
Chapter 4

THEORETICAL CONCEPTS AND DESIGN
OF MODELING LANGUAGES
FOR MATHEMATICAL OPTIMIZATION

Hermann Schichl∗

Institut für Mathematik der Universität Wien

Strudlhofgasse 4, A-1090 Wien

Hermann.Schichl@esi.ac.at

Abstract In this chapter we will present the basic design features of modeling languages,
turning our attention to algebraic modeling languages. Later we will introduce an
important class of optimization problems — global optimization, and illustrate
the difficulties in constructing models for such problems.

Keywords: Modeling, Modeling Language, Modeling System, Modeling Software, Alge-
braic Modeling Language, Declarative Language, Global Optimization

4.1 Modeling Languages

The development of modeling languages started in the late 1970s when GAMS
was designed, although, as described in Section 1.3 there had been some pre-
cursors before.

Since that time all the error prone routine tasks in Fig. 2.4.3 could be per-
formed by the computer. The process of modeling became much more conve-
nient, and the flexibility was increased a lot.

∗funded by EU project COCONUT IST-2000-26063

45

46 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

In a modeling language, the model can be written in a form which is close to
the mathematical notation, actually a typical feature of an algebraic modeling
language (see Section 4.1.1).

The formulation of the model is independent of solver formats. Different
solvers can be connected to the modeling language, and the translation of models
and data to the solver format is done automatically. This has several advantages.
The formerly tedious and error prone translation steps are done by the computer,
and after thorough testing of the interface errors are very unlikely. There is a
clean cut between the modeling and the numerical, algorithmic part. In addition,
for hard problems different solvers can be tried, making it more likely that a
solution algorithm is found which produces a useful result.

In a modeling language, model and model data are kept separately. There
is a clear cut between the model structure and the data. Thus, many different
instances of the same model class with varying data can be solved. Many
systems provide an ODBC (open database connectivity) interface for automatic
database access and an interface to the most widely used spreadsheet systems.
This relieves the user from the laborious duty of searching for the relevant data
every time the model is used. A second advantage of this concept is that during
the development phase of the model (in the cycle) the approach can be tested on
toy problems with small artificial data sets, and later the model can be applied
without change for large scale industry-relevant instances with real data.

Even the problem of derived data is solved in most modeling systems. Due
to the development of automatic differentiation (see e.g., [88]) the modeling
languages can generate derived information (gradients, sparse Hessians,. . .)
from the model description without assistance of the user.

Today, there are several modeling systems in use, as described in Section 1.3.
At first we will analyze the biggest class, the algebraic modeling languages, in
Section 4.1.1. In the later sections we will shed light on the other language
classes, ending with languages.

4.1.1 Algebraic Modeling Languages

This is the biggest class of modeling languages. Typical representatives are
GAMS [28] (see Chapter 8), AMPL [72] (Chapter 7), Xpress-MP [5], LINGO [195]
(Chapter 9), NOP [165], NOP-2 [189] (Chapter 15), Numerica [217], and MINOPT [199]
(Chapter 11).

In [106] and [104] Tony Hürlimann describes why algebraic modeling
languages can be viewed as a new paradigm of programming. Usually pro-
gramming languages are divided into three different classes:

Imperative Languages These languages are also called procedural languages,
typical representatives are C, C++, Pascal, FORTRAN, Java. With these
languages a computer is programmed in a way which has a strong con-

Theoretical Concepts and Design of Modeling Languages 47

nection to the von Neumann concept of a computer. The stage of the
computation can always be described by the state of the computer’s mem-
ory locations, its instruction pointer, and some status registers. At each
step this state changes until the computation reaches a terminal state,
usually when the desired result is computed. The ability to assign values
to variables and change the corresponding memory location in that way,
and the explicit sequential execution are characteristica of an imperative
language. An extension to that concept, as Hürlimann expresses it: the
ultimate consequence, is object oriented programming where computa-
tion proceeds by changing the local state of objects.

