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1 Introduction

In this paper, we present a number of theorems that are useful for the global analysis of
optimization problems, i.e., the assessment of their feasibility, and the construction and
verification of a global solution. Several of the results are, however, also relevant for local
optimization.

In constrained optimization, first and second-order optimality conditions play a central role,
as they give necessary and/or sufficient conditions for a point to attain a local or global
minimum of the problem considered, and thus define the goals that numerical methods
should try to satisfy.

The various conditions currently available usually depend on qualitative conditions (concern-
ing smoothness, linearity, convexity, etc.) that delineate the problem class, and on technical
conditions, so-called constraint qualifications, that allow one to avoid certain difficulties in
proofs, or certain known counterexamples.

The proof of the optimality conditions depend crucially on the availablility of certain theo-
rems of the alternative, which state that among two alternative existence statements, exactly
one can be satisfied. Thus a theorem of the alternative may serve to define certificates whose
presence imply the solvability of one alternative and the unsolvability of the other alternative.

Recent advances in global optimization [27, 30] make it possible in many cases to find and
verify the global optimality of a solution, or to verify that no feasible point exists. Certificates
acquire in this case a special importance, particularly in the context of computer-assisted
proofs.

However, in order to apply a necessary optimality condition to rule out candidate solutions,
or a sufficient optimality condition to verify the existence of a solution, it is important that
these conditions are valid under conditions that can be checked explicitly. Therefore the
optimality conditions should not depend on any constraint qualification.

Optimality conditions characterizing the solutions of smooth nonlinear programming prob-
lems by first order necessary conditions are often called Fritz John conditions if they apply
without constraint qualification, after Fritz John [15], who rediscovered unpublished earlier
results of Karush [16]; see Kuhn [18, Section 6] for a history. Therefore, we shall refer to
such conditions as Karush-John optimality conditions.

The importance of the Karush-John conditions stem from the fact that they apply with-
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out any hypothesis on the optimization problem (apart from smoothness). For the known
(second-order) sufficient conditions, a similar result was not known before, sufficiency requir-
ing very strong nondegeneracy conditions. It is therefore remarkable that, for polynomial
optimization problems, it is possible to formulate necessary and sufficient conditions for
(global) optimality, valid without any restriction. These strong results are based on the
so-called Positivstellensatz, a polynomial analogue of the transposition theorem for linear
systems. The Positivstellensatz is a highly nontrivial tool from real algebraic geometry which
has been applied recently also in an algorithmic way for the solution of global polynomial
optimization problems. Some of the consequences of the Positivstellensatz are implemented
in the packages GloptiPoly (Henrion & Lasserre [12, 13, 14]) and SOSTOOLS (Prajna
et al. [32]).

Related results in this direction are in Lasserre [20]. He proved in Theorem 4.2 a sufficient
condition for global optimality in polynomial optimization problems, which is a special case
of our necessary and sufficient conditions. (The unconstrained minimization of the Motzkin
polynomial shows that Lasserre’s condition is not sufficient.) He shows that his certificates
can be interpreted as polynomial multipliers in a fashion analogous to the Kuhn-Tucker
optimality conditions. Instead of necessary conditions he obtains under some compactness
assumption an infinite sequence of semidefinite relaxations whose optimal values converge
to the global optimum.

In this article we derive in Section 2 polynomial transposition theorems and deduce from
them a global Karush-John condition which is necessary and sufficient conditions for global
optimality of polynomial programs.

Section 3 then proves a very general transposition theorem for linear constraints, establishing
a theorem of the alternative from which the transposition theorems of Motzkin [24] and
of Tucker [34] (as well as many weaker ones) can be obtained as corollaries. This level
of generality is necessary to deduce in Section 4 a form of the constraint qualifications for
the Kuhn-Tucker optimality conditions for general smooth nonlinear programming problems,
which is stronger (i.e., makes more stringent assertions about the multipliers) than the known
Karush-John conditions and also applies for multiple objectives.

Our Karush-John conditions imply derived Kuhn-Tucker conditions with linear independence
constraint qualifications for fewer constraints than the conditions found in the literature. In
particular, they imply the known result that for concavely (or linearly) constrained problems
no constraint qualification is needed.

The new conditions will be incorporated in the COCONUT environment [9] for deterministic
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global optimization; the local Karush-John conditions from Section 4 are already in place.

Notation. In the following, R is the field of real numbers, and N0 the set of nonnegative
integers. To denote monomials and their degree, we use the multiindex notation

xα = xα1
1 · · · xαnn , |α| = α1 + · · ·+ αn

(x ∈ Rn, α ∈ Nn0 ). Inequalities (≤, ≥) and strict inequalities (<, >) between vectors and
matrices are interpreted componentwise. However, disequality (6=) is the negation of equality
(=) and hence not interpreted componentwise. The infimum inf{x, y} of two vectors x, y
of the same size is taken in the partial order ≤, and is equivalent to the componentwise
minimum. In particular, the condition inf{x, y} = 0 is just the complementarity condition
x ≥ 0, y ≥ 0, xiyi = 0 for all i. By e we denote a column vector of arbitrary size all of whose
entries have the value 1. [A,B] denotes the m× (n + p)-matrix formed by juxtaposition of
the m×n-matrix A and the m×p-matrix B. Zero dimensional vectors and matrices (needed
to avoid stating many special cases) are handled according to the conventions in de Boor
[7]; in addition, any of the relations =, <, ≤ (but not 6=) between zero dimensional objects
is considered to be valid.

2 Global optimality conditions for polynomials

It is well-known that first order (Kuhn-Tucker) optimality conditions for constrained (single-
objective) optimization are sufficient for convex problems, but not in general. For nonconvex
problems, they must be complemented by second order conditions, which come in two forms
– as necessary conditions and as sufficient conditions, and they apply to local optimality
only. Moreover, between necessary and sufficient conditions is a theoretical gap, in which
various degenerate exceptional situations are possible. It is therefore remarkable that, for
polynomial systems, it is possible to bridge this gap and formulate necessary and sufficient
conditions for (global) optimality, valid without any restriction.

The following discussion is based on a polynomial analogue of the transposition theorem
(Theorem 3.4), the so-called Positivstellensatz, a highly nontrivial result from real algebraic
geometry. To present this result, we need some definitions.

N0 denotes the set of nonnegative integers. R[x1:n] := R[x1, . . . , xn] denotes the algebra
of polynomials in the indeterminates x1, . . . , xn with real coefficients. Let Ri ∈ R[x1:n]
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(i = 1 : k) be a finite family of polynomials, combined in the vector R = (R1, . . . , Rk)
T . The

ideal generated by the Ri is the vector space

I〈R〉 = I〈R1, . . . , Rk〉 :=
{ k∑

i=1

aiRi

∣∣∣ ai ∈ R[x1:n]
}
.

