality constraints.

inequality constraints: The name of the array for the inequality constraints.

x: The name of the variables array.

Service control file

GLOBSOL Write produces the control file for the GLOBSOL model.

Control parameters:

file name: This string parameter sets the filename, from which the model was
generated for including it into the comments. The default is the empty string.

default bounds: With this parameter of type double the user sets the absolute
value of the default bounds for variables. The default is 1.0e5.

default accuracy: With this parameter of type double the user sets the default
accuracy for boxes. The default is 1.0e-8.

6.4.9 DAG to GAMS converter

GAMS Write is a report module which produces a GAMS model corresponding to the
model stored in the work node.

“habil”
2004/11/29
page 210

210 Chapter 6. COCONUT modules

Service print

GAMS Write produces the GAMS model.

Control parameters:

file name: This string parameter sets the filename, from which the model was
generated for including it into the comments. The default is the empty string.

print default bounds: This parameter is of type bool and specifies whether de-
fault bounds for all variables should be added, even if the variables are un-
bounded in the internal representation. The default is false.

default bounds: With this parameter of type double the user sets the absolute
value of the default bounds. The default is 1000.

In addition there is a number of string parameters which can be used to change
function and variable names and insert additional code into between the generated
C expressions.

objective constraint: The name of the equation for the objective function.

constraint: The name of the constraints

optimization direction: This must be min or max.

solver name: The name of the solver to be called from GAMS.

model name: The name of the GAMS model.

x: The name of the variables array.

obj: The name of the objective function.

‘‘habil’’

2004/11/29

page 211

Appendix A

The COCONUT
environment, C++ code

This appendix is a C++ reference of the most important classes and methods of the
API, the VGTL, and the VDBL. The section numbering is chosen to exactly match
the section numbering in Chapter 5, where the software structure is described.

211

‘‘habil’’

2004/11/29

page 212

212 Appendix A. The COCONUT environment, C++ code

A.1 Vienna Graph Template Library (VGTL)

A.1.1 Core components

C array to vector adaptor

template <class _T>

class array_vector : public std::vector<_T>

{

public:

array_vector();

// constructor building an array_vector from pointer __a with size n

array_vector(_T* __a, int n);

~array_vector();

// assign an array __a of length n to this array_vector.

void assignvector(_T* __a, int n);

};

Reverse search

template <class BidirectionalIterator, class T>

BidirectionalIterator rfind(BidirectionalIterator first,

BidirectionalIterator last,

const T& val);

template <class BidirectionalIterator, class Predicate>

BidirectionalIterator rfind_if(BidirectionalIterator first,

BidirectionalIterator last,

Predicate pred);

A.1.2 Walker

Recursive Walker

unsigned int n_children() const;

unsigned int n_parents() const;

bool is_root() const;

bool is_leaf() const;

bool is_ground() const;

bool is_sky() const;

children_iterator child_begin();

children_iterator child_end();

‘‘habil’’

2004/11/29

page 213

A.1. Vienna Graph Template Library (VGTL) 213

parents_iterator parent_begin();

parents_iterator parent_end();

bool operator==(const walker&) const;

bool operator!=(const walker&) const;

walker operator<<(parents_iterator);

walker operator>>(children_iterator);

walker& operator<<=(parents_iterator);

walker& operator>>=(parents_iterator);

walker& operator=(const walker&);

A.1.3 Container

Directed Graphs and DAGs

template <class T>

class dag : dag_base<T> // this is from vgtl_dagbase.h and defines

{

private:

typedef dag<T> _Self;

typedef dag_base<T> _Base;

typedef dag_walker<T> walker;

// constructors, destructor

dag();

dag(const _Self& __dag);

~dag();

// assignment

_Self& operator=(const _Self& __x);

// comparison

friend bool operator== (const _Self& __x, const _Self& __y);

bool empty() const;

void clear();

// here the exact point of insertion can be chosen

walker between(const walker& parent, const children_iterator& cit,

const walker& child, const parents_iterator& pit,

const T& x);

// here the new edge is appended to the list of edges in the parents

// and children vectors

‘‘habil’’

2004/11/29

page 214

214 Appendix A. The COCONUT environment, C++ code

walker between_back(const walker& parent, const walker& child,

const T& x);

// here the new edge is prepended to the list of edges in the parents

// and children vectors

walker between_front(const walker& parent, const walker& child,

const T& x);

// insert between a list of parents and children. The new edges are

// appended. The following calls work for any sequence containers SequenceCtr

walker between(const SequenceCtr<walker>& parents,

const SequenceCtr<walker>& children,

const T& x);

// insert between one parent and a list of children

walker between(const walker& parent, const children_iterator& cit,

const SequenceCtr<walker>& children,

const T& x);

walker between_back(const walker& parent,

const SequenceCtr<walker>& children,

const T& x);

walker between_front(const walker& parent,

const SequenceCtr<walker>& children,

const T& x);

// insert between one child and many parents

walker between(const SequenceCtr<walker>& parents,

const walker& child, const parents_iterator& pit,

const T& x);

walker between_back(const SequenceCtr<walker>& parents,

const walker& child, const T& x);

walker between_front(const SequenceCtr<walker>& parents,

const walker& child, const T& x);

// here the exact point of insertion can be chosen

walker split(const walker& parent, const children_iterator& cit,

const walker& child, const parents_iterator& pit,

const T& x);

// here the new edge is appended to the list of edges in the parents

// and children vectors

walker split_back(const walker& parent, const walker& child,

const T& x);

// here the new edge is prepended to the list of edges in the parents

// and children vectors

walker split_front(const walker& parent, const walker& child,

const T& x);

// insert between a list of parents and children. The new

‘‘habil’’

2004/11/29

page 215

A.1. Vienna Graph Template Library (VGTL) 215

// edges are appended. Again this call works for any sequence

// container _SequenceCtr.

walker split(const SequenceCtr<walker>& parents,

const SequenceCtr<walker>& children,

const T& x);

// insert between one parent and a list of children

walker split(const walker& parent, const children_iterator& cit,

const SequenceCtr<walker>& children,

const T& x);

walker split_back(const walker& parent,

const SequenceCtr<walker>& children,

const T& x);

walker split_front(const walker& parent,

const SequenceCtr<walker>& children,

const T& x);

// insert between one child and many parents

walker split(const SequenceCtr<walker>& parents,

const walker& child, const parents_iterator& pit,

const T& x);

walker split_back(const SequenceCtr<walker>& parents,

const walker& child, const T& x);

walker split_front(const SequenceCtr<walker>& parents,

const walker& child, const T& x);

// insert a whole subgraph

void insert_subgraph(_Self& subgraph,

const std::vector<walker>& parents.

const std::vector<walker>& children);

// add a single edge

// where you want in the lists

void add_edge(const walker& parent, const children_iterator& ch_it,

const walker& child, const parents_iterator& pa_it);

// always in the end

void add_edge_back(const walker& parent, const walker& child);

// always in the front

void add_edge_front(const walker& parent, const walker& child);

// remove an edge

void remove_edge(const walker& parent, const walker& child);

/** remove one egde and don’t reconnect the node to sky/ground */

void remove_edge_and_deattach(const walker& parent,

const walker&child);

/**

* change the edge from @c parent to @c child_old to an edge

* from @c parent to @c child_new.

“habil”
2004/11/29
page 216

216 Appendix A. The COCONUT environment, C++ code

*/

void replace_edge_to_child(const walker& parent, const walker& child_old,

const walker& child_new);

/**

* change the edge from @c parent_old to @c child to an edge

* from @c parent_new to @c child.

*/

void replace_edge_to_parent(const walker& parent_old,

const walker& parent_new,

const walker& child)

// erase a node from the graph

void erase(const walker& position);

// erase a child node if it is a leaf

bool erase_child(const walker& position, const children_iterator& It);

// erase a parent node if it is a root

bool erase_parent(const walker& position, const parents_iterator& It);

/** merge two nodes, call also the merge method for the node data */

void merge(const walker& position, const walker& second,

bool merge_parent_edges = true, bool merge_child_edges = true);

erased_part erase_minimal_subgraph(const walker& position)

erased_part erase_maximal_subgraph(const walker& position)

// this works for every sequential container SequenceCtr.

erased_part erase_maximal_subgraph(

const SequenceCtr<walker,_Allocator>& positions)

erased_part erase_minimal_subgraph(

const SequenceCtr<walker,_Allocator>& positions)

erased_part erase_minimal_pregraph(const walker& position)

erased_part erase_maximal_pregraph(const walker& position)

// this works for every sequential container SequenceCtr.

erased_part erase_maximal_pregraph(

const SequenceCtr<walker,_Allocator>& positions)

erased_part erase_minimal_pregraph(

const SequenceCtr<walker,_Allocator>& positions)

walker ground();

walker sky();

const_walker ground() const;

const_walker sky() const;

};

‘‘habil’’

2004/11/29

page 217

A.2. Vienna Database Library (VDBL) 217

A.1.4 Algorithms and Visitors

A.2 Vienna Database Library (VDBL)

A.2.1 Database

The methods of the database class:

/**

* create a new table

* - _C_i: name

* - _C_u: user id

* - __f: the table flags (if they are not default)

* return true, if creating the table was successful.

*/

bool create_table(const std::string& _C_i, const userid& _C_u,

const tableflags& __f = tableflags());

bool create_table(const char* _C_i, const userid& _C_u,

const tableflags& __f = tableflags());

/**

* return the table id for a given name

*/

tableid get_tableid(const std::string& _C_i,

const userid& _C_u) const;

/**

* delete a table, whose table id is provided.

* return true, if deleting the table has worked.

*/

bool drop_table(const tableid& _C_i, const userid& _C_u);

/**

* delete a table, whose name is provided.

* return true, if deleting the table has worked.

*/

bool drop_table(const std::string& _C_i, const userid& _C_u);

bool drop_table(const char* _C_i, const userid& _C_u)

/**

* check whether the table with id_C_i exists

*/

bool has_table(const tableid& _C_i, const userid& _C_u) const;

/**

* check whether the table with name_C_i exists

*/

bool has_table(const std::string& _C_i, const userid& _C_u) const;

bool has_table(const char* _C_i, const userid& _C_u) const

‘‘habil’’

2004/11/29

page 218

218 Appendix A. The COCONUT environment, C++ code

/**

* return a pointer to the table with id _C_i.

*/

table* get_table(const tableid& _C_i, const userid& _C_u) const;

/**

* return a pointer to the table with name _C_i.

*/

table* get_table(const std::string& _C_i, const userid& _C_u) const;

table* get_table(const char* _C_i, const userid& _C_u) const;

/**

* create a new standard view with name _C_i, evaluation context __c,

* for table _C_t, of type __e.

* return true if creating worked, and false otherwise.

*/

bool create_view(const std::string& _C_i, const userid& _C_u,

const context& __c,

const std::string& _C_t, const _V_enum& __e)

bool create_view(const char* _C_i, const userid& _C_u,

const context& __c,

const std::string& _C_t, const _V_enum& __e)

bool create_view(const std::string& _C_i, const userid& _C_u,

const context& __c,

const char* _C_t, const _V_enum& __e)

bool create_view(const char* _C_i, const userid& _C_u,

const context& __c,

const char* _C_t, const _V_enum& __e)

/**

* return the view id of view _C_i.

*/

viewid get_viewid(const std::string& _C_i, const userid& _C_u) const

/**

* delete a view, whose id is provided.

* return true, if deleting the table has worked.

*/

bool drop_view(const viewid& _C_i, const userid& _C_u)

/**

* delete a view, whose name is provided.

* return true, if deleting the table has worked.

*/

bool drop_view(const std::string& _C_i, const userid& _C_u)

bool drop_view(const char* _C_i, const userid& _C_u)

/**

* check whether the view with id _C_i exists

*/

bool has_view(const viewid& _C_i, const userid& _C_u) const

‘‘habil’’

2004/11/29

page 219

A.2. Vienna Database Library (VDBL) 219

/**

* check whether the view _C_i exists

*/

bool has_view(const std::string& _C_i, const userid& _C_u) const

bool has_view(const char* _C_i, const userid& _C_u) const

/**

* return a pointer to the view with id _C_i.

*/

view* get_view(const viewid& _C_i, const userid& _C_u) const

/**

* return a pointer to the view with name _C_i.

*/

view* get_view(const std::string& _C_i, const userid& _C_u) const

view* get_view(const char* _C_i, const userid& _C_u) const

A.2.2 Tables

This section contains the method reference for the standard table class as it is used
in the search database of the COCONUT environment.

Standard Table

typedef std::pair<const std::string*,const _VDBL_col*> ptrcolspec;

typedef std::pair<std::string,_VDBL_col> colspec;

/**

* constructor defining a table using a list of columns. This list can

* be contained in any STL sequence container.

*/

template <template <class __Tp, class __AllocTp> class __SequenceCtr,

class Allocator1>

standard_table(const __SequenceCtr<triple<std::string, col,

colflags>,Allocator1>& __cc);

/**

* return iterator to first column

*/

col_const_iterator col_begin() const;

/**

* return iterator beyond last column

*/

col_const_iterator col_end() const;

/**

‘‘habil’’

2004/11/29

page 220

220 Appendix A. The COCONUT environment, C++ code

* return iterator to first row

*/

row_const_iterator row_begin() const;

/**

* return iterator beyond last row

*/

row_const_iterator row_end() const;

/**

* add a new column of name _C_n, which contains column __c, and has

* column flags __f.

* The function returns true, if adding the column was successful.

*/

bool add_col(const std::string& _C_n, const col& __c,

const colflags& __f);

/**

* add a new column of name _C_n, with data __c, and column flags __f.

* The function returns true, if adding the column was successful.

*/

template <class _CB>

bool add_col(const char* _C_n, const _CB& __c, const colflags& __f);

template <class _CB>

bool add_col(const std::string& _C_n, const _CB& __c,

const colflags& __f);

/**

* modify the column of name _C_n, to new contents __c, and new

* column flags __f.

* The function returns true, if modifying was successful.

*/

bool modify_col(const std::string& _C_n, const col& __c,

const colflags& __f);

/**

* modify the contents of column of name _C_n

* The function returns true, if modifying was successful.

*/

bool modify_col(const std::string& _C_n, const col& __c);

/**

* modify the column flags of column of name _C_n

* The function returns true, if modifying was successful.

*/

bool modify_col(const std::string& _C_n, const colflags& __f);

/**

* remove the column _C_n from the table

* The function returns true, if erasing was successful.

*/

bool drop_col(const std::string& _C_n);

‘‘habil’’

2004/11/29

page 221

A.2. Vienna Database Library (VDBL) 221

/**

* rename the column _C_old to new name _C_new.

* The function returns true, if renaming was successful.

*/

bool rename_col(const std::string& _C_old, const std::string& _C_new);

/**

* insert a new row of specification _row into the table.

* The function returns true, if inserting was successful.

*/

bool insert(const std::vector<ptrcolspec>& _row);

/**

* insert a new row of specification _row into the table, and

* return the row id of the newly created row in _r.

* The function returns true, if inserting was successful.

*/

bool insert(const std::vector<ptrcolspec>& _row, rowid& _r);

/**

* insert a new row of specification _row into the table, and

* return the row id of the newly created row in _r.

* Take any sequential STL container to hold the row entries of the

* column.

* The function returns true, if inserting was successful.

*/

template <template <class __Tp, class __AllocTp> class __SequenceCtr,

class Allocator1>

bool insert_row(const __SequenceCtr<colspec,Allocator1>& _row);

/**

* insert many new rows of specifications _rows into the table.

* The list of rows can be contained in any sequential STL container,

* which holds any other sequential STL container of column entries.

* The function returns true, if inserting was successful for all

* rows.

*/

template <template <class __Tp1, class __AllocTp1> class __SequenceCtrOut,

template <class __Tp2, class __AllocTp2> class __SequenceCtrIn,

class AllocatorOut, class AllocatorIn>

bool insert_row(const __SequenceCtrOut<

__SequenceCtrIn<colspec,AllocatorIn>,

AllocatorOut>& _rows);

/**

* remove the row with it _ri from the table

*/

bool remove(const rowid _ri);

/**

* return whether the column _C_n is defined in the table

‘‘habil’’

2004/11/29

page 222

222 Appendix A. The COCONUT environment, C++ code

*/

bool has_col(const std::string& _C_n) const;

bool has_col(const char* _C_n) const;

/**

* return a (const) reference to the row with id _ri. If an error

* occurs, set error to true, otherwise to false.

*/

const row& get_row(const rowid& _ri, bool& error) const

row& get_row(const rowid& _ri, bool& error);

/**

* return a (const) reference to the default column with id _ci.

* If an error occurs, set error to true, otherwise to false.

