
Wireless Networks 0 (1998) ?–? 1

The NOP-2 modeling language

H. Schichl A. Neumaier S. Dallwig

Institut für Mathematik, Universität Wien, Strudlhofg. 4, A-1090 Wien, Austria

E-mail: Hermann.Schichl@esi.ac.at, neum@cma.univie.ac.at, sdal@cma.univie.ac.at

An enhanced version NOP-2 of the NOP language for specifying global optimization problems, defined in [12], is

described. Because of its additional features NOP-2 is comparable to other modeling languages like AMPL [6] and GAMS

[1], and allows the user to define a wide range of problems arising in real life applications such as global constrained (and

even stochastic) optimization programs.

NOP-2 permits named variables, parameters, indexing, loops, relational operators, extensive set operations, matrices

and tensors, and parameter arithmetic.

The main advantage that makes NOP-2 look and feel considerably different from other modeling languages is the

display of the internal analytic structure of the problem. It is fully flexible for interfacing with solvers requiring special

features such as automatic differentiation or interval arithmetic.

Keywords: large-scale optimization, global optimization, separable structure, nonlinear programming, modeling

language

AMS Subject classification: 90C30

1. Introduction

This paper describes the modeling language NOP-2

for specifying general optimization problems, including

constrained local or global nonlinear programs and con-

strained stochastic single and multistage programs. The

proposed language is specifically designed to represent

the internal (partially separable, repetitive, or sparse)

structure of the problem. Thus it enables the model

builder to somewhat step back from the pure meaning

of the problem to focus on the mathematical content

and to rewrite it in a form that is more adapted to

global and large scale optimization algorithms that can

exploit such structure.

Models described in NOP-2 do not depend on the

computer architecture. Therefore, models developed on

personal computers can later be solved on high speed

workstations or supercomputers.

The language also has features for checking correct

specification of NOP-2 files.

In contrast to the SIF input format (cf Section 4.1 be-

low) proposed by Conn, Gould, and Toint [3] for their

LANCELOT package, the amount of overhead in the

formulation of smaller problems is very small: for ex-

ample, Rosenbrock’s function (in SIF the description

takes almost a page) can be represented in a few lines

in such a way that the least squares structure is visible

in the representation.

Together with planned and partly finished inter-

faces to the modeling languages AMPL (Fourer, Gay

& Kernighan [6]) and GAMS (Brooke, Kendrick, Meer-

aus [1]), to our new global optimization code GLOPT

[4], and to the optimization package MINOS (Murtagh

& Saunders [11]), this is a promising tool for the for-

mulation and solution of various types of optimization

problems.

Each NOP-2 file consists of a sequence of records de-

scribing an optimization problem of one of the following

forms.

(i) Nonlinear programs.

min f(x)

s.t. Eν(x), ν = 1, . . . , N ; x ∈ [x0].

The bound constraints x ∈ [x0] define componentwise

restrictions x0 ≤ x ≤ x0, and may contain ±∞ as

bounds to allow for one-sided bounds and free variables.

(ii) Stochastic programs.

min f(x, ξ)

s.t. Eν(x, ξ), ν = 1, . . . , N ; x ∈ [x0],

ξ ∼ g(b, x).

2

The variables ξ are stochastic variables with (fully or

partially specified) distribution functions g(b, x).

(iii) Stochastic multistage programs.

min f(xk, ξk)

s.t. Ekν (ξk, ξ<k, x<k), ν = 1, . . . , Nk; xk ∈ [xk0],

ξk ∼ gk(b, x<k),

The variables ξk are stochastic variables with (fully or

partially specified) distribution functions g(b, x) and are

valid in stage k of this multistage problem.

In each case, additional integer constraints can be

specified (see variable declarations). The so-called

elements Eν(x) are expressions of one of the forms

⊙

k

f(ak, xJk) ∈ b[q] + c, (1.1)

⊙

k

f(ak, xJk) = bxKj + c, (1.2)

⊙

k

f(ak, xJk) ∈ S, (1.3)

and a few irregular variants consisting of only one

operand, allowing simple coding of Boolean expressions,

polynomials, trigonometric polynomials, and a limited

form of branching.

Here f is a so-called element function, ak, b, c are

parameters, parameter vectors, parameter matrices or

higher order tensors, or lists of such. xJk , and xKj are

subvectors of x indexed by the index lists Jk and Kj ,

[q] is a possibly unbounded box, maybe restricted to

integers, and S is a union of finite sets and possibly

unbounded boxes. ¯ specifies one of the following op-

erators:
∑

,
∏

, max, min,
∑
k(−1)k. The contributions

f(a, bk, xJk) are referred to as the pieces of the element.

(Elements containing a single piece only are, of course,

permitted.)

The element functions that we found most handy

in coding a large number of problems are collected in a

standard library nop stdlib.nop that is visible to every

NOP-2 specification by default. For all these functions

it is possible to get a complete analytic overview over

ranges and inverse ranges, which makes these elements

suitable for applications in a branch and bound frame-

work such as that proposed in [4]. Other element func-

tions can easily be defined using algebraic statements

in a syntax similar to some higher level programming

languages like FORTRAN, C or MATLAB.

Work on a package that reads NOP-2 files and gen-

erates subroutines useful for feeding into nonlinear pro-

gramming routines is almost finished. In particular, for

all standard and user defined functions the final pack-

age will contain a tool that automatically generates C

code for function and gradient evaluation, bounds for

ranges and inverse ranges, linear enclosures, and under-

estimating quadratic functions.

2. Basic philosophy of language construction

The NOP-2 modeling language was constructed with

three major goals in mind, which differ from the philoso-

phy followed by other languages like AMPL and GAMS.