Functional Languages This paradigm is based on the concept that every com-
putation can be viewed as a function f : X → Y translating an input
from X to a unique output in Y . Since every value can be represented as
a function, no variables are necessary, and there is no need for an assign-
ment operation. There is a distinction between function definition and
application of a function, and most important, functions are viewed as
values themselves. A typical representative of functional programming
languages is LISP.

Logic Programming Languages This paradigm was developed in the 1960s
during the construction of theorem provers, programs which were de-
signed to prove mathematical theorems. In this development process it
was detected that every mathematical proof can be regarded as a compu-
tation following specific rules. In the reverse, every computation can as
well be regarded as a proof, and so the most important representative of
this language category, the programming language Prologwas designed.

Every program in Prolog consists of a non-empty set of goals and a set
of (Horn)-rules1. Using the backtracking algorithm, or more modern res-
olution methods (constraint logic programming, see [113]) the program
tries to reach a goal obeying the rules. As a short summary, one could say
that a logic programming language can be seen as a “notational system
for writing logical statements together with specified algorithms for im-
plementing inference rules” [144, p. 426]. Typical logic programming
languages are Prolog V and ECLiPSe.

All languages from these classes specify a problem in an algorithmic way. Like
in Babylonian mathematics, it is not specified what the problem is but rather

1A Horn-rule or Horn-clauseis a disjunction of literals (i.e. atomic statement) with at most one positive
literal. If the clause contains only the positive literal, it is called a fact.

48 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

how to solve the problem. For this reason we call these languages algorithmic
languages.

In contrast to that, modeling languages store the knowledge about a model,
they define the problem and usually do not specify how to solve it. They are
declarative languages.

The important question here is: How do we describe what the problem is?
The answer is: By specifying the problem’s properties.

We start with a state space X (usually R
n × Z

m). On this state space
we define a set of constraints by mathematical formulas (usually equations,
inequalities, and optimality requirements), which together define a relation
R : X → {true, false} deciding about the admissibility of a member x ∈ X .
We say x is admissible2 if no constraints are violated, i.e., if R(x) = true, and
we define the mathematical model M := {x ∈ X | R(x)} for the problem
we are considering. This formulation is very close to the modern mathematical
approach, and it has an important consequence:

Since no solution algorithm is specified, there is a priori no reason, why a
problem defined in the declarative way should be solvable at all, and there is
definitely no reason why there should be an algorithm for finding a solution.

Fortunately, however, there are large classes of problems (like linear pro-
gramming) for which algorithms to explicitly find the set M exist, and the
number of solution algorithms for various problem categories grows steadily.

If we direct our attention back to declarative languages, we see their three
most important aspects:

Problems are represented in a declarative way.
There is a clear separation between problem definition and the solution process.
There is a clear separation between the problem structure and its data.

Algebraic modeling languages are a special class of declarative languages, and
most of them are designed for specifying optimization problems. Usually they
are capable of describing problems of the form

min f(x)

s.t. F (x) = 0

G(x) ≤ 0

x ∈ x,

(4.1.1)

or something slightly more general. Here x denotes a subbox ofX = R
m×Z

n.

2I have chosen the word admissible, since in optimization the word feasible is used to describe all points
which obey the equality- and inequality constraints but not necessarily the optimality requirement.

Theoretical Concepts and Design of Modeling Languages 49

The problem is flattened, i.e. all variables and constraints become essentially
one-dimensional, and the model is written in an index-based formulation, using
algebraic expressions in a way which is close to the mathematical notation.
Typically, the problem is declared using sets, indices, parameters, and variables.

Conceptually similar entities are grouped in sets. The entities in the sets are
later referenced by indices to the elements of those sets. Groups of entities
(variables, constraints) can then be compactly represented and used in algebraic
expressions. Here it must be noted that one of the most important characteristica
of modern algebraic modeling languages is their ability to describe non-linear
models.

In AMPL, for instance, the expression

∑

i∈S

xi

would be written as

sum { i in S } x[i];

This leads to a problem formulation which is very close to a mathematical for-
mulation, and translation of mathematical models to declarations in a modeling
language usually only involves syntactic issues.