*/

const col& get_def(const colid& _ci, bool& error) const;

col& get_def(const colid& _ci, bool& error)

/**

* return whether the column with id _ci has a default value

*/

bool has_def(const colid& _ci) const;

/**

* return whether the column with id _ci has a value in row _ri

*/

bool has_col(const rowid& _ri, const colid& _ci) const;

/**

* retrieve the value of column (id = _c) in row (id = _r)

* under evaluation context _ctx to _val. Return whether

* retrieval was successful. If there is no defined value

* in row _r for column _c, then return the default value of

* column _c, if defined.

*/

bool retrieve(const rowid& _r, const colid& _c,

const context& _ctx, alltype_base*& _val) const;

colid get_colid(const char* _C_n) const;

A.2.3 Columns

The method reference is split in three parts. The first one specifies, general methods
valid for all classes. The other two parts define those methods, which are specific
for one of the two derived classes.

‘‘habil’’

2004/11/29

page 223

A.2. Vienna Database Library (VDBL) 223

Column base class

//! set the context for value retrieval

void setcontext(const context* _c, const row* _r);

/**

* This function stores a copy of the column value into c.

*/

template <class _R>

void get(_R& c) const;

/**

* This function stores a copy of the column default value into d.

*/

template <class _R>

void def(_R& d) const;

/**

* This function sets c to a const pointer pointing to the

* column’s actual value. Here, no copying is done.

*/

template <class _R>

void get_ptr(_R const *& c) const;

/**

* This function returns a pointer to a copy of the column’s value.

* The copy of the value is allocated by new. It has to be

* deleted by the user to avoid memory leaks.

*/

template <class _R>

void get_copy(_R*& p) const;

/**

* This function returns a pointer to a copy of the column’s default

* value. The copy of the value is allocated by new. It has to be

* <tt>delete</tt>d by the user to avoid memory leaks.

*/

template <class _R>

void def_copy(_R*& p) const;

/**

* The print operation for generic columns. This implicitely calls

* operator<< for the columns type. So it is necessary that this

* operator is indeed defined.

*/

friend std::ostream& operator<<(std::ostream& o, const col& c);

};

Typed column

/**

* explicit constructor setting the column’s value

‘‘habil’’

2004/11/29

page 224

224 Appendix A. The COCONUT environment, C++ code

**/

typed_col(const type& __t);

/**

* set the column value

**/

void set(const type& __t);

/**

* set the default value for this column. This is actually equivalent

* to set, since default and standard columns coincide for constant

* values.

**/

void set_default(const type& __t);

/**

* get a const reference to the column value

**/

const type& get_val() const;

Method column

/**

* constructor for explicitely setting the method

*/

method_col(const method& __m);

Column Evaluation Methods

/**

* compute the value

*/

const return_type& operator() ();

/**

* compute the default value

*/

const return_type& def();

/**

* set the evaluation context and the evaluation row.

*/

virtual void setcontext(const context* _c, const _VDBL_row* _r);

};

A.2.4 Rows

This section contains the method reference for the row class.

‘‘habil’’

2004/11/29

page 225

A.2. Vienna Database Library (VDBL) 225

/**

* get a reference to the column with id _id.

* If the column existed, error will be false,

* otherwise error will be true.

*/

col& get_col(const colid& _id, bool& error);

const col& get_col(const colid& _id, bool& error) const;

/**

* return whether a column with id _id exists in this row.

*/

bool has_col(const colid& _id) const;

/**

* insert the new column _col with id _id in this row.

* If this id exists, return false, otherwise return true.

*/

bool insert(const colid& _id, const col& _col);

/**

* remove the column with id _id from this row. Return true

* if erasing was successful, and false if the column does not

* exist.

*/

bool drop(const colid& _id);

/**

* update the column with id _id with the value _col.

* If the column does not yet exist, insert it. Otherwise,

* change its value.

*/

void update(const colid& _id, const col& _col);

A.2.5 Views

In this section I will describe all methods relevant for views. First those are de-
scribed which are accessible from all views, and afterwards the more specialized
ones are defined.

General Views

/**

* insert a new row of specification _row into the view.

* The function returns true, if inserting was successful.

*/

bool insert(const std::vector<_T_colspec>& _row);

‘‘habil’’

2004/11/29

page 226

226 Appendix A. The COCONUT environment, C++ code

/**

* remove the row with id _ri.second from the table _ri.first.

*/

bool remove(std::pair<tableid,rowid> _ri);

/**

* return whether the column _C_n is defined in the view

*/

bool has_col(const std::string& _C_n) const;

/**

* return table id and column id of column _C_n

*/

std::pair<tableid,colid> get_col_id(

const std::string& _C_n) const;

/**

* return a const reference to the column with column id _ci

* in row _ri.second of table ri.first. If successful,

* set error to false, and to true otherwise.

* Note that in this function the context for the column is NOT set.

*/

const col& get_raw_col(const std::pair<tableid,rowid>& _ri,

const colid& _ci, row const *& _rr,

bool& error) const;

/**

* print the contents of the column with column id _ci

* in row _ri.second of table ri.first. If the row

* is empty and no default is defined, print nothing.

*/

std::ostream& print_col(std::ostream& o,

const std::pair<tableid,rowid>& _ri,

const colid& _ci, bool& printed) const;

/**

* return a const reference to the row with row id

* _ri.second of table _ri.first. If successful,

* set error to false, and to true otherwise.

*/

const row& get_row(const std::pair<tableid,rowid>& _ri,

bool& error) const;

/**

* return a const reference to the default column with column id

* _ri.second of table ri.first. If successful,

* set error to false, and to true otherwise.

*/

const col& get_def(const std::pair<tableid,colid>& _ri,

bool& error) const;

‘‘habil’’

2004/11/29

page 227

A.2. Vienna Database Library (VDBL) 227

/**

* return iterator to first (beyond last) default column

*/

default_const_iterator defaults_begin() const;

default_const_iterator defaults_end() const;

/**

* return iterator to first (beyond last) row

*/

row_const_iterator rows_begin() const;

row_const_iterator rows_end() const;

/**

* return iterator to first (beyond last) column

*/

col_const_iterator cols_begin(const rowid& _r) const;

col_const_iterator cols_end(const rowid& _r) const;

/**

* return the type of this view

*/

_V_enum view_type() const;

Standard View

/**

* standard constructor which initalizes the table and the tableid,

* the evaluation context, and the view type.

*/

view(const tableid& __ti, table* __t,

const context& __c, _V_enum __e);

/**

* standard constructor which initalizes the table and the tableid,

* the evaluation context, and the view type. In addition the vector

* _rs contains a list of rows, which should be visible in this view.

*/

view(const tableid& __ti, table* __t,

const context& __c, _V_enum __e,

const std::vector<rowid>& _rs);

/**

* get the data from column _ci in row _ri.second of

* table _ri.first. The data stored in the column must

* be of type _R.

*/

template <class _R>

bool get(const std::pair<tableid,rowid>& _ri,

const colid& _ci, _R& r) const

template <class _R>

‘‘habil’’

2004/11/29

page 228

228 Appendix A. The COCONUT environment, C++ code

bool get(const tableid& _ti, const rowid& _ri,

const colid& _ci, _R& r) const;

template <class _R>

bool get(const rowid& _ri, const std::string& _c, _R& r) const;

template <class _R>

bool get(const rowid& _ri, const char* _c, _R& r) const;

/**

* get a const ptr to the data from column _ci in row

* _ri.second of table _ri.first. The data

* stored in the column must be of type _R. In this function

* no data copying is done. Note that this function returns a

* pointer to the columns raw data, so it can only be used to

* refer to constant columns.

*/

template <class _R>

bool get_raw_ptr(const std::pair<tableid,rowid>& _ri,

const colid& _ci, _R const *& r) const;

template <class _R>

bool get_raw_ptr(const tableid& _ti, const rowid& _ri, const colid& _ci,

_R const *& r) const;

Hierarchical View

/**

* standard constructor which initalizes the table and the tableid of

* the master table, the evaluation context, and the view type.

*/

hierarchicalview(const tableid& __ti, table* __t,

const context& __c, _V_enum __en);

/**

* standard constructor which initalizes the table and the tableid

* of the master table, the evaluation context, and the view type.

* In addition the vector _rs contains a list of rows, which should

* be visible in this view.

*/

hierarchicalview(const tableid& __ti, table* __t,

const context& __c, _V_enum __en,

const std::vector<rowid>& _rs);

/**

* This pushes a new table onto the top of the hierarchical view stack.

*/

void push_table(const tableid& __ti, table* __t);

/**

* This pushes a new table onto the top of the hierarchical view stack.

* Additionally, a subset of the table’s rows, which are visible in

‘‘habil’’

2004/11/29

page 229

A.2. Vienna Database Library (VDBL) 229

* the view, can be specified.

*/

void push_table(const tableid& __ti, table* __t,

const std::vector<rowid>& _rs);

/**

* remove the topmost table from the view, and return its table id.

*/

tableid pop_table();

A.2.6 View Database

The following section is the method reference for the viewdbase class.

/**

* constructor which builds a view to the database from

* - db -- the database

* - c -- the evaluation context for all views

*/

viewdbase(const database& db, const userid& uid, const context& c);

/**

* constructor which builds a view to the database from

* - db -- the database

* - c -- the evaluation context for all views

* - uid -- the user id of the user who owns the view

* The fourth argument is any sequential container of table,row

* pairs to which the view shall be restricted.

*/

template <template <class _C, class _A> class _SqCtr, class _Al>

viewdbase(const database& db, const userid& uid, const context& c,

const _SqCtr<std::pair<tableid,rowid>,_Al>& __an);

/**

* return the table id (and view id) of table _C_i

*/

tableid get_tableid(const std::string& _C_i) const;

/**

* check whether a given view (associated to table id _C_i) exists

*/

bool has_view(const tableid& _C_i) const;

bool has_view(const std::string& _C_i) const;

bool has_view(const char* _C_i) const

/**

* this method returns a pointer to the view associated to _C_i.

*/

viewbase* get_view(const tableid& _C_i) const;

‘‘habil’’

2004/11/29

page 230

230 Appendix A. The COCONUT environment, C++ code

viewbase* get_view(const std::string& _C_i) const;

viewbase* get_view(const char* _C_i) const;

A.2.7 Contexts

The context class is very flexible. The only methods defined handle the constant
table pointer.

/**

* retrieve a pointer to the table this object belongs to

*/

const table* table() const;

/**

* set the table pointer

*/

void table(const _VDBL_table* t);

A.3 The API

This section contains the class definitions and the most important subset of the
public methods therein.

A.3.1 Helper Classes

Basic Types

There is an all-in-one type additional info u, which is a union containing all
elementary types allowed in intermodule communication.

class basic_alltype

{

public:

basic_alltype();

basic_alltype(bool __x);

basic_alltype(int __x);

basic_alltype(unsigned int __x);

basic_alltype(double __x);

basic_alltype(interval __x);

basic_alltype(const char* __cp);

basic_alltype(const std::string& __x);

basic_alltype(const std::vector<bool>& __x);

basic_alltype(const std::vector<int>& __x);

basic_alltype(const std::vector<unsigned int>& __x);

‘‘habil’’

2004/11/29

page 231

A.3. The API 231

basic_alltype(const std::vector<double>& __x);

basic_alltype(const std::vector<interval>& __x);

basic_alltype(const matrix<double>& __x);

basic_alltype(const matrix<int>& __x);

basic_alltype(const matrix<interval>& __x);

~basic_alltype();

basic_alltype(const basic_alltype& __a);

basic_alltype& operator=(bool __x);

basic_alltype& operator=(int __x);

basic_alltype& operator=(unsigned int __x);

basic_alltype& operator=(double __x);

basic_alltype& operator=(interval __x);

basic_alltype& operator=(const std::string& __x);

basic_alltype& operator=(const char* __x);

basic_alltype& operator=(const std::vector<bool>& __x);

basic_alltype& operator=(const std::vector<int>& __x);

basic_alltype& operator=(const std::vector<unsigned int>& __x);

basic_alltype& operator=(const std::vector<double>& __x);

basic_alltype& operator=(const std::vector<interval>& __x);

basic_alltype& operator=(const matrix<double>& __x);

basic_alltype& operator=(const matrix<int>& __x);

basic_alltype& operator=(const matrix<interval>& __x);

basic_alltype& operator=(const basic_alltype& __a);

basic_alltype& clear();

bool nb() const;

int nn() const;

unsigned int nu() const;

double nd() const;

interval ni() const;

std::string& s() const;

std::vector<bool>& b() const;

std::vector<int>& n() const;

std::vector<unsigned int>& u() const;

std::vector<double>& d() const;

std::vector<interval>& i() const;

matrix<double>& m() const;

matrix<int>& nm() const;

matrix<interval>& im() const;

bool is_allocated() const;

bool is_vector() const;

bool is_matrix() const;

bool is_scalar() const;

bool empty() const;

int contents_type() const;

‘‘habil’’

2004/11/29

page 232

232 Appendix A. The COCONUT environment, C++ code

};

Datamap

/** @file datamap.h */

class datamap : std::map<std::string, basic_alltype>

{

public:

datamap() : _Base(), __empty() {}

datamap(const std::string& __n, const basic_alltype& __v)

: _Base(), __empty()

{ insert(std::make_pair(__n,__v)); }

datamap(const char* __n, const basic_alltype& __v)

: _Base(), __empty()

{ insert(std::make_pair(std::string(__n),__v)); }

datamap(const datamap& __c) : _Base(__c), __empty() {}

virtual ~datamap() {}

bool sinsert(const std::string& __s, const basic_alltype& __h,

bool replace);

bool sinsert(const char* __cp, const basic_alltype& __h, bool replace);

bool sinsert(const std::string& __s, int i, const basic_alltype& __h,

bool replace);

bool sinsert(const char* __cp, int i, const basic_alltype& __h,

bool replace);

const basic_alltype& sfind(const std::string& __s) const;

const basic_alltype& sfind(const char* __cp) const;

const basic_alltype& sfind(const std::string& __s, int i) const;

const basic_alltype& sfind(const char* __cp, int i) const;

void remove(const std::string& __s);

void remove(const char* __cp);

void remove(const std::string& __s, int i);

void remove(const char* __cp, int i);

bool defd(const std::string& __s) const;

bool defd(const char* __cp) const;

bool defd(const std::string& __s, int i) const;

bool defd(const char* __cp, int i) const;

bool which(const std::string& __s, std::vector<int>& idx) const;

bool which(const char* __cp, std::vector<int>& idx) const;

‘‘habil’’

2004/11/29

page 233

A.3. The API 233

bool retrieve(const std::string& __s, bool& __b) const;

bool retrieve(const std::string& __s, bool& __b, bool __def) const;

bool retrieve(const std::string& __s, int& __d) const;

bool retrieve(const std::string& __s, int& __d, int __def) const;

bool retrieve(const std::string& __s, unsigned int& __d) const;

bool retrieve(const std::string& __s, unsigned int& __d,

unsigned int __def) const;

bool retrieve(const std::string& __s, double& __d) const;

bool retrieve(const std::string& __s, double& __d, double __def) const;

bool retrieve(const std::string& __s, interval& __b) const;

bool retrieve(const std::string& __s, interval& __b,

const interval& __def) const;

bool retrieve(const std::string& __s, std::string& __is) const;

bool retrieve(const std::string& __s, std::string& __is,

const std::string& __def) const;

bool retrieve(const std::string& __s, const std::vector<bool>*& __b) const;

bool retrieve(const std::string& __s, const std::vector<bool>*& __b,

const std::vector<bool>* __def) const;

bool retrieve(const std::string& __s, const std::vector<int>*& __b) const;

bool retrieve(const std::string& __s, const std::vector<int>*& __b,

const std::vector<int>* __def) const;

bool retrieve(const std::string& __s,

const std::vector<unsigned int>*& __b) const;

bool retrieve(const std::string& __s, const std::vector<unsigned int>*& __b,

const std::vector<unsigned int>* __def) const;

bool retrieve(const std::string& __s, const std::vector<double>*& __b) const;

bool retrieve(const std::string& __s, const std::vector<double>*& __b,

const std::vector<double>* __def) const;

bool retrieve(const std::string& __s, const std::vector<interval>*& __b) const;

bool retrieve(const std::string& __s, const std::vector<interval>*& __b,

const std::vector<interval>* __def) const;

bool retrieve(const std::string& __s, const matrix<double>*& __b) const;

bool retrieve(const std::string& __s, const matrix<double>*& __b,

const matrix<double>* __def) const;

bool retrieve(const std::string& __s, const matrix<int>*& __b) const;

bool retrieve(const std::string& __s, const matrix<int>*& __b,

const matrix<int>* __def) const;

bool retrieve(const std::string& __s, const matrix<interval>*& __b) const;

bool retrieve(const std::string& __s, const matrix<interval>*& __b,

const matrix<interval>* __def) const;

bool retrieve(const char* __s, bool& __b) const;

bool retrieve(const char* __s, bool& __b, bool __def) const;

bool retrieve(const char* __s, int& __d) const;

bool retrieve(const char* __s, int& __d, int __def) const;

bool retrieve(const char* __s, unsigned int& __d) const;

bool retrieve(const char* __s, unsigned int& __d, unsigned int __def) const;

bool retrieve(const char* __s, double& __d) const;

bool retrieve(const char* __s, double& __d, double __def) const;

bool retrieve(const char* __s, interval& __b) const;