The multiplicative monoid generated by the Ri is the semigroup

M〈R〉 = M〈R1, . . . , Rk〉 :=
{ k∏

i=1

Rei
i

∣∣∣ ei ∈ N0

}
. (1)

A polynomial cone C is a subset of R[x1:n] containing all squares a2 with a ∈ R[x1:n],
such that r + s, rs ∈ C whenever r, s ∈ C. The smallest polynomial cone is the set SOS
of polynomials which can be represented as sums of squares; we call such polynomials SOS
polynomials. The polynomial cone generated by the Ri is the smallest polynomial cone
containing R1, . . . , Rk; it is given by

C〈R〉 = C〈R1, . . . , Rk〉 =
{
y0 + Y TRS

∣∣∣ y0 ∈ SOS, Y ∈ SOS2k
}
. (2)

where RS denotes the vector containing the 2k polynomials in the squarefree part

S〈R〉 = S〈R1, . . . , Rk〉 :=
{ k∏

i=1

Rei
i

∣∣∣ ei ∈ {0, 1}
}

of M〈R1, . . . , Rk〉.

2.1 Theorem. (Polynomial transposition theorem I)

Let P , Q, and R be vectors of polynomials. Then exactly one of the following holds:

(i) P (x) ≥ 0, Q(x) = 0, Ri(x) 6= 0 for i = 1, . . . , k, for some x ∈ Rn,

(ii) f + g + h = 0 for some f ∈ C〈P 〉, g ∈ I〈Q〉, and h ∈M〈R2
1, . . . , R

2
k〉.

Proof. That conditions (i) and (ii) are mutually inconsistent can easily be seen. Indeed, if
(i) holds then for any f ∈ C〈P 〉, g ∈ I〈Q〉, and h ∈ M〈R2

1, . . . , R
2
k〉, we have f(x) ≥ 0,

g(x) = 0, and h(x) > 0, whence f(x) + g(x) + h(x) > 0, contradicting (ii). That one of
the two conditions can always be satisfied is the hard part. It follows from the statement
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that the inconsistency of (i) implies the solvability of (ii), which is equivalent to the Weak
Positivstellensatz stated and proved as Theorem 4.4.2 in Bochnak et al. [4]. ut

For our application to optimality conditions, we need the following slightly different formu-
lation.

2.2 Theorem. (Polynomial transposition theorem II)

Let P , Q, and R be vectors of polynomials. Then exactly one of the following holds:

(i) P (x) ≥ 0, Q(x) = 0, and R(x) > 0 for some x ∈ Rn,

(ii) f + g + h = 0 for some f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈M〈R〉.

Proof. That conditions (i) and (ii) are mutually inconsistent can again easily be seen. Indeed,
if (i) holds then for any f ∈ C〈P 〉, g ∈ I〈Q〉, and h ∈ M〈R〉, we have f(x) ≥ 0, g(x) = 0,
and h(x) > 0, whence f(x) + g(x) + h(x) > 0, contradicting (ii).

If, on the other hand, (i) is inconsistent, this implies that the system
(
P (x), R(x)

)
≥ 0,

Q(x) = 0, and R(x) 6= 0 is inconsistent, and by Theorem 2.1, there exist f ∈ C〈P,R〉,
g ∈ I〈Q〉, and h ∈ M〈R2

1, . . . , R
2
k〉 with f + g + h = 0. Since M〈R2

1, . . . , R
2
k〉 ⊂ M〈R〉, the

result follows. ut

Both versions have the following common generalization.

2.3 Theorem. (General polynomial transposition theorem)

Let P , Q, R, and S1, . . . , Sk be vectors of polynomials. Then exactly one of the following
holds:

(i) P (x) ≥ 0, Q(x) = 0, R(x) > 0, and Si(x) 6= 0 for i = 1, . . . , k, for some x ∈ Rn,

(ii) f + g + h = 0 for some f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈M〈R,ST1 S1, . . . , S
T
k Sk〉.

Proof. That conditions (i) and (ii) are mutually inconsistent can be proved as before. Given
(i) holds, then for any f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈ M〈R,ST1 S1, . . . , S

T
k Sk〉, we have

f(x) ≥ 0, g(x) = 0, and h(x) > 0, leading to f(x) + g(x) + h(x) > 0, contradicting (ii).
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The fact that (i) is inconsistent implies that the system of constraints R(x) ≥ 0, Q(x) = 0,
and

(
R(x), S1(x)TS1(x), . . . , Sk(x)TSk(x)

)
> 0 is inconsistent, and by Theorem 2.2, there

exist polynomials f ∈ C〈P,R〉, g ∈ I〈Q〉, and h ∈M〈R,ST1 S1, . . . , S
T
k Sk〉 with f+g+h = 0.

ut

The equivalence of the three transposition theorems 2.1, 2.2, and 2.3 can be seen by taking
R(x) ≡ 1 ∈ R in Theorem 2.3 and noting that C〈P, 1〉 = C〈P 〉 and M〈1, ST1 S1, . . . , S

T
k Sk〉 =

M〈S2
1 , . . . , S

2
k〉 when all Sj are scalars.

The following result gives necessary and sufficient conditions for the global optimality of a
feasible point of an optimization problem defined in terms of a polynomial objective function
f and polynomial constraints. In most applications, f will be a real-valued function.

However, it is not difficult to state and prove analogous conditions for multiobjective opti-
mization problems, by allowing f to be vector-valued. In this case, optimality is replaced by
Pareto optimality, defined as follows. The point x̂ is called weakly Pareto minimal with
respect to the continuous function f : X ⊆ Rn → Rm for f on X if x ∈ X and there exists
a neighborhood of x̂ in X which does not contain a point y with f(y) < f(x̂).

2.4 Theorem. (Global Karush-John conditions)

Let x̂ be a feasible point of the polynomial Pareto-optimization problem

min f(x)

s.t. C(x) ≥ 0,

F (x) = 0,

(3)

where f ∈ R[x1:n]k and C ∈ R[x1:n]m, F ∈ R[x1:n]r are vectors of polynomials in x1:n. Write
B for the vector obtained by concatenating C with the vector G(x) = f(x̂)− f(x), so that
Bk = Ck for k ≤ m. Then the following are equivalent:

(i) The point x̂ is a global weak Pareto-minimum of (3).