The algebraic modeling language is then responsible for creating a problem
instance that a solution algorithm can work on. This is done by expanding the
compact notation by indexing all the sets and adding the model data; this is often
called the set indexing ability of algebraic modeling languages. Very often the
modeling language provides an additional presolve phase before transferring
the problem to the solution algorithm. In this phase the model is analyzed
and certain simplification techniques are applied. This flattened and simplified
model is then passed on to the solver.

As a small example we consider the problem

min xTQx+ cTx

s.t. Ax ≤ b

‖x‖ ≥ 1

x ∈ [l, u],

(4.1.2)

with an N ×N -matrix Q and an M ×N -matrix A.

50 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

Writing down all matrix products in index form we transform problem (4.1.2)
into the “flat” model

min
N
∑

i=1

(N
∑

j=1

Qijxj + ci

)

xi

s.t.
N
∑

j=1

Aijxj ≤ bi ∀i = 1, . . . ,M

√

√

√

√

N
∑

i=1

x2
i ≥ 1

xj ∈ [lj , uj] ∀j = 1, . . . , N.

(4.1.3)

This model can then easily be “programmed” in e.g., AMPL:

PARAMETERS

param N>0 integer;

param M>0 integer;

param c {1..N};

param b {1..M};

param Q {1..N,1..N};

param A {1..M,1..N};

param l {1..N};

param u {1..N};

VARIABLES

var x {1..N};

OBJECTIVE

minimize goal_function:

sum {i in 1..N} (sum {j in 1..N} Q[i,j]*x[j] + c[i]) * x[i];

CONSTRAINTS

subject to linear_constraints {j in 1..M}:

sum {i in 1..N} A[j,i]*x[i] <= b[j];

norm_constraint: sqrt(sum {j in 1..N} x[j]^2) >= 1;

box_constraints {j in 1..N}: l[j]<=x[j]<=u[j];

################ DATA #####################

data sample.dat;

###

solve; display x;

Theoretical Concepts and Design of Modeling Languages 51

By reading through the definition, we can easily identify the various parts of
the flat model, only complemented by declarations of parameters and variables.
In the data section we define that the model data should be read from the file
sample.dat, and the last line contains the only procedural statements, solve
which calls the solver, and display x which prints the solution.

Before we consider different approaches to modeling languages, here is a
short summary on the most important design features of algebraic modeling
languages:

Variables, constraints with arbitrary names,
Sets, indices, algebraic expressions (possibly non-linear),
Notation which is close to the mathematical formulation,
Problem structure is data independent,
Models can be scalable, by a change of the parameters a switch can be made from toy-
problems to real-life problems.
Most statements are declarative, except for conditionals, loops, and very few procedural
statements,
Flexibility in the types of models that can be specified,
Convenient for the modeler (little overhead in model formulation. . .),
Simple interface between modeling language and solver

It must be easy to connect a solver to the modeling language and to have easy access
to the model, the data, and the derived information like derivatives.

Sending data back from the solver to the modeling language like progress reports,
solutions, or error messages should be straightforward.

Simple and powerful data handling (ODBC, spreadsheet interfaces, data files,. . .),
Automatic differentiation.

For a further analysis see [75].

4.1.2 Non-algebraic Modeling Languages

In certain areas, algebraic modeling languages have not been very successful.
Sometimes, writing a model with variables and constraints is just to tedious,

especially if the model is highly structured.
For chemical engineering there are two modeling systems gPROMS [6] and

ASCEND [170] which build models in an object oriented way. For manufactur-
ing processes a system called EXTEND [180] is available. All models are built
from primitive entities (e.g., reactors or tanks), and these can be assembled in
compound entities with certain attributes. The modeler only needs to specify
the parts and their connections, and the modeling system builds the mathemat-
ical model automatically. It introduces variables and derives constraints from
physical and chemical principles like the law of mass conservation.

A very recent development combining these ideas came from the ESPRIT
project “Simulation in Europe Basic Research Working Group (SiE-WG)” led
by a group of simulation experts. The combined effort of the members of this

52 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

project led to the development of the new object-oriented modeling language
Modelica [56].