‘‘habil’’

2004/11/29

page 234

234 Appendix A. The COCONUT environment, C++ code

bool retrieve(const char* __s, interval& __b,

const interval& __def) const;

bool retrieve(const char* __s, std::string& __is) const;

bool retrieve(const char* __s, std::string& __b,

const std::string& __def) const;

bool retrieve(const char* __s, const std::vector<bool>*& __b) const;

bool retrieve(const char* __s, const std::vector<bool>*& __b,

const std::vector<bool>* __def) const;

bool retrieve(const char* __s, const std::vector<unsigned int>*& __b) const;

bool retrieve(const char* __s, const std::vector<unsigned int>*& __b,

const std::vector<unsigned int>* __def) const;

bool retrieve(const char* __s, const std::vector<int>*& __b) const;

bool retrieve(const char* __s, const std::vector<int>*& __b,

const std::vector<int>* __def) const;

bool retrieve(const char* __s, const std::vector<double>*& __b) const;

bool retrieve(const char* __s, const std::vector<double>*& __b,

const std::vector<double>* __def) const;

bool retrieve(const char* __s, const std::vector<interval>*& __b) const;

bool retrieve(const char* __s, const std::vector<interval>*& __b,

const std::vector<interval>* __def) const;

bool retrieve(const char* __s, const matrix<double>*& __b) const;

bool retrieve(const char* __s, const matrix<double>*& __b,

const matrix<double>* __def) const;

bool retrieve(const char* __s, const matrix<int>*& __b) const;

bool retrieve(const char* __s, const matrix<int>*& __b,

const matrix<int>* __def) const;

bool retrieve(const char* __s, const matrix<interval>*& __b) const;

bool retrieve(const char* __s, const matrix<interval>*& __b,

const matrix<interval>* __def) const;

bool retrieve_i(const std::string& __s, int i, bool& __b) const;

bool retrieve_i(const std::string& __s, int i, bool& __b, bool __def) const;

bool retrieve_i(const std::string& __s, int i, int& __d) const;

bool retrieve_i(const std::string& __s, int i, int& __d, int __def) const;

bool retrieve_i(const std::string& __s, int i, unsigned int& __d) const;

bool retrieve_i(const std::string& __s, int i, unsigned int& __d,

unsigned int __def) const;

bool retrieve_i(const std::string& __s, int i, double& __d) const;

bool retrieve_i(const std::string& __s, int i, double& __d, double __def) const;

bool retrieve_i(const std::string& __s, int i, interval& __b) const;

bool retrieve_i(const std::string& __s, int i, interval& __b,

const interval& __def) const;

bool retrieve_i(const std::string& __s, int i, std::string& __is) const;

bool retrieve_i(const std::string& __s, int i, std::string& __is,

const std::string& __def) const;

bool retrieve_i(const std::string& __s, int i,

const std::vector<bool>*& __b) const;

bool retrieve_i(const std::string& __s, int i, const std::vector<bool>*& __b,

const std::vector<bool>* __def) const;

bool retrieve_i(const std::string& __s, int i,

‘‘habil’’

2004/11/29

page 235

A.3. The API 235

const std::vector<int>*& __b) const;

bool retrieve_i(const std::string& __s, int i, const std::vector<int>*& __b,

const std::vector<int>* __def) const;

bool retrieve_i(const std::string& __s, int i,

const std::vector<unsigned int>*& __b) const;

bool retrieve_i(const std::string& __s, int i,

const std::vector<unsigned int>*& __b,

const std::vector<unsigned int>* __def) const;

bool retrieve_i(const std::string& __s, int i,

const std::vector<double>*& __b) const;

bool retrieve_i(const std::string& __s, int i, const std::vector<double>*& __b,

const std::vector<double>* __def) const;

bool retrieve_i(const std::string& __s, int i,

const std::vector<interval>*& __b) const;

bool retrieve_i(const std::string& __s, int i,

const std::vector<interval>*& __b,

const std::vector<interval>* __def) const;

bool retrieve_i(const std::string& __s, int i,

const matrix<double>*& __b) const;

bool retrieve_i(const std::string& __s, int i, const matrix<double>*& __b,

const matrix<double>* __def) const;

bool retrieve_i(const std::string& __s, int i, const matrix<int>*& __b) const;

bool retrieve_i(const std::string& __s, int i, const matrix<int>*& __b,

const matrix<int>* __def) const;

bool retrieve_i(const std::string& __s, int i,

const matrix<interval>*& __b) const;

bool retrieve_i(const std::string& __s, int i, const matrix<interval>*& __b,

const matrix<interval>* __def) const;

bool retrieve_i(const char* __s, int i, bool& __b) const;

bool retrieve_i(const char* __s, int i, bool& __b, bool __def) const;

bool retrieve_i(const char* __s, int i, int& __d) const;

bool retrieve_i(const char* __s, int i, int& __d, int __def) const;

bool retrieve_i(const char* __s, int i, unsigned int& __d) const;

bool retrieve_i(const char* __s, int i, unsigned int& __d,

unsigned int __def) const;

bool retrieve_i(const char* __s, int i, double& __d) const;

bool retrieve_i(const char* __s, int i, double& __d, double __def) const;

bool retrieve_i(const char* __s, int i, interval& __b) const;

bool retrieve_i(const char* __s, int i, interval& __b,

const interval& __def) const;

bool retrieve_i(const char* __s, int i, std::string& __is) const;

bool retrieve_i(const char* __s, int i, std::string& __b,

const std::string& __def) const;

bool retrieve_i(const char* __s, int i, const std::vector<bool>*& __b) const;

bool retrieve_i(const char* __s, int i, const std::vector<bool>*& __b,

const std::vector<bool>* __def) const;

bool retrieve_i(const char* __s, int i, const std::vector<int>*& __b) const;

bool retrieve_i(const char* __s, int i, const std::vector<int>*& __b,

const std::vector<int>* __def) const;

‘‘habil’’

2004/11/29

page 236

236 Appendix A. The COCONUT environment, C++ code

bool retrieve_i(const char* __s, int i,

const std::vector<unsigned int>*& __b) const;

bool retrieve_i(const char* __s, int i, const std::vector<unsigned int>*& __b,

const std::vector<unsigned int>* __def) const;

bool retrieve_i(const char* __s, int i, const std::vector<double>*& __b) const;

bool retrieve_i(const char* __s, int i, const std::vector<double>*& __b,

const std::vector<double>* __def) const;

bool retrieve_i(const char* __s, int i,

const std::vector<interval>*& __b) const;

bool retrieve_i(const char* __s, int i, const std::vector<interval>*& __b,

const std::vector<interval>* __def) const;

bool retrieve_i(const char* __s, int i, const matrix<double>*& __b) const;

bool retrieve_i(const char* __s, int i, const matrix<double>*& __b,

const matrix<double>* __def) const;

bool retrieve_i(const char* __s, int i, const matrix<int>*& __b) const;

bool retrieve_i(const char* __s, int i, const matrix<int>*& __b,

const matrix<int>* __def) const;

bool retrieve_i(const char* __s, int i, const matrix<interval>*& __b) const;

bool retrieve_i(const char* __s, int i, const matrix<interval>*& __b,

const matrix<interval>* __def) const;

};

Database Tools

This is the basic type used in all applications, which generate new entries.

typedef std::list<vdbl::col_spec> dbt_row;

template < class _C >

inline void add_to_dbt_row(dbt_row& dbr, const std::string& nm,

const _C& cont);

template < class _C >

inline void add_to_dbt_row(dbt_row& dbr, const char* nm,

const _C& cont);

Global Pointers

The class definition of the gptr templated class and its subclass ptr, which defines
local global pointers.

template <class _Tp>

class gptr

{

public:

virtual ~gptr();

‘‘habil’’

2004/11/29

page 237

A.3. The API 237

virtual reference operator*();

virtual const_reference operator*() const;

virtual pointer operator->();

virtual const_pointer operator->() const;

virtual pointer get_local_copy();

virtual const_pointer get_local_copy() const;

};

template <class _Tp>

class ptr : public gptr<_Tp>

{

public:

ptr(_Tp& __p);

ptr(_Tp* __p);

ptr(const _Self& __p);

~ptr();

reference operator*();

const_reference operator*() const;

pointer operator->();

const_pointer operator->() const;

pointer get_local_copy();

const_pointer get_local_copy();

_Self& operator=(const _Self& __p);

_Self& operator=(_Tp& __p);

};

A.3.2 Expressions

This section contains the building blocks of the mathematical functions, the basic
expressions. They are essentially split in two classes, the expression node class,
which is the node type of the expression DAGs, and the semantics class, which
contains additional information on the expressions important during the solution
process. In principle, expression node contains the static information on the math-
ematical functions, while semantics contains a lot of dynamic information, which
can change during the solution process (e.g., information on convexity,. . .).

Semantics

typedef enum { c_convex=1, c_linear=0, c_concave=-1, c_maybe=2 } convex_info;

‘‘habil’’

2004/11/29

page 238

238 Appendix A. The COCONUT environment, C++ code

typedef enum { v_exists=0, v_forall=1, v_free=2, v_stochastic=3 }

type_annotation;

/**

* @ingroup expression

* This enum describes the activity state known about a constraint and

* whether it is redundant or not. The meaning of the enum entries is:

* - @c a_redundant: The constraint is known to be redundant.

* There can be two reasons for that. It can

* be inactive on both sides, or it was constructed,

* knowing that it would be redundant (e.g. cuts).

* - @c a_active_lo: The @c work_node may contain points, for which

* this constraint is active at the lower bound but

* no points, for which the constraint is active at

* the upper bound.

* - @c a_active_hi: The @c work_node may contain points, for which

* this constraint is active at the upper bound but

* no points, for which the constraint is active at

* the lower bound.

* - @c a_active: The @c work_node may contain points, for which

* this constraint is active at the upper bound and

* points, for which the constraint is active at

* the lower bound.

* - @c ..._red: A combination with @c _red means that although

* the inactivity of the constraint could not be

* proved, it is still known to be redundant.

*/

typedef enum { a_redundant=1,

a_active_lo=2, a_active_lo_red=a_active_lo|a_redundant,

a_active_hi=4, a_active_hi_red=a_active_hi|a_redundant,

a_active=a_active_lo|a_active_hi,

a_active_red=a_active|a_redundant } activity_descr;

class convex_e

{

public:

convex_e();

convex_e(const convex_info& __e, uint16_t __t);

convex_e(const convex_e& __e);

~convex_e() {}

const convex_info& i() const;

uint16_t t() const;

convex_e operator-() const;

convex_e& operator=(const convex_e& __c);

convex_e& operator=(const convex_info& __i);

convex_e& operator=(unsigned int __t);

convex_e& operator=(uint16_t __t);

‘‘habil’’

2004/11/29

page 239

A.3. The API 239

friend std::ostream& operator<< (std::ostream& o, const convex_e& __s);

};

class semantics

{

public:

struct {

convex_e c_info;

activity_descr act; // activity descriptor

tristate separable;

bool is_at_either_bound;

} property_flags; // mathematical constraint properties

struct {

bool kj; // is from KJ conditions

bool integer; // is integer / not real

type_annotation type; // exists, forall, free, stochastic

bool hard; // hard or soft constraint

} annotation_flags;

struct {

tristate has_0chnbase;

} info_flags; // algorithmic properties

unsigned int _0chnbase;

int addinfo; // for KJ variables this number

// is the corresponding constraint

// number, -1 if kappa (for obj.)

int degree; // -1: essential non-linearity

int dim; // num of vars involved

int stage; // for multistage problems

public:

semantics();

semantics(const semantics& __s);

~semantics() {}

friend std::ostream& operator<< (std::ostream& o, const semantics& __s);

// access and storage methods for flags which are

// not automatically set by the simplifier

const convex_e& convexity() const;

void convexity(const convex_e& __c);

const tristate& separability() const;

void separability(const tristate& __c);

const activity_descr& activity() const;

‘‘habil’’

2004/11/29

page 240

240 Appendix A. The COCONUT environment, C++ code

void activity(const activity_descr& __c);

bool kj_flag() const;

void kj_flag(bool __c);

bool integer_flag() const;

void integer_flag(bool __c);

bool hard_flag() const;

void hard_flag(bool __c);

bool is_at_any_bound() const;

void is_at_any_bound(bool __c);

const type_annotation& type();

void type(const type_annotation& __c);

bool redundancy() const;

bool inactive_hi() const;

bool inactive_lo() const;

bool inactive() const;

friend std::ostream& operator<< (std::ostream& o, const semantics& __s);

};

Expression Nodes

enum { // type flags

ex_bound=1, ex_linear=1<<1, ex_quadratic=1<<2, ex_polynomial=1<<3,

ex_other=1<<4,

// automatic from Karush-John conditions (for vars. and constr.)

// ex_kj only additional vars, constr. from KJ-conditions

// ex_org ... original vars, constr. (both set = none set)

ex_kj=1<<7, ex_org=1<<8,

// redundant (both set = none set)

ex_redundant=1<<9, ex_notredundant=1<<10,

// activity

// both set = none set = all constraints

ex_active_lo=1<<11, ex_inactive_lo=1<<12,

ex_active_hi=1<<13, ex_inactive_hi=1<<14,

ex_active=ex_active_lo|ex_active_hi,

ex_inactive=ex_inactive_lo|ex_inactive_hi,

// integer

ex_integer=1<<15,

‘‘habil’’

2004/11/29

page 241

A.3. The API 241

// forall, exists, stochastic, free

// none set = select all

ex_exists = 1<<16,

ex_forall = 1<<17,

ex_free = 1<<18,

ex_stochastic = 1<<19,

// convexity flags (known to be!)

ex_convex=1<<20, ex_concave=1<<21,

// bound flags

ex_inequality=1<<28, ex_equality=1<<29,

ex_leftbound=1<<30, ex_rightbound=1<<31,

// short cuts

ex_atmlin=ex_bound|ex_linear, // at most linear

ex_atmquad=ex_atmlin|ex_quadratic, // at most quadratic

ex_atmpoly=ex_atmquad|ex_polynomial, // at most polynomial

ex_nonlin=ex_quadratic|ex_polynomial|ex_other, // non linear

ex_nonbnd=ex_linear|ex_nonlin, // not bounds

ex_any=ex_atmlin|ex_nonlin, // any

ex_bothbound=ex_leftbound|ex_rightbound};

typedef interval rhs_t; // use intervals as right hand sides of constraints.

// more general sets could be introduced later

typedef std::vector<void*> evaluator_v;

#include <addinfo.h>

class expression_node

{

public:

unsigned int node_num; // node number for indexing

int operator_type; // this is a number describing the operation.

// negative numbers describe standard operations

// as defined above.

// the positive numbers describe other operations

// like elementary functions (exp, pow, sin,...)

// or more complicated functions like linear or

// general quadratic terms, user-defined functions,

// piecewise linear approximations,...

unsigned int n_parents, n_children;

// number of parents, children

std::vector<double> coeffs; // coefficients of the sub_expressions

basic_alltype params; // additional expression info

“habil”
2004/11/29
page 242

242 Appendix A. The COCONUT environment, C++ code

rhs_t f_bounds; // bounds on this node

unsigned short is_var; // this node represents is_var variables

std::vector<unsigned int> var_idx; // the variable indices corresponding to this node

semantics sem; // additional semantics information like

// integer (y/n), stochastic (y/n), karush-john (y/n)

// convexity,...

variable_indicator v_i; // this node depends on which variables?

evaluator_v* ev; // optional evaluators used instead of tree walks

// NULL means no evaluators, map if some or all

// are defined. This is for recursive_cached_walk

// constructors and destructor

expression_node();

expression_node(int et, int nn);

expression_node(const expression_node& __x);

~expression_node();

bool operator<(const expression_node& __x) const;

void merge(const expression_node& __s);

void set_bounds(interval __i);

void set_bounds(double __d = 0.);

void set_bounds(int __i);

void set_bounds(double lo, double up);

void add_is_var(unsigned int idx);

void rm_is_var(unsigned int idx);

bool is(unsigned int __tp) const;

// and others needed

// print the expression_node

friend std::ostream& operator<< (std::ostream& o, const expression_node& __x);

// and others needed

const variable_indicator& var_indicator() const;

};

A.3.3 Models

This section contains the C++ description of the three model base classes, as ex-
plained in Section 5.3.3. The class definitions are reduced such that they contain

‘‘habil’’

2004/11/29

page 243

A.3. The API 243

only the most important methods.