(ii) There are a polynomial y0 ∈ SOS, polynomial vectors Y ∈ SOS2m+1
, Z ∈ R[x1:n]r, and

a multiindex α ∈ Nk0 with |α| > 0 such that

G(x)α + y0(x) + Y (x)TBS(x) + Z(x)TF (x) = 0 (4)

identically in x.
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Moreover, any solution of (4) satisfies

y0(x̂) = 0, inf{Y (x̂), BS(x̂)} = 0, F (x̂) = 0, (5)

δ|α| 1f
′
i(x̂)T = BS

′(x̂)TY (x̂) + F ′(x̂)TZ(x̂), (6)

where αi = 1.

Proof. x̂ is a global weak Pareto-minimum of (3) iff the conditions

C(x) ≥ 0, F (x) = 0, f(x) < f(x̂)

are inconsistent. Because f(x) < f(x̂) iff G > 0, the polynomial transposition theorem,
Theorem 2.2, applies and shows that this is equivalent to the existence of polynomials q ∈
C〈B〉, r ∈ I〈F 〉 and s ∈M〈G〉 with q+ r+ s = 0. Expressing this more explicitly using (1)
and (2) shows this to be equivalent to (ii) without the constraint (5), and α only restricted to
be a nonnegative multiindex. The equivalence of (i) and (ii) follows if we show that |α| 6= 0.

Since x̂ is feasible, we have B(x̂) ≥ 0, F (x̂) = 0, and by construction, G(x̂) = 0. Moreover, as
sum of squares, y0(x̂) ≥ 0 and Y (x̂) ≥ 0. Inserting x = x̂ into (4) gives, with the Kronecker
δ,

δ0 |α| ≤ δ0 |α| + y0(x̂) + Y (x̂)TBS(x̂) = 0.

This indeed forces |α| > 0.

We also get y0(x̂) = 0, and Y (x̂)TBS(x̂) = 0. But the latter inner product is a sum of
nonnegative terms, hence each product vanishes, giving the complementarity conditions (5).
Differentiating the relation (4) and evaluating the result at x̂ yields

0 =
k∑

i=1
αi>0

αiG
α−ei(x̂)G′i(x̂)T + y′0(x̂) + Y ′(x̂)TBS(x̂) +BS

′(x̂)TY (x̂)

+ Z ′(x̂)TF (x̂) + F ′(x̂)TZ(x̂).

(7)

We now note that y′0(x̂) = 0 because y0(x̂) = 0 and y0 is SOS. Together with the facts that
|α| > 0, G(x̂) = 0, and F (x̂) = 0, we can simplify (7) and get

0 = δ|α| 1G
′
i(x̂)T + Y ′(x̂)TBS(x̂) +BS

′(x̂)TY (x̂) + F ′(x̂)TZ(x̂), (8)

for that i with αi = 1. Finally, whenever (BS)j(x̂) 6= 0, the complementarity conditions in
(5) imply Yj(x̂) = 0 and then Y ′j (x̂)T = 0 since Yj is a SOS. Thus, Y ′(x̂)TBS(x̂) = 0, and (8)
simplifies further to (6), upon noting that G′i(x̂) = −f ′i(x̂). ut
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We may interpret the polynomials in (4) as a certificate that x̂ is a global optimizer of (3).
For applications in practice, one would first try to find x̂ by local optimization or a heuristic
global search, and then try to prove its globality by solving (4) with the side constraints (5).
Note that the conditions are linear, except for the SOS conditions which give semidefinite
constraints. Since the degree of the polynomials involved is not known a priori, one would
solve a sequence of linear semidefinite feasibility problems on the finite-dimensional spaces
of polynomials defined by limiting the total degree of the terms in (4) to d = 1, 2, 3, .... Once
a certificate is found one can stop.

Our theorem guarantees that this procedure will be finite if and only if x̂ is indeed a global
minimizer. In contrast, the method of Lasserre [20] yields an infinite sequence of semidef-
inite relaxations whose optimal values converge (under some compactness assumption) to
the global optimum. There is no guarantee that the global optimum is found after finitely
many steps. It would be interesting to combine the approaches to a constructive procedure
for finding and verifying a global optimizer in finitely many steps.

For rigorous certification, one would have the additional problem of verifying the existence
of an exact certificate close to the computed approximation.

We now relate the global Karush-John conditions to the traditional local conditions.

2.5 Corollary. (Kuhn-Tucker conditions) If x̂ is a global optimum of problem (3) with
k = 1 and (4) holds with α = (1) then there are vectors y ≥ 0 and z with

∇f(x̂) = C ′(x̂)Ty + F ′(x̂)T z (9)

and
inf{y, C(x̂)} = 0. (10)

Proof. We already know by Theorem 2.4 (6) that

∇f(x̂) = BS
′(x̂)TY (x̂) + F ′(x̂)TZ(x̂).

we can write that in a slightly expanded way as follows

∇f(x̂) = C ′S(x̂)TY (1)(x̂) +G′1(x̂)TCS(x̂)Y (2)(x̂) + F ′(x̂)TZ(x̂).

Noting that CS(x̂)Y (2)(x̂) ≥ 0 and G′1(x̂)T = −∇f(x̂) and expanding further we see that

γ∇f(x̂) =
∑

β∈{0,1}m

m∑

i=1
βi=1

C ′i(x̂)TCβ−ei(x̂)Y
(1)
β (x̂) + F ′(x̂)TZ(x̂) = 0,
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where γ = 1 + CS(x̂)Y (2)(x̂) > 0. We reorder the sums and get

γ∇f(x̂) =
m∑

i=1

C ′i(x̂)T
∑

β∈{0,1}m
βi=1

Cβ−ei(x̂)Y
(1)
β (x̂) + F ′(x̂)TZ(x̂) = 0.

If we now set

yi =
1

γ

∑

β∈{0,1}m
βi=1

Cβ−ei(x̂)Y
(1)
β (x̂),

z =
1

γ
Z(x̂)

(11)

we get the required equality (9).

For the complementarity conditions we calculate

Ci(x̂)yi =
1

γ

∑

β∈{0,1}m
βi=1

Cβ(x̂)Y
(1)
β (x̂) = 0,

since by (5) all terms in the sum vanish. ut

2.6 Example. Lets consider the simple optimization problem

min 2x− x2

s.t. x ∈ [−1, 1].

Clearly, the objective function is concave, hence the global minimum f̂ = −3 is attained at
the bound x̂ = −1. We can write

f(x)− f(x̂) = 2x− x2 + 3 = (1 + x)(3− x) = 1(1 + x)(1− x) + 2(1− x).

Obviously, each term on the right is nonnegative, showing again that x̂ is a global minimizer.