First, the language should enable and encourage the

modeler to explicitly specify the model’s inherent struc-

ture. Here the modeler should have as much flexibil-

ity as possible. He should be able to extract common

subexpressions and to make partial separability obvi-

ous. At the same time, the language should provide the

solver with as much information about the optimization

problem as possible, giving near optimal interval en-

closures, quadratic underestimators, convexity checks,

inverse enclosures,. . .

These goals lead us to the introduction of element

functions as basic building blocks. The standard library

was developed to contain basic elements that appear in

many common optimization problems and test sets. At

the same time, it became clear that a fixed number of

element functions might not be sufficient to specify all

problems. That was the reason for making the language

extensible by the user.

The third goal was to design a language that intro-

duces as little overhead as possible, provided that the

goals are reached. This lead us to the decision to choose

a record structure to specify the model. A summary of

the format is given in Section 5.

3. Examples

Before describing the language in a short informal

way we give some examples for later reference. (This

section is adapted from [12], where the same examples

were treated with the precursor language NOP.) The

first three examples are taken from the global optimiza-

tion test sets of [7,15,5].

3

We have coded many of the test problems in these

collections to ensure that our input format is easy to

use, and does not require too much repetitive or error-

prone adaptation, given the original mathematical de-

scription. The corresponding NOP-2 files will be made

publicly available via the second author’s global opti-

mization pages on the World Wide Web. The URL of

the relevant section will be

http://solon.cma.univie.ac.at/

~/neum/glopt/nop-2.html

3.1. The Rosenbrock function

Our first problem [7] is the minimization of the well-

known Rosenbrock function in a box,

min 100(x2
1 − x2)2 + (x1 − 1)2

s.t. x1, x2 ∈ [−2, 8].

The least squares structure becomes apparent by intro-

ducing the variable

x3 = 10x2
1 − 10x2, (3.1)

reducing the objective function to

x4 = x2
3 + (x1 − 1)2. (3.2)

Since quadratic programs are very important in global

optimization, both equations can be expressed easily by

standard elements: (3.1) corresponds to the predefined

element function qu4 (with two pieces) and (3.2) cor-

responds to the predefined element function qu2 (again

with two pieces). If we now remember the bounds, we

end up with the following NOP-2 file. (The lines start-

ing with // are comments added only to make the file

more readable.)

// Rosenbrock function

min x[4];

bnd x[1 2] in [-2,8];

// element list

qu4 x[1 2]; 0 -10 10 0 = x[3];

qu2 x[3 1]; 0 1 = x[4];

3.2. Another least squares problem

Our second problem [15] is a least-squares problem of

Kowalik with additional bound constraints. It has been

slightly changed from the original version published in

[9, 6.2]. There instead of the b−1
i the bi (called yi) were

specified up to four significant digits. The data

i ai b−1
i

1 0.1957 0.25

2 0.1947 0.50

3 0.1735 1.00

4 0.1600 2.00

5 0.0844 4.00

6 0.0627 6.00

7 0.0456 8.00

8 0.0342 10.00

9 0.0323 12.00

10 0.0235 14.00

11 0.0246 16.00

define the following problem

min

11∑

i=1

(
ai − x1

b2i + bix2

b2i + bix3 + x4

)2

s.t. xi ∈ [0, 0.42] (i = 1, 2, 3, 4),

To model the least squares terms we introduce a new

nonstandard element function

quot(p, x1, . . . , x4) =
x1(1 + px2)

1 + px3 + p2x4
(3.3)

reducing the objective function to

11∑

i=1

(ai − quot(b−1
i , x1, . . . , x4))2. (3.4)

After introducing new variables for the results of quot

(that define elements with a single piece only), (3.4)

reduces further to an element with predefined element

function qu2 and 11 pieces. The result is the following

NOP file.

// Kowalik problem

// variable definitions

var obj;

// constant definitions

const a = (0.1957 0.1947 0.1735 0.1600

0.0844 0.0627 0.0456 0.0342

0.0323 0.0235 0.0246);

const binv = (0.25 0.5 1 2 4 6 8 10 12 14 16);

//basic problem specification

min obj;

bnd x[1:4] in [0,.42];

func quot(real y[4]; real p)

y[1]*(1+p*y[2])/(1+p*(y[3]+p*y[4]));

4

endfunc

// element list

qu2 x[5:15]; a = obj;

loop(i=1:11)

quot x[1:4]; 1/binv[i] = x[4+i];

endloop

With a little more work, we can eliminate the user-

defined element function by introducing the constants

ci = b−1
i

and writing

xi+4 = x1
b2i + bix2

b2i + bix3 + x4
=

x1(1 + cix2)

1 + cix3 + c2ix4
.

After multiplication with the denominator, we may

write this as

xi+4 + cixi+15 = x1,

where

xi+15 = xi+4x3 + cixi+4x4 − x1x2.

These constraints can be handled with linear and bilin-

ear elements, resulting in the following NOP file.

// Kowalik problem

// variable definitions

var obj;

// constant definitions

const a = (0.1957 0.1947 0.1735 0.1600

0.0844 0.0627 0.0456 0.0342

0.0323 0.0235 0.0246);

c = (0.25 0.5 1 2 4 6 8 10 12 14 16);

//basic problem specification

min obj;

bnd x[1:4] in [0,.42];

// element list

qu2 x[5:15]; a = obj;

loop(i=1:11)

lin x[4+i 15+i]; 1 c[i] = x[1];

qf1 x[4+i 3 4+i 4 1 2]; 1 c[i] -1 = x[15+i];

endloop

In the second version of the problem the non-

standard element function has been removed by intro-

ducing new intermediate variables. In NOP-2 formula-

tions this can always be done. Increasing the dimen-

sion in this way sometimes significantly improves per-

formance of a subsequent optimization, but the perfor-

mance may deteriorate, too. Therefore, such transfor-

mations should be used with care.