Id Data

class model_iddata

{

public:

model_iddata(unsigned int n = 0);

~model_iddata();

void new_ref(model_gid& __m);

bool delete_ref(model_gid& __m);

unsigned int get_node_id();

void remove_node_id(unsigned int n);

unsigned int get_var_id();

void remove_var_id(unsigned int n);

unsigned int get_const_id();

void remove_const_id(unsigned int n);

void compress_numbers(bool renum_vars, bool renum_consts = false);

};

Model Group Data

class model_gid

{

public:

void remove_node_ref(unsigned int _n);

void remove_var_ref(unsigned int _n);

void remove_const_ref(unsigned int _n);

model_gid(model& __m, model_iddata* __i=NULL);

model_gid(model& __m, unsigned int n, model_iddata* __i = NULL);

model_gid(model& __mr, const model_gid& __m);

~model_gid();

void mk_globref(unsigned int n, const model::walker& __w);

void mk_gvarref(unsigned int n, const model::walker& __w);

void mk_gconstref(unsigned int n, const model::walker& __w);

void make_const_back_ref(unsigned int node, unsigned int cnum);

bool empty(const model::walker& __x) const;

bool its_me(const model& __m) const;

model::walker empty_reference() const;

bool have_glob_ref(unsigned int _nnum) const;

bool have_gvar_ref(unsigned int _vnum) const;

‘‘habil’’

2004/11/29

page 244

244 Appendix A. The COCONUT environment, C++ code

bool have_gconst_ref(unsigned int _cnum) const;

};

Models

class model: public dag<expression_node>

{

public:

matrix<double> lin; // matrix of linear constraints

int ocoeff; // max (-1) or min (1) or nothing (0)?

walker objective; // pointer to the objective

std::vector<walker> constraints; // pointer to the constraints

public:

model(model_gid* id = NULL, bool clone = false);

model(model_gid* id, const erased_part& ep, bool clone = false);

model(int num_of_vars);

model(const model& m);

model(model_gid* id, const model& m);

model(istream& inp, bool do_simplify = true);

model(const char* name, bool do_simplify = true);

~model();

unsigned int number_of_variables() const;

unsigned int number_of_nodes() const;

unsigned int number_of_constraints() const;

unsigned int number_of_managed_nodes() const;

unsigned int number_of_managed_variables() const;

unsigned int number_of_managed_constraints() const;

const walker& var(unsigned int i) const;

const walker& node(unsigned int i) const;

const walker& constraint(unsigned int i) const;

model_gid* gid_data() const;

void detach_gid();

void compress_numbers();

void renumber_variables();

void renumber_constraints();

bool basic_simplify();

void arrange_constraints();

void set_counters();

void clr_sky_ground_link();

void write(std::ostream& __o = std::cout) const;

‘‘habil’’

2004/11/29

page 245

A.3. The API 245

ref_iterator ghost_begin();

const_ref_iterator ghost_begin() const;

ref_iterator ghost_end();

const_ref_iterator ghost_end() const;

walker store_node(const walker& _w);

walker store_variable(const walker& _w);

walker store_ghost(const walker& _w);

walker store_constraint(const walker& _w);

void free_node_num(unsigned int _nnum);

void remove_node(const walker& _w, unsigned int _nnum);

void remove_node(const walker& _w);

void remove_node(unsigned int __node_num);

void new_variables(int _new_num_of_vars);

walker ghost(unsigned int _nnum);

walker constant(double _constant);

walker constant(const std::vector<double>& _constant);

walker variable(unsigned int _vnum);

walker binary(const walker& _op1, const walker& _op2, int expr_type,

double _coeff1 = 1.0, double _coeff2 = 1.0);

walker binary(const walker& _op1, const walker& _op2, int expr_type,

basic_alltype _params, double _coeff1 = 1.0,

double _coeff2 = 1.0);

walker unary(const walker& _op1, int expr_type, double _coeff = 1.0);

walker unary(const walker& _op1, int expr_type, basic_alltype _params,

double _coeff = 1.0);

walker nary(const std::vector<walker>& _op, int expr_type,

const std::vector<double>& _coeffs = std::vector<double>());

walker nary(const std::vector<walker>& _op, int expr_type,

basic_alltype _params,

const std::vector<double>& _coeffs = std::vector<double>());

walker vnary(int expr_type, ...);

bool is_empty(const walker& _w) const;

walker empty_reference() const;

const std::string var_name(unsigned int n) const;

const std::string const_name(unsigned int n) const;

const std::string obj_name() const;

double obj_adj() const;

‘‘habil’’

2004/11/29

page 246

246 Appendix A. The COCONUT environment, C++ code

double obj_mult() const;

size_t n_fixed_vars() const;

std::pair<const std::string, double> fixed_var(unsigned int n) const;

size_t n_unused_vars() const;

const std::string& unused_var(unsigned int n) const;

size_t n_unused_constrs() const;

const std::string& unused_constr(unsigned int n) const;

bool get_const_num(unsigned int node_num, unsigned int& const_num) const;

bool get_linear_coeffs(const walker& expr, sparse_vector<double>& coeffs,

double& constant, const std::vector<interval>& _ranges);

bool get_linear_coeffs(const walker& expr, sparse_vector<double>& coeffs,

double& constant);

};

typedef model::walker expression_walker;

typedef model::const_walker expression_const_walker;

A.3.4 Control Data

This class is used to pass control parameters to all modules.

/** @file control_data.h */

class control_data : protected datamap

{

public:

control_data();

control_data(const std::string& __n, const basic_alltype& __v);

control_data(const char* __n, const basic_alltype& __v);

control_data(const control_data& __c);

control_data(const std::string& serv, const info_contents& inf);

virtual ~control_data();

control_data& operator=(const info_contents& __i);

void service(const std::string& __s);

void service(const char* __s);

const std::string& service() const;

bool check_service(const std::string& __n) const;

bool check_service(const char* __n) const;

void set(const info_contents& __i);

void set(const std::string& __s, const basic_alltype& __h);

void set(const char* __cp, const basic_alltype& __h);

void set(const std::string& __s, int i, const basic_alltype& __h);

‘‘habil’’

2004/11/29

page 247

A.3. The API 247

void set(const char* __cp, int i, const basic_alltype& __h);

const basic_alltype& get(const std::string& __s) const;

const basic_alltype& get(const char* __cp) const;

const basic_alltype& get(const std::string& __s, int i) const;

const basic_alltype& get(const char* __cp, int i) const;

void unset(const std::string& __s);

void unset(const char* __cp);

void unset(const std::string& __s, int i);

void unset(const char* __cp, int i);

bool is_set(const std::string& __s) const;

bool is_set(const char* __cp) const;

bool is_set(const std::string& __s, int i) const;

bool is_set(const char* __cp, int i) const;

bool which_set(const std::string& __s, std::vector<int>& __idx) const;

bool which_set(const char* __cp, std::vector<int>& __idx) const;

template <class _S>

void assign(const std::string& __s, const std::vector<_S>*& __b) const;

template <class _S>

void assign(const std::string& __s, const matrix<_S>*& __b) const;

template <class _S>

void assign(const std::string& __s, _S& __b) const;

template <class _S>

void assign(const std::string& __s, const std::vector<_S>*& __b,

const std::vector<_S>* __def) const;

template <class _S>

void assign(const std::string& __s, const matrix<_S>*& __b,

const matrix<_S>* __def) const;

template <class _S>

void assign(const std::string& __s, _S& __b, _S __def) const;

template <class _S>

void assign(const char* __s, const std::vector<_S>*& __b) const;

template <class _S>

void assign(const char* __s, const matrix<_S>*& __b) const;

template <class _S>

void assign(const char* __s, _S& __b) const;

template <class _S>

‘‘habil’’

2004/11/29

page 248

248 Appendix A. The COCONUT environment, C++ code

void assign(const char* __s, const std::vector<_S>*& __b,

const std::vector<_S>* __def) const;

template <class _S>

void assign(const char* __s, const matrix<_S>*& __b,

const matrix<_S>* __def) const;

template <class _S>

void assign(const char* __s, _S& __b, _S __def) const;

template <class _S>

void assign_i(const std::string& __s, int i,

const std::vector<_S>*& __b) const;

template <class _S>

void assign_i(const std::string& __s, int i, const matrix<_S>*& __b) const;

template <class _S>

void assign_i(const std::string& __s, int i, _S& __b) const;

template <class _S>

void assign_i(const std::string& __s, int i, const std::vector<_S>*& __b,

const std::vector<_S>* __def) const;

template <class _S>

void assign_i(const std::string& __s, int i, const matrix<_S>*& __b,

const matrix<_S>* __def) const;

template <class _S>

void assign_i(const std::string& __s, int i, _S& __b, _S __def) const;

template <class _S>

void assign_i(const char* __s, int i, const std::vector<_S>*& __b) const;

template <class _S>

void assign_i(const char* __s, int i, const matrix<_S>*& __b) const;

template <class _S>

void assign_i(const char* __s, int i, _S& __b) const;

template <class _S>

void assign_i(const char* __s, int i, const std::vector<_S>*& __b,

const std::vector<_S>* __def) const;

template <class _S>

void assign_i(const char* __s, int i, const matrix<_S>*& __b,

const matrix<_S>* __def) const;

template <class _S>

void assign_i(const char* __s, int i, _S& __b, _S __def) const;

‘‘habil’’

2004/11/29

page 249

A.4. Search Graph 249

};

A.4 Search Graph

In this section, the class definitions of all parts of the API are given, which are
related to the search graph. The search graph consists of search nodes, which come
in two flavours, full node and delta node.

A.4.1 Search Nodes

class search_node

{

protected:

gptr<search_node>* __global_model;

gptr<vdbl::database>* __dbase;

vdbl::userid _dbuser;

search_node_relation _snr;

search_node_id _id;

std::vector<annotation> _keep;

public:

virtual bool is_delta() const;

search_node(const search_node_id& _i, const vdbl::userid& _dui,

gptr<search_node>& _gm, gptr<vdbl::database>& _db,

search_node_relation __snr = snr_reduction);

search_node(const search_node_id& _i, const vdbl::userid& _dui,

gptr<search_node>* _gm, gptr<vdbl::database>& _db,

search_node_relation __snr = snr_reduction);

search_node(const search_node_id& _i, const vdbl::userid& _dui,

gptr<vdbl::database>& _db, search_node_relation __snr = snr_root);

virtual ~search_node();

vdbl::userid get_dbuserid() const;

gptr<search_node>* global_model();

gptr<vdbl::database>* database();

search_node_id get_id() const;

void keep(const annotation& _an);

void keep(const std::vector<annotation>& _anv);

void unkeep(const annotation& _an);

void unkeep(const std::vector<annotation>& _anv);

“habil”
2004/11/29
page 250

250 Appendix A. The COCONUT environment, C++ code

};

class delta_node : public search_node

{

public:

delta_node(const search_node_id& _i, const vdbl::userid& _dui,

std::vector<delta_id>& __d, gptr<search_node>& _gm,

gptr<vdbl::database>& _db,

search_node_relation _snr = snr_reduction);

virtual ~delta_node();

unsigned int n_deltas() const;

delta_id get_delta_id(unsigned int i) const;

delta get_delta(unsigned int i);

const delta& get_delta(unsigned int i) const;

};

class full_node : public search_node

{

protected:

gptr<model>* _m;

public:

std::vector<annotation> _ann;

full_node(const search_node_id& _i, const vdbl::userid& _dui,

gptr<model>& __mod, gptr<search_node>& _gm,

gptr<vdbl::database>& _db,

search_node_relation _snr = snr_reduction);

full_node(const search_node_id& _i, const vdbl::userid& _dui,

gptr<model>& __mod, gptr<search_node>& _gm,

gptr<vdbl::database>& _db, const std::vector<annotation>& _a,

search_node_relation _snr = snr_reduction);

virtual ~full_node();

bool is_delta() const;

const annotation& get_annotation(unsigned int i) const;

const std::vector<annotation>& get_annotations() const;

const model* get_model() const;

const vdbl::database* get_database() const;

model* get_model_ptr() const;

vdbl::database* get_database_ptr() const;

};

‘‘habil’’

2004/11/29

page 251

A.4. Search Graph 251

A.4.2 Annotations

This section is about annotations, table entries in the search database, which belong
to the current worknode.

class annotation : public std::pair<vdbl::tableid,vdbl::rowid>

{

public:

annotation(const vdbl::tableid& _ti, const vdbl::rowid& _ri);

virtual ~annotation();

vdbl::tableid get_table() const;

vdbl::rowid get_entry() const;

};

A.4.3 Work Nodes

class work_node : public full_node

{

public:

std::list<delta_id> deltas;

std::map<delta_id,undelta> undeltas;

vdbl::standard_table *dtable;

vdbl::tableid dtable_id;

std::vector<interval> node_ranges;

bool infeasible;

double log_vol;

double gain_factor;

std::map<transaction_number,std::list<std::vector<delta> > > proposed_splits;

work_node(const search_node_id& _i, const vdbl::userid& _dui,

gptr<model>& __m, gptr<vdbl::database>& __d,

const std::vector<annotation>& __an,

const std::list<delta_id>& __de, gptr<search_node>* _gm);

virtual ~work_node();

transaction_number get_transaction_number();

void init_cnumbers();

void reset_node_ranges(); // reset all unused node ranges to [-I,I]

void make_node_ranges(bool keep_old_ranges);

double compute_log_volume(const std::vector<interval>& _r) const;

const model* get_model() const;

‘‘habil’’

2004/11/29

page 252

252 Appendix A. The COCONUT environment, C++ code

model* get_model();

// usage e.g.:

// constraint_iterator b = get_begin(ex_linear);

// while(b != get_end(ex_linear))

// {

// do_something(*b);

// ++b;

// }

// to iterate through some constraints

constraint_const_iterator get_begin(unsigned int __type) const;

constraint_const_iterator get_end(unsigned int __type) const;

constraint_iterator get_begin(unsigned int __type);

constraint_iterator get_end(unsigned int __type);

delta get_delta(const delta_id& _id);

const delta& get_delta(const delta_id& _id) const;

double log_volume() const;

double gain() const;

double reset_gain();

// usage: n(ex_linear|ex_equality) returns the number of linear

// equality constraints

unsigned int n(unsigned int __type) const;

friend work_node operator+(const work_node& _w, const delta_id& _d);

friend work_node operator-(const work_node& _w, const delta_id& _d);

friend work_node& operator+=(work_node& _w, const delta_id& _d);

friend work_node& operator-=(work_node& _w, const delta_id& _d);

template <template <class _Tp, class _A> class _Ctr, class _Al>

friend work_node operator+(const work_node& _w, const _Ctr<delta_id,_Al>& _d);

template <template <class _Tp, class _A> class _Ctr, class _Al>

friend work_node operator-(const work_node& _w, const _Ctr<delta_id,_Al>& _d);

template <template <class _Tp, class _A> class _Ctr, class _Al>

friend work_node& operator+=(work_node& _w, const _Ctr<delta_id,_Al>& _d);

template <template <class _Tp, class _A> class _Ctr, class _Al>

friend work_node& operator-=(work_node& _w, const _Ctr<delta_id,_Al>& _d);

};

A.4.4 Search Graph

/** @file search_graph.h */

‘‘habil’’

2004/11/29

page 253

A.4. Search Graph 253

class search_graph : public dag<search_node*>

{

public:

search_node *root;

search_inspector inspector_for_root;

gptr<vdbl::database> *__dbase;

vdbl::userid __dbuser;

search_graph(model& root_model, gptr<vdbl::database>& _db);

search_graph(model & root_model, gptr<vdbl::database>& _db,

const std::vector<annotation>& _a);

~search_graph();

search_focus& new_focus(const search_inspector& _si);

void destroy_focus(const search_focus& _sf);

search_focus& set_focus(search_focus& _fc, const search_inspector& _si);

search_inspector& new_inspector(const search_inspector& inspector_to_add);

search_inspector& new_inspector();

void destroy_inspector(const search_inspector& inspector_to_destroy);

work_node extract(const search_inspector& where);

work_node extract(const search_focus& where);

search_inspector& insert(const search_focus& where, const search_node& what);

search_inspector& replace(search_focus& where, const search_node& what);

void remove(search_focus& _sf);

search_focus& promote(search_focus& _sf);

search_inspector child(search_inspector& n, unsigned int i);

search_inspector parent(search_inspector& n, unsigned int i);

};

typedef search_graph::const_walker search_inspector;

typedef search_graph::walker search_focus;

A.4.5 Deltas

This section contains the C++ description of all types of deltas available in the
environment, as well as the definitions and most important public methods of the
base classes.