In constraint logic programming there is a different reason for the lack of
interest in algebraic modeling languages. For most of the difficult discrete
problems there is no generic algorithm available which can solve the problems
without hints from the modeler.

Hence, for solving these hard problems, it is necessary to store at least partial
algorithmic knowledge together with the problem definition. Most of the alge-
braic modeling languages do not provide this possibility. Even more, discrete
problems usually need model descriptions with very specialized constraints
(all diff — in a set of variables all take different values, cardinality —
exactly N of a given set of variables have the value true). These discrete con-
straints are usually not provided by algebraic modeling languages. There they
have to be reformulated using special mixed-integer linear constraints (see [123,
Chap. 5]), which sometimes is inefficient and hides the model structure.

In these areas the modern constraint logic programming languages likeECLiPSe
are usually used. A sample file is given below. It can be used to solve the famous
n-queens problem using various search and backtracking strategies.
% ECLiPSe SAMPLE CODE
%
% AUTHOR: Joachim Schimpf, IC-Parc
%
% The famous N-queens problem, using finite domains
% and a selection fo different search strategies
%
:- set_flag(gc_interval, 100000000).
:- lib(lists).
:- lib(fd).
:- lib(fd_search).
%--------------------
% The model
%--------------------
queens(N, Board) :-

length(Board, N),
Board :: 1..N,
(fromto(Board, [Q1|Cols], Cols, []) do

(foreach(Q2, Cols), param(Q1), count(Dist,1,_) do
noattack(Q1, Q2, Dist)

)
).

noattack(Q1,Q2,Dist) :-
Q2 #\= Q1,
Q2 - Q1 #\= Dist,
Q1 - Q2 #\= Dist.

%-----------------------
% The search strategies
%-----------------------
labeling(a, AllVars) :-

(foreach(Var, AllVars) do
count_backtracks,
indomain(Var) % select value

).

% functions labeling(b,.. to labeling(d,.. deleted here !

labeling(e, AllVars) :-

Theoretical Concepts and Design of Modeling Languages 53

\ middle_first(AllVars, AllVarsPreOrdered), % static var-select
(fromto(AllVarsPreOrdered, Vars, VarsRem, []) do

% search_space(Vars, Size), writeln(Size),

\ delete(Var, Vars, VarsRem, 0, first_fail), % dynamic var-select
count_backtracks,
indomain(Var, middle) % select value

).

% reorder a list so that the middle elements are first
middle_first(List, Ordered) :-

halve(List, Front, Back),
reverse(Front, RevFront),
splice(Back, RevFront, Ordered).

%-----------------------------------
% Toplevel code
%
% all_queens/2 finds all solutions
% first_queens/2 finds one solution
% Strategy is a,b,c,d or e
% N is the size of the board
%-----------------------------------
all_queens(Strategy, N) :- % Find all solutions

setval(solutions, 0),
statistics(times, [T0|_]),
(

queens(N, Board),
init_backtracks,
labeling(Strategy, Board),

% writeln(Board),
% put(0’.),

incval(solutions),
fail

;
true

),
get_backtracks(B),
statistics(times, [T1|_]),
T is T1-T0,
getval(solutions, S),

\ printf("\nFound %d solutions for %d queens in %w s with %d backtracks%n",
[S,N,T,B]).

first_queens(Strategy, N) :- % Find one solution
statistics(times, [T0|_]),
queens(N, Board),
statistics(times, [T1|_]),
D1 is T1-T0,

\ printf("Setup for %d queens done in %w seconds", [N,D1]), nl,
init_backtracks,
labeling(Strategy, Board),
get_backtracks(B),
statistics(times, [T2|_]),
D2 is T2-T1,

\ printf("Found first solution for %d queens in %w s with %d backtracks%n",
[N,D2,B]).

%--------------------
% Utilities
%--------------------
search_space(Vars, Size) :-

(foreach(V,Vars), fromto(1,S0,S1,Size) do
dvar_domain(V,D),
S1 is S0*dom_size(D)

).