From this representation one reads off the certificate (α = 1, y0 = 0, Y T = (0, 0, 2, 0, 1, 0, 0, 0),
Z = ()) satisfying (4), where the components of BS are arranged in the order 1, 1 + x, 1 −
x, x2 − 2x− 3, 1− x2, . . ..

While this example is trivial, it shows the essentials. Higher dimensional examples only differ
in the complexity of what has to be written. In many other situations, as e.g. in Example 2.7,
the certificate will be very sparse and of low degree, thus simplifying the search for it.
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2.7 Example. Lets consider the optimization problem

min z − x
s.t. x− y + z = 0

x2 − 10x+ y2 ≥ 0

x ∈ [0, 2], y ≥ 0.

(12)

The point (0, 0, 0) is a global optimizer with objective function value 0, which can be validated
by use of Theorem 2.4 and the following polynomial identity

(x− z) + 1
2
y(2− x) + 1

4
y(x− z) + 1

4
x(2− x) + 1

4
(x2 − 10x+ y2) + 1

4
(4 + y)(x− y + z) = 0.

Careful observation of this identity shows that for the point (2, 4, 2) all terms of the certificate
vanish as well. Hence, this point is another global minimizer of (12) (see also Figure 1), and
it is the only other, which can be seen by the following argument.

By Theorem 2.4, for every global minimizer all terms in (4) have to vanish, i.e. for every
global minimizer x̂ we have that G(x̂) = 0 and (5) and (6) are valid.

Using this information usually can aid in identifying all global minimizers of an optimization
problem.

2.8 Example. For the problem

min x+ y + z

s.t. y − y2 + z ≥ 0

2x+ y + y2 + z − 2 ≥ 0

x ≥ 0

we can find the polynomial identity

1− (x+ y + z) + 1
2
· (y − y2 + z) + 1

2
· (2x+ y + y2 + z − 2) = 0,

which implies that the global minimum value of the objective function is 1. By the comple-
mentarity conditions, we find that the two nonlinear inequality constraints must be active
at every global minimum, i.e.

y − y2 + z = 0

−2 + 2x+ y + y2 + z = 0,

11



which implies that all

x̂ ∈
{


1− s2

s

s(s− 1)



∣∣∣∣∣ s ∈ [−1, 1]

}

are global optima.

Finally, the following example shows that |α| = 1 can indeed be violated in (4).

2.9 Example. For every nonnegative integer k the optimization problem

min x

s.t. x2k+1 ≥ 0

admits the unique global optimizer x̂ = 0. The required polynomial identity of smallest
degree is

(−x)α + 1 · x2k+1 = 0, α = 2k + 1.

In the GloptLab package [28], an optimization package currently developed in MATLAB,
methods are being implemented and tested, which work along the lines presented in this
section. They use the SeDuMi [33] package for the semidefinite programming part and
combine the present techniques with branch-and-bound, constraint propagation and linear
relaxations. They have produced very promising results. At a later stage, the most successful
techniques will be implemented as inference modules for the COCONUT environment [10].

3 Refined linear theorems of the alternative

In the linear case, there is a long tradition of theorems of the alternative, beginning with
the Lemma of Farkas [11], and culminating in the transposition theorems of Motzkin [24]
and Tucker [34]. These transposition theorems are concerned with the solvability of linear
constraints of various forms (equations, inequalities, strict inequalities, disequalities); see,
e.g., Broyden [6] for some history.

As we shall show, there is a single general transposition theorem, which contains the others
as special cases. As for the latter, our starting point is the Lemma of Farkas:

12



3.1 Lemma. (Farkas) Let A ∈ Rm×n and g ∈ Rn. Then exactly one of the following
conditions can be satisfied.

(i) gTp < 0, Ap ≥ 0 for some p ∈ Rn.

(ii) g = AT q, q ≥ 0 for some q ∈ Rm.

For the formulation of the transposition theorem and the constraint qualification we define
[1,−u] =: Eu ∈ Rk×(k+1) with 0 < u ∈ Rk and 1 being the identity matrix. We get the
following result.

3.2 Lemma. For X ∈ Rn×k with rkX = n, 0 < u ∈ Rk, 0 < v ∈ R`, and Y ∈ Rn×` there
exists a matrix 0 ≤ S ∈ R(k+1)×(`+1) with

XEuS = Y Ev.

Proof. Since rkX = n every y ∈ Rn can be written as a linear combination of the columns
xi of X:

y =
k∑

i=1

λixi.

Define

µ =
k

max
i=1

{
−λi
ui
, 0

}
.

Then

y =
k∑

i=1

(λi + µui)xi + µ

(
−

k∑

i=1

uixi

)
= XEus,

with 0 ≥ si := λi + µui and sk+1 := µ. Since all columns of Y Ev ∈ Rn, the result follows.
ut

We prove the following general theorem of the alternative, and deduce from it the transpo-
sition theorems of Motzkin and Tucker.

3.3 Theorem. (General linear transposition theorem)

Consider matrices A ∈ RmA×n, B ∈ RmB×n, C ∈ RmC×n, and Dj ∈ Rmj×n with mj > 0 for
j = 1, . . . , N . Then exactly one of the following holds.
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(i) Ax = 0, Bx ≥ 0, Cx > 0, and Djx 6= 0, for j = 1, . . . , N , for some x ∈ Rn,

(ii) we have mC > 0 and there exist q ∈ RmA , r ∈ RmB , and s ∈ RmC with

AT q +BT r + CT s = 0, r ≥ 0, s ≥ 0, s 6= 0, (13)

or for some j ∈ {1, . . . , N} there exist matrices Q ∈ RmA×(mj+1) and R ∈ RmB×(mj+1) with

ATQ+BTR = DT
j Eu, R ≥ 0, (14)

for some u > 0. Moreover, the same alternative holds if in (ii) a fixed vector u > 0 (such as
the all-one vector u = e) is prescribed.

Proof. If (i) and (ii) hold simultaneously then multiplying (13) with xT yields

(Bx)T r + (Cx)T s = 0.

Since Bx ≥ 0 and r ≥ 0 we have (Cx)T s ≤ 0, which is a contradiction to Cx > 0 and s ≥ 0,
s 6= 0. Multiplying, on the other hand, (14) by xT we get

0 ≤ (Bx)TR = [(Djx)T ,−(Djx)Tu],

whence Djx ≥ 0 and uTDjx < 0 forces Djx = 0, contradiction.

Now assume that (i) cannot be solved. Then, for all j = 1, . . . , N and all vj ∈ Rmj , there is
no x ∈ Rn with

Ax = 0, Bx ≥ 0, Cx > 0, and vTj Djx > 0. (15)

Writing

g :=

(
0

1

)
, F :=




A 0

−A 0

B 0

C e

vT1 D1 1
...