‘‘habil’’

2004/11/29

page 254

254 Appendix A. The COCONUT environment, C++ code

A.4.6 Base Classes

class delta

{

public:

delta();

delta(const delta_base& __d);

delta(const delta& __d);

~delta();

const std::string& get_action() const;

const delta_base* get_base() const;

bool apply(work_node& _x, const delta_id& _d) const;

bool apply3(work_node& _x, const work_node& _y, const delta_id& _d) const;

void convert(work_node& _x);

delta_id store(work_node& _x);

delta& operator=(const delta& _d);

friend std::ostream& operator<< (std::ostream& o, const delta& t);

};

class delta_base

{

public:

delta_base(const std::string& a);

delta_base(const char* a);

delta_base(const delta_base& __d);

virtual delta_base* new_copy() const;

virtual void destroy_copy(delta_base* __d);

virtual ~delta_base() {}

delta make_delta(const std::string& a);

const std::string& get_action() const;

virtual void convert(work_node& _x, delta_base*& _d);

virtual bool apply(work_node& _x, undelta_base*& _u) const;

virtual bool apply3(work_node& _x, const work_node& _y, undelta_base*& _u);

};

class undelta

{

public:

undelta();

undelta(undelta_base* __d);

‘‘habil’’

2004/11/29

page 255

A.4. Search Graph 255

undelta(const undelta& __d);

~undelta();

const undelta_base* get_base() const;

bool unapply(work_node& _x) const;

bool unapply3(work_node& _x, const work_node& _y) const;

undelta& operator=(const undelta& _u);

};

class undelta_base

{

public:

undelta_base();

undelta_base(const undelta_base& __d);

virtual undelta_base* new_copy() const;

virtual void destroy_copy(undelta_base* __d);

virtual ~undelta_base();

undelta make_undelta();

virtual bool unapply(work_node& _x) const;

virtual bool unapply3(work_node& _x, const work_node& _y) const;

};

A.4.7 Infeasible Delta

/** @file infeasible_delta.h */

class infeasible_delta : public delta_base

{

public:

infeasible_delta() : delta_base("infeasible") {}

~infeasible_delta() {}

};

A.4.8 DAG Delta

/** @file dag_delta.h */

class dag_delta : public delta_base

{

public:

counted_ptr<model> new_constraints; // dags referring to ghost nodes

‘‘habil’’

2004/11/29

page 256

256 Appendix A. The COCONUT environment, C++ code

std::vector<walker> rm_nodes; // nodes that need to be removed

// in the model

bool is_full_delta; // this means that new_constraints

// is a full model which completely

// replaces old_constraints

dag_delta(const std::string& __a, bool full=false);

dag_delta(const std::string& __a, model* __nc, bool full=false);

~dag_delta() {}

void add_new(model* __m);

void add_new(model& __m);

void remove(const walker& _nn);

void remove(const std::vector<walker>& _nn);

};

A.4.9 Bound Delta

/** @file bound_delta.h */

class bound_delta : public delta_base

{

public:

std::vector<unsigned int> indices; // if all variables are being

// updated this vector is empty

std::vector<interval> new_f_bounds; // new bounds

bound_delta(const std::vector<unsigned int>& __i,

const std::vector<interval>& __b);

bound_delta(unsigned int __i, interval __b);

};

A.4.10 Semantics Delta

/** @file semantics_delta.h */

class semantics_delta : public delta_base

{

public:

semantics_delta(const std::vector<unsigned int>& __i,

const std::vector<uint32_t>& __b);

semantics_delta(unsigned int __i, uint32_t __b);

semantics_delta();

‘‘habil’’

2004/11/29

page 257

A.4. Search Graph 257

void set(const std::vector<unsigned int>& _i,

const std::vector<semantics>& _s);

void set(const std::vector<unsigned int>& _i,

const std::vector<uint32_t>& _s);

void set(unsigned int _i, const semantics& _s);

void set_convex(const std::vector<unsigned int>& _i,

const std::vector<convex_e>& c);

void set_convex(unsigned int _i, const convex_e& c);

void set_activity(const std::vector<unsigned int>& _i,

const std::vector<activity_descr>& a);

void set_activity(unsigned int _i, const activity_descr& a);

void set_separable(const std::vector<unsigned int>& _i,

const std::vector<tristate>& t);

void set_separable(unsigned int _i, const tristate& t);

void set_is_at_either_bound(const std::vector<unsigned int>& _i,

const std::vector<bool>& b);

void set_is_at_either_bound(unsigned int _i, bool b);

void set_integer(const std::vector<unsigned int>& _i,

const std::vector<bool>& b);

void set_integer(unsigned int _i, bool b);

void set_hard(const std::vector<unsigned int>& _i,

const std::vector<bool>& b);

void set_hard(unsigned int _i, bool b);

void set_type(const std::vector<unsigned int>& _i,

const std::vector<type_annotation>& a);

void set_type(unsigned int _i, const type_annotation& a);

};

A.4.11 Split Delta

/** @file split_delta.h */

class split_delta : public delta_base

{

public:

std::list<std::vector<delta> > splits;

// splits represents a list of newly created submodels. Each of these

// submodels is generated from the work node by a number of deltas stored

// in the inner vector.

split_delta();

split_delta(unsigned int _node_num, const interval& _l, const interval& _u);

split_delta(unsigned int _node_num, const std::vector<interval>& _m);

split_delta(const std::vector<unsigned int>& _i,

const std::vector<interval>& _l, const std::vector<interval>& _u);

split_delta(const std::list<std::vector<delta> >& __dl);

~split_delta() {}

‘‘habil’’

2004/11/29

page 258

258 Appendix A. The COCONUT environment, C++ code

void add_delta(const delta& __d);

void add_deltas(const std::vector<delta>& __d);

void add_split(unsigned int _nnum, interval _l, interval _u);

void add_split(const std::vector<unsigned int>& _i,

const std::vector<interval>& _l,

const std::vector<interval>& _u);

};

A.4.12 Annotation Delta

/** @file annotation_delta.h */

class annotation_delta : public delta_base

{

public:

std::vector<annotation> add; // these are to be added

std::vector<annotation> rm; // these are to be removed

annotation_delta(const std::string& _act);

annotation_delta(const std::string& _act,

const std::vector<annotation>& __a,

const std::vector<annotation>& __r);

annotation_delta(const std::string& _act, const annotation& _ad);

annotation_delta(const std::string& _act, bool _dummy,

const annotation& _rm);

annotation_delta(const annotation_delta& __d);

annotation_delta(const char* _act,

const std::vector<annotation>& __a,

const std::vector<annotation>& __r);

annotation_delta(const char* _act, const annotation& _ad);

annotation_delta(const char* _act, bool _dummy, const annotation& _rm);

};

A.4.13 Table Delta

/** @file table_delta.h */

class table_delta : public delta_base

{

public:

typedef std::pair<std::string,dbt_row> t_line;

typedef std::vector<t_line> t_ctr;

table_delta(const std::string& a);

“habil”
2004/11/29
page 259

A.5. Evaluators 259

table_delta(const std::string& a, const t_ctr& _n,

const std::vector<annotation>& _r);

table_delta(const std::string& a, const std::string& __tn,

const dbt_row& __t);

table_delta(const std::string& a, const std::string& __tn,

const std::vector<dbt_row>& __t);

void add(const t_line& _tl);

void add(const std::string& _tn, const dbt_row& _r);

void add(const std::vector<t_line>& _tlv);

void rm(const annotation& _tr);

void rm(const std::vector<annotation>& _trv);

virtual void create_table(work_node& _x, vdbl::standard_table*& ptb,

const std::string& __t);

};

A.4.14 Box Delta

/** @file boxes_delta.h */

class boxes_delta : public table_delta

{

public:

boxes_delta(bool _add=true);

boxes_delta(const dbt_row& _b, bool _add=true);

boxes_delta(const std::vector<dbt_row>& _b, bool _add=true);

};

A.4.15 Point Delta

/** @file point_delta.h */

class point_delta : public table_delta

{

public:

point_delta();

point_delta(const dbt_row& __p);

};

A.5 Evaluators

This section contains C++ examples for using the various evaluator variants.

‘‘habil’’

2004/11/29

page 260

260 Appendix A. The COCONUT environment, C++ code

A.5.2 Function Evaluation

In this code snipplet the objective function is evaluated.

#include <model.h>

#include <func_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<double> x(n);

variable_indicator v_ind(n);

v_ind.set(0,n);

std::cout << "x(1:" << n << ") = ";

// read evaluation point

for(i=0; i<n; i++)

{

std::cin >> x[i];

}

func_eval fv(x, v_ind, model, NULL);

double fx = evaluate(fv, DAG.objective);

std::cout << "The function value is: " << fx << std::endl;

return 0;

}

A.5.3 Gradient Evaluation

The following piece of code evaluated the gradient of the objective function.

#include <model.h>

#include <der_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<double> x(n), grad(n), zero(n, 0.);

std::vector<std::vector<double> > d_data;

variable_indicator v_ind(n);

v_ind.set(0,n);

std::cout << "x(1:" << n << ") = ";

// read evaluation point

for(i=0; i<n; i++)

{

std::cin >> x[i];

“habil”
2004/11/29
page 261

A.5. Evaluators 261

}

//prepare data structure for derivative

prep_d_eval pd(d_data, DAG.number_of_nodes());

evaluate(pd, DAG.ground());

//initialize variables for evaluation

func_d_eval fv(x, v_ind, model, d_data, NULL);

double fx = evaluate(fv, DAG.objective);

der_eval dv(d_data, v_ind, DAG, NULL, grad);

grad = zero;

evaluate(dv, DAG.objective);

std::cout << "The function value is: " << fx << std::endl;

std::cout << "The gradient is: ";

std::copy(grad.begin(), grad.end(),

std::ostream_iterator<double>(std::cout, ", "));

return 0;

}

A.5.4 Range Evaluation (Interval Evaluation)

In this code snipplet the range of the objective function is enclosed.

#include <model.h>

#include <int_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<interval> x(n);

variable_indicator v_ind(n);

v_ind.set(0,n);

std::cout << "x(1:" << n << ") = ";

// read evaluation point

for(i=0; i<n; i++)

{

std::cin >> x[i];

}

interval_eval fv(x, v_ind, model, NULL);

interval fx = evaluate(fv, DAG.objective);

std::cout << "The function range is in: " << fx << std::endl;

return 0;

}

“habil”
2004/11/29
page 262

262 Appendix A. The COCONUT environment, C++ code

A.5.5 Interval Derivative Evaluation

The following code piece evaluates the range of the gradient of the objective func-
tion.

#include <model.h>

#include <ider_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<interval> x(n), grad(n), zero(n, 0.);

std::vector<interval> rg(DAG.number_of_nodes());

std::vector<std::vector<interval> > d_data;

variable_indicator v_ind(n);

v_ind.set(0,n);

std::cout << "x(1:" << n << ") = ";

// read evaluation point

for(i=0; i<n; i++)

{

std::cin >> x[i];

}

/**

* constraint propagation happens here,

* storing the node ranges in rg.

*/

//prepare data structure for derivative

prep_id_eval pd(d_data, DAG.number_of_nodes());

evaluate(pd, DAG.ground());

//initialize variables for evaluation

func_id_eval fv(x, rg, v_ind, model, d_data, NULL);

interval fx = evaluate(fv, DAG.objective);

der_eval dv(x, d_data, v_ind, DAG, NULL, grad);

grad = zero;

evaluate(dv, DAG.objective);

std::cout << "The function range is: " << fx << std::endl;

std::cout << "The interval derivative is: ";

std::copy(grad.begin(), grad.end(),

std::ostream_iterator<interval>(std::cout, ", "));

return 0;

}

‘‘habil’’

2004/11/29

page 263

A.5. Evaluators 263

A.5.6 First order Slope Evaluation

The following code piece evaluates the slope of the objective function.

#include <model.h>

#include <islp_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<double> z(n), f(DAG.number_of_nodes());

std::vector<interval> x(n), slope(n), zero(n, 0.);

std::vector<interval> rg(DAG.number_of_nodes());

std::vector<std::vector<interval> > slp_data;

variable_indicator v_ind(n);

v_ind.set(0,n);

std::cout << "x(1:" << n << ") = ";

// read evaluation point

for(i=0; i<n; i++)

{

std::cin >> x[i];

}

/**

* constraint propagation happens here,

* storing the node ranges in rg.

*/

//prepare data structure for derivative

prep_islp_eval pd(d_data, DAG.number_of_nodes());

evaluate(pd, DAG.ground());

//initialize variables for evaluation

func_islp_eval fv(z, rg, v_ind, model, d_data, f);

interval fx = evaluate(fv, DAG.objective);

der_eval dv(x, d_data, v_ind, DAG, NULL, slope);

grad = zero;

evaluate(dv, DAG.objective);

std::cout << "The function range is: " << fx.rg << std::endl;

std::cout << "The enclosure of the center evaluation is: " <<

fx.fi << std::endl;

std::cout << "The approximation of the center evaluation is: "

<< fx.f << std::endl;

std::cout << "The slope is: ";

std::copy(slope.begin(), slope.end(),

‘‘habil’’

2004/11/29

page 264

264 Appendix A. The COCONUT environment, C++ code

std::ostream_iterator<interval>(std::cout, ", "));

return 0;

}

A.5.7 Analytic-Differentiable Evaluation

The following code snipplet evaluates the objective function.

#include <model.h>

#include <ade_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<analyticd> x(n);

variable_indicator v_ind(n);

v_ind.set(0,n);

/**

* Here initialize x

*/

analyticd_eval fv(x, v_ind, model, NULL);

analyticd fx = evaluate(fv, DAG.objective);

return 0;

}

A.5.8 Bounded Interval Evaluation

This code snipplet encloses the objective function:

#include <model.h>

#include <bint_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<b_interval> x(n);

variable_indicator v_ind(n);

v_ind.set(0,n);

std::cout << "x(1:" << n << ") = ";

// read evaluation point

for(i=0; i<n; i++)

{

‘‘habil’’

2004/11/29

page 265

A.5. Evaluators 265

std::cin >> x[i];

}

b_interval_eval fv(x, v_ind, model, NULL);

b_interval fx = evaluate(fv, DAG.objective);

// produce output

return 0;

}

A.5.9 Complex Interval Evaluation

In this code snipplet the objective function is evaluated.

#include <model.h>

#include <cint_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<c_interval> x(n);

variable_indicator v_ind(n);

v_ind.set(0,n);

std::cout << "x(1:" << n << ") = ";

// read evaluation point

for(i=0; i<n; i++)

{

std::cin >> x[i];

}

c_interval_eval fv(x, v_ind, model, NULL);

c_interval fx = evaluate(fv, DAG.objective);

// produce output

return 0;

}

A.5.10 Infinity-Bound Evaluation

In this code the objective function is enclosed.

#include <model.h>

#include <infb_evaluator.h>

int main()

{

model DAG("t.dag");

int n = DAG.number_of_variables();

std::vector<infbound> x(n);

‘‘habil’’

2004/11/29

page 266

266 Appendix A. The COCONUT environment, C++ code

variable_indicator v_ind(n);

v_ind.set(0,n);

std::cout << "x(1:" << n << ") = ";

// read evaluation point

for(i=0; i<n; i++)

{

std::cin >> x[i];

}

infbound_eval fv(x, v_ind, model, NULL);

infbound fx = evaluate(fv, DAG.objective);

// output

return 0;

}

A.6 Inference Engines

This section contains the class reference for the inference modules and related
classes.