3.3. A quadratically constrained nonlinear program

Our third problem [5] is a nonlinear program with

bilinear constraints,

min x1 + x2 + x3

s.t. −1 + 0.0025(x4 + x6) ≤ 0,

−1 + 0.0025(−x4 + x5 + x7) ≤ 0,

−1 + 0.01(−x5 + x8) ≤ 0,

100x1 − x1x6 + 833.33252x4 − 8333.333 ≤ 0,

x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0,

x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0,

100 ≤ x1 ≤ 10000,

1000 ≤ x2 ≤ 10000,

1000 ≤ x3 ≤ 10000,

10 ≤ x4 ≤ 1000,

10 ≤ x5 ≤ 1000,

10 ≤ x6 ≤ 1000,

10 ≤ x7 ≤ 1000,

10 ≤ x8 ≤ 1000.

We introduce a variable for the objective function,

x9 = x1 + x2 + x3,

using an element of the form sum with 3 pieces. The

first three constraints (after adding 1 and dividing by

the factor, though these cosmetic operations could be

dispensed with) become elements of the form lin with

2, 3, and 2 pieces, respectively. The three bilinear con-

straints could be handled directly using the predefined

element bil, but seeing that there are common factors,

and the factor x5 − x8 is common to the third and the

6th constraint, we chose to introduce extra variables

x10 = x1(x6 − 100), x11 = x4 − x7, (3.5)

x12 = x2x11, x13 = x8 − x5, x14 = x3x13 (3.6)

using the elements pr2, lin, and pr0. After the corre-

sponding substitution this leaves only linear constraints

coded by the element function lin. The result is the

following NOP file. (The third constraint reduces to

a bound constraint, and the definition of x13 appears

after the bound declaration.)

// Hock - Schittkowski Problem 106

// = Floudas - Pardalos Chapter 3,

5

// Test Problem 1

real obj;

min obj;

bnd x[1] in [100,10000];

bnd x[2 3] in [1000,10000];

bnd x[4:8] in [10,1000];

bnd x[13] <= 100;

// element list

sum x[1:3] = obj; // objective function

sum x[4 6] <= 40;

lin x[4 5 7]; -1 1 1 <= 40;

lin x[5 8]; -1 1 = x[13];

pr2 x[1 6]; 0 -100 = x[10];

lin x[10 4]; -1 833.33252 <= 83333.333;

lin x[4 7]; 1 -1 = x[11];

pr0 x[2 11] = x[12];

lin x[12 4 5]; 1 -1250 1250 <= 0;

pr0 x[3 13] = x[14];

lin x[14 5]; -1 -2500 <= -1250000;

3.4. A multiphase chemical mixture problem

For maximal efficiency, we strongly advise formu-

lating problems in such a way that the element func-

tions depend on only a few variables. All significant

summations should appear either explicitly in the ele-

ment structure or in matrix-vector expressions; the lat-

ter should be used only when the matrices involved are

either essentially dense or defined in one of the sparse

matrix formats provided. The formal increase of di-

mension resulting from introducing extra variables and

equality constraints to achieve this is usually much less

relevant than the gain in structural information, even

for problems that are originally unconstrained.

We exemplify this by considering a global optimiza-

tion problem originally investigated by Mfayokur-

era [10], describing the mixture of n chemical species

at fixed temperature, pressure, and mole number y0
i ,

i = 1, . . . , n, separating in up to n phases. (The objec-

tive function is based on the NRTL model of Renon &

Prausnitz [13] and the Gibbs free energy formulation

of Castillo & Grossmann [2].)

min

n∑

i,k=1

yki log
yki∑n
j=1 y

k
j

+

n∑

i,k=1

yki

∑n
j=1Ajiy

k
j∑n

j=1Bjiy
k
j

s.t.
∑n
k=1 y

k
i = y0

i (i = 1, . . . , n),

0 ≤ yki ≤ y0
i (i, k = 1, . . . , n),

yk1 ≤ yk+1
1 (k = 1, . . . , n− 1).

(3.7)

The Bjk are nonnegative numbers, and Aii = 0, Bii =

1, making the problem well-defined. However, extra

care is needed to cope with the limit expressions 0 log 0

and 0 v0 that may occur.

To obtain an element formulation, we introduce extra

variables for the inner sums by adding the constraints

uk :=
n∑

j=1

ykj , (3.8)

vki :=

n∑

j 6=i
Ajiy

k
j , (3.9)

wki :=

n∑

j 6=i
Bjiy

k
j , (3.10)

and expand the expressions

log
yki
uk

= log yki − log uk.

If we now notice that

xlog(y) :=

{
y log y if y > 0,

0 otherwise
(3.11)

is one of the predefined element functions and introduce

the new non-standard function

frac(x, y, z) :=

{
xy/(y + z) if y > 0,

0 otherwise,
(3.12)

we can write the objective function as a sum of three

elements

f =

n∑

i,k=1

xlog(yki)−
n∑

k=1

xlog(uk)+

n∑

i,k=1

frac(vki , y
k
i , w

k
i).

(3.13)

Since the first and the last sum in (3.13) have the same

structure, one can improve the formulation further by

introducing another element function

term(x, y, z) :=

{
y log y + xy/(y + z) if y > 0,

0 otherwise
(3.14)

and simplify (3.13) to a sum of two elements

f = −
n∑

k=1

xlog(uk) +

n∑

i,k=1

term(vki , y
k
i , w

k
i). (3.15)

6

It is now easy to code this as a NOP-2 file. Note that

since the coefficients Aji and Bji appear in several of the

new constraints, they should be predefined as constants.

Then one can specify (3.9) and (3.10) as elements of

type lin.