...

vTNDN 1




, p :=

(
x

−λ

)
,

we find that
gTp < 0, Fp ≥ 0 (16)
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is unsolvable for p ∈ Rn+1. By the Lemma of Farkas 3.1, we can find q ∈ R2mA+mB+mC+N

with

F T q = g, q =




â

ā

b

c

µ



≥ 0. (17)

Writing a := â− ā, we find the existence of vectors a ∈ RmA , b ∈ RmB , c ∈ RmC , and µ ∈ RN
(depending on the choice of the vj) such that

ATa+BT b+ CT c+
N∑

j=1

µjD
T
j vj = 0, eT

(
c

µ

)
= 1, b, c, µ ≥ 0. (18)

For M ≤ N , we consider the set SM consisting of all (v1, . . . , vM−1) ∈ Rm1 × · · · × RmM−1

for which (18) holds with µj = 0 for j ≥ M . Let S1 := ∅. Let M be maximal with
SM 6= Rm1 × · · · × RmM−1 . If M = 1 we get c 6= 0, hence mC > 0, and by setting q := a,
r := b, and s := c we find (13).

Hence we may assume that M > 1 and pick (v1, . . . , vM−1) /∈ SM . Take an arbitrary
vM ∈ RmM . We can find vectors a, a′, b ≥ 0, b′ ≥ 0, c ≥ 0, c′ ≥ 0, 0 ≤ ξ, ξ′ ∈ RM−1, and
numbers λ > 0 and λ̃ > 0 with

ATa+BT b+ CT c+
M−1∑

j=1

ξjD
T
j vj + λDT

MvM = 0, eT
(
c

ξ

)
+ λ = 1, (19)

ATa′ +BT b′ + CT c′ +
M−1∑

j=1

ξ′jD
T
j vj + λ′DT

M(−vM) = 0, eT
(
c′

ξ′

)
+ λ′ = 1. (20)

Indeed, assume that we cannot find a, b, c, ξ, and λ with (19). We can get vectors a, b,
c, µ satisfying (18). If there are only combinations with µM+1:N 6= 0, then (v1, . . . , vM) /∈
SM+1, contradicting the maximality of M . If there is a combination with µM = 0, we find
(v1, . . . , vM−1) ∈ SM , another contradiction. Thus µM 6= 0, and we set ξ := µ1:M−1 and
λ := µM . The same argument gives (20). Combining (19) and (20) leads to

AT
(

1
λ
a+ 1

λ′a
′

︸ ︷︷ ︸
:= q

)
+BT

(
1
λ
b+ 1

λ′ b
′

︸ ︷︷ ︸
:= r

)
+ CT

(
1
λ
c+ 1

λ′ c
′

︸ ︷︷ ︸
:= s

)
+

M−1∑

j=1

( ξj
λ

+
ξ′j
λ′︸ ︷︷ ︸

:= νj

)
DT
j vj = 0.

eT
(
s

ν

)
=
λ+ λ′

λλ′
− 2 =: σ.

(21)
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If s 6= 0 or ν 6= 0 the combination (µ1, . . . , µM−1) := σ−1ν ≥ 0, a := σ−1q, b := σ−1r ≥ 0,
and c := σ−1s ≥ 0 proves that (v1, . . . , vM−1) ∈ SM , a contradiction. Thus s = 0, implying
c = c′ = 0, and ν = 0, hence ξ1 = ξ′1 = · · · = ξN−1 = ξ′N−1 = 0, and λ = 1. Since vM was
arbitrary, we have shown that for all vM ∈ RmM there exist vectors a ∈ RmA and b ∈ RmB
with

ATa+BT b+DT
MvM = 0. (22)

We set j := M and choose for vM in turn an arbitrary u > 0 and the vectors wk := −ek
(k = 1, . . . ,mj). This gives vectors q′ and r′ ≥ 0 with

AT q′ +BT r′ = −DT
j u.

and vectors qk and rk ≥ 0 (k = 1, . . . ,mj) with

AT qj +BT rj = −DT
j wj.

Forming the matrices Q :=
[
q1, . . . , qmj , q

′] and R :=
[
r1, . . . , rmj , r

′] finally gives (14). ut

The well known theorems of the alternative by Motzkin [24] and Tucker [34] are conse-
quences of this theorem.

3.4 Theorem. (Motzkin’s linear transposition theorem)

Let B ∈ Rm×n, and let (I, J,K) be a partition of {1, . . . ,m} with K 6= ∅. Then exactly one
of the following holds:

(i) (Bp)I = 0, (Bp)J ≥ 0, (Bp)K > 0 for some p ∈ Rn,

(ii) BT q = 0, qJ∪K ≥ 0, qK 6= 0 for some q ∈ Rm.

Proof. We set Ã := BI:, B̃ := BJ :, C̃ := CK:, N = 0 and apply Theorem 3.3. ut

3.5 Theorem. (Tucker’s linear transposition theorem)

Let B ∈ Rm×n, and let (I, J,K) be a partition of {1, . . . ,m} with K 6= ∅. Then exactly one
of the following holds:

(i) (Bp)I = 0, (Bp)J∪K ≥ 0, (Bp)K 6= 0 for some p ∈ Rn,

(ii) BT q = 0, qJ ≥ 0, qK > 0 for some q ∈ Rm.
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Proof. Set Ã = −BT , define the matrix B̃ whose rows are indexed by I ∪ J ∪K and whose
columns are indexed by J with B̃J : = 1, B̃I∪K,: = 0, and introduce the matrix C̃ whose
rows are indexed by I ∪ J ∪ K with C̃K: = 1, C̃I∪J,: = 0, and N = 0. Clearly, case (i) of
Theorem 3.3 is equivalent to the solvability of the present (ii). On the other hand,, case (ii)
of Theorem 3.3 is here equivalent to the existence of vectors q, r ≥ 0, and s ≥ 0, s 6= 0 with

ÃT q + B̃T r + C̃T s = 0.

Plugging in the definitions of Ã, B̃, and C̃ this becomes

−BI:q = 0, −BJ :q + r = 0, −BK:q + s = 0,

which is clearly equivalent to (i). ut

For the applications in the next section we need the following corollary of Theorem 3.3.

3.6 Corollary. Let B ∈ Rm×n, and let (I, J,K) be a partition of {1, . . . ,m} of i = |I|,
j = |J |, and k = |K| > 0 elements. Then exactly one of the following holds:

(i) If A = BT
K:Eu for any 0 < u ∈ Rk, then rkA = k and for some matrix P ∈ Rn×(k+1)

(B(A+ P ))I: = 0, (B(A+ P ))J : ≥ 0, and (BP )K: = 0.