A.6.1 Base Classes

Termination Reason

/** @file termreason.h */

class termination_reason

{

public:

termination_reason();

termination_reason(int termr_r, const std::string& termr_ref);

termination_reason(const termination_reason& __t);

termination_reason& operator=(const termination_reason& __t);

const std::string& get_message() const;

int get_code() const;

friend std::ostream& operator<< (std::ostream& o,

const termination_reason& __x);

};

Information Contents

/** @file info_contents.h */

‘‘habil’’

2004/11/29

page 267

A.6. Inference Engines 267

class info_contents : public datamap

{

public:

info_contents();

info_contents(const std::string& __n, const basic_alltype& __v);

info_contents(const char* __n, const basic_alltype& __v);

info_contents(const info_contents& __c);

virtual ~info_contents();

info_contents& operator=(const info_contents& __c);

};

Inference Engine Return Type

/** @file ie_rettype.h */

class ie_return_type

{

public:

ie_return_type();

ie_return_type(const termination_reason& __t);

ie_return_type(const delta_base* __d, double __w);

ie_return_type(const std::pair<delta_base*,double>& __d);

ie_return_type(delta __d, double __w);

ie_return_type(const std::pair<delta,double>& __d);

ie_return_type(const std::list<delta>& __d,

const std::list<double>& __w);

ie_return_type(const delta_base* __d, double __w,

const termination_reason& __t);

ie_return_type(const std::pair<delta_base*,double>& __d,

const termination_reason& __t);

ie_return_type(delta __d, double __w, const termination_reason& __t);

ie_return_type(const std::pair<delta,double>& __d,

const termination_reason& __t);

ie_return_type(const std::list<delta>& __d,

const std::list<double>& __w,

const termination_reason& __t);

ie_return_type(const ie_return_type& __r);

virtual ~ie_return_type();

void set_termination_reason(const termination_reason& __t);

const termination_reason& term_reason() const;

bool set_information(const std::string& iname, const basic_alltype& a,

bool force = false);

‘‘habil’’

2004/11/29

page 268

268 Appendix A. The COCONUT environment, C++ code

bool set_information_i(const std::string& iname, int i,

const basic_alltype& a, bool force = false);

const basic_alltype& information(const std::string& iname) const;

const basic_alltype& information(const char* iname) const;

const basic_alltype& information(const std::string& iname, int i) const;

const basic_alltype& information(const char* iname, int i) const;

bool has_information(const std::string& __s) const;

bool has_information(const char* __cp) const;

bool has_information(const std::string& __s, int i) const;

bool has_information(const char* __cp, int i) const;

bool information_indices_set(const std::string& __s,

std::vector<int>& __idx) const;

bool information_indices_set(const char* __cp,

std::vector<int>& __idx) const;

void unset_information(const std::string& __s);

void unset_information(const char* __cp);

void unset_information(const std::string& __s, int i);

void unset_information(const char* __cp, int i);

template <class _S>

bool retrieve_from_info(const std::string& __s,

const std::vector<_S>*& __b) const;

template <class _S>

bool retrieve_from_info(const std::string& __s,

const matrix<_S>*& __b) const;

template <class _S>

bool retrieve_from_info(const std::string& __s, _S& __b) const;

template <class _S>

bool retrieve_from_info(const std::string& __s,

const std::vector<_S>*& __b,

const std::vector<_S>* __def) const;

template <class _S>

bool retrieve_from_info(const std::string& __s,

const matrix<_S>*& __b,

const matrix<_S>* __def) const;

template <class _S>

bool retrieve_from_info(const std::string& __s, _S& __b,

const _S& __def) const;

template <class _S>

bool retrieve_from_info(const char* __s,

‘‘habil’’

2004/11/29

page 269

A.6. Inference Engines 269

const std::vector<_S>*& __b) const;

template <class _S>

bool retrieve_from_info(const char* __s,

const matrix<_S>*& __b) const;

template <class _S>

bool retrieve_from_info(const char* __s, _S& __b) const;

template <class _S>

bool retrieve_from_info(const char* __s, const std::vector<_S>*& __b,

const std::vector<_S>* __def) const;

template <class _S>

bool retrieve_from_info(const char* __s, const matrix<_S>*& __b,

const matrix<_S>* __def) const;

template <class _S>

bool retrieve_from_info(const char* __s, _S& __b,

const _S& __def) const;

template <class _S>

bool retrieve_from_info_i(const std::string& __s, int i,

const std::vector<_S>*& __b) const;

template <class _S>

bool retrieve_from_info_i(const std::string& __s, int i,

const matrix<_S>*& __b) const;

template <class _S>

bool retrieve_from_info_i(const std::string& __s, int i, _S& __b) const;

template <class _S>

bool retrieve_from_info_i(const std::string& __s, int i,

const std::vector<_S>*& __b,

const std::vector<_S>* __def) const;

template <class _S>

bool retrieve_from_info_i(const std::string& __s, int i,

const matrix<_S>*& __b,

const matrix<_S>* __def) const;

template <class _S>

bool retrieve_from_info_i(const std::string& __s, int i, _S& __b,

const _S& __def) const;

template <class _S>

bool retrieve_from_info_i(const char* __s, int i,

const std::vector<_S>*& __b) const;

‘‘habil’’

2004/11/29

page 270

270 Appendix A. The COCONUT environment, C++ code

template <class _S>

bool retrieve_from_info_i(const char* __s, int i,

const matrix<_S>*& __b) const;

template <class _S>

bool retrieve_from_info_i(const char* __s, int i, _S& __b) const;

template <class _S>

bool retrieve_from_info_i(const char* __s, int i,

const std::vector<_S>*& __b,

const std::vector<_S>* __def) const;

template <class _S>

bool retrieve_from_info_i(const char* __s, int i,

const matrix<_S>*& __b,

const matrix<_S>* __def) const;

template <class _S>

bool retrieve_from_info_i(const char* __s, int i, _S& __b,

const _S& __def) const;

ie_return_type operator+(const std::pair<delta_base*,double>& __d);

ie_return_type& operator+=(const std::pair<delta_base*,double>& __d);

ie_return_type& operator=(const ie_return_type& __d);

unsigned int n_deltas() const { return deltas.size(); }

// get all deltas with weight greater or equal thresh

// a delta can be got at most once. The method converts and

// stores the delta in the deltas table. A second call to

// get returns deltas which have not previously been got.

const std::list<delta_id>& get(work_node& wn, double thresh=-INFINITY);

};

Inference Engine Statistics

/** @file inference_engine.h */

class statistic_info

{

public:

double effectiveness;

int number_of_infers;

statistic_info();

virtual ~statistic_info();

};

‘‘habil’’

2004/11/29

page 271

A.6. Inference Engines 271

A.6.2 Inference Engines

class inference_engine

{

protected:

std::string __name;

const gptr<work_node>* __wnode;

work_node_context* __wnc;

vdbl::viewdbase __vdb;

std::vector<delta_id> _old_deltas, _new_deltas;

public:

// the constructor for a basic inference engine

inference_engine(const gptr<work_node>& wnode, const std::string& __n);

virtual ~inference_engine();

virtual bool update_engine(const gptr<work_node>& wnode);

// returns the deltas to be applied and unapplied

std::pair<std::list<delta_id>,std::list<delta_id> > new_deltas();

const delta* get_delta(const delta_id& __d) const;

const model* get_model() const;

virtual ie_return_type infer(const control_data& __c);

const std::string& get_name() const { return __name; }

// collect statistics

virtual statistic_info last_call_stat();

virtual statistic_info cumulative_stat();

};

A.6.3 Graph Analyzers

/** @file graph_analyzer.h */

typedef ie_return_type ga_return_type;

class graph_analyzer

{

protected:

std::string __name;

const gptr<search_graph>* __sgraph;

search_focus* __sfoc;

search_graph_context* __sgc;

‘‘habil’’

2004/11/29

page 272

272 Appendix A. The COCONUT environment, C++ code

vdbl::viewdbase __vdb;

public:

// the constructor for a basic graph analyzer

graph_analyzer(const gptr<search_graph>& sgraph,

const search_focus& sfoc,

const std::string& __n);

graph_analyzer(const gptr<search_graph>& sgraph,

const std::string& __n);

virtual ~graph_analyzer();

virtual bool update_engine(const gptr<work_node>& sgraph,

const search_focus& sfoc);

virtual bool update_engine(const gptr<work_node>& sgraph);

virtual ga_return_type analyze(const control_data& __c);

const std::string& get_name() const;

};

A.7 Management Modules

This section contains the class references for the two management module base
classes.

A.7.1 Management Modules

class management_module

{

protected:

std::string __name;

gptr<work_node>* __wnode;

search_focus* __sfocus;

const search_inspector* __sinsp;

gptr<vdbl::database>* __dbase;

gptr<search_graph>* __sgraph;

public:

// the constructor for a basic management module

management_module(const std::string& __n,

gptr<work_node>& wnode,

search_focus& sfoc,

const search_inspector* sinsp,

gptr<search_graph>& sgraph,

‘‘habil’’

2004/11/29

page 273

A.7. Management Modules 273

gptr<vdbl::database>& dbase);

management_module(const std::string& __n,

gptr<work_node>& wnode,

search_focus& sfoc,

const search_inspector* sinsp,

gptr<search_graph>& sgraph);

...

virtual ~management_module() {}

const model* get_model() const;

const std::string& get_name();

virtual int manage(const control_data& _c);

};

A.7.2 Initializers

class initializer

{

protected:

std::string __name;

gptr<work_node>** __wnode;

search_focus** __sfocus;

gptr<vdbl::database>** __dbase;

gptr<search_graph>** __sgraph;

public:

// the constructor for a basic management module

initializer(const std::string& __n,

gptr<work_node>*& wnode,

search_focus*& sfoc,

gptr<search_graph>*& sgraph,

gptr<vdbl::database>*& dbase);

initializer(const std::string& __n,

gptr<work_node>*& wnode,

search_focus*& sfoc,

gptr<search_graph>*& sgraph);

...

virtual ~initializer();

const std::string& get_name();

“habil”
2004/11/29
page 274

274 Appendix A. The COCONUT environment, C++ code

virtual ie_return_type initialize(const control_data& _c);

};

A.8 Report Modules

In this section the class reference for the report module base class can be found.

/** @file report_module.h */

class report_module

{

protected:

std::string __name;

const gptr<work_node>* __wnode;

search_inspector* __sgroot;

const gptr<vdbl::database>* __dbase;

work_node_context* __wnc;

vdbl::viewdbase __vdb;

const ie_return_type* __ier;

public:

// the constructor for a basic report module

report_module(const std::string& __n,

const gptr<work_node>& wnode, const search_inspector& si,

const gptr<vdbl::database>& dbase,

const ie_return_type& _ir);

virtual ~report_module();

const model* get_model() const;

virtual void print(const control_data& __c, std::ostream& o = std::cout)

const;

const std::string& get_name() const;

};

A.9 The strategy engine

“habil”
2004/11/29
page 275

Bibliography

The numbers in square brackets at the end of every entry in the bibliography are
page numbers referring to the citation of the entry in the main text.

[1] F.A. Al-Khayyal and J.E. Falk. Jointly constrained biconvex programming.
Math. Operations Res.,, 8:273–286, 1983. [80]

[2] AllFusion component modeler. Available from World Wide Web: http://

www3.ca.com/Solutions/Product.asp?ID=1003. WWW Page. [9]

[3] I.P. Androulakis, C.D. Maranas, and C.A. Floudas. αBB: a global optimiza-
tion method for general constrained nonconvex problems. J. Global Optimiza-
tion, 7:337–363, 1995. [22, 30]

[4] K. Appel and W. Haken. Every planar map is four colorable. part i. discharg-
ing. Illinois J. Math., 21:429–490, 1977. [62]

[5] K. Appel and W. Haken. Every planar map is four colorable. part ii. reducibil-
ity. Illinois J. Math., 21:491–567, 1977. [62]

[6] K. Appel and W. Haken. Every planar map is four colorable. Contemporary
Math., 98, 1989. [62]

[7] R.W. Ashford and R.C. Daniel. XPRESS-MP Reference Manual. Dash As-
sociates, Blisworth House, Northants NN73BX, 1995. [13]

[8] L.E. Baker, A.C. Pierce, and K.D. Luks. Gibbs energy analysis of phase
equilibria. Society of Petroleum Engineers Journal, 22:731–742, 1982. [20]

[9] T. Baker, J. Gill, and R.Solovay. Relativizations of the p =? np question.
SIAM J. of Computing, 4:431–442, 1975. [ii]

[10] V. Balakrishnan and S. Boyd. Global optimization in control system analysis
and design. In C.T. Leondes, editor, Control and Dynamic Systems: Advances
in Theory and Applications, volume 53, pages 1–56. Academic Press, New
York, 1992. [19, 65]

[11] Mokhtar Bazaraa, Hanif D. Sheraldi, and C.M. Shetty. Nonlinear Program-
ming, Theory and Algorithms. Wiley, Chichester, UK, 2nd edition, 1993. [32,
33]

275

“habil”
2004/11/29
page 276

276 Bibliography

[12] E.A. Bender. An Introduction to Mathematical Modeling. Dover Publications,
Mineola, NY, 2000. [3]

[13] F. Benhamou, David McAllester, and Pascal Van Hentenryck. CLP intervals
revisited. In Maurice Bruynooghe, editor, Proceedings of ILPS’94, Interna-
tional Logic Programming Symposium, pages 124–138, Ithaca, NY, USA, 1994.
MIT Press. [177]

[14] F. Benhamou, D. McAllister, and P. Van Hentenryck. CLP(intervals) revis-
ited. In Proc. International Symposium on Logic Programming, pages 124–
138, Ithaka, NY, 1994. MIT Press. [78]

[15] F. Benhamou and W. Older. Applying interval arithmetic to real, integer and
boolean constraints. Journal of Logic Programming, 1997. [88, 93]

[16] F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer,
and boolean constraints. J. Logic Programming, 32:1–24, 1997. [78]

[17] F. Benhamou and W.J. Older. Applying interval arithmetic to real, integer,
and boolean constraints. Journal of Logic Programming, 32(1):1–24, 1997.
[177]

[18] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational
Differentiation: Techniques, Applications, and Tools. SIAM, Philadelphia,
1996. [-]

[19] M. Berz and J. Hoefkens. Verified high-order inversion of functional depen-
dencies and interval Newton methods. Reliable Computing, 7:379–398, 2001.
[77, 101]

[20] M. Berz and K. Makino. Verified integration of odes and flows using differ-
ential algebraic methods on high-order taylor models. Reliable Computing,
4:361–369, 1998. [99]

[21] Martin Berz. COSY INFINITY version 8 reference manual. Technical report,
National Superconducting Cyclotron Lab., Michigan State University, East
Lansing, Mich., 1997. MSUCL–1008. [99]

[22] G.D. Birkhoff. The reducibility of maps. Amer. J. Math., 35:114–128, 1913.
[62]

[23] R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. MIPLIB 3.0,
January 1996. Available from World Wide Web: http://www.caam.rice.

edu/~bixby/miplib/miplib.html. Library of test problems. [63]

[24] Ch. Bliek. Fast evaluation of partial derivatives and interval slopes. Reliable
Computing, 3:259–268, 1997. [84, 92]

[25] Ch. Bliek, P. Spellucci, L.N. Vicente, A. Neumaier, L. Granvilliers, E. Mon-
froy, F. Benhamou, E. Huens, P. Van Hentenryck, D. Sam-Haroud, and
B. Faltings. Algorithms for solving nonlinear constrained and optimization
problems: The state of the art. A progress report of the COCONUT project,
2001. Available from World Wide Web: http://www.mat.univie.ac.at/

~neum/glopt/coconut/StArt.html. [124]

“habil”
2004/11/29
page 277

Bibliography 277

[26] Borland together. Available from World Wide Web: http://www.borland.

com/together/. WWW Page. [9]

[27] J.M. Borwein and A.S.Lewis. Convex Analysis and Nonlinear Optimization.
Springer, Berlin, 2000. [33]

[28] Hartmut Bossel. Modellbildung und Simulation. Vieweg, Braunschweig, 2nd
edition, 1994. [3]

[29] Anthony Brooke, David Kendrick, and Alexander Meeraus. GAMS - A User’s
Guide (Release 2.25). Boyd & Fraser Publishing Company, Danvers, Mas-
sachusetts, 1992. [iv, 12, 13, 84]

[30] C. Carathéodory. Über den Variabilitätsbereich der Fourierschen Konstanten
von positiven harmonischen Funktionen. Rendiconti del Circolo Mathematico
de Palermo, 32:193–217, 1911. [33]

[31] E. Carrizosa, P. Hansen, and F. Messine. Improving interval analysis bounds
by translations. J. Global Optimization. to appear. [71]

[32] Chandra Chekuri, Richard Johnson, Rajeev Motwani, B. Natarajan, B. Ra-
makrishna Rau, and Michael S. Schlansker. Profile-driven instruction level
parallel scheduling with application to super blocks. In International Sympo-
sium on Microarchitecture, pages 58–67, 1996. [84]

[33] H.M. Chen and M.H. van Emden. Adding interval constraints to the Moore–
Skelboe global optimization algorithm. In V. Kreinovich, editor, Extended
Abstracts of APIC’95, International Workshop on Applications of Interval
Computations, pages 54–57. Reliable Computing (Supplement), 1995. [78]

[34] D. Chiriaev and G.W. Walster. Interval arithmetic specification.
Available from World Wide Web: http://www.mscs.mu.edu/~globsol/

walster-papers.html. [69]

[35] J.G. Cleary. Logical arithmetic. Future Computing Systems, 2:125–149, 1987.
[78]

[36] COCONUT, continuous constraints – updating the technology. Available from
World Wide Web: http://www.mat.univie.ac.at/~neum/glopt/coconut.

html. WWW-Site. [iii, 124]

[37] Condor high throughput computing, version 6.5.5, September 2003. Available
from World Wide Web: http://www.cs.wisc.edu/condor/. Software. [63]

[38] S.D. Conte and C. de Boor. Elementary Numerical Analysis. International
Series in Pure and Applied Mathematics. McGraw-Hill, New York, 3rd edition,
1980. [iii]

[39] S. Dallwig, A. Neumaier, and H. Schichl. GLOPT – a program for constrained
global optimization. In I. Bomze et al., editor, Developments in Global Opti-
mization, pages 19–36. Kluwer, Dordrecht, 1997. [78]

[40] G. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, NJ, 1967. [i]