/*

** NRTL model of RENON and PRAUSNITZ

** and Gibbs free energy formulation

** of CASTILLO and GROSSMANN

*/

real f;

/*

** size of the problem and other parameters

** (these should be specified later)

** (the later specifications will be checked

** against these template definitions)

*/

param int n;

param real A[n,n];

param real B[n,n];

param real y0[n];

/*

** include the definitions of the matrices

** A, B and the vector y0 from matrices.nop.

** This file should also contain an assignment

** to n!

*/

incl "matrices.nop"

real y[n,n] u[n] v[n,n] w[n,n]

xlogs terms[n];

func term(real x[#] y[#] z[#])

// an element function with a

// varying number of arguments

apply(+,i=1:#)

if(y[i]>0)

y[i]*log(y[i])+x[i]*y[i]/(y[i]+z[i]);

else

0;

endif

endapply

endfunc

// parameter checks

// forces the parser to check the

// basic problem requirements

bnd B[:,:] > 0;

loop(i=1:n)

bnd A[i,i] = 0;

bnd B[i,i] = 1;

endloop

// basic problem specification

min f

loop(i=1:n)

bnd y[:,i] in [0,y0[i]];

endloop

// elements

sum xlogs terms = f;

xlog u = xlogs;

loop(i=1:n)

sum y[:,i] = y0[i];

sum y[i,:] = u[i];

mv y[i,:] A = v[i,:];

mv y[i,:] B = w[i,:];

term v[i,:] y[i,:] w[i,:] = terms[i];

endloop

loop(i=1:n-1)

lin y[i,1] y[i+1,1]; 1 -1 <= 0;

endloop

This problem demonstrates that parametrized mod-

els can easily be specified in NOP-2. The param

real... statements specify templates for the vari-

ables that should be specified in the include file

matrices.nop. Such an include file could look like fol-

lows:

// matrices.nop

// include file for matrix specification

const n = 4;

// A is a dense matrix entered row-wise

const A = dense[row](n,n)

0 -1.3 0.02 1.03

-1 0 3.2 -4

2.1 -.03 0 -1.24

7.3 4.9 -.01 0;

/*

** B is a band matrix with one band above

** and one band below the main diagonal. The

** bands are specified starting with the main

** diagonal followed by alternating upper

** and lower subdiagonals.

*/

7

const B = band[inout](1,1)

1 1 1 1

0.1 0.59 1.4

5.6 0.47 8.3;

const y0 = (1.9 3.8 4.7 2.43);

4. Connections to other modeling languages

As mentioned in Section 2, the basic philosophy of

NOP-2 is different from that of other modeling lan-

guages.

Both AMPL and GAMS put maximal emphasis on

the convenience of the modeler.

SIF, in contrast, the input language for the local opti-

mizer LANCELOT, provides lots of information for the

solver, but has an exceptionally complicated format.

In designing NOP-2, we tried to find an intermedi-

ate way. The solver should be provided with as much

structural information as possible. On the other hand,

specifying the problem should not be a too formidable

task. In NOP-2, apart from knowing the syntax, the

modeler only needs to look up the names of the basic

element functions in a big (and user-extensible) table.

A conversion routine from AMPL to NOP-2 called

ampl2nop is under development, and it will be described

in a subsequent report. A main problem in automatic

conversion is that it is not well-defined where to intro-

duce intermediate variables and what common subex-

pressions to use for new function definitions. This must

be decided by some heuristics; but the intelligence of the

modeler in detecting structure can hardly be matched

by a conversion algorithm.

The basic steps in converting specifications from SIF,

AMPL and GAMS modeling languages mentioned are

described below.

4.1. Conversion from SIF

The SIF format used as input for the LANCELOT

package [3] handles nonlinear programs of the form

min
∑

i∈I0
gi


∑

j∈Ji
wijfj(xKj) + aTi x− bi




s.t. li ≤ xi ≤ ui (1 ≤ i ≤ n),

gi


∑

j∈Ji
wijfj(xKj) + aTi x− bi


 ∈ [vi, wi]

(i 6∈ I0).

(4.1)

The gi are called group functions, and the arguments of

the gi are the groups. The wij are weights, the fj non-

linear element functions depending on subvectors xKj
of x, and the aTi x− bi are referred to as linear element

functions.

Converting to NOP-2 format can be done as follows.

We introduce extra variables by adding the constraints

yj = fj(xKj), (4.2)

zi =
∑

j∈Ji
wijyj + aTi x− bi (4.3)

if wij 6= 1 or ai 6= 0, and

zi =
∑

j∈Ji
fj(xKj)− bi (4.4)

otherwise. In this way the objective function simplifies

to a simple element

f =
∑

i∈I0
gi(zi) (4.5)

(or to a sum of several elements if the gi are different),

and the constraints become elements with a single piece

only,

gi(zi) ∈ [vi, wi]. (4.6)

No example is included here, since the specification

of Rosenbrock’s function already needs more than one

page in SIF.

4.2. Conversion from AMPL

Here we want to demonstrate that our NOP-2 mod-

eling language has capabilities comparable to AMPL.

Consider the following optimization problem which is

taken from the AMPL book [6]. Models like this fre-

quently arise in the analysis of economic processes.

8

Given: P, a set of products

aj = tons per hour of product j,

for each j ∈ P
b = hours available at the mill

cj = profit per ton of product j

for each j ∈ P
uj = maximum tons of product j

for each j ∈ P
Define variables:Xj = tons of product j

to be made, for each j ∈ P
Maximize:

∑
j∈P cjXj

Subject to:
∑
j∈P (1/aj)Xj ≤ b

0 ≤ Xj ≤ uj , for each j ∈ P

The AMPL version of these algebraic expressions is:

set P;

param a {j in P};

param b:

param c {j in P};

param u {j in P};

var X {j in P};

maximize profit:

sum {j in P} c[j] * X[j];

subject to Time:

sum {j in } (1/a[j] * X[j] <= b;

subject to Limit {j in P}:

0 <= X[j] <= u[j];

with the AMPL data file prod.dat.

set P := bands coils;

param: b := 40;

param: a c u :=

bands 200 25 6000

coils 140 30 4000 ;

The comparison with the problem coded in NOP-2

shown below and the above listing clearly shows useful-

ness of our new modeling language.