54 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

:- local variable(backtracks), variable(deep_fail).
init_backtracks :-

setval(backtracks,0).
get_backtracks(B) :-

getval(backtracks,B).
count_backtracks :-

setval(deep_fail,false).
count_backtracks :-

getval(deep_fail,false), % may fail
setval(deep_fail,true),
incval(backtracks),
fail.

Looking at this file two facts become immediately obvious. First, it is big
although the model description needs only about 15 lines near the beginning.
Second, the declarative information is only a very small part of the model. The
remaining file contains a lot of algorithmic knowledge: two solution strategies,
one for searching all solutions and one for finding only one.

Finally, there are modeling languages which directly interface to spreadsheet
systems. This is especially convenient for users who do not want to bother
about learning new systems. They can enter their data into the spreadsheets as
usual, and afterwards they add a model by specifying spreadsheet formulas and
bounds for certain cells. Then an add-on program for the spreadsheet system
solves the so-entered model and stores the result back into the “variable cells”.
For MS Excel there is a spreadsheet modeling system by FRONTLINE Systems.

4.1.3 Integrated Modeling Environments

A more graphical approach to model building is taken by the so called inte-
grated modeling environments.

They do not primarily contain a language for model building with interfaces
to different solvers but rely on graphical user interfaces (GUI). Usually, the
models are represented by a database, and model building is done in a menu-
driven way.

In addition to a model building facility these systems also provide GUI-
builders for end-user applications. State of the art visualization techniques give
insight into the solving process and can be used to illustrate the solutions.

Two very prominent representatives of this approach are AIMMS (see Chap-
ter 6) by Paragon Systems, MPL by Maximal Software, and OPL Studio (see 17)
by ILOG.

4.1.4 Model-Programming Languages

Recently, several languages try to bridge the gap between the algorithmic
languages used in constraint programming and the declarative languages mainly
used in mathematical optimization.

Theoretical Concepts and Design of Modeling Languages 55

Many modeling languages nowadays have built-in scripting capabilities (see
Chapters 7 and 8), but these new languages provide elements for declaring
models and for describing solution algorithms in a much more integrated way.

The Mosel [96] (Chapter 12) approach overall looks much like a program-
ming language, even the model declaration part has to be programmed.

The language LPL [100] (Chapter 10), on the other hand, provides a declara-
tive part which still looks similar to mathematical notation, and the algorithmic
part has the look and feel of an imperative programming language.

Also AIMMS (Chapter 6) can be seen as a modeling system which combines
declarative and algorithmic elements. There, however, the GUI is the main
focus, and declarations and programming are based on it.

Basically, a trend can be seen that modeling languages provide the possibility
to record algorithmic knowledge in addition to purely declarative modeling.
This can be an advantage for the modeler because of increased flexibility, but the
future will show whether this approach makes models more or less maintainable,
and whether it increases or decreases the shelf-life time of the models.

The approach that the modeling system provides just the models and that the
solver interface contains the algorithms is still widely used. This has the ad-
vantage that different solution algorithms can get different algorithmic “hints”.
However, it is more difficult to document the whole model solution process
with this approach, especially if we consider that, e.g., LPL provides automatic
document generation capabilities.

4.1.5 Other Modeling Tools

Apart from modeling systems and modeling languages there are tools for
analyzing already existing models.

The ANALYZE system [85] provides various tools for linear programming
problems. An LP can examined w.r.t. constraint effectiveness, objective effect,
and grouping of constraints (the system can also make suggestions on better
constraint sorting).
For non-linear models there is a successor product. MPROBE [36] provides in
addition to the aforementioned methods also a shape analysis tool for non-linear
model parts.

4.2 Global Optimization

It was already outlined in Section 1.3 that the development of modeling
languages started with the invention of matrix generators. At that time, linear
programs were the only real-life models which could be effectively solved.

As the computing power increased and the solution algorithms became more
effective, higher and higher dimensional nonlinear programs were made accessi-
ble. The modeling systems had to keep up with the development, and ultimately

56 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

this was one reason for the emergence of algebraic modeling languages. The
algorithms available solved local optimization problems in an approximate way.
So most of the now available modeling systems provide very good connectivity
for linear solvers and local optimization algorithms.