“habil”
2004/11/29
page 278

278 Bibliography

[41] G.B. Dantzig. On the significance of solving linear programming problems
with some integer variables. Econometrica, 28:30–44, 1960. [30]

[42] G.B. Dantzig, S. Johnson, and W. White. A linear programming approach to
the chemical equilibrium problem. Management Science, 5:38–43, 1958. [20]

[43] W.C. Davidon. Variable metric method for minimization. Report ANL-5990,
Argonne National Laboratory, Chicago, 1959. Reprinted (with a new preface)
in SIAM J. Optimization 1 (1991), 1 - 17. [30]

[44] P. Deuflhard and G. Heindl. Affine invariant convergence theorems for New-
ton’s method and extensions to related methods. SIAM J. Numer. Anal.,
16:1–10, 1979. [76, 101]

[45] L.C.W. Dixon and G.P. Szegö. Towards Global Optimization. Elsevier, New
York, 1975. [60]

[46] Enterprise architect. Available from World Wide Web: http://www.

sparxsystems.com.au/. WWW Page. [9]

[47] W.R. Esposito and C.A. Floudas. Deterministic global optimization in non-
linear optimal control problems. J. Global Optimization, 17:97–126, 2000.
[20]

[48] G.W. Walster et al. Extended real intervals and the topological closure of
extended real numbers. Technical report, Sun Microsystems, February 2000.
[69]

[49] J. Farkas. Die algebraischen Grundlagen der Anwendungen des Fourier’schen
Prinzips in der Mechanik. Math. Naturwiss. Berichte aus Ungarn, 15:25–40,
1897–9. [39]

[50] C.L. Feffermann and L.E. Seco. Interval arithmetic in quantum mechanics.
In R.B. Kearfott, editor, Applications of interval computations, Volume 3 of
Appl. Optim., pages 145–167. Kluwer, Dordrecht, 1995. [64]

[51] M.C. Ferris, G. Pataki, and S. Schmieta. Solving the seymour problem. Op-
tima, 66:1–7, 2001. [63]

[52] R. Fletcher. Practical Methods of Optimization. Wiley, New York, 1987. [32]

[53] C.A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and
Applications. Oxford Univ. Press, Oxford, 1995. [i]

[54] C.A. Floudas. Deterministic global optimization in design, control, and
computational chemistry. In L.T. Biegler et al., editor, Large Scale Op-
timization with Applications. Part II: Optimal Design and Control, pages
129–184. Springer, New York, 1997. Available from World Wide Web:
ftp://titan.princeton.edu/papers/floudas/ima.pdf. [i]

[55] C.A. Floudas. Deterministic Global Optimization: Theory, Algorithms and
Applications. Kluwer, Dordrecht, 1999. [20]

“habil”
2004/11/29
page 279

Bibliography 279

[56] C.A. Floudas, P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z.H. Gümüs,
S.T. Harding, J.L. Klepeis, C.A. Meyer, and C.A. Schweiger. Handbook of Test
Problems in Local and Global Optimization. Kluwer, Dordrecht, 1999. Avail-
able from World Wide Web: http://titan.princeton.edu/TestProblems/.
[i, 20, 21, 22, 23]

[57] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, Brooks/Cole Publishing Com-
pany, 1993. Available from World Wide Web: http://www.ampl.com/cm/

cs/what/ampl/. [iv]

[58] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL — A Math-
ematical Programming Language. Thomson, second edition, 2003. [13, 84,
182]

[59] Emmanuel Fragnière and Jacek Gondzio. Optimization modeling languages,
1999. Available from World Wide Web: citeseer.nj.nec.com/320279.

html. [16]

[60] A. Frommer. Proving conjectures by use of interval arithmetic. Preprint,
BUGHW-SC 2001/1, University of Wuppertal, 2001. [63]

[61] J.M. Gablonsky and C.T. Kelley. A locally-biased form of the DIRECT algo-
rithm. J. Global Optimization, 21:27–37, 2001. [65]

[62] C.-Y. Gau and L. Schrage. Implementation and testing of a branch-and-
bound based method for deterministic global optimization. In Proceedings
of the Conference Frontiers in Global Optimization, Santorini (Greece), June
2003. to appear. [80]

[63] A.M. Geoffrin. An Introduction to Structured Modeling. Management Sci-
ence, 33(5):547–588, 1987. [3]

[64] Helmuth Gericke. Mathematic in Antike, Orient und Abendland. Fourier
Verlag, Wiesbaden, sixth edition, 2003. [5]

[65] J.W. Gibbs. Graphical methods in thermodynamics of fluids. Trans. Con-
necticut Acad., 2, 1873. [20]

[66] J.W. Gibbs. A method of geometrical representation of the thermodynamic
properties of substances by means of surfaces. Trans. Connecticut Acad., 2,
1873. [20]

[67] P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic
Press, London, 1981. [iii]

[68] F.R. Giordano, M.D. Weir, and W.P. Fox. A First Course in Mathematical
Modeling. Brooks/Cole, 3rd edition, 2002. [3]

[69] GNU lesser general public license. Available from World Wide Web: http:

//www.gnu.org/copyleft/lesser.html. WWW-Document. [124]

[70] L. Granvilliers. Progress in the solving of a circuit design problem. J. Global
Optimization, 20:155–168, 2001. [-]

“habil”
2004/11/29
page 280

280 Bibliography

[71] A. Griewank and G.F. Corliss. Automatic Differentiation of Algorithms. SIAM
Publications, Philadelphia, 1991. [84]

[72] T.C. Hales. An overview of the Kepler conjecture. Manuscript,
math.MG/9811071 - math.MG/9811078, 1998. [i, 63]

[73] T.C. Hales. Cannonballs and honeycombs. Notices Amer. Math. Soc., 47:440–
449, 2000. [63]

[74] E. Hansen. Preconditioning linearized equations. Computing, 58:187–196,
1997. [101]

[75] E.R. Hansen. Global optimization using interval analysis – the multidimen-
sional case. Numer. Math., 34:247–270, 1980. [67]

[76] E.R. Hansen. Global Optimization Using Interval Analysis. Dekker, New
York, 1992. [67, 77]

[77] J. Hass, M. Hutchings, and R. Schlafly. The double bubble conjecture. Elec-
tron. Res. Announc. Amer. Math. Soc., 1:98–102, 1995. electronic. [63]

[78] S. Heipcke. Applications of Optimization with Xpress-MP. Dash Optimization,
Blisworth, UK, 2002. [17]

[79] Ch. Helmberg. Semidefinite programming. Available from World Wide Web:
http://www-user.tu-chemnitz.de/~helmberg/semidef.html. WWW-
Site. [-]

[80] D. Henrion and J.B. Lasserre. Detecting global optimality and extracting
solutions in GloptiPoly. Manuscript, 2003. [-]

[81] D. Henrion and J.B. Lasserre. GloptiPoly: Global optimization over polyno-
mials with Matlab and SeDuMi. ACM Trans. Math. Software, 29:165–194,
2003. [-]

[82] D. Henrion and J.B. Lasserre. Solving global optimization problems over pol-
ynomials with GloptiPoly 2.1. In Ch. Bliek et al., editor, Global Optimization
and Constraint Satisfaction, pages 43–58. Springer, Berlin, 2003. [-]

[83] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, MA, 1989. [78]

[84] P. Van Hentenryck, L. Michel, and F. Benhamou. Newton: constraint pro-
gramming over non-linear constraints. Sci. Programming, 30:83–118, 1997.
[78]

[85] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica. A Modeling Lan-
guage for Global Optimization. MIT Press, Cambridge, MA, 1997. [13, 18,
72, 73, 78, 93, 101, 108]

[86] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization
Algorithms. Springer, Berlin, 1993. [33, 42]

[87] J. Holland. Genetic algorithms and the optimal allocation of trials. SIAM J.
Computing, 2:88–105, 1973. [65]

“habil”
2004/11/29
page 281

Bibliography 281

[88] R. Horst, P.M. Pardalos, and N.V. Thoai. Introduction to Global Optimiza-
tion. Kluwer, Dordrecht, 1995. [-]

[89] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches.
Springer, Berlin, 2nd edition, 1990. [81]

[90] Human genome research, 2002. Available from World Wide Web: http:

//www.science.doe.gov/ober/hug_top.html. WWW document. [19]

[91] Tony Hürlimann. Computer-based mathematical modeling. Habilitation The-
sis, 1997. [6]

[92] Tony Hürlimann. Modeling languages: A new paradigm of programming.
Annals of Operations Research, on Modeling Languages and Applications,
1998. to appear. [13]

[93] Tony Hürlimann. Mathematical Modeling and Optimization, An Essay for the
Design of Computer-Based Modeling Tools, volume 31 of Applied Optimiza-
tion. Kluwer Academic Publishers, Dordrecht, 1999. [13]

[94] Tony Hürlimann. LPL : A mathematical modeling language, an introduction.
Departement of Informatics, Fribourg, 2002. [17]

[95] W. Huyer and A. Neumaier. Global optimization by multilevel coordinate
search. J. Global Optimization, 14:331–355, 1999. [ii, 65]

[96] W. Huyer and A. Neumaier. SNOBFIT – stable noisy optimization by branch
and fit. Manuscript, 2003. [ii]

[97] ILOG Solver 5.1, 2001. [88]

[98] L. Ingber. Simulated annealing: Practice versus theory. Math. Comput. Mod-
elling, 18:29–57, 1993. [65]

[99] R. Van Iwaarden. An improved unconstrained global optimization algorithm.
PhD thesis, Univ. of Colorado at Denver, Denver, CO, May 1986. [101]

[100] E. Janka. A comparison of stochastic methods for global optimization, 2000.
Available from World Wide Web: http://www.mat.univie.ac.at/~vpk/

math/gopt_eng.html. WWW-Document. [ii, 65]

[101] C. Jansson. On self-validating methods for optimization problems. In
J. Herzberger, editor, Topics in validated computation, pages 381–438. El-
sevier, Amsterdam, 1994. [101]

[102] Christian Jansson. A rigorous lower bound for the optimal value of convex
optimization problems. J. of Global Optimization, 2003. Available from World
Wide Web: http://www.ti3.tu-harburg.de/report/03.1.ps. to appear.
[199]

[103] Y. Jiang, W.R. Smith, and G.R. Chapman. Global optimality conditions and
their geometric interpretation for the chemical phase and equilibrium problem.
SIAM J. on Optimization, 5(4):813–834, 1995. [22]

“habil”
2004/11/29
page 282

282 Bibliography

[104] F. John. Extremum problems with inequalities as subsidiary conditions.
In J. Moser, editor, Studies and Essays Presented to R. Courant on his
60th Birthday January 8, 1948, Interscience, New York 1948. Reprinted
as pp. 543–560 of: Fritz John, Collected Papers, volume 2, pages 187–204.
Birkhäuser, Boston, 1985. [50]

[105] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of
expensive black-box functions. J. Global Optimization, 13:455–492, 1998. [ii]

[106] W.M. Kahan. A more complete interval arithmetic. Lecture notes for an en-
gineering summer course in numerical analysis, University of Michigan, 1968.
[66, 71, 76]

[107] J. Kallrath. Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis.
Vieweg, 2002. [3, 6]

[108] J. Kallrath, editor. Modeling Languages in Mathematical Optimization.
Kluwer, Dordrecht, 2003. [iv, 13]

[109] Josef Kallrath, editor. Modeling Languages in Mathematical Optimization.
Kluwer Academic Publishers, Boston Dordrecht London, 2003. [182]

[110] L.B. Kantorovich. Functional analysis and applied mathematics. Uspekhi
Mat. Nauk, 3:89–185, 1948. (in Russian). Translated by C.D. Benster, Nat.
Bur. Stand. Rep. 1509, Washington, DC (1952). [76]

[111] W. Karush. Minima of functions of several variables with inequalities as side
constraints. Master’s thesis, Dept. of Mathematics, Univ. of Chicago, IL,
1939. [50]

[112] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1996. [75, 84, 101]

[113] R.B. Kearfott. A review of techniques in the verified solution of constrained
global optimization problems. In R.B. Kearfott and V. Kreinovich, editors,
Applications of Interval Computations, pages 23–60. Kluwer, Dordrecht, 1996.
[101]

[114] R.B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer, Dor-
drecht, 1996. [67]

[115] R.B. Kearfott. Empirical evaluation of innovations in interval branch and
bound algorithms for nonlinear algebraic systems. SIAM J. Sci. Comput.,
18:574–594, 1997. [101]

[116] R.B. Kearfott. GlobSol: History, composition, and advice on use. In Ch. Bliek
et al., editor, Global Optimization and Constraint Satisfaction, pages 17–31.
Springer, Berlin, 2003. [51, 72, 77]

[117] R.B. Kearfott and K. Du. The cluster problem in multivariate global opti-
mization. J. Global Opt., 5:253–265, 1994. [73]

[118] R.B. Kearfott, C. Hu, and M. Novoa III. A review of preconditioners for the
interval Gauss-Seidel method. Interval Computations, 1:59–85, 1991. [109]

“habil”
2004/11/29
page 283

Bibliography 283

[119] S. Kirkpatrick, C.D. Geddat, Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983. [-]

[120] M. Kojima, S. Kim, and H. Waki. A general framework for convex relaxation
of polynomial optimization problems over cones. J. Oper. Res. Soc. Japan,
46:125–144, 2003. [-]

[121] M. Kojima and L. Tuncel. Cones of matrices and successive convex relaxations
of nonconvex sets. SIAM J. Optimization, 10:750–778, 2000. [-]

[122] L.V. Kolev. Use of interval slopes for the irrational part of factorable functions.
Reliable Computing, 3:83–93, 1997. [70, 71, 72]

[123] L.V. Kolev and I.P. Nenov. Cheap and tight bounds on the solution set of
perturbed systems of nonlinear equations. Reliable Computing, 7:399–408,
2001. [99]

[124] J. Kostrowicki and H.A. Scheraga. Some approaches to the multiple-minima
problem in protein folding. In P.M. Pardalos et al., editor, Global Minimiza-
tion of Nonconvex Energy Functions: Molecular Conformation and Protein
Folding, pages 123–132. Amer. Math. Soc., Providence, RI, 1996. [i, 26]

[125] R. Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit fehler-
schranken. Computing, 4:187–201, 1969. [71]

[126] R. Krawczyk and A. Neumaier. Interval slopes for rational functions and
associated centered forms. SIAM J. Numer. Anal., 22:604–616, 1985. [72]

[127] M. Krein and D. Milman. On the extreme points of regularly convex sets.
Studia Math., 9:133–138, 1940. [42]

[128] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman, editor,
Proceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, pages 481–492. Univ. of California Press, Berkeley, California,
1951. [51, 55]

[129] A. Kuntsevich and F. Kappel. SolvOpt. Available from World
Wide Web: http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/.
WWW-Document. [106]

[130] J.-L. Lagrange. Théorie des fonctions analytique. 1797. (Engl. The theory of
analytical functions). [29, 46]

[131] J.-L. Lagrange. Leçons sur le calcul des fonctions. 1806. (Engl. Lessons on
the calculus of functions). [29, 46]

[132] David Lamb. CASE tool information, 2002. Available from World Wide
Web: http://www.qucis.queensu.ca/Software-Engineering/case.html.
WWW-Document. [9]

[133] A.H. Land and A.G. Doig. An automated method for solving discrete pro-
gramming problems. Econometrica, 28:497–520, 1960. [-]

[134] E. Lee and C. Mavroidis. Solving the geometric design problem of spatial
3r robot manipulators using polynomial homotopy continuation. J. Mech.
Design, Trans. ASME, 124:652–661, 2002. [i, 19]

“habil”
2004/11/29
page 284

284 Bibliography

[135] E. Lee, C. Mavroidis, and J.P. Merlet. Five precision points synthesis of spa-
tial RRR manipulators using interval analysis. In Proc. 2002 ASME Mecha-
nisms and Robotics Conference, pages 1–10, 29–October 2, September 2002.
Montreal. Available from World Wide Web: http://robots.rutgers.edu/

Publications.htm. [i, 19]

[136] Eric Lee, Constantinos Mavroidis, and Jean Pierre Merlet. Five precision
points synthesis of spatial RRR manipulators using interval analysis. In Pro-
ceedings of DETC’02, 27th Biennial Mechanisms and Robotics Conference
Montreal, Canada, 2002. [18]

[137] G.W. Leibniz. Nova methodus pro maximis et minimis, itemque tangentibus,
quae nec fractas nec irrationales quantitates moratur, et singulare pro illis
calculi genus. Acta eruditorum, 3, 1684. (Engl. A new method for maxima
and minima, as well as tangents, which are neither hindered by rational nor
irrational quantities, and an excellent calculus for them). [29]

[138] J.D. Little, K.C. Murty, D.W. Sweeney, and C. Karel. An algorithm for the
travelling salesman problem. Operations Research, 11:972–989, 1963. [-]