// data templates

param int n;

param real a[n] b c[n] u[n];

// get the ’real’ data

incl "data.nop"

// vector of variables

real profit x[n];

// what to do

max profit;

// problem bounds

bnd x in [0,u];

// constraints

lin x; c = profit;

lin x; 1/a <= b;

and the equivalent data file

// bands coils

const a = (200 140)

c = (25 30)

u = (6000 4000);

const b = 40;

The conversion is not straightforward since it in-

volves the detection of structure and common element

functions. However, a tool is being prepared that does

the conversion in many cases automatically and other-

wise gives help during the conversion process.

4.3. Conversion from GAMS

The NOP-2 modeling language also has capabilities

comparable to GAMS. The following optimization prob-

lem is taken from the GAMS home page. As in the case

of AMPL, the model could arise in the analysis of an

economic process.

SETS

I canning plants

/ SEATTLE, SAN-DIEGO /

J markets

/ NEW-YORK, CHICAGO, TOPEKA / ;

PARAMETERS

A(I) capacity of plant i in cases

/ SEATTLE 350

SAN-DIEGO 600 /

B(J) demand at market j in cases

/ NEW-YORK 325

CHICAGO 300

TOPEKA 275 / ;

TABLE D(I,J) distance in thousands of miles

NEW-YORK CHICAGO TOPEKA

SEATTLE 2.5 1.7 1.8

SAN-DIEGO 2.5 1.8 1.4 ;

SCALAR F freight in dollars per case

9

per thousand miles /90/ ;

PARAMETER C(I,J) transport cost in thousands

of dollars per case ;

C(I,J) = F * D(I,J) / 1000 ;

VARIABLES

X(I,J) shipment quantities in cases

Z total transportation costs

in thousands of dollars ;

POSITIVE VARIABLE X ;

EQUATIONS

COST define objective function

SUPPLY(I) observe supply limit at plant i

DEMAND(J) satisfy demand at market j ;

COST .. Z =E= SUM((I,J), C(I,J)*X(I,J)) ;

SUPPLY(I) .. SUM(J, X(I,J)) =L= A(I) ;

DEMAND(J) .. SUM(I, X(I,J)) =G= B(J) ;

MODEL TRANSPORT /ALL/ ;

SOLVE TRANSPORT USING LP MINIMIZING Z ;

The GAMS model can be translated to NOP-2 re-

sulting in a model of about the same size:

// data templates

param int n m;

param real A[n] B[m] C[m,n];

// get the ’real’ data

incl "data.nop"

// vector of variables

real X[n,m] // shipment quantities

Z // total transportation costs

// in thousands of dollars;

// what to do

min Z;

// problem bounds

bnd X[:,:] >= 0;

// constraints

lin X[:,:]; C[:,:] = Z;

loop(i=1:n)

sum X[i,:] <= A[i]

endloop

loop(j=1:m)

sum X[:,j] >= B[j]

endloop

and the equivalent data file

const n=2 m=3;

// seattle san diego

// capacity of the plants

const A = (350 600)

// new york chicago topeka

// capacity of the markets

B = (325 300 275);

// table of distances in thousand miles

const D = dense(3,2)

//new york chicago topeka

2.5 1.7 1.8 // seattle

2.5 1.8 1.4; // san diego

// freight in dollars per thousand miles

const f = 90;

// transport cost in thousands of dollars

const C = f*D/1000;

5. Condensed language specification

This section only contains a basic description of the

language and some examples. A more detailed descrip-

tion is, e.g., contained in [14].

All records start with a keyword that defines the in-

terpretation of records. Records may be continued to

the following lines without continuation character (in

contrast to NOP), and end after a semicolon (;) before

the next keyword. There is no limit on the maximum

length of a record.

Moreover, text after // up to the end of the line or

between /* and */ is ignored (C++ style comments).

Blanks, tabs and newlines are ignored except that they

separate tokens. They can be left out whenever the

expression is unambiguous. Multiple blanks are treated

as a single blank.

All keywords and names are case sensitive.

In the following description of records and examples,

keywords are printed in bold face.

There are the following kinds of records:

Problem declaration. It must appear exactly once in

every NOP-2 file and defines the type of the optimiza-

tion problem (find local/global minimizers, local/global

maximizers, or some/all feasible points). The related

keywords are min, lmin, max, lmax, some, and all.

Examples:

valid: min objective;

valid: lmax y[25+3*5];

valid: some;

10

valid: all;

invalid: min;

This is invalid since for minimization (maximization)

an objective variable must be specified.

invalid: all x[29];

For finding all feasible points an objective variable

must not be specified.

Iterated declarations. They are used to iterate certain

declarations to allow for scalable problem specifications.

The specified iterator must evaluate to a finite set of

constants. For every constant in this list all declarations

in the list of declarations are evaluated, hereby replacing

all occurrences of the iterator variable identifier with the

value of the constant. The related keywords are loop

and endloop. Iterators may, of course, be nested.

Examples:

valid:

real a[n];

loop(i=1:n)

const a[i] = i*(i+1)/2;

endloop

valid:

real Hilbert[n,m];

loop(i=1:n)

loop(j=1:m)

const Hilbert[i,j] = 1/(i+j-1);

endloop

endloop

invalid (because of zero increment):

const a=0;

loop(i=1:0:2)

const a+=i;

endloop

Selected declarations. An if–statement is used to select

different declarations depending on others. They con-

sist of one if part, at most one else part, and in between

an arbitrary number of elseif parts. The declaration

is valid only if all boolean expressions in the selectors

can be evaluated at compile-time. The selected decla-

rations should not be confused with the if1, if2, and

if3 standard element functions which enable branching

in mathematical expressions.