Modeling and computer aided model analysis can serve many different needs.
As was pointed out in [123] various levels of rigor can be distinguished for
models, depending on the modeling goal.

Validation ≤ Verification/Falsification ≤ Mathematical Proof

The highest level of rigor is necessary for mathematical proofs. There are
real-world applications which need a similar level of rigor, e.g., in chemical
engineering and robotics. Most of these problems are global optimization prob-
lems. They are of the form

min f(x)

s.t. F (x) ∈ F

x ∈ x,

(4.2.4)

where F and x ⊆ X are both boxes (multidimensional intervals), and X =
R

n × Z
m. In contrast to local optimization, the task is to find all globally best

solutions to this problems and to do it in a rigorous way, i.e., to compute the
solution set S of (4.2.4) and a mathematical proof that S is the solution set.

When solving such models harmful approximations must not be performed,
and a lot of techniques have to be applied which are not usually necessary for
local optimization. The most important tool is interval arithmetic with directed
rounding.

During the last few years an increasing number of algorithms were developed
for global optimization (e.g., BARON [185], αBB [3], GLOBSOL [128], and the
COCONUT project [40]). Some of the solvers are now reaching a strength
which enables them to solve some industry-relevant problems.

In this section we will glance at global optimization and pinpoint the diffi-
culties which arise when interfacing algebraic modeling languages with global
optimization software.

4.2.1 Problem Description

Let us consider again problem (4.2.4). Here we describe the most general
problem class GLOBAL (see Section 1.2.1). The task is to find all x ∈ x with
F (x) ∈ F and the property that

∀y ∈ x with F (y) ∈ F : f(y) ≥ f(x).

The variables x can come in different flavours

Theoretical Concepts and Design of Modeling Languages 57

continuous: The variable is real or complex valued, and usually bounds are pro-
vided for its domain (e.g., the amount of fluid flowing through a pipe
in a chemical plant).

integer: These are discrete variables which can take all integers (or complex
integers) as values. Sometimes they are in addition bound constrained
(e.g., the number of television sets produced by some production site).

binary: The value is either 0 or 1. These variables are also called decision
variables (e.g., decide whether or not a certain chemical reactor is to
be included when building a new plant).

discrete variables: These can take a finite number of values which do not need to be
numbers.

semi-continuous: They are either zero or bigger as some threshold (e.g., we either do
not start production in facility A at all or we have to manufacture a
minimum amount of goods).

partial integer: These variables take either integer values in 0, . . . , N or continuous
values in [N, M].

There are several types of constraints F

continuous: These constraints mainly involve continuous variables. Usually they
are piecewise differentiable and composed from elementary func-
tions. They can be linear, quadratic, convex, or nonconvex.

discrete: They only take discrete values. Classification constraints are of this
type.

logical: Constraints of this type involve logical operators and binary vari-
ables.

global: The number of variables involved in a single constraint is small
for most real-life models. There are, however, some constraints
which involve all or just a lot of variables. These are called global
constraints. Typical representatives are all-different, cardinality3,
and histogram4 constraints.

special ordered sets: there are two categories:

SOS-1 At most one from a set of variables is non-zero, all the others
vanish.

SOS-2 At most two variables from a given ordered list of variables
are non-zero, and if two are non-zero, they have to be neigh-
bors in the list.

exclusion regions: these are constraints of the form x /∈ xe.

Compared to models with low requirements in rigor, for global optimization
much more care has to be taken in data handling. For mathematical proofs all
data items must be known exactly. Round-off in the translation of the input data
from modeling system to the solver can destroy important model properties.
E.g. the very simple system

0.4x+ 0.6y ≥ 1

x, y ∈ [0, 1]
(4.2.5)

58 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

has exactly one solution x = y = 1. The system becomes infeasible when
rounded to IEEE floating point representation.

For some problems the data might be uncertain, see Section 1.2.7. For
example the elasticity module for steel bars can vary by more than 15%. For
rigorous problem solving it is important that all parameters can be entered
together with their amount of uncertainty.