(ii) BT q = 0, qJ ≥ 0, qK 6= 0 for some q ∈ Rm.

Proof. We set Ã = −BT , define B̃ ∈ R|I∪J∪K|×|J | with B̃J : = 1, B̃I∪K,: = 0, construct
D̃ ∈ R|I∪J∪K|×|K| with D̃K: = 1, D̃I∪J,: = 0, and set N = 1, mC = 0, and k = |K|. Clearly,
case (i) in Theorem 3.3 is equivalent to the present (ii).

On the other hand, (ii) in Theorem 3.3 is here equivalent to the existence of matrices Q and
R ≥ 0 with

BI:Q = 0, BJ :Q = R, BK:Q = ET
u . (23)

This, in turn, is equivalent to (i) by the following argument, for which we introduce the
pseudo inverse B†K: = BT

K:(BK:B
T
K:)
−1 of BK:.

Lets assume (i). By Lemma 3.2 we can find a matrix S ≥ 0 with (BK:B
T
K:)EuS = Eu, and

we set Q := B†K:Eu + PS. Then

BI:Q = BI:

(
BT
K:(BK:B

T
K:)
−1Eu + PS

)
= BI:(B

T
K:Eu + P )S = 0,

BJ :Q = BJ :

(
BT
K:(BK:B

T
K:)
−1Eu + PS

)
= BJ :(B

T
K:Eu + P )S =: R ≥ 0,

BK:Q = BK:B
†
K:Eu +BK:PS = Eu + 0.
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Now assume (23). The last equation implies rkBK: = rkA = k, and so the pseudo inverse of
BK: exists and Q is of the form Q = B†K:Eu+P ′ for some P ′ with BK:P

′ = 0. By Lemma 3.2
we can find S ≥ 0 with (BK:B

T
K:)
−1EuS = Eu and set P := P ′S. Calculating

BI:(A+ P ) = BI:(B
T
K:Eu + P ′S) = BI:(B

†
K:Eu + P ′)S = BI:QS = 0,

BJ :(A+ P ) = BJ :(B
T
K:Eu + P ′S) = BJ :(B

†
K:Eu + P ′)S = BJ :QS = RS ≥ 0,

BK:P = BK:P
′S = 0,

we prove (ii). ut

4 A refinement of the Karush–John conditions

Karush-John conditions were originally derived – for single-objective optimization with in-
equality constraints only – by Karush [16], and rediscovered by John [15]. They were
subsequently generalized to mixed equality and inequality constraints, and to multiobjective
optimization problems; there is a large literature on the subject, which can be accessed from
the references below.

However, the Karush-John conditions in their most general form pose difficulties in ap-
plications, because the factor in front of the gradient term may be zero or very small.
Therefore, most of the local solvers require a constraint qualification, like that of Man-
gasarian & Fromovitz [22] (MFCQ), to be able to reduce the Karush-John conditions
to the much more convenient Kuhn-Tucker conditions [19]. Thorough discussions of such
constraint qualifications can be found for single-objective optimization in Bazaraa et al.
[3] and Mangasarian [21]. A more recent account is in Bonnans & Shapiro [5, Section
5.2]; there one can also find extensions to conic programming, semiinfinite programming,
and infinite-dimensional problems (not considered in the present work). The Karush-John
conditions have been investigated in the case of multiobjective optimization in Marusciac
[23], though the result implicitly contains a constraint qualification. Further reference can
be found in Phan & Le [31] and Aghezzaf & Hachimi [1], especially for connections to
the constraint qualifications and, e.g., in Cambini [8] for second order conditions.

Deterministic global optimization algorithms cannot take this course, since it is not known
beforehand whether the global optimum satisfies an assumed constraint qualification. There-
fore, they have to use the Karush-John conditions in their general form (cf., e.g., Kearfott
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[17]). Unfortunately, the additional constraints needed involve all multipliers and are very
inconvenient for the solution process.

In this section we prove a strong version of the Karush-John conditions for nonlinear program-
ming and multiobjective optimization, and a corresponding relaxation of the Mangasarian-
Fromovitz constraint qualification. Apart from the inverse function theorem, our main tools
are the transposition theorems of the previous section. The treatment is along the lines of
the special case of a single objective discussed in our unpublished paper [29].

We consider concave and nonconcave constraints separately, and introduce slack variables to
transform all nonconcave constraints into equations. Thus we may write a general nonlinear
optimization problems without loss of generality in the form

min f(x)

s.t. C(x) ≥ 0, F (x) = 0.
(24)

In many applications, the objective function f will be a real-valued function. However, we
allow f to be vector-valued; in this case, optimality is replaced by Pareto optimality.

The form (24), which separates the concave constraints (including bound constraints and
general linear constraints) and the remaining nonlinear constraints, is most useful to prove
our strong form of the Karush-John conditions. However, in computer implementations, a
transformation to this form is not ideal, and the slack variables should be eliminated again
from the optimality conditions.

4.1 Theorem. (General first order optimality conditions)

Let f : U → Rk, C : U → Rm, and F : U → Rr be functions continuously differentiable on a
neighborhood U of x̂ ∈ Rn. If C is convex on U and x̂ is a weakly Pareto minimal point of
the nonlinear program (24), then there are vectors ŵ ≥ 0 ∈ Rk, ŷ ∈ Rm, ẑ ∈ Rr such that

f ′(x̂)T ŵ = C ′(x̂)T ŷ + F ′(x̂)T ẑ, (25)

inf(ŷ, C(x̂)) = 0, (26)

F (x̂) = 0, (27)

and
ŵ, ẑ are not both zero. (28)
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Proof. We begin by noting that a feasible point x̂ of (24) is also a feasible point for the
optimization problem

min f(x)

s.t. Ax ≥ b

F (x) = 0,

(29)

where J is the set of all components j for which C(x̂)j = 0 and

A = C ′(x̂)J :, b = C ′(x̂)J :x̂.

For the indices k corresponding to the set N of inactive constraints, we choose yN = 0 to
satisfy condition (26). Since C is convex, we have C(x) ≥ C(x̂)+C ′(x̂)(x− x̂). Restricted to
the rows J we get C(x)J ≥ C ′(x̂)J :(x− x̂). This fact implies that problem (24) is a relaxation
of problem (29) on a neighborhood U of x̂. Note that since C is continuous we know that
C(x)j > 0 for k ∈ N in a neighborhood of x̂ for all constraints with C(x̂)j > 0. Since, by
assumption, x̂ is weakly Pareto minimal for a relaxation of (29) and a feasible point of (29),
it is weakly Pareto minimal (29) as well. Together with the choice yN = 0 the Karush-John
conditions of problem (29) are again conditions (25)–(27). So we have successfully reduced
the problem to the case where C is an affine function and all constraints are active at x̂.