Examples:

valid:

param real n;

...

if(n<=0)

error "n must be greater than 0";

else

a[n] = 1**n;

endif

valid:

real A[n,n];

loop(i=1:n)

loop(j=1:m)

if(i==j)

const A[i,j] = 1;

else

const A[i,j] = 1/abs(i-j);

endif

endloop

endloop

invalid:

if(i<=5)

const a=i;

else

const a=5;

else

error "i must be less or equal to 5";

endif

Constant declarations. They are used to assign con-

stants that can be used in every expression or record

following them. They start with the keyword const

and consist of a list of constant assignments. Assign-

ment is possible for numbers, vectors, matrices, higher

order tensors, and strings. Numbers are entered in a

way similar to FORTRAN, C, or C++. There are ad-

ditional qualifiers ! for numbers specifying constants

that have to be represented exactly (and if this is not

possible, are represented by the smallest enclosing in-

tervals, with a warning issued), and ? for inaccurate

11

numbers known to be precise up to half a unit in the last

place. (This allows correct input of problems that need

to be solved with mathematical guarantee, by global

optimization routines such as INTOPT 90 [8] that use

directed rounding to take roundoff errors into account.)

In addition, the keyword infty is used to specify ∞ as

special “number”.

Examples:

valid: const a=7.347e-12? l=3.985543 b=-2*l!;

valid: const msg="Stop Mad John!";

valid: const A[-1:2:7] = (-2 5.27 1.348 e^(-2)

0);

valid: const A[:,5:8] = B[:,1 2 4 7];

invalid: const a b=3;

There has to be an assignment for every constant

defined.

invalid: const a(1:4) = (-2 9 4 3);

Vectors and tensors are specified using square brack-

ets as in C and in contrast to FORTRAN.

invalid: const a[1:4] +-*/.= (-2 9 4 3);

+-*/.= is not a valid operator.

The standard library contains some predefined con-

stants, such as pi, e, and i.

Specification of vectors and matrices Vectors are usu-

ally specified as a list of constants enclosed in parenthe-

sis. There is an alternative way for specifying vectors

where almost all entries are equal to the same constant.

Examples:

valid: const v = (0.2 4*3.7 2*pi e^(-1/2));

defines a vector of length 4 with the given compo-

nents,

valid: const w = (29$1 2.7@3 9 11; 4.9@12 23);

defines a vector w of dimension 29; wi = 2.7 if i =

3, 9, 11, wi = 4.9 if i = 12, 23, and wi = 1 otherwise.

Matrix definitions are more complicated, as there are

various ways for specifying them, including special for-

mats for expressing sparsity. Special matrix types in-

clude dense, band, diag (diagonal), tria (triangular),

and sparse.They can be entered row–wise or column–

wise. All matrices can be specified to be symmetric or

antisymmetric.

Examples:

valid const A = dense[sym,up](3) 1.1 1.2 2.2

1.3 2.3 3.3;

This specifies a symmetric dense matrix by listing the

elements of the upper triangular part (column-wise,

which is the default).

valid const B = sparse[sym,up](4) 1.2@(1 2),

3.4@(3 4);

This specifies a sparse symmetric matrix, whose en-

tries are a12 = a21 = 1.2, a34 = a43 = 3.4, and

aij = 0 otherwise. There are three other methods

for specifying sparse matrices, which closely resemble

MATLAB output, and schemes using index vectors,

respectively.

Higher order tensors can be specified in a similar way

using the keywords tdense and tsparse.

Variable declarations. Variables must be declared prior

to their first use. (However, the standard library con-

tains a set of predefined variables: a real vector x, a

complex vector z, and an integer vector j.)

A variable declaration is a record starting with an op-

tional qualifier keyword: one of free for free variables

(such appear only in NOP-2 files that specify optimiza-

tion problems, that appear as subproblems of other op-

timization problems, called with a call statement), or

param, for the declaration of parameters, that should

be specified later.

After the initial qualifier there may appear an op-

tional stoch for stochastic variables, and thereafter a

type is specified, which is one of complex, real, int,

having their obvious meaning, bin, for binary variables

that assume only the values 0 or 1, and string for char-

acter strings.

Immediately following the type is a list of variables

(possibly with multidimensional array ranges for vec-

tors, matrices or higher order tensors).

Examples:

valid: param int i;

valid: stoch bin b[i];

The array size may depend on previously defined con-

stants or parameters.

valid: free stoch real xi[7] eta;

valid: real A[7,9:12];

valid: free string name;

invalid: free param real x;

There must not be two qualifiers

invalid: param x[9];

There are no implicit types. Every type must be

explicitly listed.

12

invalid: real v[1:2:9];

Unlike constants, arrays have to be contiguous, the

range including all numbers between the start index

and the end index. If the start index is omitted, it is

assumed to be one.

Bound declarations. These declarations are used to re-

duce the possible range of a set of variables. They start

with the keyword bnd.

Examples:

valid: bnd x[1:9] in [-1,3];

valid: bnd y x[4] A[:,:] <= 0;

valid: bnd j in {1,4,9,16,25};
Finite sets are possible; unions of sets can be specified

using the operator |, and intersections using &.

valid: bnd x < 4;

< and > are valid range restrictors. However, they

retain their meaning only for integer variables. For

the others, < and > are interpreted as <=, and >=

respectively.

valid: bnd A is(psd)

For Matrices special matrix properties may be spec-

ified, like being positive semi-definite.

invalid: bnd v[1:9:12];

no bound specified

invalid: bnd 89 <= x[4];

variables must appear on the left side

Hints. If modelers wants to give hints about possible

good starting points for local optimization, etc., they

can do so by using hint records. They start with the

keyword hint followed by a list of variables, an equality

sign, and a list of constants.

The number of hints is not limited, and it is possible

to specify an incomplete list of variables. This informa-

tion is passed to the solver unchanged and not-specified

variables are specially marked.