Sometimes constraints are less relevant than others or they may be slightly
violated in some circumstances. E.g. the radiation patterns of radio therapy
for cancerous tumors can be optimized. There are constraints on the minimal
dose needed for the tumor cells, and maximum doses for the remaining tissue
types. Sometimes there is no solution, depending on the size of the tumor and
the geometric shapes. Then the physician might say: “Well, I don’t mind if
the liver gets a higher dose than allowed, as long as this excess radiation is
confined to a small part of the tissue.” In these cases we call the constraint a
soft constraint.

4.2.2 Algebraic Modeling Languages and Global
Optimization

Most modeling systems around have originally been developed for nonlinear
local optimization and linear programming. When trying to connect a solver
for global optimization problems to such a modeling language, the programmer
usually runs into one or all of the following problems. Therefore, the global
optimization community has developed its own input languages or modeling
languages, like Numerica [217], NOP [165], or NOP-2 [189] (see Chapter 15).

The difficulties start with the fact that most modeling systems pass a pre-
solved problem, and all input data is rounded to floating point representation.
Sometimes it is not even possible to decide whether a datum the solver sees is in-
teger or only some real number very close to an integer. This involves round-off
and a loss of important knowledge and makes mathematical rigor impossible.

The second point is that the performance of global optimization algorithms
usually depends on whether specific structural knowledge about the problem can
be exploited. Unfortunately, the problem which is passed from the modeling
system to the solver is “flat” and has lost most of its mathematical structure,
except for the sparsity pattern.

There is almost no modeling language around in which uncertain data can be
specified. This makes it, e.g., almost impossible to model safety programs (see
Section 1.2.6).

There is only restricted support for soft constraints.
Many modeling languages only support the first three variable categories

(continuous, integer, binary), and there is almost no support for global con-
straints (all different, cardinality, histogram,. . .) and exclusion regions.

Theoretical Concepts and Design of Modeling Languages 59

Automatic differentiation is not sufficient for constructing all derived infor-
mation needed for a global optimization algorithm. There is no inherent support
for interval analysis, and hence essential data such as implied bounds cannot
be generated automatically (except in Numerica).

There is no support for matrix operations, so all matrix operations have to be
flattened, hence the structure is lost (consider, e.g., the constraintATDAx = b).
Some matrix operations cannot be used inside a model at all, like det(A) ≥ c,
or A is positive semidefinite, specifying these constraints is impossible in all
modeling languages I know.

Finally, many global optimization problems can only be solved by using
several mathematically equivalent formulations of the same model at the same
time. A very nice example for that principle from an application in robotics can
be found in [138]. There is no modeling language which supports equivalent
formulations.

4.3 A Vision — What the Future Needs to Bring

In this section we will make a few technical suggestions about extensions
to the existing modeling languages which are necessary in order to be able to
write global and stochastic optimization problems and multi-stage problems in
a convenient way.

4.3.1 Data Handling

From the declarative part, which specifies the model structure, the modeling
system generates the problem instance by adding the model data. This principle
was already described in Section 4.1.1.

Since data is a very important part in the modeling process and later during
the use of the model, it is important that knowledge about the data is recordable
as well.

The source of the data is important, and how much it suits the model.
Accuracy or estimates on data accuracy should be recordable in the mod-
eling system.
Directed rounding, interval enclosures, and exact values should be sup-
ported for rigorous computing (see Chapter 15).
The date of data construction is probably interesting, as well, and how
long it can be considered up-to-date.
Data validity and completeness is also relevant.

Data handling should be convenient. An appropriate interface to automatic data
retrieval and data management tools should be included in a modeling system.
There should be convenient ways to access databases (ODBC) and spreadsheet
data.

60 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

4.3.2 Solver Views

Constraint Logic Programming (CPL) and their languages teach that for the
processing of very complex models the declarative knowledge usually is not
sufficient for solving the problem, as explained in Section 4.1.4.