Thus, in the following, we consider a weakly Pareto minimal point x̂ of the optimization
problem (29) satisfying

Ax̂ = b. (30)

If rkF ′(x̂) < r then zTF ′(x̂) = 0 has a solution z 6= 0, and we can solve (25)–(28) with
ŷ = 0, ŵ = 0. Hence we may assume that rkF ′(x̂) = r. This allows us to select a set R of r
column indices such that F ′(x̂):R is nonsingular. Let B be the (0, 1)-matrix such that Bs is
the vector obtained from s ∈ Rn by discarding the entries indexed by R. Then the function
Φ : C → Rn defined by

Φ(x) :=

(
F (x)

Bx−Bx̂

)

has at x = x̂ a nonsingular derivative

Φ′(x̂) =

(
F ′(x̂)

B

)
.

Hence, by the inverse function theorem, Φ defines in a neighborhood of 0 = Φ(x̂) a unique
continuously differentiable inverse function Φ−1 with Φ−1(0) = x̂. Using Φ we can define a
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curved search path with tangent vector p ∈ Rn tangent to the nonlinear constraints satisfying
F ′(x̂)p = 0. Indeed, the function defined by

sp(α) := Φ−1

(
0

αBp

)
− x̂

for sufficiently small α ≥ 0, is continuously differentiable, with

sp(0) = Φ−1(0)− x̂ = 0,

(
F (x̂+ sp(α))

Bsp(α)

)
= Φ

(
Φ−1

(
0

αBp

))
=

(
0

αBp

)
,

hence
sp(0) = 0, F (x̂+ sp(α)) = 0, Bsp(α) = αBp. (31)

Differentiation of (31) at α = 0 yields
(
F ′(x̂)

B

)
ṡp(0) =

(
F ′(x̂)ṡp(0)

Bṡp(0)

)
=

(
0

Bp

)
=

(
F ′(x̂)

B

)
p,

hence ṡp(0) = p, i.e., p is indeed a tangent vector to x̂+ sp(α) at α = 0.

Since x̂ is weakly Pareto minimal, we know that there exists a neighborhood V of x̂ in the
set of feasible points containing no y with f(x̂) > f(y). Thus, for every y ∈ V there exists
an index j with fj(x̂) ≤ fj(y). Taking an arbitrary curved path γ in the feasible set with
γ(0) = x̂ we conclude that there is an index j with f ′j(x̂)γ̇(0) ≥ 0. Hence, there is no
direction p along such a curved search path, for which f ′(x̂)T .p < 0.

Now we consider a direction p ∈ Rn such that

Ap > 0, (32)

F ′(x̂)p = 0. (33)

(In contrast to the purely concave case, we need the strict inequality in (32) to take care of
curvature terms.) Since Ax̂ ≥ b and (32) imply

A(x̂+ sp(α)) = A(x̂+ αṡp(0) + o(α)) = Ax̂+ α(Ap+ o(1)) ≥ b

for sufficiently small α ≥ 0, (31) implies feasibility of the points x̂+ sp(α) for small α ≥ 0.

Thus, sp is a curved search path in the feasible set, and we conclude from the discussion
above that there is no such p with f ′(x̂)Tp > 0. Thus, the equations (32), (33), and

f ′(x̂)Tp < 0, (34)
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are inconsistent.

Therefore, the transposition theorem 3.4 applies with


−f ′(x̂)

A

F ′(x̂)


 ,




w

y

z


 in place of B, q,

and shows the solvability of

−f ′(x̂)Tw + ATy + F ′(x̂)T z = 0, w ≥ 0, y ≥ 0,

(
w

y

)
6= 0.

If we put ẑ = z, let ŷ be the vector with ŷJ = y and zero entries elsewhere, and note that x̂
is feasible, we find (25)–(27).

Because of (28), it now suffices to discuss the case where w = 0 and z = 0, and therefore

ATy = 0, y 6= 0. (35)

In this case, bTy = (Ax̂)Ty = x̂TATy = 0. Therefore any point x ∈ U satisfies (Ax− b)Ty =
xTATy − bTy = 0, and since y ≥ 0, Ax− b ≥ 0, we see that the set

K := {i | (Ax)i = bi for all x ∈ V with Ax− b ≥ 0} (36)

contains all indices i with yi 6= 0 and hence is nonempty.

Since V is nonempty, the system AK:x = bK is consistent, and hence equivalent to AL:x = bL,
where L is a maximal subset of K such that the rows of A indexed by L are linearly
independent. If M denotes the set of indices complementary to K, we can describe the
feasible set equivalently by the constraints

AM :x ≥ bM ,

(
AL:x− bL
F (x)

)
= 0.

This modified description of the feasible set has no equality constraints implicit in the in-
equality AM :x ≥ bM . For a solution x̂ of the equivalent optimization problem with these

constraints, we find as before vectors w ≥ 0, ỹM and

(
ỹL
z

)
such that

f ′(x̂)Tw = ATM :ỹM +

(
AL:

F ′(x̂)

)T(
ỹL
z

)
, (37)
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inf(ỹM , AM :x̂− bM) = 0, (38)

F (x) = 0, AK:x̂− bK = 0, (39)

w,

(
ỹL
z

)
are not both zero. (40)

Clearly, this yields vectors ŵ = w, ŷ = ỹ and ẑ = z satisfying (25) and (26), but now
ỹK\L = 0. The exceptional situation w = 0, z = 0 can no longer occur. Indeed, as before, all
indices i with ỹi 6= 0 lie in K; hence ỹM = 0 and (37) gives AT

L:ỹL = 0. Since, by construction,
the rows of AL: are linearly independent, this implies ỹL = 0, contradicting (40). Hence, we
have w and z are not both zero.

It remains to show that we can choose y ≥ 0 with ATy = ATM :ỹM + ATL:ỹL. From the
definition (36) of K we know that the two relations Ap ≥ 0 and AK:p 6= 0 are inconsistent
(set x = x̂+p). In particular, the relations Ap ≥ 0 and ỹTKAK:p < 0 are inconsistent. By the
Lemma of Farkas 3.1 we conclude the existence of a vector q ≥ 0 with AT q = ATK:ỹK = ATL:ỹL.
Setting yM = ỹM + qM and yK = qK completes the proof. ut

In contrast to our version of the Karush-John condition, the standard Karush-John condition
asserts under our assumptions only that ŵ, ŷ, and ẑ are not simultaneously zero. Thus the
present version gives more information in case that ŵ = 0. Therefore, weaker constraint
qualifications are needed to ensure that ŵ 6= 0. In that case, the multipliers in equation (25)
can be rescaled so that ‖ŵ‖ = 1. However, from a numerical perspective, it may be better to
keep the homogeneous formulations, since a tiny w in a well-scaled multiplier vector implies
neardegeneracy and would give huge multipliers if normalized to ‖ŵ‖ = 1.