Examples:

valid: hint x[1:9] = 1**9;

tells the parser that x1...9 = (1, . . . , 1) should be a

good starting point.

valid: hint x[1 4 6] y[1:19] obj = 1**3 2**19

0.765;

some variables may remain unspecified (e.g. x[2])

invalid: hint 4 3 8;

no variables specified.

invalid: hint 42 = x[4];

variables must appear on the left side.

Distribution declarations. In order to specify the dis-

tribution of stochastic variables, a distribution declara-

tion is required. It starts with distr followed by the

variables, the name of the distribution function, and a

comma-separated list of constant expressions, defining

the parameters.

Examples:

valid: distr xi ~ N(0,1); This specifies a Gaussian

random variable with zero mean and variance 1.

valid: distr eta[1:9] ~ covar(A); This specifies a

random vector with zero mean and covariance matrix

A (nothing else known).

invalid: distr foo ~ 0.24;

There is no name for a distribution function present.

Stage declarations. Such a declaration is used to spec-

ify in which stage of a multistage stochastic model the

variable exists. Its syntactic form is stage followed by

a list of variables, the = sign and an integer.

Variables with undeclared stages are taken to belong

to stage 1.

Examples:

valid: stage xi[1:9] = 2;

valid: stage xi eta[4] A[:,:] = 1;

invalid: stage xi < 4;

No equal sign.

invalid: stage eta = 3.57*pi;

The number must be an integer.

Function declarations. A number of elements that oc-

cur frequently in models, listed in [12], are predefined

in the standard library. These need not (and must not)

be declared. (Note that for binary variables, the min0

and max0 elements code for and and or.)

Other functions can be defined by the user, using a

notation similar to higher level programming languages,

or via a black box interface. The function definition is

enclosed in func–endfunc blocks. Some examples are

given below and in the list of examples of Section 3.

A function’s expression can consist of the single key-

word blackbox that tells the parser – and later the au-

tomatic evaluation function generator – that all neces-

sary work will be done by external subroutines supplied

by the model builder. This feature is provided to allow

for widest flexibility. The information to be provided

13

by the user in such an external subroutine will usually

include function values and gradients; for branch and

bound applications also reasonable outer enclosures of

the range, Lipschitz constants, quadratic underestima-

tions, and similar global information may be needed.

For the user-defined element functions, this kind of in-

formation is produced automatically with a quality de-

pending on the amount of dependence and nonlinearity

present in the definition; for predefined element func-

tions, an attempt was made to produce global informa-

tion of highest quality.

Examples for function definitions:

valid:

func stability(real al be ga M[4,4];

real p q)

blackbox;

endfunc

valid:

func xlog(real y[#])

apply(+,i=1:#)

y[i]*log(y[i]);

endapply

endfunc

The character # tells the parser that y is a vector,

whose dimension is to be compiled at parse time.

valid:

func min1(real y[#])

apply(min,i=1:#)

abs(y[i]);

endapply

endfunc

valid:

func rmrowcol(real M[#[1],#[2]]; int i j;

real RM[#[1]-1,#[2]-1])

if(i<=0 || i>#[1])

error("Row index i (".i.") is ".

"greater than number of rows".

#[1]);

endif

if(j<=0 || j>#[2])

error("Column index j (".j.") is ".

"greater than number of columns".

#[2]);

endif

RM = M[1:i-1 i+1:#[1], 1:j-1 j+1:#[2]];

endfunc

invalid:

func(real a[#[1]] b[#[2]]; int i j k)

if(i-j+k>27)

a[9] = 7+b[i]-j*k;

endapply

endfunc

invalid for two reasons: if is ended by endapply,

and a[#[1]] and b[#[2]] specify two arrays of vari-

able size. It is impossible for the parser, however to

detect where the first array is supposed to end, and

where the second array is supposed to start.

invalid:

func(real y[10])

apply(sin,i=1:10)

pi*y[i];

endapply

endfunc

Only +, *, +-, min, and max are valid within apply.

Element declarations. Element declarations are used

to define the constraints of the model. They start with

an element name, followed by a list of variables and an

optional list of parameters, separated from the variables

by a semicolon ;. Then comes a bound-specifier, which

is similar to the bound definition for variables, or an =

sign and a simple expression involving other variables.

Examples:

valid: sum x[1 2 4] y[2 7] = x[22];

x1 + x2 + x4 + y2 + y7 = x22.

valid: lin x[1:4]; -1 -3.8 3+4*pi e^(-2) <= 27;

valid: mv y A = w;

valid: uhu ; -2 3 -27 = 7.9*al[2] + 4;

An element not containing any variables at all will

be checked at compile-time, and then discarded.

invalid: dont try[-4,9] <= x[42];

This record does not contain an element name.

invalid: old format 1 3 4 6; -1.2 1.e17 9 x15;

14

The old format for entering NOP expressions is no

longer valid.

Call declaration. For stochastic multistage problems,

minimax problems, or multilevel programs, it is possible

to specify optimization subproblems in a separate NOP-

2 file. To make the subproblem accessible by the main

specification, the call declaration is provided. It looks

as follows

call file-name (constant expressions);

where the constant expressions are substituted at call

time for the free variables in the sub-specification.

Examples:

valid: call "subprogram.nop"(42,x[42],y[42],

"don’t panic");

valid: call "try this.nop"(A,v[0],

"segmentation fault");

invalid: call missing quotes(3.247*pi*y[1:39]);

invalid: call no parenthesis x y;

Expressions. Expressions closely resemble mathemat-

ical notation used in programming languages. The fol-

lowing operators are provided. Their semantic meaning

is defined below depending of the type of their operands.

Infix operators are:

|| Boolean or

ˆˆ Boolean exclusive or

&& Boolean and

in whether the left hand side is included in

the set on the right hand side.