Depending on the solver used, additional hints must be specified to guide
the algorithm. These hints are neither part of the model structure nor part of
the model’s data. Different solvers will need different hints and guides for han-
dling the same model instance. Useful additional information includes search
and selection strategies, scenarios for stochastic programs, starting points for
local optimization, convex underestimating functions, valid cuts, bisection and
backtracking hints, switching between mathematically equivalent model formu-
lations.
These hints can be kept separate for every solver used, and the modeling system
would be responsible to construct a solver’s view of the model instance, which
is a mixture of declarative and algorithmic knowledge.

4.3.3 GUI

The introduction of GUI front-ends, which is, e.g., done in AIMMS (see Chap-
ter 6) and OPL Studio (see Chapter 17) provides the modeler with additional
possibilities.

With graphical capabilities and additional fonts, there could be an even
more mathematical notation. It looks similar to the front-end of Mathe-
matica 4, like in Fig. 4.3.1,
Provide model structuring with coarse and fine grained views.
Offer syntax based editing capabilities with online help.
Visualize the connection between the model parts, cross referencing be-
tween variables and constraints.
Visualize Progress during the solution process.
Visualize Result.

4.3.4 Object Oriented Modeling — Derived Models

In the same way that object oriented programming is the ultimate consequence
of imperative programming (cf. Section 4.1.1), the declarative languages need
the same kind of extension: derived models.

This mimics the way mathematicians define new objects. The algebraic struc-
ture of a group is defined to be a monoid in which every element has an inverse.
The remaining properties like the law of associativity and the existence of a unit
element are “inherited” from the monoid structure. As a further example, we
take the definition of an algebra as a vector space, which is also a ring with the
same additive group, and additional compatibility laws are valid.

Theoretical Concepts and Design of Modeling Languages 61

Figure 4.3.1. Model in a GUI front-end

The same could be done in modeling. A derived model would be a model
which has all properties of all the models it is an epigone of plus additional
variables and constraints.

For example, a screw could be represented by variables and constraints and
a few parameters like its size. Steel is a material, and all its properties are
recorded with variables and constraints, and in the same way a model for wood
is produced.

The derived modeling method now would make it straightforward to construct
models for steel screws and for wooden screws.

4.3.5 Hierarchical Modeling

As described in Section 1.2.4, multi-stage models often arise naturally. For
instance, in the first step we just want a method of proving that a given robot
design is free of catastrophic singularities. We build a model A for that and
solve it. The strict separation of model structure and data enables us to prove
design correctness for many robots, and at some stage we decide that we want
to compute an optimal design which is cheap and free of structural deficiencies.

The resulting problem is a two-stage design problem, where the first stage
consists of model A, the only difference is that the design parameters become
free variables instead of being fixed by the model data.

For making such a hierarchical approach to modeling possible, all models in
a modeling language should be reusable as “functions” in bigger models.

62 MODELING LANGUAGES IN MATHEMATICAL OPTIMIZATION

4.3.6 Building Blocks

Many huge optimization problems are built from a number of smaller (almost)
identical building blocks, especially in chemical engineering, manufacturing
processes, resource optimization, optimal scheduling,. . .

Adding support for building blocks (with configurable automatic constraints
when connected together) and enhancing the building block management by
providing GUI support will decrease the number of modeling errors for big
problems and reduce the modeling costs.

A good example for such a system is, e.g., BoFit by ProComm [173], a system
for the daily resource planning for electrical energy providers.

4.3.7 Open Model Exchange Format

It would be great if all modeling system providers could agree upon a common
exchange interface for mathematical models. Until now it is a tedious task to
translate a model from one modeling system to another.

The Open Model Exchange Format could be XML- and MathML-based.
This would have the advantage that it would provide a convenient interface for
model presentation on the Worldwide Web, it would need a consistent interface
for floating point numbers which does not produce read/write mismatches due
to rounding errors, and it should be easily extendable.

It would be useful to have ASCII and binary interfaces and encryption to
protect intellectual properties. The most important feature would be that it is
open, public, and widely supported.

Acknowledgments

I want to thank Arnold Neumaier for his help and his important advice for
preparing this section, and Oleg Shcherbina for his support and the many refer-
ences he provided.