Note that in view of (26), the condition (28) can be written (after rescaling) in the equivalent
form

ŵ ≥ 0, vT ŵ + uT ŷ + ẑTDẑ = 1, (41)

where v 6= 0 is an arbitrary nonnegative vector, u is an arbitrary nonnegative vector with
uJ > 0, uN = 0, and D is an arbitrary diagonal matrix with positive diagonal entries. This
form is numerically stable in that all multipliers are bounded and near degeneracies – which
would produce huge multipliers in the Kuhn-Tucker conditions – are revealed by a small
norm of ŵ. The lack of a constraint qualification (which generally cannot be established in
finite precision arithmetic anyway) therefore simply appears as the limit ŵ = 0.

The formulation (41) is particularly useful for the rigorous verification of the existence of a
solution of our refined Karush-John conditions in the vicinity of an approximate solution;
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cf. Kearfott [17, Section 5.2.5] for the corresponding use of the standard Karush-John
conditions. The advantage of our stronger formulation is that in case there are only few
nonconcave constraints, condition (41) involves only a few variables and hence is a much
stronger constraint if constraint propagation techniques [17, 35] are applied to the optimality
conditions.

Let B := F ′(x̂)TEu for some u > 0. We say that the constraint qualification (CQ) is
satisfied if rkF ′(x̂) = r and there exists a matrix Q ∈ Rn×(r+1) with

C ′(x̂)J :(B +Q) ≥ 0,

F ′(x̂)Q = 0.
(42)

4.2 Corollary. If, under the assumptions of Theorem 4.1, the constraint qualification (CQ)
is satisfied then the conclusion of Theorem 4.1 holds with ŵ 6= 0.

Proof. It is obvious that the conclusion of Theorem 4.1 holds with ŵ 6= 0 if

C ′(x̂)TJ :yJ + F ′(x̂)T z = 0, yJ ≥ 0 ⇒ z = 0. (43)

If (43) is satisfied, we have z 6= 0, yJ ≥ 0, and C ′(x̂)TJ :yJ + F ′(x̂)T z = 0 are inconsistent. By
Corollary 3.6 this is equivalent to the constraint qualification. ut

4.3 Theorem. (Kuhn-Tucker conditions)

Under the assumption of Theorem 4.1 with f one-dimensional, if the constraint qualification
(CQ) is satisfied, then there are vectors ŷ ∈ Rm, ẑ ∈ Rr such that

f ′(x̂)T = C ′(x̂)T ŷ + F ′(x̂)T ẑ, (44)

inf(ŷ, C(x̂)) = 0, (45)

F (x̂) = 0. (46)

(44)–(46) are the Kuhn-Tucker conditions for the nonlinear program (24), cf. [19]. The
traditional linear independence constraint qualification requires in place of the assumptions

in Theorem 4.3 the stronger condition that the rows of

(
F ′(x̂)

C ′(x̂)J :

)
are independent. In

contrast, our condition allows arbitrary dependence among the rows of C ′(x̂).
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Weaker than the constraint qualification (CQ) is the Mangasarian-Fromowitz constraint
qualification (MFCQ), which asserts the existence of a vector q with C ′(x̂)J :q > 0 and
F ′(x̂)q = 0. It implies our constraint qualification (CQ), because Q = qλT satisfies (42) for
λ large enough. That (MFCQ) is more restrictive than (CQ) can be seen in Example 2.7,
which we will reconsider here.

4.4 Example. Clearly, the mapping C defined by transforming the inequality constraints
of Example 2.7 to C(x) ≥ 0 is convex, hence we can use Theorem 4.1. As we have seen, the

Figure 1: Feasible set (grey) after eliminating z and lines of constant value of f .

034567 12
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point x̂ = (0, 0, 0)T is a local (even global) optimum of (12), see also Figure 1. We have

f ′(x̂) =
(
−1 0 1

)
, F ′(x̂) =

(
1 −1 1

)
,

B =




1 −1

−1 1

1 −1


 , C ′J :(x̂) =



−10 0 0

0 1 0

1 0 0


 ,

We can calculate the multipliers ŷ = 1
4




1

4

2


 and ẑ = 1 by formulas (11)

1



−1

0

1


 =

1

4



−10 0 1

0 1 0

0 0 0







1

4

2


+ 1 ·




1

−1

1


 ,

and see that we can choose ŵ = 1 in the Karush-John conditions. Indeed, our constraint
qualification (CQ) is valid. For

Q =
1

19



−1 1

1 −1

2 −2




we have
C ′J :(x̂)(B +Q) = 0, F ′(x̂)Q = 0.

However, (MFCQ) is not satisfied since there is no vector q with C ′J :(x̂)q > 0.

5 Conclusions

We presented various theorems of the alternative, and, based on them, derived new optimality
conditions that hold without any constraint qualification. These results strengthen known
local conditions, but they are also suitable for use in a global optimization context, which
was our main motivation for this work.

New and exciting is the fact that, for the first time, it is possible to give necessary and
sufficient (global) optimality conditions for polynomial problems. In particular, it is possible
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to produce (under the idealized assumptions that all semidefinite programs can be solved
exactly) certificates for global optimality of a putative solution x̂. However, these global
results are probably not best possible.

The failure to find a certificate after all problems up to some maximum degree d have been
solved makes it likely that x̂ is not a global optimizer of (3). In this case, one would like
to have a procedure that guarantees (for sufficiently large but a priori unknown d) to find a
feasible point x with a better objective function value than the value at x̂. Then a new local
optimization could be started from x, resulting in a better candidate for a global optimizer.
Work on this is in progress.

Also, at present we have no simple constraint qualification which would guarantee in the
single-objective case that the exponent α in the global Karush-John condition of Theorem
2.4 takes the value 1, which is needed to construct from the certificate multipliers sat-
isfying the Kuhn-Tucker conditions. We conjecture that the exponent e = 1 is possible
iff the Kuhn-Tucker conditions can be satisfied at x̂, in particular under the same (weak-
ened Mangasarian-Fromovitz) constraint qualification as in our Theorem 4.3. This would
strengthen the currently weak connectios between sections 2 and 3.
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