== Boolean valued equality

!= Boolean valued inequality

> greater than relation for real and integer

matrices, vectors, sets, and scalars. Ma-

trices and vectors are compared compo-

nentwise, and the relation is true, if all

components of the lhs are greater than

the corresponding ones of the rhs. The

set on the lhs is greater than the one on

the rhs, if it is a true superset.

< less than relation analogous to >.

>= greater or equal relation analogous to >.

<= less or equal relation analogous to >.

<=> three-way comparison. Evaluates to 1 if

the left hand side is greater than the right

hand side, to 0 if the left hand side equals

the right hand side, and to -1 otherwise.

+ addition of scalars, vectors, matrices, and

tensors

– subtraction of scalars, vectors, matrices,

and tensors

| union of two sets

& intersection of two sets

\ set theoretic difference of two sets

∗ multiplication of scalars, componentwise

multiplication of vectors, matrices, and

tensors, multiplication of scalars with

vectors, matrices, and tensors, and Carte-

sian product of sets.

. matrix multiplication, considering vec-

tors as matrices with either 1 row or 1

column, as appropriate.

(∗) tensor product of matrices, tensors, and

vectors, yielding tensors of higher order

/ division (of scalars, vectors, matrices, and

tensors) by scalars.

% modulo division of integer scalars, vec-

tors, matrices, and tensors by integer

scalars.

ˆ taking powers of scalars, sets, and ma-

trices. The right hand side must be an

integer in the case of sets and matrices.

15

Prefix operators:

– unary minus of scalars, vectors, matrices, and

tensors

+ has no effect as prefix operator (unary plus).

! Boolean not
Postfix operators:

´ transposition of a matirx.

6. Application

We have written an ANSI-C library that provides

functions for parsing a NOP-2 file and translating it

into a binary format suitable for interpretation within

other programs. All variables are incorporated into a

single vector, and all index ranges, constants, repeti-

tions are expanded. All constant expressions that can

be evaluated at parse time are evaluated. The complete

problem information is stored in a hierarchical tree of

C structures.

This library is used in GLOPT-2, a global optimiza-

tion package written in ANSI-C that is currently un-

der development. GLOPT-2 uses a branch and bound

technique to split the problem recursively into subprob-

lems that are either eliminated or reduced in their size.

This is done by an extensive use of the block separable

structure of the optimization problem, as displayed in

the NOP-2 format. Apart from the techniques already

implemented in the precursor GLOPT [4], it includes

many enhancements in the reduction techniques.

The latest news can always be found on the global

optimization web pages mentioned at the beginning of

Section 3.

Acknowledgment

The major part of this work was supported by the

European External Research Program (Contract No.

AU-043) by DIGITAL Equipment Corporation, Aus-

tria, and by the Austrian Fond zur Förderung der wis-

senschaftlichen Forschung (FWF) under grant P11516-

MAT. Some part was done during visits of the au-

thors at Bell Laboratories (Lucent Technologies, for-

merly AT&T), Murray Hill, NJ, USA.

In addition, we want to express our special thanks

to Prof. David Gay (Lucent Technologies) for various

fruitful comments.

References

[1] A. Brooke, D. Kendrick, A. Meeraus, GAMS – A User

Guide, The Scientific Press, Redwood City, CA, 1988

[2] J. Castillo and I.E. Grossmann, Computation of phase and

chemical equilibria, Computers Chem. Engin. 5 (1981), 99–

108.

[3] A.R. Conn, N.I.M. Gould, and Ph. L. Toint, LANCELOT.

A Fortran Package for large-scale nonlinear optimization,

Springer, Berlin 1992.

[4] S. Dallwig, A. Neumaier, H. Schichl, GLOPT - a program

for constrained global optimization, in: I. Bomze et al., eds.,

Developments in Global Optimization (Proc. 3rd Workshop

Global Optimization, Szeged 1995).

[5] C. A. Floudas and P.M. Pardalos, A collection of test prob-

lems for constrained global optimization algorithms, Lecture

Notes Comp. Sci. 455, Springer, Berlin 1990.

[6] R. Fourer, D.M. Gay, B.W. Kernighan, AMPL. A modeling

language for mathematical programming, Scientific Press,

San Francisco 1993.

[7] C. Jansson and O. Knüppel, A global minimization

method: The multi-dimensional case, Technical Re-

port 92.1, Hamburg-Harburg 1992. (electronic copy at

http://www.ti3.tu-harburg.de/Software.html)

[8] R.B. Kearfott, Rigorous Global Search: Continuous Prob-

lems, Kluwer, Dordrecht 1996

[9] J.R. Kowalik, M.R. Osborne, Methods for Unconstrained

Minimization, American Elsevier, New York 1968

[10] A. Mfayokurera, Nonconvex phase equilibria computations

by global minimization, M. Sc. Thesis, Dept. of Chem. En-

gineering, Univ. of Wisconsin, Madison, Wisconsin, 1989.

[11] B. A. Murtagh and M.A. Saunders, MINOS 5.1 user’s guide,

Tech. Report SOL 83-20R, Stanford Univ., Stanford, Calif.

1983, revised 1987.

[12] A. Neumaier, NOP - a compact input format for nonlinear

optimization problems, in: I. Bomze et al., eds., Develop-

ments in Global Optimization (Proc. 3rd Workshop Global

Optimization, Szeged 1995).

[13] H. Renon and J.M. Prausnitz, Local compositions in ther-

modynamic excess functions for liquid mixtures, AIChE 14

(1968), 135–144.

[14] H. Schichl, S. Dallwig, A. Neumaier, NOP-2 modeling lan-

guage, Technical Report to Digital Equipment corporation

for the European External Research Program (Contract No.

AU-043) (1997)

[15] G. Walster, E. Hansen and S. Sengupta, Test results for a

global optimization algorithm, pp.272–287 in: Numerical Op-

timization 1984 (P.T. Boggs et al., eds), SIAM, Philadelphia

1985.