[139] C. Maheshwari, A. Neumaier, and H. Schichl. Convexity and concavity de-
tection. In preparation, 2003. [vi]

[140] K. Makino and M. Berz. Taylor models and other validated functional inclu-
sion methods. Int. J. Pure Applied Math., 4:379–456, 2003. [71]

[141] O.L. Mangasarian. Pseudo-convex functions. SIAM Journal on Control,
3:281–290, 1965. [37]

[142] O.L. Mangasarian. Nonlinear Programming. McGraw-Hill New York 1969.
Reprinted as: Classics in Applied Mathematics, SIAM, Philadelphia, 1994.
[37, 51]

[143] G.P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part i – convex underestimating problems. Math. Programming,
10:147–175, 1976. [79]

[144] C.M. McDonald and C.A. Floudas. Global optimization for the phase and
chemical equilibrium problem: application to the NRTL equation. Comput.
Chem. Eng., 19:1111–1139, 1995. [22]

[145] C.M. McDonald and C.A. Floudas. GLOPEQ: A new computational tool
for the phase and chemical equilibrium problem. Computers & Chemical
Engineering, 19(11):1111–1141, 1995. [22, 23, 25]

[146] K.I.M. McKinnon and M. Mongeau. A generic global optimization algorithm
for the chemical phase and equilibrium problem. Journal of Global Optimiza-
tion, 12(4):325–351, 1998. [22]

[147] M.M. Meerschaert. Mathematical Modeling. Harcourt/Academic Press, 2nd
edition, 1999. [3]

[148] H. Minkowski. Allgemeine Lehrsätze über die konvexen Polyeder. Nachr.
Gesellschaft der Wiss. Gottingen, pages 198–219, 1896. [33]

“habil”
2004/11/29
page 285

Bibliography 285

[149] H. Minkowski. Theorie der Konvexen Körper, insbesondere Begründung ihres
Oberflächenbegriffs. In D. Hilbert, A. Speiser, and H. Weyl, editors, Gesam-
melte Abhandlungen von Hermann Minkowski, Volume II, pages 131–229.
B.G. Teubner, Leipzig, Berlin, 1911. [35]

[150] M. Mongeau, H. Karsenty, V. Rouz, and J.-B. Hiriart-Urruty. Comparison
of public-domain software for black box global optimization. Optimization
Methods Software, 13:203–226, 2000. [65]

[151] R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-
phia, 1979. [66, 73]

[152] R.E. Moore and C.T. Yang. Interval analysis i. Technical Report Space
Div. Report LMSD285875, Lockheed Missiles and Space Co., 1959. Available
from World Wide Web: http://interval.louisiana.edu/Moores_early_

papers/Moore_Yang.pdf. [66, 73]

[153] T.S. Motzkin and E.G. Strauss. Maxima for graphs and a new proof of a
theorem of Turan. Canad. J. Math., 17:533–540, 1965. [19]

[154] R.L. Muhanna and R.L. Mullen. Critical issues in the application of inter-
val methods to finite element analysis, 2002. Available from World Wide
Web: http://ecivwww.cwru.edu/civil/rlm/scan2002/SCAN2002_files/

v3_document.htm. Slides, SCAN 2002, [65]

[155] Musser and Stepanov. Generic programming. In ISSAC: Proceedings of the
ACM SIGSAM International Symposium on Symbolic and Algebraic Compu-
tation (formerly SYMSAM, SYMSAC, EUROSAM, EUROCAL) (also some-
times in cooperation with the Symbolic and Algebraic Manipulation Groupe
in Europe (SAME)), 1989. Available from World Wide Web: citeseer.nj.

nec.com/musser88generic.html. [126]

[156] I.P. Nenov and D.H. Fylstra. Interval methods for accelerated global search
in the Microsoft Excel solver. Reliable Computing, 9:143–159, 2003. [-]

[157] NEOS server for optimization. Available from World Wide Web: http://

www-neos.mcs.anl.gov. [-]

[158] A. Neumaier. The enclosure of solutions of parameter-dependent systems
of equations. In R.E. Moore, editor, Reliability in Computing, pages 269–
286. Acad. Press, San Diego, 1988. Available from World Wide Web: http:

//www.mat.univie.ac.at/~neum/publist.html\#encl. [-]

[159] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ.
Press, Cambridge, 1990. [67, 70]

[160] A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univ.
Press, Cambridge, 1990. [101, 107, 108, 113]

[161] A. Neumaier. Second-order sufficient optimality conditions for local and global
nonlinear programming. J. Global Optimization, 9:141–151, 1996. [57]

[162] A. Neumaier. Molecular modeling of proteins and mathematical prediction of
protein structure. SIAM Review, 39:407–460, 1997. [i, 25, 26]

“habil”
2004/11/29
page 286

286 Bibliography

[163] A. Neumaier. Optimization — theory and algorithms, 2000. Lecture notes,
book in preparation. [32, 57, 58]

[164] A. Neumaier. Introduction to Numerical Analysis. Cambridge Univ. Press,
Cambridge, 2001. [iii]

[165] A. Neumaier. Taylor forms – use and limits. Reliable Computing, 9:43–79,
2002. Available from World Wide Web: http://www.mat.univie.ac.at/

~neum/papers.html\#taylor. [71, 77, 99]

[166] A. Neumaier. Constraint satisfaction and global optimization in robotics.
Manuscript, 2003. [i]

[167] A. Neumaier. Mathematical model building. In J. Kallrath, editor, Modeling
Languages in Mathematical Optimization. Kluwer, Dordrecht, 2003. Chapter
3. [6]

[168] A. Neumaier. Complete search in continuous global optimization and con-
straint satisfaction. In A. Iserles, editor, Acta Numerica 2004. Cambridge
University Press, Cambridge, 2004. Available from World Wide Web: http:

//www.mat.univie.ac.at/~neum/papers.html##glopt03. [iii, v, 60, 65, 73,
81]

[169] A. Neumaier and A. Pownuk. FEM structural analysis, 2003. Manuscript,
[65]

[170] A. Neumaier and H. Schichl. Sharpening the Karush-John optimality condi-
tions. Manuscript, 2003. [51]

[171] Arnold Neumaier. NOP - A Compact Input Format for Nonlinear Optimiza-
tion Problems. In I.M. Bomze, T. Csendes, R. Horst, and P.M. Pardalos,
editors, Developments in Global Optimization, pages 1–18. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1997. [13, 18]

[172] Sir I. Newton. Philosophiae naturalis principia mathematica. 1687. (Engl.
The mathematical principles of natural philosophy). [29]

[173] Sir I. Newton. Methodus fluxionum et serierum infinitarum. 1736. (Engl. The
method of fluxes and infinite series), written in 1671. [29]

[174] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in
Operations Research. Springer, 1999. [iii, 32]

[175] W. Older and A. Vellino. Constraint arithmetic on real intervals. In F. Ben-
hamou and A. Colmerauer, editors, Constrained Logic Programming: Selected
Research. MIT Press, Cambrige, MA, 1993. [-]

[176] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables, volume 30 of Classics in Applied Mathematics. SIAM,
Philadelphia, 2000. [101]

[177] C.H. Papadimitrou. The Euclidean traveling salesman problem is np-
complete. Theoretical Computer Science 4, 3:237–244, 1977. [ii]

“habil”
2004/11/29
page 287

Bibliography 287

[178] P.M Pardalos and J.B. Rosen. Constrained Global Optimization: Algorithms
and Applications, volume 268 of Lecture Notes in Computer Science. Springer,
Berlin, 1987. [-]

[179] P.M. Pardalos and G. Schnitger. Checking local optimality in constrained
quadratic programming is NP-hard. Oper. Res. Lett., 7:33–35, 1988. [ii]

[180] P.A. Parrilo. Semidefinite programming relaxations for semialgebraic prob-
lems. Math. Programming B, 96:293–320, 2003. [-]

[181] J.D. Pintér. LGO – A Model Development System for Continuous Global
Optimization. User s Guide. Pintér Consulting Services, Inc., Halifax, NS. [-]

[182] J.D. Pintér. Global Optimization in Action. Kluwer, Dordrecht, 1996. [-]

[183] Python. Available from World Wide Web: http://www.python.org. WWW-
Site. [126]

[184] Rational rose. Available from World Wide Web: http://www-3.ibm.com/

software/awdtools/developer/plus. WWW Page. [9]

[185] H. Renon and J.M. Prausnitz. Local compositions in thermodynamic excess
functions for liquid mixtures. AIChE (American Institute of Chemical Engi-
neers) J., 14:135, 1968. [22]

[186] F. Richards. The protein folding problem. Scientific American, 264:54–63,
January 2001. [26]

[187] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,
1970. [33]

[188] R.T. Rockafellar and R.J.-B. Wets. Variational Analysis. Springer, Berlin,
1998. [33]

[189] S.M. Rump. Expansion and estimation of the range of nonlinear functions.
Math. Comp., 65:1503–1512, 1996. [72]

[190] S.M. Rump. INTLAB – INTerval LABoratory. In T. Csendes, editor, De-
velopments in reliable computing, pages 77–104. Kluwer, Dordrecht, 1999.
Available from World Wide Web: http://www.ti3.tu-harburg.de/rump/

intlab/index.html. [72]

[191] H.S. Ryoo and N.V. Sahinidis. A branch-and-reduce approach to global opti-
mization. J. Global Optimization, 8:107–139, 1996. [-]

[192] N.V. Sahinidis. BARON. branch and reduce optimization navigator. user’s
manual. Available from World Wide Web: http://archimedes.scs.uiuc.

edu/baron/baron.html. WWW-Document. [-]

[193] N.V. Sahinidis. BARON: A general purpose global optimization software
package. J. Global Optimization, 8:201–205, 1996. [30]

[194] N.V. Sahinidis. Global optimization and constraint satisfaction: The branch-
and-reduce approach. In Ch. Bliek et al., editor, Global Optimization and
Constraint Satisfaction, pages 1–16. Springer, Berlin, 2003. [-]

“habil”
2004/11/29
page 288

288 Bibliography

[195] D. Sam-Haroud and B. Faltings. Consistency techniques for continuous con-
straints. Constraints, 1(1&2):85–118, Sep 1996. [88, 93]

[196] D. Sam-Haroud and B. Faltings. Consistency techniques for continuous con-
straints. Constraints, 1:85–118, 1996. [178]

[197] H. Schichl. The COCONUT API version 2.32, reference manual. Technical
Report Appendix to ”Specification of new and improved representations”,
Deliverable D5v2, the COCONUT project, November 2003. Available from
World Wide Web: http://www.mat.univie.ac.at/coconut-environment.
[125, 170]

[198] H. Schichl. VDBL (Vienna Database Library) version 1.0, reference man-
ual. Technical Report Appendix to ”Upgraded State of the Art Techniques
implemented as Modules”, Deliverable D13, the COCONUT project, July
2003. Available from World Wide Web: http://www.mat.univie.ac.at/

coconut-environment. [125]

[199] H. Schichl. VGTL (Vienna Graph Template Library) version 1.0, reference
manual. Technical Report Appendix to ”Upgraded State of the Art Tech-
niques implemented as Modules”, Deliverable D13, the COCONUT project,
July 2003. Available from World Wide Web: http://www.mat.univie.ac.

at/coconut-environment. Version 1.1, October 2003. [125, 133]

[200] H. Schichl and A. Neumaier. Exclusion regions for systems of equations. SIAM
J. Numer. Anal., 2003. to appear. [72, 73, 101, 106, 110, 170]

[201] H. Schichl and A. Neumaier. Global optimization on directed acyclic graphs,
2003. Available from World Wide Web: http://www.mat.univie.ac.at/

~neum/papers.html. Manuscript. [84, 173, 174]

[202] Hermann Schichl and Arnold Neumaier. Exclusion regions for systems of
equations. SIAM J. Num. Analysis, 2003. to appear. [177]

[203] Hermann Schichl, Arnold Neumaier, and Stefan Dallwig. The NOP-2 model-
ing language. Ann. Oper. Research, 104:281–312, 2001. [13, 18]

[204] Linus Schrage. Optimization Modeling with LINGO. LINDO Systems, Inc.,
Chicago, Il, 1999. [13]

[205] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester,
1986. [41, 51]

[206] C.A. Schweiger, A. Rojnuckarin, and C.A. Floudas. MINOPT: A Software
Package for Mixed-Integer Nonlinear Optimization. Dept. of Chemical Engi-
neering, Princeton University, Princeton, NJ 08544, June 1996. [13]

[207] O. Shcherbina, A. Neumaier, Djamila Sam-Haroud, Xuan-Ha Vu, and Tuan-
Viet Nguyen. Benchmarking global optimization and constraint satisfaction
codes. In Ch. Bliek et al., editor, Global Optimization and Constraint Satis-
faction, pages 211–222. Springer, Berlin, 2003. Available from World Wide
Web: http://www.mat.univie.ac.at/~neum/papers.html\#bench. [ii]

[208] Z. Shen and A. Neumaier. The Krawczyk operator and Kantorovich’s theorem.
J. Math. Anal. Appl., 149:437–443, 1990. [70, 72, 77, 101]

“habil”
2004/11/29
page 289

Bibliography 289

[209] M. Silaghi, D. Sam-Haroud, and B. Faltings. Search techniques for non-linear
CSPS with inequalities. In Proceedings of the 14th Canadian Conference on
AI, 2001. [178]

[210] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Search techniques for non-
linear csps with inequalities. In Proceedings of the 14th Canadian Conference
on AI, 2001. [188]

[211] M. Sipser. Introduction to the theory of computation. PWS Publ. Comp.,
1997. [ii]

[212] S. Skelboe. Computation of rational interval functions. BIT, 14:87–95,
1974. Available from World Wide Web: http://www.diku.dk/~stig/

CompRatIntv.pdf. [73]

[213] S. Smale. Mathematical problems for the next century. In V. Arnold,
M. Atiyah, P. Lax, and B. Mazur, editors, Frontiers and Perspectives 2000.
Amer. Math. Soc., Providence, RI, 2000. [64]

[214] W.R. Smith and R.W. Missen. Chemical Reaction Equilibrium Analysis: The-
ory and Algorithms. Wiley & Sons, Chichester, 1982. [20]

[215] I. Sommerville. Software Engineering. Addison-Wesley, Reading, MA, 6th
edition, 2000. [9]

[216] P. Spellucci. An SQP method for general nonlinear programs using only
equality constrained subproblems. Mathematical Programming, 82:413–448,
1998. [51, 177, 191]

[217] A.A. Stepanov and M. Lee. The Standard Template Library. Technical Report
X3J16/94-0095, WG21/N0482, Hewlett-Packard, 1994. Available from World
Wide Web: citeseer.nj.nec.com/stepanov95standard.html. [126]

[218] J. Stoer and C.Witzgall. Convexity and Optimization in Finite Dimensions
I. Springer, Berlin, 1970. [33]

[219] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
MA, 3rd edition, 1997. [124]

[220] M. Tawarmalani and N.V. Sahinidis. Convexification and Global Optimiza-
tion in Continuous and Mixed-Integer Nonlinear Programming: Theory, Al-
gorithms, Software, and Applications. Kluwer, Dordrecht, 2002. [80]

[221] J.A. Trangenstein. Customized minimization techniques for phase equilib-
rium computations in reservoir simulation. Chemical Engineering Science,
42(12):2847–2863, 1987. [22]

[222] W. Tucker. A rigorous ODE solver and Smale’s 14th problem. Found. Comput.
Math., 2:53–117, 2002. [64]

[223] H. Tuy. D.C. optimization: Theory, methods and algorithms. In R. Horst
and P.M. Pardalos, editors, Handbook of Global Optimization, pages 149–216.
Kluwer, Dordrecht, 1995. [81]

“habil”
2004/11/29
page 290

290 Bibliography

[224] Xuan-Ha Vu, Djamila Sam-Haroud, and Marius-Calin Silaghi. Approximation
techniques for non-linear problems with continuum of solutions. In Proceed-
ings of The 5th International Symposium on Abstraction, Reformulation and
Approximation (SARA’2002), pages 224–241, Canada, August 2002. [188]

[225] Xuan-Ha Vu, Djamila Sam-Haroud, and Marius-Calin Silaghi. Numerical
constraint satisfaction problems with non-isolated solutions. In 1st Interna-
tional Workshop on Constraint Satisfaction and Global Optimization (CO-
COS’2002), France, October 2002. [188]

[226] S. Willard. General Topology. Addison-Wesley, Reading, MA, 1970. [34]

[227] H.P. Williams. Model Building in Mathematical Programming. John Wiley
and Sons, Chichester, 3rd edition, 1993. [3]

[228] H.P. Williams. Model Solving in Mathematical Programming. Wiley, Chich-
ester, 4th edition, 1999. [6]

[229] R.J. Wilson. Introduction to Graph Theory. Addison-Wesley, Reading, MA,
4th edition, 1997. [62]

